Дослідження операцій

Тип: Нормативний

Кафедра: математичної економіки та економетрії

Навчальний план

СеместрКредитиЗвітність
95Іспит

Лекції

СеместрК-сть годинЛекторГрупа(и)
932професор Кирилич В. М.МТЕ-51

Практичні

СеместрК-сть годинГрупаВикладач(і)
932МТЕ-51професор Кирилич В. М.

Опис курсу

Дослідження операцій – це теорія математичних моделей та методів отримання оптимальних розв’язків системи організаційно-управлінських взаємодіючих підрозділів через керовані дії, об’єднані єдиним задумом і спрямовані на досягнення визначеної мети. Задачі дослідження оперцій класифікують в залежності від часу та достовірності інформації, критерію оптимальності.

У курсі викладено основні поняття та методологія операційного дослідження, методи та задачі дослідження операцій, наведено алгоритми пошуку оптимальних розв’язків розглядуваних задач. Розглянуто задачі лінійного програмування та методи їхнього розв’язування: транспортна задача, потокові задачі в мережах, цілочисельні задачі, динамічне програмування, методи розв’язування нелінійних оптимізаційних задач.

За результатами навчання студент повинен:

 

  • знати:  методи отримання оптимальних розв’язків математичних моделей, що описують та обгрунтовують доцільність вибору тієї чи іншої альтернативи з множини можливих критеріїв діяльності людства; фундаментальні теореми лінійного програмування, симплекс-метод, задачі лінійного програмування з двосторонніми обмеженнями та їхню геометричну інтерпретацію, транспортні задачі, задачі цілочисельного лінійного програмування (метод Гоморі, метод гілок і меж, задачі булевого програмування), методи динамічного програмування (задачі інвестування, про заміну обладнання, планування виробництва та запасів, найкоротший шлях на мережі), задачі про потоки в мережах (задачі про найкоротший шлях, максимальний потік, мережеве планування).
  • вміти:  застосовувати ефективні алгоритми для пошуку оптимальних розв’язків задач лінійного програмування, будувати економіко-математичні моделі, геометрично представляти задачі лінійного програмування, розв’язувати задачі лінійного програмування симплекс-методом та його модифікаціями, розв’язувати двоїсті задачі, транспортні задачі  (методи мінімального елемента, північно-західного кута, Фойгеля), ефективно розв’язувати задачі про потоки в мережах (пошук найкоротшого маршруту, максимального потоку), досліджувати задачі з цілочисельними змінними, розв’язувати лінійні змішані задачі методом Гоморі, застосовувати структуру методу розгалужень і границь, зводити цілочисельні задачі до задач булевого програмування, розв’язувати задачі динамічного програмування, використовуючи принцип оптимальності Белмана, метод функціональних рівнянь, динамічні моделі керування запасами.

 

 

Рекомендована література

  1. Кирилич В. М. Дослідження операцій. Моделі та задачі: текст лекцій / В. М. Кирилич, В. А. Козицький. –  Львів: ВЦ ЛНУ імені Івана Франка, 2012. – 140 с.
  2. Катренко А. В. Дослідження операцій: підручник / А. В. Катренко. – Львів: Магнолія, 2014. – 352с.
  3. Зайченко Ю. П. Дослідження операцій: підручник / Ю. П. Зайченко. – К.: ЗАТ “Віпол”, 2000. – 217с.
  4. Лугінін О. Є. Економіко-математичне моделювання: навчальний посібник / О. Є. Лугінін, В. М. Фомишина. – К.: Знання, 2011. – 342с.
  5. Kasana H. Introductory operations Research. Theory and Applications / H. Kasana, K. Kumaz.– Springer, 2004. – 307p.
  6. Бартіш М. Я. Дослідження операцій. Частини I–V / М. Я. Бартіш, І. М.Дудзяний.– Львів: ВЦ ЛНУ імені Івана Франка, 2004–2011.
  7. Козицький В. А. Опуклі структури, методи оптимізації та їхнє застосування в економічному аналізі: підручник / В. А. Козицький.– Львів: Видавничий центр ЛНУ імені І. Франка, 2008. – 448 с.
  8. Моклячук М. П. Лекції з теорії вибору та прийняття рішень / М. П. Моклячук, Р. Є. Ямненко.– К.: Київський університет, 2007.– 258с.
  9. Савченко О. Г. Економіко-математичне моделювання / О. Г. Савченко.– Н. В. Валько, Л. В. Кузьмич.– Херсон: Колос, 2011.– 179с.

Матеріали

Зразок білету на іспит можна завантажити за посиланням.

Навчальна програма

Завантажити навчальну програму