ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

Механіко-математичний факультет

Кафедра механіки

Пояснювальна записка

до кваліфікаційної (дипломної) роботи <u>бакалавр</u> (освітньо-кваліфікаційний рівень)

на тему

<u>Гранично-інтегральне дослідження напружено-деформівного стану</u> <u>тіла з тонким податливим дисковим включенням</u>

> Виконала: студентка IV курсу, група МТП-41, спеціальність <u>113 Прикладна математика</u> спеціалізація <u>Математичне моделювання</u> <u>та комп'ютерна механіка</u>

Неделькіна А.К.

Керівник проф. Станкевич В.З.

Рецензент Дов., р. д.-м.н. Стаслок Б.М. Kags. onory uamerian's Hy Morecera nouime

ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА

Факультет <u>механіко-математичний</u> Кафедра <u>механіки</u> Освітньо-кваліфікаційний рівень <u>бакалавр</u> Спеціальність <u>113 прикладна математика</u>

Спеціалізація Математичне моделювання та комп'ютерна механіка

«ЗАТВЕРДЖУЮ» Завідувач кафедри механіки

проф. Андрейків О.Є. upmoro 2023 року

ЗАВДАННЯ

НА КВАЛІФІКАЦІЙНУ (ДИПЛОМНУ) РОБОТУ СТУДЕНТУ Неделькінії Анні Кирилівни (прізвище, ім'я, по батькові) 1. Тема роботи Гланичио - интегранне дослідтення напружено - дероривного стани mill nonamullul 1650449 керівник роботи (прізвище, ім'я, по батькові, науковий ступінь, вчене звання) затверджені Вченою радою факультету від "22" сетого 2023 року № У 2. Строк подання студентом роботи 12 гервне 2023 hDRU 3. Вихідні дані до роботи 1. Маруха в. У. Механіка рушнування та нізність namerianib / B.Y. Manyxa, B.B. Tauacion, B.D. Curobauron / Dob. noc. T. 12: Interception mexicolori; biguobreurs poromozgemucomi nourogneever enopyg mubanor eccnysian - Abbil: 6-60 "Crower"- 2009, - 2620: A Cmaguer M. M. Tepwonpyneuw cman ma mil z mourau briwseursun gobienos nopem rocmi, - 1666, 6-to HATY, - 2015, -316c. 4. Зміст розрахунково-пояснювальної записки (перелік питань, які потрібно розробити) ветуп; всивый засади тривилирния статичина ragaz medoi nhuradomi gne mil 2 mole cocmiunany nogom le Breun Kuoreughuur, Thanuruo - ile meroallue popuyruol Anasimurue horb'ssubarers rip ma alequin Nimepanypa neusbru

5. Перелік графічного матеріалу (з точним зазначенням обов'язкових креслень)

6. Консультанти розділів роботи

Розділ	Прізвище, ініціали та посада консультанта	Підпи	Підпис, дата	
		Завдання видав	завдання прийняв	
	and the second se			

7. Дата видачі завдання

КАЛЕНДАРНИЙ ПЛАН

<u>з/п</u>	Назва етапів кваліфікаційної (дипломної) роботи	Строк виконання етапів роботи	Примітк
S. S. S.			-
14			1.1.1.1.1.1.1.1
S. 225			613.5
-			

Студент

Керівник роботи

Инризвище Hegens King Klua A.K. (підпис анниали 3 (прізвище та ініціали) (підпис)

3MICT

№ п/п	Назва розділу	Стор
1	ВСТУП	2
2	ОСНОВНІ ЗАСАДИ ТРИВИМІРНИХ СТАТИЧНИХ ЗАДАЧ	
	ТЕОРІЇ ПРУЖНОСТІ ДЛЯ ТІЛ З ТОНКОСТІННИМИ	3
	ПОДАТЛИВИМИ ВКЛЮЧЕННЯМИ.	
3	ГРАНИЧНО-ІНТЕГРАЛЬНЕ ФОРМУЛЮВАННЯ ЗАДАЧІ	6
4	АНАЛІТИЧНЕ РОЗВ'ЯЗУВАННЯ ГІР ТА АНАЛІЗ	9
	ЧИСЛОВИХ РЕЗУЛЬТАТІВ	
5	ВИСНОВКИ	20
6	ЛІТЕРАТУРА	21

ВСТУП

Проведення оцінки міцнісного стану пружних тіл з дефектами на кшталт тонкостінних включень представляє інтерес насамперед з точки зору аналізу напружено-деформівного стану композитних структур, потенційного опірності ïχ функціональних властивостей, зростання покращення прикладеним зовнішнім навантаженням різної природи, подовження терміну експлуатації тощо [1-3]. Значний інтерес становлять тонкокостінні податливі зв. "заліковані", тобто, заповнені включення. якими моделюють т. спеціальним ін'єкційним матеріалом тріщини [1, 4]. При цьому сама технологія ін'єктування є високоефективним та інноваційним методом зміцнення та гідроізоляції камяних, цегляних, залізобетонних тощо будівель і конструкцій, який уможливлює реставрацію і реконструкцію споруд без комплексу ремонтно-відновлювальних проведення загального робіт. дозволяє підвищити конструкцій Зазначена технологія міцність та продовжити термін їх експлуатації. У літературі є значна кількість публікацій та досліджень, присвячених тематиці дослідження напружено-деформівного стану тіл з пружними податливими включеннями. Переважна більшість результатів отримана тими чи іншими числовими методами і стосувалася випадків плоских та вісесиметричних задач. Водночас клас задач, які уможливлюють отримання аналітичних розв'язків, (які є еталонними для дослідників) є дуже обмеженим.

У пропонованій роботі розглянуто тривимірну статичну задачу про навантаження безмежного тіла з поодиноким пружним податливим включенням. Дослідження, виконані з залученням математичного апарату методу граничних інтегральних рівнянь, дали можливість отримання аналітичних розв'язків поставленої задачі.

ОСНОВНІ ЗАСАДИ ТРИВИМІРНИХ СТАТИЧНИХ ЗАДАЧ ТЕОРІЇ ПРУЖНОСТІ ДЛЯ ТІЛ З ТОНКОСТІННИМИ ПОДАТЛИВИМИ ВКЛЮЧЕННЯМИ.

Розглянемо безмежне тривимірне тіло, навантажене на безмежності зусиллями $\vec{N}(N_1, N_2, N_3)$. Ізотропний матеріал тіла характеризується Пуассоновим коефіцієнтом μ , модулем Юнга *E* та модулем зсуву $G = E/[2(1 + \mu)]$.

Рис. 1. Схема задачі.

Тіло містить тонке пружне включення, серединна поверхня якого займає плоску область *S* (рис. 1). Матеріал включення характеризується модулем Юнга E_1 та модулем зсуву G_1 , при цьому $E_1 << E$, $G_1 << G$. Максимальна товщина 2*h* включення значно менша за найбільший характерний розмір 2*a* області *S* (2*h*<<2*a*). Приймаємо, що матеріали включення та тіла ідеально зчеплені між собою. У серединній поверхні включення (області *S*) вибираємо декартову систему координат $Oy_1y_2y_3$ так, щоб область *S* розташовувалася в площині Oy_1y_2 . Дослідження напружено-деформівного стану розглядуваного тіла з включенням зводиться до розв'язання диференціального рівняння Ламе відносно невідомого вектора переміщень $\vec{u}(u_1, u_2, u_3)$ [1]

$$\Delta_3 \vec{\mathbf{u}} + \frac{1}{1 - 2\mu} \operatorname{grad} \operatorname{div} \vec{\mathbf{u}} = 0 \quad , \tag{1}$$

Тут $\vec{\mathbf{u}}(u_1, u_2, u_3)$ – вектор переміщень у декартовій системі координат $Oy_1 y_2 y_3$; $\Delta_3 = \partial^2 / \partial y_1^2 + \partial^2 / \partial y_2^2 + \partial^2 / \partial y_3^2$ – тривимірний Лапласів оператор за змінними y_1, y_2, y_2 . Компоненти тензора напружень для випадку ізотропного матеріалу визначаються через переміщення $u_j(\mathbf{y})$, j=1,2,3 співвідношеннями закону Гука

$$\sigma_{jj}(\mathbf{y}) = 2G\left(\frac{\mu}{1-2\mu}\theta + \frac{\partial u_j(\mathbf{y})}{\partial y_j}\right) , \qquad (2)$$

$$\sigma_{ji}(\mathbf{y}) = G\left(\frac{\partial u_j(\mathbf{y})}{\partial y_i} + \frac{\partial u_i(\mathbf{y})}{\partial y_j}\right) , \ j \neq i \ , \ j, i = 1, 2, 3 \ ,$$

де $\theta = \partial u_1 / \partial y_1 + \partial u_2 / \partial y_2 + \partial u_3 / \partial y_3 -$ об'ємна деформація.

Для розв'язання задачі диференціальне рівняння (1) потрібно доповнити крайовими умовами на включенні.

Скориставшись принципом суперпозиції, переміщення точок протилежних поверхонь *S*[±] включення вибираємо у вигляді суми

$$u_j^*(\mathbf{y}) = u_j^0(\mathbf{y}) + u_j^1(\mathbf{y}) , \ j = 1, 2, 3 ,$$
 (3)

де $u_j^{0\pm}(\mathbf{y})$ – зміщення в однорідному (бездефектному) тілі на місці уявних поверхонь S^{\pm} під заданим навантаженням \mathbf{N} ; $u_j^{1\pm}(\mathbf{y})$ – зміщення протилежних поверхонь дефектів під дією заданого на них навантаження $-\mathbf{N}$.

Аналогічно напруження у тілі подаємо у виді

$$\sigma_{j3}^{*}(\mathbf{y}) = \sigma_{j3}^{0}(\mathbf{y}) + \sigma_{j3}^{1}(\mathbf{y}) , \ \sigma_{j3}^{0}(\mathbf{y}) = -N_{j} .$$
(4)

Рівняння (1) доповнюємо крайовими умовами задачі, які винесені на серединну поверхню *S* включення і записані у вигляді [1]

$$\sigma_{13}^{*}(\mathbf{y}) = \frac{G_{1}}{2h(\mathbf{y})} \Big[u_{1}^{*}(\mathbf{y}) \Big] , \ \sigma_{23}^{*}(\mathbf{y}) = \frac{G_{1}}{2h(\mathbf{y})} \Big[u_{2}^{*}(\mathbf{y}) \Big] , \ \sigma_{33}^{*}(\mathbf{y}) = \frac{E_{1}}{2h(\mathbf{y})} \Big[u_{3}^{*}(\mathbf{y}) \Big] .$$
(5)

Ці умови характеризують лінійну залежність між напруженнями та стрибками зміщень протилежних поверхонь S[±] включення (умови Вінклера). У формулі (5)

$$[u_{j}^{0}(\mathbf{y})] = u_{j}^{0+}(\mathbf{y}) - u_{j}^{0-}(\mathbf{y}) , \quad j = \overline{1,3} ,$$

$$[u_{j}^{1}(\mathbf{y})] = u_{j}^{1+}(\mathbf{y}) - u_{j}^{1-}(\mathbf{y}) = -4\pi \Delta u_{j}(\mathbf{y}) .$$
(6)

Тут $\Delta u_j(\mathbf{y}) = \left(u_j^{1-}(\mathbf{y}) - u_j^{1+}(\mathbf{y})\right) / 4\pi$ — функція стирибка зміщень точок протилежних поверхонь S^{\pm} включення.

ГРАНИЧНО-ІНТЕГРАЛЬНЕ ФОРМУЛЮВАННЯ ЗАДАЧІ

Компоненти вектора переміщень у довільній точці **у**(*y*₁, *y*₂, *y*₃) простору, які задовольняють рівнянню (1), вибираємо у вигляді інтегральних подань

$$u_{j}^{1}(\mathbf{y}) = \frac{\partial L_{j}(\mathbf{y})}{\partial y_{j}} + \delta_{j3} \sum_{n=1}^{3} \frac{\partial L_{n}(\mathbf{y})}{\partial y_{n}} - \frac{\partial}{\partial y_{j}} \left[\frac{y_{3}}{2(1-\mu)} \sum_{n=1}^{3} \frac{\partial L_{n}(\mathbf{y})}{\partial y_{n}} + \frac{1-2\mu}{2(1-\mu)} L_{3}(\mathbf{y}) \right] , \quad (7)$$

де $L_{j}(\mathbf{y}) = \iint_{S} \frac{\Delta u_{j}(\boldsymbol{\varsigma})}{|\mathbf{y}-\boldsymbol{\varsigma}|} dS_{\boldsymbol{\varsigma}}$, $j=\overline{1,3}$ – класичні Ньютонівські потенціали, які задовольняють рівнянням Лапласа $\Delta_{3} L_{j}(\mathbf{y}) = 0$; невідомі густини $\Delta u_{i}(\mathbf{y})$ мають вигляд характеризують зміщення точок протилежних поверхонь включення; $|\mathbf{y}-\boldsymbol{\varsigma}| = \sqrt{(y_{1}-\boldsymbol{\varsigma}_{1})^{2}+(y_{2}-\boldsymbol{\varsigma}_{2})^{2}+y_{3}^{2}}$ відстань між довільною точкою $\mathbf{y}(y_{1}, y_{2}, y_{3})$ тіла і точкою $\boldsymbol{\varsigma}(\boldsymbol{\varsigma}_{1}, \boldsymbol{\varsigma}_{2}, 0)$ області *S* інтегрування.

Підставивши подання (7) для переміщень у співвідношення (2) закону Гука, отримуємо інтегральні вирази для компонент тензора напружень [5]

$$\sigma_{j3}^{1}(\mathbf{y}) = \frac{G}{1-\mu} \left\{ \frac{\partial^{2} L_{j}(\mathbf{y})}{\partial y_{3}^{2}} - (-1)^{j} \mu (1-\delta_{j3}) \frac{\partial}{\partial y_{3-j}} \left[\frac{\partial L_{1}(\mathbf{y})}{\partial y_{2}} - \frac{\partial L_{2}(\mathbf{y})}{\partial y_{1}} \right] - y_{3} \frac{\partial^{2} \Omega(\mathbf{y})}{\partial y_{j} \partial y_{3}} \right\}$$

$$j = 1, 2, 3 ,$$

$$\sigma_{ji}^{1}(\mathbf{y}) = \frac{G}{1-\mu} \left\{ \frac{\partial}{\partial y_{3}} \left[(1-\mu) \left(\frac{\partial L_{j}(\mathbf{y})}{\partial y_{i}} + \frac{\partial L_{i}(\mathbf{y})}{\partial y_{j}} \right) + 2\mu \delta_{ji} \Omega(\mathbf{y}) \right] -$$
(8)

$$-\frac{\partial^2}{\partial y_j \partial y_i} \Big[(1-2\mu) L_3(\mathbf{y}) + y_3 \Omega(\mathbf{y}) \Big] \bigg\} , \quad j,i=1,2 ,$$

$$\Omega(\mathbf{y}) = \sum_{j=1}^{3} \frac{\partial L_j(\mathbf{y})}{\partial y_j}$$

Вибір інтегральних подань (7) для переміщень і (8) для напружень за допомогою Ньютонівських потенціалів гарантує заникання зазначених переміщень і напружень на безмежності.

Для подальшого задоволення крайових умов (5) задачі використовуємо властивість Ньютонівського потенціалу тотожнього задоволення диференціального рівняння Лапласа

$$\Delta_3 L_j \Big|_{y_3 \to 0} = 0 \implies \left(\frac{\partial^2}{\partial y_1^2} + \frac{\partial^2}{\partial y_2^2} + \frac{\partial^2}{\partial y_3^2} \right) L_j = 0 \implies \frac{\partial^2}{\partial y_3^2} L_j = -\Delta_2 L_j ,$$

та властивість нормальної похідної

$$\frac{\partial}{\partial y_3}H_j\bigg|_{x_3\to 0} = \frac{\partial}{\partial y_3} \iint_{S} \frac{\Delta u_j(\varsigma)}{|\mathbf{y}-\varsigma|} dS_{\varsigma} = y_3 \iint_{S} \frac{\Delta u_j(\varsigma)}{|\mathbf{y}-\varsigma|^3} dS_{\varsigma}\bigg|_{y_3\to 0} = 0 , \ j = 1, 2, 3 .$$

Тут $\Delta_2 = \partial^2 / \partial y_1^2 + \partial^2 / \partial y_2^2$ – двовимірний Лапласів оператор. Тоді з використанням співвідношень (4), (6) і (8) крайові умови (5) розглядуваної задачі записуємо у вигляді

$$\frac{G}{1-\mu} \left\{ -\Delta_2 \iint_{S} \frac{\Delta u_1(\varsigma)}{|\mathbf{y}-\varsigma|} dS_{\varsigma} + \mu \frac{\partial^2}{\partial y_2^2} \iint_{S} \frac{\Delta u_1(\varsigma)}{|\mathbf{y}-\varsigma|} dS_{\varsigma} - \mu \frac{\partial^2}{\partial y_1 \partial y_2} \iint_{S} \frac{\Delta u_2(\varsigma)}{|\mathbf{y}-\varsigma|} dS_{\varsigma} \right\} + N_1(\mathbf{y}) = \\
= \frac{G_1}{2h(\mathbf{y})} \left\{ -4\pi \Delta u_1(\mathbf{y}) + [u_1^0(\mathbf{y})] \right\},$$

$$\begin{split} \frac{G}{1-\mu} \Biggl\{ -\Delta_2 \iint_{S} \frac{\Delta u_2(\varsigma)}{|\mathbf{y}-\varsigma|} dS_{\varsigma} + \mu \frac{\partial^2}{\partial y_1^2} \iint_{S} \frac{\Delta u_2(\varsigma)}{|\mathbf{y}-\varsigma|} dS_{\varsigma} - \mu \frac{\partial^2}{\partial y_1 \partial y_2} \iint_{S} \frac{\Delta u_1(\varsigma)}{|\mathbf{y}-\varsigma|} dS_{\varsigma} \Biggr\} + N_2(\mathbf{y}) = \\ = \frac{G_1}{2h(\mathbf{y})} \Biggl\{ -4\pi \Delta u_2(\mathbf{y}) + [u_2^0(\mathbf{y})] \Biggr\} \quad, \end{split}$$

$$\frac{G}{1-\mu} \left\{ -\Delta_2 \iint_{S} \frac{\Delta u_3(\boldsymbol{\varsigma})}{|\boldsymbol{y}-\boldsymbol{\varsigma}|} dS_{\boldsymbol{\varsigma}} \right\} + N_3(\boldsymbol{y}) = \frac{E_1}{2h(\boldsymbol{y})} \left\{ -4\pi \Delta u_3(\boldsymbol{y}) + [u_3^0(\boldsymbol{y})] \right\} .$$

(9)

Отримані інтегральні рівняння трансформуємо до вигляду

$$-2\pi(1-\mu)\frac{G_{1}}{G}\frac{\Delta u_{1}(\mathbf{y})}{h(\mathbf{y})} + \Delta_{2} \iint_{S} \frac{\Delta u_{1}(\varsigma)}{|\mathbf{y}-\varsigma|} dS_{\varsigma} - \mu \frac{\partial^{2}}{\partial y_{2}^{2}} \iint_{S} \frac{\Delta u_{1}(\varsigma)}{|\mathbf{y}-\varsigma|} dS_{\varsigma} + \mu \frac{\partial^{2}}{\partial y_{1} \partial y_{2}} \iint_{S} \frac{\Delta u_{2}(\varsigma)}{|\mathbf{y}-\varsigma|} dS_{\varsigma} = \frac{1-\mu}{G} \left\{ N_{1}(\mathbf{y}) - \frac{G_{1}}{2h(\mathbf{y})} [u_{1}^{0}(\mathbf{y})] \right\} ,$$

$$(10.a)$$

$$-2\pi(1-\mu)\frac{G_{1}}{G}\frac{\Delta u_{2}(\mathbf{y})}{h(\mathbf{y})} + \Delta_{2}\iint_{S}\frac{\Delta u_{2}(\varsigma)}{|\mathbf{y}-\varsigma|}dS_{\varsigma} - \mu\frac{\partial^{2}}{\partial y_{1}^{2}}\iint_{S}\frac{\Delta u_{2}(\varsigma)}{|\mathbf{y}-\varsigma|}dS_{\varsigma} + \mu\frac{\partial^{2}}{\partial y_{1}\partial y_{2}}\iint_{S}\frac{\Delta u_{1}(\varsigma)}{|\mathbf{y}-\varsigma|}dS_{\varsigma} = \frac{1-\mu}{G}\left\{N_{2}(\mathbf{y}) - \frac{G_{1}}{2h(\mathbf{y})}[u_{2}^{0}(\mathbf{y})]\right\},$$

$$(10.6)$$

$$-4\pi(1-\mu^{2})\frac{E_{1}}{E}\frac{\Delta u_{3}(\mathbf{y})}{h(\mathbf{y})} + \Delta_{2}\iint_{S}\frac{\Delta u_{3}(\boldsymbol{\varsigma})}{|\mathbf{y}-\boldsymbol{\varsigma}|}dS_{\boldsymbol{\varsigma}} =$$

$$=\frac{1-\mu}{G}\left\{N_{3}(\mathbf{y}) - \frac{E_{1}}{2h(\mathbf{y})}[u_{3}^{0}(\mathbf{y})]\right\} , \quad \mathbf{y}(y_{1}, y_{2}, y_{3}=0) \in S$$
(10.6)

Отримана система інтегральних рівнянь є системою двовимірних граничних інтегральних рівнянь (ГІР) для визначення невідомих густин $\Delta u_j(\mathbf{y})$, які характеризують розкриття поверхонь включення. Ці ГІР є інтегральними рівняннями другого роду типу Ньютонівського потенціалу.

Маючи значення $\Delta u_j(\mathbf{y})$ як розв'язки ГІР (10), за допомогою співвідношень (7), (8) можна визначити переміщення і напруження у довільній точці тіла.

АНАЛІТИЧНЕ РОЗВ'ЯЗУВАННЯ <mark>ГІР</mark> ТА АНАЛІЗ ЧИСЛОВИХ РЕЗУЛЬТАТІВ

Для деяких часткових випадків виду функцій $N_j(\mathbf{y})$ навантаження та конфігурації плоскої області *S* серединної поверхні включення вдається отримати аналітичні розв'язки $\Delta u_j(\mathbf{y})$ ГІР (10). Розглянемо такі випадки. Нехай *S* – кругова область радіуса *a*.

Випадок І. Розрив тіла з круговим включенням.

Рис. 2. Схема задачі про нормальний розрив тіла з круговим включенням.

Нехай тіло на безмежності розтягується зусиллями $N_3(\mathbf{y}) = N$. В цьому випадку $\Delta u_1(\mathbf{y}) = \Delta u_2(\mathbf{y}) = 0$, $\Delta u_3(\mathbf{y}) \neq 0$ і задача зводиться до розв'язання лише одного ГІР (10.*в*). Врахувавши

$$u_3^{0\pm}(\mathbf{y}) = \pm \frac{h(\mathbf{y})}{E} N \quad \Rightarrow \quad [u_3^0(\mathbf{y})] = u_3^{0+}(\mathbf{y}) - u_3^{0-}(\mathbf{y}) = \frac{2h(\mathbf{y})}{E} N$$

рівняння (10.в) переписуємо в остаточному вигляді

$$-4\pi(1-\mu^{2})\frac{E_{1}}{E}\frac{\Delta u_{3}(\mathbf{y})}{h(\mathbf{y})} + \Delta_{2}\iint_{S}\frac{\Delta u_{3}(\varsigma)}{|\mathbf{y}-\varsigma|}dS_{\varsigma} = \frac{1-\mu}{G}(1-E_{1}/E)N , \qquad (11)$$
$$\mathbf{y}(y_{1}, y_{2}, y_{3}=0) \in S$$

10

Невідому густину $\Delta u_3(\mathbf{y})$ шукаємо у вигляді [5]

$$\Delta u_3(\mathbf{y}) = \sqrt{a^2 - y_1^2 - y_2^2} \alpha(\mathbf{y}) = \sqrt{a^2 - y_1^2 - y_2^2} D \quad , \quad D = const$$
(12)

Кореневий множник у виразі (12) забезпечує змикання протилежних поверхонь включення на контурі області *S*, тобто

$$\Delta u_3(\mathbf{y})\Big|_{y_1^2 + y_2^2 = a^2} = 0$$

Приймаємо, що товщина включення змінюється за аналогічним з (12) законом

$$h(\mathbf{y}) = \frac{h}{a}\sqrt{a^2 - y_1^2 - y_2^2}$$
(13)

3 урахуванням (12), (13) ГІР (11) переписуємо у вигляді

$$-4\pi(1-\mu^{2})\frac{E_{1}}{E}\frac{a}{h}D+D\cdot\Delta_{2}\iint_{S}\frac{\sqrt{a^{2}-\varsigma_{1}^{2}-\varsigma_{2}^{2}}}{|\mathbf{y}-\varsigma|}dS_{\varsigma}=\frac{1-\mu}{G}(1-E_{1}/E)N \quad , \qquad (14)$$
$$\mathbf{y}(y_{1},y_{2},y_{3}=0)\in S$$

Скориставшись аналітичним значенням двовимірного інтегралу [6]

$$\iint_{S} \frac{\sqrt{a^{2} - \varsigma_{1}^{2} - \varsigma_{2}^{2}}}{|\mathbf{y} - \varsigma|} dS_{\varsigma} = \frac{\pi^{2}}{4} \left(2a^{2} - y_{1}^{2} - y_{2}^{2} \right)$$
(15)

ГІР (14) зводимо до диференціального рівняння

$$-4\pi(1-\mu^2)\frac{E_1}{E}\frac{a}{h}D+D\cdot\Delta_2\left[\frac{\pi^2}{4}\left(2a^2-y_1^2-y_2^2\right)\right]=\frac{1-\mu}{G}(1-E_1/E)N$$

Застосувавши до виразу у квадратних дужках операції диференціювання $(\Delta_2 = \partial^2 / \partial y_1^2 + \partial^2 / \partial y_2^2)$, отримуємо лінійне алгебраїчне рівняння відносно невідомої *D*

$$-4\pi(1-\mu^2)\frac{E_1}{E}\frac{a}{h}D - \pi^2 D = \frac{1-\mu}{G}(1-E_1/E)N$$

Тоді

$$-\pi \left\{ 4(1-\mu^2) \frac{E_1}{E} \frac{a}{h} + \pi \right\} D = \frac{1-\mu}{G} (1-E_1/E) N$$

Звідси

$$\alpha(\mathbf{y}) = D = -\frac{1-\mu}{\pi G} \frac{1-\frac{E_1}{E}}{4(1-\mu^2)\frac{E_1}{E}\frac{a}{h} + \pi} N$$

За допомогою знайденої функції α(y) визначаємо статичний коефіцієнт інтенсивності напружень відриву в околі точок контуру включення [5]

$$K_{I}^{BKR}(\phi) = -\frac{2G\pi\sqrt{\pi a}}{1-\mu}\alpha(\phi) = \frac{2G\pi\sqrt{\pi a}}{1-\mu} \cdot \frac{1-\mu}{\pi G} \frac{1-\frac{E_{1}}{E}}{4(1-\mu^{2})\frac{E_{1}}{E}\frac{a}{h} + \pi}N$$

який після проведення спрощень набуває остаточного вигляду

$$K_{I}^{BKR}(\phi) = 2\sqrt{\pi a} \frac{1 - \frac{E_{1}}{E}}{4(1 - \mu^{2})\frac{E_{1}}{E}\frac{a}{h} + \pi} N$$
(16)

Аналіз формули (16) дає можливість сформулювати наступні висновки:

– за одинакових значень модулів Юнга матеріалів включення і тіла ($E_1 = E$) отримуємо бездефектне однорідне тіло, і тому $K_I^{gkn} = 0$;

– для випадку $E_1 = 0$ отримуємо граничний випадок тіла з тріщиною і КІН відриву для включення співпадає зі своїм аналогом для тріщини, тобто [7]

$$K_I^{BKN} = K_I^{mpiu} = 2\sqrt{\frac{a}{\pi}}N ;$$

– для випадку товщини h = 0 включення отримуємо $K_I^{6\kappa n} = 0$, тобто відсутній дефект.

Розглянемо нормований КІН відриву

$$\tilde{K}_{I}^{6\kappa\pi} = \frac{K_{I}^{6\kappa\pi}}{K_{I}^{mpiu_{I}}} = 2\sqrt{\pi a} \frac{\frac{1 - \frac{E_{1}}{E}}{4(1 - \mu^{2})\frac{E_{1}}{E}\frac{a}{h} + \pi}}{2\sqrt{\frac{a}{\pi}}N} = \frac{\pi(1 - E_{1}/E)}{4(1 - \mu^{2})\frac{E_{1}}{E}\frac{a}{h} + \pi}$$

На рис. З показані залежності значень $\tilde{K}_{I}^{\epsilon\kappa\pi}$ від параметру E_{1}/E контрастності жорсткостей матеріалів включення і тіла за фіксованих значень Пуассонового коефіцієнта μ матеріалу тіла і характеристики h/a = 0.01 товщини включення. Видно, що збільшення жорсткості матеріалу включення (модуля Юнга E_{1}) супроводжується зменшенням значень нормованого КІН, тобто має місце ефект зміцнення. Зростання значень Пуассонового коефіцієнта матеріалу тіла призводить до несуттєвого збільшення значень $\tilde{K}_{I}^{\epsilon\kappa\pi}$.

Рис. 3. Залежність нормованих КІН відриву $\tilde{K}_{I}^{e\kappa n}$ від параметру E_{1}/E і Пуассонового коефіцієнта матеріалу тіла.

На рис. 4 показані залежності значень $\tilde{K}_{I}^{6\kappa\pi}$ від параметру h/a товщини включення за фіксованих значень $\mu = 0.3$ і параметру E_1/E контрастності жорсткостей матеріалів включення і тіла. Зростання товщини включення призводить до збільшення значень нормованих КІН. Це логічно пояснюється тим, що збільшення початкової товщини дефекту означає і зростання його розпирання (розкриття).

На рис. 5 показані залежності значень $\tilde{K}_{I}^{\kappa\pi}$ від параметру E_{1}/E контрастності жорсткостей матеріалів включення і тіла за фіксованих значень характеристик h/a товщини включення з урахуванням чинника $[u_{3}^{0}(\mathbf{y})]$ у ГІР (10.*в*) (суцільні лінії) та без його урахування (штрихові лінії). Видно, що для значень $h/a \leq 0.02$ впливом зазначеного чинника (i, відповідно, доданком E_{1}/E у чисельнику виразу (16) для КІН $\tilde{K}_{I}^{\kappa\pi}$) з достатньою для розрахунків точністю можна знехтувати).

Рис. 4. Залежність нормованих КІН відриву $\tilde{K}_{I}^{\scriptscriptstyle BKR}$ від товщини включення і параметру E_{1}/E контрастності жорсткостей матеріалів.

Рис. 5. Залежність нормованих КІН відриву $\tilde{K}_{I}^{g\kappa\pi}$ від параметрів E_{1}/E і товщини включення.

Випадок II. Осьовий зсув тіла з круговим включенням.

Рис. 6. Схема задачі про осьовий зсув тіла з круговим включенням.

Нехай тіло на безмежності зазнає дії зсувного навантаження $N_1(\mathbf{y}) = N = const$, $N_2(\mathbf{y}) = N_3(\mathbf{y}) = 0$, направленого вздовж напрямку осі Oy_1 . Тоді невідомі густини ГІР $\Delta u_2(\mathbf{y}) = \Delta u_3(\mathbf{y}) = 0$, і задача зводиться до розв'язання лише одного ГІР (10.*a*) відносно функції $\Delta u_1(\mathbf{y})$, яке набуває вигляду

$$-2\pi(1-\mu)\frac{G_{1}}{G}\frac{\Delta u_{1}(\mathbf{y})}{h(\mathbf{y})} + \Delta_{2}\iint_{S}\frac{\Delta u_{1}(\varsigma)}{|\mathbf{y}-\varsigma|}dS_{\varsigma} - \mu\frac{\partial^{2}}{\partial y_{2}^{2}}\iint_{S}\frac{\Delta u_{1}(\varsigma)}{|\mathbf{y}-\varsigma|}dS_{\varsigma} =$$

$$=\frac{1-\mu}{G}\left\{N-\frac{G_{1}}{2h(\mathbf{y})}[u_{1}^{0}(\mathbf{y})]\right\}, \quad \mathbf{y}(y_{1},y_{2},y_{3}=0)\in S$$
(17)

Врахувавши

$$u_1^{0\pm}(\mathbf{y}) = \pm \frac{h(\mathbf{y})}{G} N \quad \Rightarrow \quad [u_1^0(\mathbf{y})] = u_1^{0+}(\mathbf{y}) - u_1^{0-}(\mathbf{y}) = \frac{2h(\mathbf{y})}{G} N$$

рівняння (17) переписуємо в остаточному вигляді

$$-2\pi(1-\mu)\frac{G_{1}}{G}\frac{\Delta u_{1}(\mathbf{y})}{h(\mathbf{y})} + \Delta_{2}\iint_{S}\frac{\Delta u_{1}(\varsigma)}{|\mathbf{y}-\varsigma|}dS_{\varsigma} - \mu\frac{\partial^{2}}{\partial y_{2}^{2}}\iint_{S}\frac{\Delta u_{1}(\varsigma)}{|\mathbf{y}-\varsigma|}dS_{\varsigma} =$$

$$=\frac{1-\mu}{G}(1-G_{1}/G)N \quad , \quad \mathbf{x}\in S$$
(18)

Невідомі густини $\Delta u_1(\mathbf{y})$, $\Delta u_2(\mathbf{y})$ шукаємо у вигляді

$$\Delta u_1(\mathbf{y}) = \sqrt{a^2 - y_1^2 - y_2^2} \alpha_1(\mathbf{y}) = \sqrt{a^2 - y_1^2 - y_2^2} D_1 \quad , \quad D_1 = const$$
(19)

$$\Delta u_2(\mathbf{y}) = \sqrt{a^2 - y_1^2 - y_2^2} \alpha_2(\mathbf{y}) = \sqrt{a^2 - y_1^2 - y_2^2} D_2 \quad , \quad \alpha_2(\mathbf{y}) = D_2 = 0$$

Приймаємо, що товщина включення змінюється за законом (13). З урахуванням (13), (19) ГІР (18) переписуємо у вигляді

$$-2\pi(1-\mu)\frac{G_{1}}{G}\frac{a}{h}D_{1}+D_{1}\Delta_{2}\iint_{S}\frac{\sqrt{a^{2}-\varsigma_{1}^{2}-\varsigma_{2}^{2}}}{|\mathbf{y}-\boldsymbol{\varsigma}|}dS_{\boldsymbol{\varsigma}}-$$

$$-D_{1}\mu\frac{\partial^{2}}{\partial y_{2}^{2}}\iint_{S}\frac{\sqrt{a^{2}-\varsigma_{1}^{2}-\varsigma_{2}^{2}}}{|\mathbf{y}-\boldsymbol{\varsigma}|}dS_{\boldsymbol{\varsigma}}=\frac{1-\mu}{G}(1-G_{1}/G)N \quad , \quad \mathbf{y}\in S$$

$$(20)$$

Скориставшись аналітичним значенням двовимірного інтегралу (15) зводимо ГІР (20) до дифференціального рівняння

$$-2\pi (1-\mu) \frac{G_1}{G} \frac{a}{h} D_1 + \frac{\pi^2}{4} D_1 \Delta_2 \left(2a^2 - y_1^2 - y_2^2 \right) - \frac{\pi^2}{4} D_1 \mu \frac{\partial^2}{\partial y_2^2} \left(2a^2 - y_1^2 - y_2^2 \right) = \frac{1-\mu}{G} (1-G_1/G) N \quad , \quad \mathbf{y} \in S$$

Застосувавши операції диференціювання, отримуємо лінійне алгебраічне рівняння відносно невідомої *D*₁

$$-\pi \left\{ 2(1-\mu)\frac{G_1}{G}\frac{a}{h} + \frac{\pi}{2}(2-\mu) \right\} D_1 = \frac{1-\mu}{G}(1-G_1/G)N$$

Звідси

$$D_1 = \alpha_1(\mathbf{y}) = -\frac{1-\mu}{G} \frac{1-\frac{G_1}{G}}{\pi \left\{ 2(1-\mu)\frac{G_1}{G}\frac{a}{h} + \frac{\pi}{2}(2-\mu) \right\}} N$$

За допомогою знайденої функції $\alpha_1(\mathbf{y})$ визначаємо КІН повздовжнього та поперечного зсувів [5]

$$K_{II}^{GKT}(\phi) = -\frac{2G\pi\sqrt{\pi a}}{1-\mu} \Big[\alpha_1(\phi)\cos\phi + \alpha_2(\phi)\sin\phi\Big] = -\frac{2G\pi\sqrt{\pi a}}{1-\mu}D_1\cos\phi$$
(21)

$$K_{III}^{e_{\kappa\pi}}(\varphi) = -2G\pi\sqrt{\pi a} \Big[\alpha_1(\varphi)\sin\varphi - \alpha_2(\varphi)\cos\varphi\Big] = -2G\pi\sqrt{\pi a}D_1\sin\varphi$$

які після проведення спрощень набувають остаточного вигляду

$$K_{II}^{GKR}(\phi) = \frac{2\sqrt{\pi a} (1 - G_1/G)}{2(1 - \mu) \frac{G_1}{G} \frac{a}{h} + \frac{\pi}{2}(2 - \mu)} N \cdot \cos \phi$$

$$K_{III}^{GKR}(\phi) = \frac{2\sqrt{\pi a} (1-\mu)(1-G_1/G)}{2(1-\mu)\frac{G_1}{G}\frac{a}{h} + \frac{\pi}{2}(2-\mu)}N \cdot \sin\phi$$

Аналіз формул (22) дає можливість сформулювати наступні висновки:

– За одинакових значень модулів зсувів матеріалів включення і тіла $(G = G_1)$ отримуємо бездефектне однорідне тіло, а тому $K_{II}^{6\kappa n} = K_{III}^{6\kappa n} = 0$

– Для випадку $G_1 = 0$ отримуємо граничний випадок тіла з тріщиною [7]

$$K_{II}^{mpiu_{\mu}}(\phi) = \frac{4}{2-\mu} \sqrt{\frac{a}{\pi}} N \cdot \cos \phi$$
$$K_{III}^{mpiu_{\mu}}(\phi) = \frac{4(1-\mu)}{2-\mu} \sqrt{\frac{a}{\pi}} N \cdot \sin \phi$$

Розглянемо нормовані КІН зсувів

$$\tilde{K}_{II}^{6\kappa\pi} = \frac{K_{II}^{6\kappa\pi}}{K_{II}^{mpiu\mu}} = \tilde{K}_{III}^{6\kappa\pi} = \frac{K_{III}^{6\kappa\pi}}{K_{III}^{mpiu\mu}} = \frac{\pi(2-\mu)(1-G_1/G)}{4(1-\mu)\frac{G_1}{G}\frac{a}{h} + \pi(2-\mu)}$$

На рис. 7 показані залежності значень $K_j^{\ell \kappa \pi} / N$, (j = II, III) від параметру ϕ кутової координати точки контура включення за фіксованих значень

(22)

характеристик h/a = 0.01 товщини включення та $\mu = 0.3$. Видно, що при збільшенні значення G_1/G (зростання жорсткості матеріалу включення) значення КІН зменшуються.

Рис. 7. Залежність КІН $K_j^{\kappa n} / N$, (j = II, III) від кутової кординати φ точки контура включення. Суцільні криві – КІН поперечного зсуву (j = II); штрихові криві – КІН повздовжнього зсуву (j = III).

На рис. 8 показані залежності значень $\tilde{K}_{j}^{\kappa n}$ від параметру h/a товщини включення за фіксованих значень $\mu = 0.3$ і параметру G_1/G контрастності жорсткостей матеріалів включення і тіла. Зростання товщини включення призводить до збільшення значень нормованих КІН. Це логічно пояснюється тим, що збільшення початкової товщини дефекту означає і зростання його розпирання (розкриття).

На рис. 9 показані залежності значень $\tilde{K}_{j}^{g_{\kappa n}}$, (j = II, III) від параметру G_1/G контрастності жорсткостей матеріалів включення і тіла за фіксованих значень характеристик h/a товщини включення з урахуванням чинника $[u_1^0(\mathbf{y})]$ у ГІР (17) (суцільні лінії) та без його урахування (штрихові лінії). Видно, що для значень $h/a \le 0.02$ впливом зазначенного чинника (i,

відповідно, доданком G_1/G у чисельнику виразів (22) для КІН $\tilde{K}_j^{6\kappa_n}$, (j = II, III) з достатньою для розрахунків точністю можна знехтувати).

Рис. 8. Залежність нормованих КІН \tilde{K}_{j}^{GKR} (j = II, III) від товщини включення і параметру G_1/G контрастності жорсткостей матеріалів.

Рис. 9. Залежність нормованих КІН $\tilde{K}_{j}^{\kappa n}$ (j = II, III) від параметрів G_1/G і товщини включення.

ВИСНОВКИ

Розглянуто тривимірну задачу теорії пружності про навантаження безмежного тіла, яке містить тонкостінне пружне податливе включення. Запропоновано гранично-інтегральне формулювання поставленої задачі. Проблему зведено до розв'язання системи 3-х двовимірних ГІР другого роду типу Ньютонівського потенціалу для відшукання невідомих густин, які характеризують розкриття поверхонь включення.

Як приклад, розглянуто розривне навантаження та осьовий зсув тіла з круговим включенням. Отримано аналітичні розв'язки отриманих ГІР, за допомогою яких виведені еталонні формули для КІН в околі точок контура дефекту. Побудовані графічні залежності КІН відриву, поперечного та повздовжнього зсувів від співвідношення модулів пружності матеріалів тіла і включення, товщини дефекту.

Показано, що збільшення жорсткості матеріалу включення супроводжується зменшенням значень КІН. Для значень *h*≤0.02*a* (*h* – товщина, *a* – радіус включення) з достатньою для практичних потреб точністю можна користуватися наближеними формулами для визначення КІН.

ЛІТЕРАТУРА

[1] Маруха В.І. Механіка руйнування та міцність матеріалів. / В.І. Маруха, В.В. Панасюк, В.П. Силованюк // Довідн. посібник. Том 12: Ін'єкційні технології відновлення роботоздатності пошкоджених споруд тривалої екплуатації. – Львів: Вид-во "Сполом". – 2009. – 262 с.

[2] Стадник М.М. Термопружний стан та міцність тіл з тонкими включеннями довільної жорсткості. / М.М. Стадник // – Львів: Вид-во НЛТУ України; "Дослідно-видавничий центр Наукового товариства ім. Т.Г. Шевченка". – 2015. – 316 с.

[3] Сулим Г.Т. Основи математичної теорії термопружної рівноваги деформівних твердих тіл з тонкими включеннями. / Г.Т. Сулим // – Львів: Дослідно-видавничий центр НТШ. – 2007. – 716 с.

[4] Молодід О.С. Технологія ремонту тріщин в залізобетонних конструкціях залежно від ширини їх розкриття / О.С. Молодід, Р.О. Плохута // Шляхи підвищення ефективності будівництва в умовах формування ринкових відносин. – 2019. – Вип. 39. – С. 154-161.

[5] Хай М.В. Двумерные интегральные уравнения типа ньютоновского потенциала и их приложения. / М.В. Хай // – К.: -Наук. думка. – 1993. – 253 с.
[6] Станкевич В.З. Властивості та застосування полігармонічних та гельмгольцевих многочленів для замкнутої області. / В.З. Станкевич, Б.М. Стасюк // Вісник ДУ "Львівська політехніка". Прикладна математика. – 1998. – № 337. – С. 155–157.

[7] Саврук М.П. Механіка руйнування та міцність матеріалів. / М.П. Саврук // Довідн. посібник. Том 2. Коефіцієнти інтенсивності напружень в тілах з тріщинами. - Київ: - Наук. думка. - 1988. – 620 с.