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Introduction

We will discuss different perspectives on how the allocation of resources for

knowledge production is determined and what types of knowledge are available.

Variable ”A” is obtained as knowledge in R&D. However, education can be in

many forms. Knowledge may be very applied or very abstract and it is important

to think about these types of knowledge. At the highest level, these are the most

widely used basic scientific discoveries, such as the Pythagorean theorem. On the

other hand, there are some products that know how to operate a lawn mower on a

cold morning. Between them there are many ideas - from the design of a transistor

or the invention of a rotating table to the kitchen of a fast food restaurant to a recipe

for soft drinks.

A lot of these different types of knowledge have impact on economic growth.

Suppose that for 100 years the basic scientific progress has stopped, or the inventions

that are now applied to many goods, or the new design of something that is now

applied. All this could affect growth in the economy, and would most likely have a

negative impact, in any case, all these changes would lead to a decrease in growth.

Obviously, the determinants of the accumulation of different types of knowl-

edge will be different. For example, the strengths of basic math are different from

those that outperform catering restaurants. Accordingly, we cannot expect that there

is only one theory of knowledge growth. However, we can find the main factors that

affect the accumulation of knowledge. But all different types of knowledge have a

common necessity - it is inanimate. This means that absolutely everyone is free to
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use one or another theorem in mathematics, or any recipe for cooking. The opposite

is any private economic goods, which in turn are competitive: for example, only one

person can use clothes at a time.

From this common feature of different types of knowledge, it follows that com-

petitive market forces cannot completely control the distribution and production of

knowledge. The marginal cost of such a function as providing the subject of knowl-

edge to another user will be zero. As a result, in a competitive market, the cost of

renting knowledge is also zero. Therefore, there is no motive to create knowledge for

the purpose of private economic gain. From this we get two options: first, knowledge

is bought for exceeding marginal costs, and second, development has no motivation

of market forces.

However, there is an exception. If it is possible to prevent someone from using

the product, then such a product is exceptional. For example, clothing: the owner of

the item of clothing prevents others from using it.

Such uniqueness can be among the knowledge. It depends on the nature of

knowledge, as well as on such economic institutions that regulate all property rights.

Patent laws will be a good example, they give inventors the right to use their own

discoveries and devices. It is these laws that allow the owners of inventions to prevent

other people from using these inventions. On the other hand, copyright laws do not

fully protect textbook owners from plagiarism in the organization of the textbook.

Copying the entire textbook is prohibited, but the law may not prohibit other authors

from revising or improving the organization of the textbook.

Exclusivity is mainly influenced by the type of knowledge and not the legal sys-

tem. For example, the recipe for famous drinks such as ”Fanta” is complex enough

not to use a patent or copyright for it. However, the technology of recording on

a video camera is simple, and the authors of, for example, television shows can not

prevent others from recording these television shows and the ”knowledge” contained

therein.
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Thus, the degree of exclusivity affects how the distribution and development

of knowledge differs from perfect competition. If some type of knowledge is not

exceptional at all, the authors of this knowledge will not receive private property in

their development. In contrast, when the type of knowledge is exceptional, you can

license the right to use that knowledge and get positive feedback, for example from

research.



Chapter 1

Framework and Assumptions

Here we present and analyze a model in which there is an endogenous distri-

bution of factors of economic production between the accumulation of knowledge

and other activities. This will happen simultaneously with Solow’s model in which

the economy is treated. Let’s discuss the dynamics of the economy and the deter-

minants of long-term growth. Consider the assumptions of how the population is

implemented for such a purpose as adding knowledge.

1.1 Overview

To begin with, we will present a separate sector of the economy, in which new

models of knowledge accumulation are created. To do this, we simulate the distri-

bution of resources between two sectors: the first is the sector in which products are

usually produced, and the second is the new R&D sector, as well as the method of

generating new ideas through R&D.

In our modeling we will consider the production of new technologies from a

mechanical point of view. To do this, we describe the following function of produc-

tion: capital, accumulation of labor and technology will be combined deterministi-

cally to form technological improvements. To model technological progress, we will

6



CHAPTER 1. FRAMEWORK AND ASSUMPTIONS 7

add a little extra information, because we are interested in growth directly over long

periods.

At any time, we can add a shift parameter to the production function and thus

investigate the impact of changes in this parameter if we are interested in assessing

the impact of modifications on the achievement of R&D.

Let’s make some more relief. One of them is the production of goods and R&D

are the generalized production functions of Cobb-Douglas. The sum of the indicators

is not necessarily limited to one, but it is still a power function. And the second

simplification is that, as in the Solow’s model, the share of retained output and labor

fraction is exogenous and constant in the resource and development sector. These

simplifications have not changed the main consequences of the model.

1.2 Model Specification

If we reduce the research and development model, as well as the growth models

created by Romer (1990), Aghion and Howitt (1992) and Grossman and Helpman

(1991a), we get this model. The basis of this model are the following main vari-

ables: capital (K), labor (L), technology (A) and production (Y). It is continuously

configured. There are two sectors: the first is the one in which products are produced

(production of goods and services), and the second sector is responsible for creat-

ing new technologies (R&D). The production of goods uses the following fraction:

1−aL, and the R&D industry uses the labor fraction. Everything except the share of

aK capital is used for the production of new goods, and the share of aK capital is used

for resources. Using certain knowledge or concept in one area allows you to use it in

another area. It follows that these two sectors have direct access to the spectrum of

knowledge A. Let the variables aL and aK be exogenous and constant.
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Equation 1.1 calculates the amount of outputs for time t,

Y (t) = [(1−aK)K(t)]α [A(t)(1−aL)L(t)]1−α , 0 < α < 1, (1.1)

Where in the production sector: α represents the elasticity of capital, and 1−α -

the elasticity of the efficient labor force. Three times the input triples the amount

that can be obtained, because function 1.1 is a Cobb-Douglas production function

with a constant return to scale. The development of new technologies depends on

the amount of capital and labor involved in the development and research sector.

Given the hypothesis of generalized production of Cobb - Douglas, we make

the following:

Ȧ(t) = B[aKK(t)]β [aLL(t)]γA(t)θ , B > 0, β > 0, γ > 0, (1.2)

here, θ is the elasticity of knowledge, γ is the elasticity of labor, β is the elas-

ticity of capital in the development sector. And parameter B is the offset, which

means that the growth of technology depends on previous existing resources (this is

the same as using all the parameters in equation 1.2 at time t−1). Let the knowledge

function not be considered a constant return to scale. If the inputs are doubled, these

new inputs can do exactly what the old ones did, doubling the number obtained,

which is a standard argument for constant returns. However, if we are talking about

the production of knowledge, then the exact repetition of the current input will make

the same set of discoveries twice. The influence on the achievement of R&D due to

the available stock of knowledge is reflected by the parameter θ .This effect is per-

formed in two directions: first, previous discoveries can give tools and ideas, then

θ > 0; and the second is that in the beginning you can create the simplest discover-

ies. In the second situation, it is difficult to create new discoveries when the stock of

knowledge is greater than zero, and therefore θ < 0. It follows that in equation 1.2

θ can have any value. Then the new capital depends on the volume of production,

capital stock, savings rates and depreciation rates. For convenience, the depreciation

rate = 0, and the savings rate is exogenous and constant. We obtain a description of



CHAPTER 1. FRAMEWORK AND ASSUMPTIONS 9

new knowledge in equation 1.3.

K̇(t) = sY (t). (1.3)

Simplifying, suppose that the population accumulates at a constant rate of growth. It

can’t be negative, therefore

L̇(t) = nL(t), n > 0. (1.4)

Initial values of L, A and K are greater than zero. We show in the following diagram

the relationship between all variables.

Figure 1.1: Diagram of goods and knowledge production sectors



Chapter 2

Model without Capital

In this chapter we will discuss the model without capital. We will also investi-

gate the influence of knowledge elasticity (θ on growth rates. Let us investigate the

following cases, which may be the value of θ : when θ < 1, θ > 1 and θ = 1. And

decide in which of these cases long-term growth is possible.

2.1 Dynamics of Knowledge Accumulation

The production function of the model (equation 1.1) in which there is no capital

will look like this

Y (t) = A(t)(1−aL)L(t) (2.1)

Similarly, the function of producing new knowledge (equation 1.2) is simplified to

Ȧ(t) = B[aLL(t)]γA(t)θ . (2.2)

Equation 2.1 shows that the growth rate per worker is equal to A and the yield

per worker is also equal to A. Let’s focus on the dynamics of A in equation 2.2. The

growth rate of A (gA) is determined by this equation

gA(t) =
Ȧ(t)
A(t)

= Baγ

LL(t)γA(t)θ−1. (2.3)

10
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Let us simplify this by taking on both sides, and express it in relation to time.

We obtain growth rate of the gA:

ġA(t)
gA(t)

= γn+(θ −1)gA(t). (2.4)

After multiplying what turned out by 2.4, we obtain the following equation of

the derivative of the growth rate

ġA(t) = γngA(t)+(θ −1)g2
A(t). (2.5)

Initial values of knowledge accumulation (A) and labor (L), exogenous parameters

γ , θ , B of the model determine the initial value of gA(t).

Using equations 2.1, 2.2, 2.3 and 2.5, we will build a dynamic model without

capital in the software program Stella Architect. We will investigate the growth rate

of output using this model.

Figure 2.1: Stock and flow diagram of the model without capital

Let us investigate the growth of the model for different values of the elasticity

of knowledge θ (θ < 1, θ > 1, and θ = 1).
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We must investigate the growth of the model for different values of elasticity of

knowledge θ (θ < 1, θ > 1, and θ = 1).

Case 1: θ < 1

The phase diagram for gA is shown in Figure 2.2, which indicates that θ < 1.

Figure 2.2: Phase diagram for growth of knowledge θ < 1

In this case, ġA is displayed as a function A. The production function for knowl-

edge takes into account only the positive values of gA because gA is grater then zero,

as shown in equation 2.2. Equation 2.5 illustrates that for θ < 1→ ġA > 0 for small

positive values of gA and ġA < 0 for large values, as shown in Figure 2.2. Denote

the value at the extreme point gA as g∗A, we obtain that ġA = 0. We derive yields

γng∗A +(θ − 1)g∗2A = 0 from equation 2.5 and ġA = 0, divide it by and g∗A and the

solution of this equation with respect to g∗A gives us this

g∗A =
γ

1−θ
n (2.6)

We can say that gA converges to g∗A, and this does not depend on the initial

conditions. When gA(0)< g∗A , then ġA > 0, and gA increases until it reaches a stable

point g∗A. When gA(0) > g∗A, then gA decreases to reach g∗A. A and Y/L increase

steadily with the rate g∗A when gA reaches g∗A.
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Looking at the model, we can conclude that the growth rate g∗A is an increasing

function of population growth rate n. Favorable population growth has an impor-

tant impact on the sustainable growth of production per employee. For example, in

countries with faster population growth, the increase in production per worker is not

higher on average.

It follows from equation 2.6 that long-term growth is not affected by the labor

force in the resources and development sector. This may seem wrong, because de-

velopment depends on technological progress, and technological progress in turn is

endogenous. It is expected that the growth of the workforce dedicated to techno-

logical progress will lead to long-term development. To understand this, consider a

situation where aL increases from the point where A is rising at rate g∗A.

aL is not in equation 2.3. Therefore, the increase in aL does not affect the

behavior in the graph of ġA as a function of gA. Despite this, aL is included in the

expression 2.3, gA : gA(t)=
Ȧ(t)
A(t) =Baγ

LL(t)γA(t)θ−1. In Figure 2.3 we can investigate

that when aL increases or decreases, then it does not affect the stable point of growth

rate.

Figure 2.3: The effects of an increase in aL

on gA when θ < 1
Figure 2.4: The effects of an increase in aL

on gA when θ = 1

We get gA instantly increases when aL increases but it does not affect ġA. Note

that the growth rate of knowledge is not supported. When gA > g∗A, then ġA is less

than zero and gA goes to the equilibrium g∗A. The situation when θ < 1, means that the
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available stock of knowledge does not contribute to full support for the development

of new knowledge.

Combining the effect of increasing the coefficient of savings on the production

route in the Solow model, means that the increase in aL leads to an increase in gA

with a subsequent gradual return to the initial level.

Case 2: θ = 1

The case when θ = 1, the current information is quite productive in creating

new knowledge. Namely, new knowledge is proportional to the stock.

gA increases with time when there is a positive population growth, it follows that

the dynamics of the model is similar to the case θ > 1 (this case will be discussed

below). From another point of view, when population growth = 0, gA is constant

regardless of the initial values. There is no adaptation to a balanced development

path. The economy will continue to expand no matter where it starts.

It is normal to assume that products are consumed completely despite the fact

that they are produced in this economy only for consumption. Based on the fact that

the goods produced in this economy have only one use - consumption, it is logical

to think of it as full consumption. Expression 1− aL is part of society’s resources

allocated to the production of goods for current consumption, while aL is the part

stored for the production of goods that will be useful for the production of products

in the future. In summary, we can say that aL acts as a measure of the level of savings

in this economy.

gA(t) = Baγ

LL(t)γ , (2.7)

ġA(t) = γngA(t). (2.8)

Analyzing the case θ = 1 and n = 0, we can say that it offers a straightforward

model of the model, when long-term growth affects the rate of savings. Models of
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this type are defined as linear growth models that have earned a lot of advertising in

working on endogenous growth due to their simplicity.

Case 3: θ > 1

Consider the third case - when θ > 1. This is similar to a situation where new

knowledge is always more than the current stock.

Figure 2.5: The dynamics of the growth rate of knowledge when θ > 1

From formula 2.5 it follows that when θ becomes greater than 1, ġA is positive for

all gA. ġA increases in gA - this can be seen in Figure 2.5.

At this stage, the chart shows that instead of moving towards a balanced path of

growth, economic growth is growing. Knowledge in the production of new knowl-

edge is so useful that every small rise in its stage leads to much more new knowl-

edge. So, when the accumulation of knowledge begins, just by model, then economic

growth begins.

There is a significant effect of increasing the share of the labor force involved

in research and development. As before, due to the increase in equation 2.3 leads to

instantaneous increments of gA. The value of gA increases as the role of gA increases.

And the faster gA grows, the faster its growth rate increases. As aL increases, the

growth rateA exceeds the otherwise increasing level.
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2.2 Effect of Returns to the Scale of Produced Factors

The explanation for the fact that all three different cases have such a different

effect is that if θ is lower or higher than or equal to 1, it determines whether the scale

of production factors decrease, increase or consistency.

Employment growth is exogenous, and the model is without capital, so knowl-

edge is the only factor influencing growth. Knowledge returns constantly in the pro-

duction of goods. It follows that the return to knowledge in the field of knowledge

production will be defined as the return on the scale of knowledge. To understand

why the return on production is critical to economic behavior, we make two assump-

tions: the first that the industry is on a certain path, and the second that the exogenous

rise of 5 percent increases by A.

Case 1: θ > 1, Ȧ will be grow by more than 5 percent. The growth rate A

increases for this case. Case 2: θ = 1, Ȧ increases by 5 percent. Knowledge is

productive enough to gain new knowledge that growth A is independent. But an

increase in A does not affect its growth rate. Case 3: θ < 1, Ȧ increases less than 5

percent, and the growth rate A decreases.

2.3 Effect of Population Growth

The model without capital in the case when θ is less than 1 is implicit in that

positive population growth is necessary to achieve long-term growth in per capi-

tal income. The case θ is equal to 1 and when n = 0, the growing function of

the population is long-term growth. When θ is greater than 1, then an increase

in population growth leads to an increase in income per capital. To understand

these results, consider the accumulation of knowledge in equation 2.3. The equa-

tion gA(t) = Baγ

LL(t)γA(t)θ−1. The perfectly natural idea built into this equation is

that when more people make discoveries, more discoveries will be made. And when
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more discoveries are made, then the stock of knowledge grows faster, and therefore

the output per person also increases faster. In the case θ is equal to 1 and n = 0

long-term growth increases at the population level. When θ more than 1 increase in

population (or its growth rate) leads to growth.

When θ is less than 1, the return to scale decreases. In this situation, the pro-

duction of new knowledge increases less than the current stock, despite the fact that

knowledge can be valuable in creating new knowledge. Therefore, without other

assistance in the creation of new knowledge, progress will slow down. Because

people contribute to knowledge production, population growth provides something

else: population growth is important for long-term growth, and population growth is

increasing.



Chapter 3

Endogenous Economic Growth

Model

In this chapter, we will look at the model in which we will introduce capital and

find out how this affects the preliminary analysis. Also we will consider a different

combination of the elasticity of knowledge and capital and explore in which cases a

long-term nature is possible.

3.1 Dynamics of Knowledge and Capital

Let us focus on the dynamics of growth rates A and K in combination with the

analysis of a simple model. Replacing the production function 1.1 with the function

of capital accumulation 1.3 we obtain the equation for changing knowledge.

K̇(t) = s(1−aK)
α(1−aL)

1−αK(t)αA(t)1−αL(t)1−α . (3.1)

Defining gK(t) =
K̇(t)
K(t) , cK = s(1−aK)

α(1−aL)
1−α and using equation 3.1 give

us growth rate of capital:

gK(t) = cK

[
A(t)L(t)

K(t)

]1−α

. (3.2)

18
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Taking logs from both sides from equation 3.2 and differentiating with respect

to time returns growth rate of gK(t):

ġK(t)
gK(t)

= (1−α)[gA(t)+n−gK(t)]. (3.3)

When gA(t)+ n− gK(t) is positive gK increases, negative gK decreases, zero

gK constant. This information is illustrated in the figure below (Figure 4.18).

The division of the equation 1.2 by A on both sides reflects the growth rate of A.

Ȧ(t) = B[aKK(t)]β [aLL(t)]γA(t)θ |/A

gA(t) = cAK(t)β L(t)γA(t)θ−1, (3.4)

where cA ≡ Baβ

Kaγ

L.Equation is identical to equation 2.3 in the simple version of the

model except for the expression Kβ (t). Taking logs on both sides and differentiating

with respect to time returns the equation of growth rate gA(t):

ġA(t)
gA(t)

= βgK(t)+ γn+(θ −1)gA(t). (3.5)

The situation when βgK(t)+ γn+(θ −1)gA is positive gA and A rise, negative

gA and A fall, zero gK constant and A rises constantly. We can see it in Figure

4.19. Looking at the production function for derivation in equation 1.1 we can see

a constant return to the scale of two factors, capital and knowledge. And equation

1.3 illustrates that β + θ is the force of return to scale in knowledge and capital

production, K and A increase by a factor of X , Ȧ by a factor Xβ+θ .



CHAPTER 3. ENDOGENOUS ECONOMIC GROWTH MODEL 20

Figure 3.1: The dynamics of the growth rate

of capital in the general version of the model

Figure 3.2: The dynamics of the growth rate

of knowledge in the general version of the

model

Case 1: β +θ < 1

If β +θ < 1 then (1−θ)/β > 1. Thus the curve of ġA = 0 is higher than the

curve ġK = 0. We can see this on the Figure 3.3. The graph shows that we have

equilibrium point.

Figure 3.3: The dynamics of the growth rates of

capital and knowledge when β +θ < 1

The initial values of gA0 and gK0 are determined by the initial values of A0,

K0 and L0, as well as other parameters of the model. You can see in Figure 3.3 that

where gA and gK begin, in the diagram they converge to B. At point B ġA = 0 and

ġK = 0. The values of gA and gK at point B, denoted as g∗A and g∗K , therefore it is
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necessary to satisfy the following equations:

g∗A +n−g∗K = 0 (3.6)

βg∗K + γn+(θ −1)g∗A = 0 (3.7)

Combining these equations we obtain

βg∗A +(β + γ)n+(θ −1)g∗A = 0 (3.8)

which give us an equilibrium point for the growth rate of knowledge:

g∗A =
β + γ

1− (θ +β )
n. (3.9)

From the fact that g∗K = g∗A + n, in equation 1.1, when A and K increase at

velocities g∗A and g∗K , respectively. Then the output increases at a rate equal to the

rate of capital growth g∗K and production per worker increases at a rate of g∗A.

This situation is similar to the case when θ is less than 1, so long-term growth

is a growing function of population growth and is zero , when population growth is

zero and long-term economic growth is endogenous.

This model and a simplified version of this model, when θ < 1, is called semi-

endogenous growth models. Long-term growth occurs endogenously in the model,

and also depends only on population growth and the parameters of the knowledge

production function.

Figure 3.4: The dynamics of the growth rates of capital and knowledge when

β +θ < 1)
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Let the capital elasticity in the research and development sector β = 0.15. And

the elasticity of capital in the commodity production sector α = 0.3. Knowledge

θ = 0.2. Labor elasticity in the research field γ = 0.2 and labor growth rate n= 0.015.

Figure 3.4 presents the dynamics of capital and knowledge growth at β +θ < 1 for

different values of gA0 and gK0. It is easy to see on the graph that it does not matter

what the initial values are for gA0 and gK0, because over time the growth rate will

reach equilibrium points. For this case, there are equilibrium points

g∗A =
β + γ

1− (θ +β )
n =

0.15+0.25
1− (0.25+0.15)

0.015 = 0.012

g∗K = g∗A +n = 0.012+0.015 = 0.027

Now consider in more detail the growth rate of knowledge with the above values

for exogenous parameters of the model. Figure 3.5 shows that if gA < g∗A or gA > g∗A
in the long run the growth rate of knowledge reaches equilibrium gA→ g∗A, where

g∗A = 0.012. Figure 3.6 shows the same behavior at the rate of capital growth. The

rate of capital growth reaches g∗K = 0.027. over time

Figure 3.5: The dynamics of the growth rates of knowledge when β +

θ < 1
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Figure 3.6: The dynamics of the growth rates of capital when β +θ <

1

Case 2: β +θ = 1 and n = 0

Therefore, ġK = 0, when gK = gA+n and ġA = 0, when gA =−(γn/β )+ [(1−

θ)/β ]gA. The dynamics of gA and gK will be on a line with a slope of 45 degrees (this

is shown in Figure 3.7), regardless of where the economy begins. Summarize, when

β +θ = 1 and n = 0, the expressions we gave earlier can be simplified to gK = gA.

Figure 3.7: The dynamics of the growth rates of capital and knowledge

when β +θ = 1,n = 0
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We can conclude that long-term growth depends on many parameters of the

model. The models we considered in the previous section (when θ > 1) and the

model in this section, when β + θ > 1 or β + θ = 1 and n > 0 are endogenous

growth models.



Chapter 4

Learning-by-Doing

The last determinant of knowledge accumulation differs in nature. The essence

of this idea is that when people produce goods, then they are sure to think of ways to

improve the production process. Consider the situation of the American economist

Arrow (1962) who gives an empirical pattern after the introduction of a new aircraft

design: the time (required to build the frame of the ultimate aircraft) is inversely

proportional to the cubic root of the total number of aircraft already produced. Such

an increase in labor productivity does not require explicit innovations in the produc-

tion process. Thus, the accumulation of knowledge occurs in part as a side effect

of normal economic activity. And not as a result of purposeful efforts. This type of

accumulation of knowledge is called learning by doing.

The speed of knowledge accumulation depends on how much new knowledge

is formed through ordinary economic activity (rather than the share of resources of

the economy engaged in R&D) when learning in practice is a source of technological

progress.

Therefore, the analysis of educational activities needs to be changed in our

model. Since all input resources are engaged in the production of goods, the pro-

duction function will have the form

Y (t) = K(t)α [A(t)L(t)]1−α (4.1)

25
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The situation when learning occurs as a side effect of the production of new

capital is the simplest case of learning experience. Thus, the stock of knowledge is

a function of the stock of capital because the increase of knowledge is a function of

the increase of capital. Therefore, there is a single state variable. The power function

will be

A(t) = BK(t)φ , B > 0, φ > 0. (4.2)

Equations describing the accumulation of capital and labor 1.3 - 1.4 together

with 4.1 - 4.2 characterize the economy.

Substitute 4.2 into 4.1 in order to analyze this economy. We will receive

Y (t) = K(t)αB1−αK(t)φ(1−α)L(t)1−α (4.3)

From the fact that K̇(t) = sY (t) it follows that the dynamics of K is given by

K̇(t) = sB1−αK(t)αK(t)φ(1−α)L(t)1−α (4.4)

In the model of knowledge accumulation without capital, the dynamics of A is

given by Ȧ(t) = B[aLL(t)]γA(t)θ in equation 2.2. The structures of the two models

are the same compared to equation 4.4. In the second section, the model includes

only a single productive contribution, knowledge. However, now we can think that

there is capital - only one productive contribution. Equations 2.2 and 4.4 show that

the dynamics of the two models are essentially the same. This means that we can

use the results of our analysis of the previous model to analyze this one. Now the

main factor in the dynamics of the economy is the comparison of θ with 1. Just as

α +φ(1−α) is compared with 1, which is equivalent to comparing φ with 1.

The first case when φ is less than 1, the long-term economic growth rate is a

function of population growth rate, n. The second case, φ greater than 1, is growing

rapidly. In the third case, when φ is equal to 1, then rapid growth (if n is positive) or

stable growth (if n is equal to 0).

A special case is φ = 1 and n = 0. Then the production function equation 4.3
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will look like

Y (t) = bK(t), b≡ B1−αL1−α . (4.5)

And the accumulation of capital is determined by the formula

K̇(t) = sbK(t) (4.6)

The dynamics of this economy is as straightforward as in previous similar cases.

K increases stably with velocity sb, this follows from equation (4.6). Thus, the yield

also increases with this rate because it is proportional to K. We observe a variant

of the model in which long-term growth is endogenous and depends on the rate of

savings. It can be added that the model predicts the size of the impact of the savings

rate on growth because b is the inverse ratio of capital and production, which is easy

to measure.

Since the contribution of capital is greater than its usual contribution, if in-

creased capital increases production due to its direct role in production (term K(t)α

in 4.3) and due to indirect promotion of new ideas and thus making all other capital

more productive (term K(t)φ(1−α) in 4.3). Therefore, we can conclude that in this

model, the rate of savings affects long-term growth. These models are often called

”Y = AK” models because the production function is written using the symbol ”A”

instead of the ”b” used in 4.5.

4.1 System Dynamic Model

Now let us take a look at the System Dynamic model of Learning-by-doing (Figure

4.1). We will build this model and investigate the dynamics of the model using

software program Stella Architect.
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Figure 4.1: The System Dynamic model of Learning-by-doing.

Case 1: φ < 1

We can observe similar behavior when the phi is less than one for the capital of

knowledge and output in Figures 4.2 and 4.4. When φ = 0,74, the graph of capital

dynamics increases rapidly. And when φ = 0,9, the graphs of knowledge and output

are also growing rapidly. But the graphs of capital growth rates, knowledge and

output in Figures 4.3 and 4.5 have almost the same behavior. At different values of

the parameter n graphs of capital growth rates, knowledge and output first decline

and then have a stable behavior.



CHAPTER 4. LEARNING-BY-DOING 29

4.2 Impact of Labor Force Growth Rate

Figure 4.2: The dynamics of knowledge, capital and output when n =−0,01 with different value of

φ < 1

Figure 4.3: The dynamics of growth rates of knowledge, capital and output when n = −0,01 with

different value of φ < 1

Figure 4.4: The dynamics of knowledge, capital and output when n = 0,05 with different value of

φ < 1
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Figure 4.5: The dynamics of growth rates of knowledge, capital and output when n = 0,05 with

different value of φ < 1

Figures 4.6 and 4.7 show that the graphs are not growing as fast as in the pre-

vious figures. And the growth rate depends on the value of the parameter n. The

greater n the faster it grows, and the smaller the slower it grows. And in Figure 4.7

starting with n = 0,06 graphs of growth rates of knowledge, capital and output begin

to decline.

Figure 4.6: The dynamics of knowledge, capital and output when φ = 0,3 with different value of n

Figure 4.7: The dynamics of growth rates of capital and output when φ = 0,3 with different value of

n

Considering the case when φ = 0,3 and n is between−1 and 1, we can conclude that

the graphs of the dynamics of knowledge capital and output in Figure 4.8 increase

very rapidly when n takes the largest value from this interval, that is 1. And in Figure

4.9 when n = 1;0,5 and 0,2 graphs of the dynamics of growth rates of knowledge

capital and output are growing. For the remaining values of n - stable.
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Figure 4.8: The dynamics of knowledge, capital and output when φ = 0,3 and −1 < n < 1

Figure 4.9: The dynamics of growth rates of knowledge, capital and output when φ = 0,3 and −1 <

n < 1

Now consider in more detail when φ = 0,6 and n is close to zero. The more n the

faster the growth. This can be seen in Figure 4.10. And in Figure 4.11 we can see

that the growth rate of knowledge of capital and output is declining. And the less n

the more they fall.

Figure 4.10: The dynamics of capital and output when φ = 0,6 with different value of n
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Figure 4.11: The dynamics of growth rates of knowledge, capital and output when φ = 0,6 with

different value of n

4.3 Dynamics of Knowledge and Capital Growth Rates

for Different Values of Elasticity

Case 2: φ > 1

Figures 4.12-4.16 show that the larger the value of the parameter φ , the faster the

graphs of the dynamics of knowledge of capital and output, as well as their growth

rates.

Figure 4.12: The dynamics of knowledge, capital and output when φ > 1 and n =−0,01



CHAPTER 4. LEARNING-BY-DOING 33

Figure 4.13: The dynamics of growth rates of knowledge, capital and output when when φ > 1 and

n =−0,01

Figure 4.14: The dynamics of knowledge, capital and output when φ > 1 and n = 0,05

Figure 4.15: The dynamics of growth rates of knowledge, capital and output when φ > 1 and n= 0,05

Figure 4.16: The dynamics of growth rates of knowledge, capital and output when φ = 1,01 with

different value of n
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Case 3: φ = 1

In the third case (φ is equal to 1), we can see the rapid growth when n is positive

or stable growth when n is equal to 0 in Figure 4.17.

Figure 4.17: The dynamics of growth rates of knowledge, capital and output when φ = 1 with differ-

ent value of n

Figure 4.18 shows the dynamics of knowledge of capital and output on one

chart. First, all variables increase, and then capital and knowledge are stable, and

output decreases. Figure 4.19 shows the dynamics of growth rates of knowledge

(gA), capital (gK) and output (gY ) are also shown in one graph. And here you can

see the decline in graphs and then stability.

Figure 4.18: The dynamics of knowledge,

capital and output when n = −0,444;φ =

0,99

Figure 4.19: The dynamics of growth rates

of knowledge, capital and output when n =

−0,157;φ = 0,566



Chapter 5

Knowledge as a Side Effect of

Goods Production

In this chapter we solve the following problem.

First, let’s make the following assumptions:

Output is given by equation 4.1, Y (t) = K(t)α [A(t)L(t)]1−α ; L is constant and

equal to 1; K̇(t) = sY (t) and that knowledge accumulation occurs as a side effect of

goods production Ȧ(t) = BY (t):

1. Find expressions for gA(t) and gK(t) in terms of A(t), K(t), and the parameters.

2. Sketch the ġA = 0 and ġK = 0 lines in (gA,gK) space.

3. Does the economy converge to a balanced growth path? If so, what are the

growth rates of K,A, and Y on the balanced growth path?

4. How does an increase in s affect long-run growth?

35
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5.1 Model Specification

The relevant equations are

Y (t) = K(t)αA(t)1−α (5.1)

K̇(t) = sY (t) (5.2)

Ȧ(t) = BY (t) (5.3)

Now let us take a look at the System Dynamic model of this problem (Figure

5.1). We will build this model and investigate the dynamics of the model using

software program Stella Architect.

Figure 5.1: The System Dynamic model of problem 1.

1. Substituting equation 5.1 into equation 5.2 yields K̇(t) = sK(t)αA(t)1−α . Di-

viding both sides by K(t) allows us to obtain the following expression for the
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growth rate of capital, gK(t):

gK(t)≡
K̇(t)
K(t)

= sK(t)1−αA(t)1−α (5.4)

Substituting equation 5.1 into 5.3 gives us Ȧ(t) = BK(t)αA(t)1−α . Di-

viding both sides by A(t) allows us to obtain the following expression for the

growth rate of knowledge, gA(t):

gA(t)≡
Ȧ(t)
A(t)

= BK(t)αA(t)−α (5.5)

2. Capital. Taking the time derivative of 5.4 yields the following growth rate of the

growth rate of capital:

ġK(t)
gK(t)

= (1−α)
K̇(t)
K(t)

+(1−α)
Ȧ(t)
A(t)

, (5.6)

Or
ġK(t)
gK(t)

= (1−α)[gA(t)−gK(t)]. (5.7)

From equation 5.7, gK will be constant when gA = gK . Thus the ġK = 0

locus is a 45◦ line in (gA,gK) space. Also, gK will be rising when gA > gK . Thus

gK is rising below the ġK = 0 line. Lastly, gK will fall when gA < gK . Thus gK

is falling above the ġK = 0 line.

Knowledge. Taking the time derivative of the log of equation 5.5 yields the

following growth rate of the growth rate of knowledge:

ġA(t)
gA(t)

= α
K̇(t)
K(t)

−α
Ȧ(t)
A(t)

, (5.8)

Or
ġA(t)
gA(t)

= α[gK(t)−gA(t)]. (5.9)

From equation 5.9, gA will be constant when gK = gA. Thus the ġA = 0

locus is also a 45 degree line in (gA , gK ) space. Also, gA will be rising when

gK > gA . Thus above the ġA = 0 line, gA will be rising. Finally, gA will be

falling when gK < gA. Thus below the ġA = 0 line, gA will be falling.
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Figure 5.2: The line gA = gk

5.2 Balancing Path for Capital and Knowledge Growth

3. We can put the ġK = 0 and ġA = 0 loci into one diagram, we can see this in Figure

5.2. Although we can see that the economy will eventually arrive at a situation

where gK = gA and they are constant, we still do not have enough information

to determine the unique balanced growth path. Rewriting equations 5.4 and 5.5

gives us

gK(t) = sK(t)α−1A(t)1−α = s
[

A(t)
K(t)

]1−α

And

gA(t) = BK(t)αA(t)−α = B
[

A(t)
K(t)

]−α

.

At any point in time, the growth rates of capital and knowledge are linked

because they both depend on the ratio of knowledge to capital at that point in

time. It is therefore possible to write one growth rate as a function of the other.

From equation 5.5,
[

A(t)
K(t)

]α

= B
gA(t)

or simply

A(t)
K(t)

=
B

gA(t)

1
α

(5.1)

Substituting equation 5.1 into equation 5.4 gives us

gK(t) = s
[

B
gA(t)

]1−α

α

(5.2)
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It must be the case that gK and gA lie on the locus satisfying equation 5.2.

Note that we are on the ġK = 0 and ġA = 0 loci where gK = gA. Regardless of the

initial ratio of A/K the economy starts somewhere on this locus and then moves

along it to line gA = gk. We can see this on Figures 5.3; 5.6 and 5.9. Thus the

economy does converge to a unique balanced growth path at line gA = gk.

The growth rates of knowledge on the balanced growth path, we can ob-

serve in Figures 5.4; 5.7 and 5.10. The growth rates of capital on the balanced

growth path, we can observe in Figures 5.5; 5.8 and 5.11.

Figure 5.3: Convergence of different points under the line gA = gk

Figure 5.4: Dynamics of the growth rate of

knowledge with the convergence of differ-

ent points under the line gA = gk

Figure 5.5: Dynamics of the growth rate

of capital with the convergence of different

points under the line gA = gk
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Figure 5.6: Convergence of different points above the line gA = gk

Figure 5.7: Dynamics of the growth rate of

knowledge with the convergence of differ-

ent points above the line gA = gk

Figure 5.8: Dynamics of the growth rate

of capital with the convergence of different

points above the line gA = gk
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Figure 5.9: Convergence of different points under and above the

line gA = gk

Figure 5.10: Dynamics of the growth rate

of knowledge with the convergence of dif-

ferent points under and above the line gA =

gk

Figure 5.11: Dynamics of the growth rate

of capital with the convergence of different

points under and above the line gA = gk

Letting g∗ denote this common growth rate, then from equation 5.2,

g∗= s
[

B
g∗

]1−α

α

Rearranging to solve for g∗ yields

g∗= sαB1−α (5.3)

Taking the time derivative of the log of the production function, equation

5.1, yields the growth rate of real output, Ẏ (t)
Y (t) = αgK(t)+ (1−α)gA(t) On the
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balanced growth path, gK = gA = g∗, and thus

Ẏ (t)
Y (t)

= αg∗+(1−α)g∗= g∗ ≡ sαB1−α (5.4)

On the balanced growth path, capital, knowledge and output all grow at rate g∗.

4. Clearly, from equation 5.3, a rise in the saving rate, s, raises g* and thus raises

the long- run growth rates of capital, knowledge and output.

From equations 5.7 and 5.9, neither the ġK = 0 nor the ġA = 0 lines shift

when s changes since s does not appear in either equation. From equation 5.4, a

rise in s causes gK to jump up. Also, the locus given by equation 5.2 shifts out.

So at the moment that s rises, the economy moves from its balanced growth path

at point E to a point such as F . It then moves down along the AA locus given by

equation 5.2 until it reaches a new balanced growth path at point ENEW .



Chapter 6

Model Based on Firms and

Households Decisions

In this chapter we solve the following problem.

Consider the model with equations 4.1 - 4.4. Suppose the output of the firm i′s -

Yi(t)=Ki(t)α [A(t)Li(t)]1−α , and that A(t)=BK(t). Where Ki and Li are the volumes

of capital and labor used by firm i, and K is the total stock of capital. Capital and

labor earn their private marginal products. The economy is inhabited by infinitely

resident households that have the initial capital of the economy. The utility of a

representative household takes the form of equations U =
∫

∞

t=0 e−ρtu(C(t))L(t)
H dt and

u(C(t)) = C(t)1−θ

1−θ
, θ > 0, ρ−n− (1−θ)g > 0 of the constant relative deviation

to risk. Population growth is zero.

1. (a) What are the private marginal products of capital and labor at firm i as func-

tions of Ki(t),Li(t),K(t), and the parameters of the model?

(b) Explain why the capital-labor ratio must be the same at all firms, so

Ki(t)/Li(t) = K(t)/L(t) for all i.

(c) What are w(t) and r(t) as functions of K(t),L, and the parameters of the

model?

43
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2. What should be the equilibrium growth rate of consumption? Assume for sim-

plicity that the values of the parameters are such that the growth rate is strictly

positive and less than the interest rate. Let us outline an explanation of why the

equilibrium growth rate of production is equal to the equilibrium growth rate of

consumption.

3. Describe how long-run growth is affected by:

(a) A rise in B.

(b) A rise in ρ .

(c) A rise in L.

4. Let’s find out whether the equilibrium growth rate is greater than, less than or

equal to the socially optimal rate, or it is impossible to say?

6.1 Marginal Product of Capital

1. (a) Substituting the assumption that A(t) = BK(t) into the expression for firm

i‘s output,

Yi(t) = Ki(t)α(A(t)Li(t))1−α ,we get Yi(t) = Ki(t)α(B(t)Li(t))1−α

To find the private marginal products of capital and labor, we take the

first derivative of output with respect to the firm‘s choice of capital and labor

assuming that the firm takes the aggregate capital stock, K, as given. The

private marginal product of capital is therefore

∂Yi(t)
∂Ki(t)

= αKi(t)α−1(BK(t)Li(t))1−α (6.1)

or simply
∂Yi(t)
∂Ki(t)

= αB1−αK(t)1−α

(
Ki(t)
Li(t)

)−(1−α)

(6.2)
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The private marginal product of labor is given by

∂Yi(t)
∂Li(t)

= (1−α)Li(t)−αKi(t)α(BK(t))1−α (6.3)

or simply
∂Yi(t)
∂Li(t)

= (1−α)B1−αK(t)1−α

(
Ki(t)
Li(t)

)α

(6.4)

6.2 Capital-Labor Ratio

(b) Because factor markets are competitive, at equilibrium the private marginal

product of capital and labor cannot differ across firms. We can see from

equations 6.2 and 6.4 that this implies the capital-labor ratio will be the same

for all firms. Therefore,

Ki(t)
Li(t)

=
K(t)
L(t)

, for all firms. (6.1)

(c) With no depreciation, the real interest rate must equal the private marginal

product of capital. From equation 6.2, this implies

r(t) =
∂Yi(t)
∂Ki(t)

= αB1−αK(t)1−α

(
Ki(t)
Li(t)

)−(1−α)

(6.2)

Using the fact that the capital-labor ratio is the same across firms, we

can substitute equation 6.1 into equation 6.3 to obtain

r(t) = αB1−αK(t)1−α

(
K(t)

L

)−(1−α)

, (6.3)

which simplifies to

r(t) = αB1−αL1−α = αb, (6.4)

where b ≡ B1−αL1−α With no population growth, L is constant, and

thus so is the real interest rate. The real wage must equal the marginal prod-

uct of labor. From equation 6.4 this implies

w(t) =
∂Yi(t)
∂Li(t)

= (1−α)B1−αK(t)1−α .
Ki(t)
Li(t)

α

(6.5)
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Again, using the fact that the capital-labor ratio is the same across

firms, we can substitute equation 6.1 into equation 6.5 to obtain

w(t) = (1−α)B1−αK(t)1−α K(t)
L

α

, (6.6)

which simplifies to

w(t) = (1−α)B1−αK(t)L−α = (1−α)B1−αL1−α K(t)
L

, (6.7)

or simply

w(t) = (1−α)b
K(t)

L
. (6.8)

6.3 Equilibrium Growth Rate of Consumption

2. Using the hint, since utility of the representative household takes the constant-

relative-risk-aversion- form, consumption growth in equilibrium will be

Ċ(t)
C(t)

=
r(t)−ρ

θ
. (6.1)

Substituting equation 2 for the real interest rate into equation 6.1 yields

Ċ(t)
C(t)

=
αb−ρ

θ
, (6.2)

where b ≡ BL. Note that with no population growth so that L is constant,

consumption growth is constant as well. Using the zero-profit condition, we can

write output as

Y (t) = r(t)K(t)+w(t)L. (6.3)

Substituting equations and into equation gives us

Y (t) = αbK(t)+(1−α)b
(

K(t)
L

)
L, (6.4)

which simplifies to

Y (t) = bK(t). (6.5)
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Since b is a constant then output and capital grow at the same rate. Capital

accumulation is then given by

K̇(t) = sbK(t), (6.6)

where s is the saving rate. Thus, the growth rate of the capital stock is given by

K̇(t)
K(t)

= sb, (6.7)

and so the growth rate of output also equals sb. Since C = (1\s)Y , we can write

the saving rate as

s = 1−C
Y
. (6.8)

Thus, we can write the growth rate of output as

Ẏ (t)
Y (t)

= b
(

1−C(t)
Y (t)

)
. (6.9)

If output growth were less than consumption growth, C/Y would rise over

time. Output growth and capital growth would turn negative, which is not an

allowable path. If output growth were greater than consumption growth, C/Y

would fall to 0 over time. Output growth and capital growth would approach b.

This implies that growth would eventually exceed the real interest rate, which is

αb, and so this is also not an allowable path. Thus, the equilibrium growth rates

of output and consumption must be equal.

6.4 Long-run Growth

3. (a) We can take the derivative of the growth rate of output (which equals the

growth rate of consumption) with respect to B to obtain

∂

[
Ẏ (t)
Y (t)

]
∂B

=
∂

[
αB1−αL1−α−ρ

θ

]
∂B

=
α(1−α)L1−α

θBα
> 0.

Thus an increase in B increases long-run growth.
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(b) We can take the derivative of the growth rate of output with respect to ρ to

obtain
∂

[
Ẏ (t)
Y (t)

]
∂ρ

=
∂

[
αB1−αL1−α−ρ

θ

]
∂ρ

=− 1
θ
< 0.

Thus an increase in´decreases long-run growth.

(c) We can take the derivative of the growth rate of output with respect to L to

obtain
∂

[
Ẏ (t)
Y (t)

]
∂L

=
∂

[
αB1−αL1−α−ρ

θ

]
∂L

=
α(1−α)B1−α

θLα
> 0.

Thus an increase in L increases long-run growth.

4. The equilibrium growth rate is less than the socially optimal growth rate. A so-

cial planner would internalize the knowledge spillovers and would set the growth

rate of consumption dependent on the social return to capital, not the private re-

turn. We know that the private marginal product of capital is αb and the social

marginal product is b (returns to capital are constant at the social level). There-

fore, unless α = 1, the growth rate set by the social planner would be greater

than the decentralized equilibrium growth rate.
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