Macro Topics: Introduction to Matlab

Fall 2016

Instructor: Olga Bychkova

Homework #6

Suggested Solutions

Problem 1. Consider the following problem of a Central Bank which tries to minimize the following loss function:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^{t} \left[(\pi_{t} - \pi^{*})^{2} + \lambda (l_{t} - l^{*})^{2} \right],$$

subject to

$$l_t = \alpha \pi_t + \rho l_{t-1} + C$$
, l_{-1} given,

where π_t is the inflation rate, l_t is the employment rate, $\beta \in (0,1)$, $\lambda > 0$, $\alpha > 0$, $\rho \in (0,1)$. The Central Bank can directly control inflation rate π_t .

- (1) Clearly identify state and control variables. Write the problem in a standard LQ form. (Hint: Problem has more than one way of solving. For one of them you can consider unity as a state variable.)
- (2) Guessing that the value function is quadratic in the state variable, use guess-and-verify method to derive the optimal policy and the value function of the Central Bank. (Hint: You can use the formulae derived in the class.)
- (3) Solve the problem using standard procedure (FOC, ET, EE).

Solution:

(1) In order to simplify the problem we will take unity as a state variable. Since Central Bank can control inflation, we will take π_t as control variable, and l_{t-1} and 1 as state variables. Denote by x_t current state variable and by u_t control variable:

$$x_t = \begin{pmatrix} l_{t-1} \\ 1 \end{pmatrix}, \quad u_t = \pi_t.$$

We start by rewriting constraint as

$$x_{t+1} = Ax_t + Bu_t$$

where A and B are some matrices. We have:

$$\underbrace{\begin{pmatrix} l_t \\ 1 \end{pmatrix}}_{x_{t+1}} = \underbrace{\begin{pmatrix} \rho & C \\ 0 & 1 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} l_{t-1} \\ 1 \end{pmatrix}}_{x_t} + \underbrace{\begin{pmatrix} \alpha \\ 0 \end{pmatrix}}_{B} \underbrace{\pi_t}_{u_t}.$$

Note that we added extra equation 1 = 1 as an additional constraint for state variable. Now we can rewrite objective function in the form:

$$x_t'Rx_t + u_t'Qu_t + 2u_t'Hx_t.$$

We have

$$(\pi_{t} - \pi^{*})^{2} + \lambda(l_{t} - l^{*})^{2} = (\pi_{t} - \pi^{*})^{2} + \lambda(\alpha\pi_{t} + \rho l_{t-1} + C - l^{*})^{2} =$$

$$= \pi_{t}^{2} - 2\pi_{t}\pi^{*} + (\pi^{*})^{2} + \lambda\alpha^{2}\pi_{t}^{2} + \lambda\rho^{2}l_{t-1}^{2} + \lambda(C - l^{*})^{2} + 2\lambda\alpha\rho\pi_{t}l_{t-1} + 2\lambda\alpha(C - l^{*})\pi_{t} + 2\lambda\rho(C - l^{*})l_{t-1} =$$

$$= x'_{t}\underbrace{\begin{pmatrix} \lambda\rho^{2} & \lambda\rho(C - l^{*}) \\ \lambda\rho(C - l^{*}) & (\pi^{*})^{2} + \lambda(C - l^{*})^{2} \end{pmatrix}}_{-R} x_{t} + u'_{t}\underbrace{(1 + \lambda\alpha^{2})}_{-Q} u_{t} + 2u'_{t}\underbrace{(\lambda\alpha\rho & \lambda\alpha(C - l^{*}) - \pi^{*})}_{-H} x_{t}.$$

(2) Now we make a guess that our value function is quadratic in state variable, that is:

$$V(x_t) = x_t' P x_t,$$

where matrix P is of the form

$$P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}.$$

Using guess–and–verify method we need to find coefficients p_{ij} , $i, j \in \{1, 2\}$. We start by writing the Bellman equation:

$$V(x_t) = \max \left\{ -x_t' R x_t - u_t' Q u_t - 2u_t' H x_t + \beta V(x_{t+1}) \right\},\,$$

or substituting for V and for x_{t+1} we get:

$$x_t' P x_t = \max \left\{ -x_t' R x_t - u_t' Q u_t - 2u_t' H x_t + \beta (A x_t + B u_t)' P (A x_t + B u_t) \right\}.$$

In the class we have already derived the following formula

$$u_t = -(Q + \beta B'PB)^{-1}(\beta B'PA + H)x_t,$$

where matrix P solves

$$P = R + \beta A'PA - (\beta A'PB + H')(Q + \beta B'PB)^{-1}(\beta B'PA + H).$$

Important note: You should know how to get this equation. For details please see the suggested solutions for the last exercise sessions.

We start by calculating

$$R + \beta A' P A = \begin{pmatrix} -\lambda \rho^2 & -\lambda \rho (C - l^*) \\ -\lambda \rho (C - l^*) & -(\pi^*)^2 - \lambda (C - l^*)^2 \end{pmatrix} + \beta \begin{pmatrix} \rho & C \\ 0 & 1 \end{pmatrix}' \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} \begin{pmatrix} \rho & C \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\lambda \rho^2 + \beta \rho^2 p_{11} & -\lambda \rho (C - l^*) + \beta (\rho C p_{11} + \rho p_{12}) \\ -\lambda \rho (C - l^*) + \beta (\rho C p_{11} + \rho p_{21}) & -(\pi^*)^2 - \lambda (C - l^*)^2 + \beta (C^2 p_{11} + C p_{21} + C p_{12} + p_{22}) \end{pmatrix}.$$

Now we need to calculate

$$(\beta A'PB + H')(Q + \beta B'PB)^{-1}(\beta B'PA + H),$$

and we will calculate each part separately. Thus we have

$$\beta A'PB + H' = \beta \begin{pmatrix} \rho & C \\ 0 & 1 \end{pmatrix}' \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} \begin{pmatrix} \alpha \\ 0 \end{pmatrix} + \begin{pmatrix} -\lambda \alpha \rho \\ -\lambda \alpha (C - l^*) + \pi^* \end{pmatrix} =$$

$$= \begin{pmatrix} -\lambda \alpha \rho + \beta \alpha \rho p_{11} \\ -\lambda \alpha (C - l^*) + \pi^* + \beta C \alpha p_{11} + \beta \alpha p_{21} \end{pmatrix},$$

$$Q + \beta B' P B = -1 - \lambda \alpha^2 + \beta \begin{pmatrix} \alpha \\ 0 \end{pmatrix}' \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} \begin{pmatrix} \alpha \\ 0 \end{pmatrix} = -1 - \lambda \alpha^2 + \beta \alpha^2 p_{11},$$

$$\beta B' P A + H = (\beta A' P B + H')' = \begin{pmatrix} -\lambda \alpha \rho + \beta \alpha \rho p_{11} \\ -\lambda \alpha (C - l^*) + \pi^* + \beta C \alpha p_{11} + \beta \alpha p_{21} \end{pmatrix}'.$$

Now we have

$$(\beta A'PB + H')(Q + \beta B'PB)^{-1}(\beta B'PA + H) =$$

$$= \begin{pmatrix} \frac{(-\lambda \alpha \rho + \beta \alpha \rho p_{11})^{2}}{-1 - \lambda \alpha^{2} + \beta \alpha^{2} p_{11}} & \frac{(-\lambda \alpha \rho + \beta \alpha \rho p_{11})(-\lambda \alpha (C - l^{*}) + \pi^{*} + \beta C \alpha p_{11} + \beta \alpha p_{21})}{-1 - \lambda \alpha^{2} + \beta \alpha^{2} p_{11}} \\ \frac{(-\lambda \alpha \rho + \beta \alpha \rho p_{11})(-\lambda \alpha (C - l^{*}) + \pi^{*} + \beta C \alpha p_{11} + \beta \alpha p_{21})}{-1 - \lambda \alpha^{2} + \beta \alpha^{2} p_{11}} & \frac{(-\lambda \alpha (C - l^{*}) + \pi^{*} + \beta C \alpha p_{11} + \beta \alpha p_{21})^{2}}{-1 - \lambda \alpha^{2} + \beta \alpha^{2} p_{11}} \end{pmatrix}$$

Therefore we need to solve equation of the form

$$\begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} -\lambda \rho^2 + \beta \rho^2 p_{11} & -\lambda \rho (C - l^*) + \beta (\rho C p_{11} + \rho p_{12}) \\ -\lambda \rho (C - l^*) + \beta (\rho C p_{11} + \rho p_{21}) & -(\pi^*)^2 - \lambda (C - l^*)^2 + \beta (C^2 p_{11} + C p_{12} + C p_{12} + p_{22}) \end{pmatrix} - \begin{pmatrix} \frac{(-\lambda \alpha \rho + \beta \alpha \rho p_{11})^2}{-1 - \lambda \alpha^2 + \beta \alpha^2 p_{11}} & \frac{(-\lambda \alpha \rho + \beta \alpha \rho p_{11})(-\lambda \alpha (C - l^*) + \pi^* + \beta C \alpha p_{11} + \beta \alpha p_{21})}{-1 - \lambda \alpha^2 + \beta \alpha^2 p_{11}} \\ \frac{(-\lambda \alpha \rho + \beta \alpha \rho p_{11})(-\lambda \alpha (C - l^*) + \pi^* + \beta C \alpha p_{11} + \beta \alpha p_{21})}{-1 - \lambda \alpha^2 + \beta \alpha^2 p_{11}} \end{pmatrix}.$$

(3) Another way to solve the problem is simple Bellman equation approach. We need to solve the following problem

$$\max - \sum_{t=0}^{\infty} \beta^{t} \left[(\pi_{t} - \pi^{*})^{2} + \lambda (l_{t} - l^{*})^{2} \right],$$

subject to

$$l_t = \alpha \pi_t + \rho l_{t-1} + C.$$

We take l_{t-1} as a state variable and l_t as control variable (we will eliminate π_t using the constraint). Therefore the Bellman equation is:

$$V(l_{t-1}) = \max \left\{ -\frac{(l_t - \rho l_{t-1} - \pi^* \alpha - C)^2}{\alpha^2} - \lambda (l_t - l^*)^2 + \beta V(l_t) \right\}.$$

FOC (derivative with respect to l_t) is:

$$-\frac{2(l_t - \rho l_{t-1} - \pi^* \alpha - C)}{\alpha^2} - 2\lambda(l_t - l^*) + \beta V'(l_t) = 0.$$

ET condition (derivative with respect to l_{t-1}) is:

$$V'(l_{t-1}) = \frac{2\rho(l_t - \rho l_{t-1} - \pi^* \alpha - C)}{\alpha^2}.$$

We shift ET condition one period forward and plug it into FOC to get the Euler Equation:

$$V'(l_t) = \frac{2\rho(l_{t+1} - \rho l_t - \pi^* \alpha - C)}{\alpha^2},$$
$$-\frac{2(l_t - \rho l_{t-1} - \pi^* \alpha - C)}{\alpha^2} - 2\lambda(l_t - l^*) + \frac{2\beta\rho(l_{t+1} - \rho l_t - \pi^* \alpha - C)}{\alpha^2} = 0.$$