
LNU
Spring 2017

Introduction to Dynamic Economic Models
Instructor: Mykola Babiak
Date: April 25, 2017

Exercise Session 2 (Miscellaneous)

Suggested Solutions

Problem 1 (Guess-and-Verify Method: Lucky Guess) Consider the problem of con-
sumer who seeks to solve

max
{ct}∞t=0

∞∑
t=0

βt(log ct + γ log ct−1), 0 < γ < 1

subject to the following constraints:

kt+1 + ct ≤ Akαt , A > 0, α ∈ (0, 1),

ct > 0, kt > 0, k0, c−1 given.

1. Clearly identify state and control variable(s). Set up the Bellman equation for the
problem (that is write the problem in the recursive form). Hint: Value function for
the consumer will be the function of two variables.

2. Guessing that the value function is of the form:

V (kt, ct−1) = E + F log kt +G log ct−1,

derive constants E,F and G. Calculate the optimal policy given your value function.

Solution: We start by identifying state and control variables:

• states: kt, ct−1

• controls: kt+1, ct

We eliminate one control using the equation

ct = Akαt − kt+1,

and the Bellman equation becomes

V (k, c−) = max
k̃

{
log(Akα − k̃) + γ log(c−) + βV (k̃, Akα − k̃)

}
,

1

where k = kt, k̃ = kt+1, c− = ct−1. We make a guess that

V (k, c−) = E + F log(k) +G log(c−).

Now substituting for V into the Bellman equation we get

E+F log(k)+G log(c−) = max
k̃

{
log(Akα − k̃) + γ log(c−) + β

(
E + F log(k̃) +G log(Akα − k̃)

)}
.

The F.O.C. (derivative with respect to k̃) is:

− 1

Akα − k̃
+ βF

1

k̃
− βG 1

Akα − k̃
= 0 =⇒ k̃ =

βFAkα

β(F +G) + 1
.

E.T. condition with respect to c− is

G

c−
=

γ

c−
=⇒ G = γ.

E.T. condition with respect to k is

F

k
=
αAkα−1

Akα − k̃
+ βG

αAkα−1

Akα − k̃
,

F

k
=

αAkα−1

Akα − βFAkα

β(F+G)+1

+ βG
αAkα−1

Akα − βFAkα

β(F+G)+1

,

F

k
=

αAkα−1

Akα − βFAkα

β(F+γ)+1

+ βγ
αAkα−1

Akα − βFAkα

β(F+γ)+1

=⇒ F =
α(1 + βγ)

1− αβ
.

Substituting for G,F and k̃ into the Bellman equation and solving for E (omitting tedious
algebra here) we get:

E =
1

1− β

(
1 + βγ

1− αβ
logαβA− (1− βγ) log

αβ

1− αβ

)
.

Also we can solve for k̃
k̃ = αβAkα.

Problem 2 (Guess-and-Verify Method: Failure) Consider the household that seeks
to maximize his lifetime utility

max
{ct}∞t=0

∞∑
t=0

βt
c1−σt − 1

1− σ
,

subject to the following constraint:

kt+1 + ct = Akαt + (1− δ)kt, 0 < δ < 1.

Show that guessing that policy function is

2

• constant, that is V (kt) = C,

• linear in state (excluding constant), that is V (kt) = Ckt

does not work.

Solution: First assume that our guess is V (kt) = C, where C is some constant. Then, the
Bellman equation is

V (kt) = max
kt+1

{
(Akαt + (1− δ)kt − kt+1)

1−σ − 1

1− σ
+ βV (kt+1)

}
.

Taking the F.O.C. (the derivative with respect to k̃) we get:

(−1)
(
Akαt + (1− δ)− k−σt+1

)
= 0,

which has unique solution when c = 0. However, this is not optimal, and thus we conclude
that our guess was wrong.

Now assume that our guess is that V (kt) = Ckt. Again, the Bellman equation is

V (kt) = max
kt+1

{
(Akαt + (1− δ)kt − kt+1)

1−σ − 1

1− σ
+ βV (kt+1)

}
.

Taking the F.O.C. and substituting for V we get

(−1)(Akαt + (1− δ)− kt+1)
−σ + Cβ = 0 =⇒ kt+1 = Akαt + kt(1− δ)− (βC)−

1
σ .

Plugging this back the Bellman equation, and equating terms next to kα we get that

βAC = 0,

which is not possible since β ∈ (0, 1) and A > 0. Again, our guess was wrong.

Problem 3 (Value Function Iteration: Analytical Solution) A planner chooses a
sequence {ct, kt+1}∞t=0 to maximize

∞∑
t=0

βt ln(ct)

subject to a given value for k0 and a transition law

kt+1 + ct = Akαt ,

where A > 0, α ∈ (0, 1), β ∈ (0, 1). Solve this problem using value function iterations.

Solution:

3

• iteration 1. Let’s start with V0(x) = 0. The problem that we want to solve is

V1(k) = max
k̃,c

{
ln c+ βV0(k̃)

}
s.t. c+ k̃ = Akα

or

V1(k) = max
k̃

{
ln(Akα − k̃) + βV0(k̃)

}
= max

k̃

{
ln(Akα − k̃)

}
since ln(·) is increasing function, maximum is reached when k̃ = 0 and thus c = Akα

and V1(k) = ln(Akα) = lnA+ α ln k.

• iteration 2. We plug V1(k) into the Bellman equation, so the problem that we are
solving now is

V2(k) = max
k̃,c

{
ln c+ βV1(k̃)

}
s.t. c+ k̃ = Akα

or

V2(k) = max
k̃

{
ln(Akα − k̃) + βV1(k̃)

}
= max

k̃

{
ln(Akα − k̃) + β(lnA+ α ln k̃)

}
the FOC is

[k̃] :
∂

∂k̃

{
ln(Akα − k̃) + β(lnA+ α ln k̃)

}
!

= 0

so we have

− 1

Akα − k̃
+ αβ

1

k̃
= 0

k̃ = αβ(Akα − k̃)

thus we have as the updated optimal policies

k̃(k) =
αβAkα

1 + αβ
c(k) =

Akα

1 + αβ

and the updated approximation of value function

V2(k) = ln

(
Akα

1 + αβ

)
+ βV1

(
αβAkα

1 + αβ

)
= ln

(
Akα

1 + αβ

)
+ β lnA+ αβ ln

(
αβAkα

1 + αβ

)
= ln

(
A

1 + αβ

)
+ β lnA+ αβ ln

(
αβA

1 + αβ

)
+ α(1 + αβ) ln k

4

• iteration 3. We plug V2(k) into the Bellman equation, the problem that we are solving
is

V3(k) = max
k̃,c

{
ln c+ βV2(k̃)

}
s.t. c+ k̃ = Akα

or

V3(k) = max
k̃

{
ln(Akα − k̃) + βV2(k̃)

}
= max

k̃

{
ln(Akα − k̃) + β

[
ln

(
A

1 + αβ

)
+ β lnA+ αβ ln

(
αβA

1 + αβ

)
+ α(1 + αβ) ln k̃

]}
the FOC is

[k̃] :
∂

∂k̃

{
ln(Akα − k̃) + β

[
ln

(
A

1 + αβ

)
+ β lnA+ αβ ln

(
αβA

1 + αβ

)
+ α(1 + αβ) ln k̃

]}
!

= 0

so we have

− 1

Akα − k̃
+ αβ

1 + αβ

k̃
= 0

k̃ = (αβ + α2β2)(Akα − k̃)

thus we have as the optimal policies

k̃(k) =
(αβ + α2β2)Akα

1 + αβ + α2β2
c(k) =

Akα

1 + αβ + α2β2

and the updated approximation of value function

V3(k) = β2 lnA+ β ln
A

1 + αβ
+ ln

A

1 + αβ + α2β2
+

+βαβ ln
αβ

1 + αβ
A+ (αβ + α2β2) ln

αβ + α2β2

1 + αβ + α2β2
A+

+α(1 + αβ + α2β2) ln k

• we can proceed further with fourth iteration, where we will find that the optimal
policies are

k̃(k) =
(αβ + α2β2 + α3β3)Akα

1 + αβ + α2β2 + α3β3
c(k) =

Akα

1 + αβ + α2β2 + α3β3

and value function is

V4(k) = β3 lnA+ β2 ln
A

1 + αβ
+ β ln

A

1 + αβ + α2β2
+ ln

A

1 + αβ + . . .+ α3β3

+β2αβ ln
αβ

1 + αβ
A+ β(αβ + α2β2) ln

αβ + α2β2

1 + αβ + α2β2
A

+(αβ + . . .+ α3β3) ln
αβ + . . .+ α3β3

1 + αβ + . . .+ α3β3
A

+α(1 + αβ + α2β2 + α3β3) ln k

5

• in general after iteration n we therefore have the optimal policies

k̃(k) =
(αβ + α2β2 + . . .+ αn−1βn−1)Akα

1 + αβ + α2β2 + · · ·+ αn−1βn−1
c(k) =

Akα

1 + αβ + α2β2 + . . .+ αn−1βn−1

and value function

Vn(k) =
n−1∑
t=0

βt ln
A∑n−1−t

i=0 (αβ)i
+

n−2∑
t=0

[
βtαβ

n−2−t∑
i=0

(αβ)i ln
αβA

∑n−2−t
i=0 (αβ)i∑n−1−t

i=0 (αβ)i

]
+

+α(1 + αβ + α2β2 + . . .+ αn−1βn−1) ln k

=
n−1∑
t=0

βt ln
A

1−(αβ)
1−αβ

n−t +
n−2∑
t=0

βtαβ 1− (αβ)

1− αβ

n−1−t

ln

1−(αβ)
1−αβ

n−1−t

1−(αβ)
1−αβ

n−t αβA

+

+α(1 + αβ + α2β2 + . . .+ αn−1βn−1) ln k

taking a limit for n→∞ we have the optimal policies

lim
n→∞

k̃n(k) = lim
n→∞

(αβ + α2β2 + . . .+ αn−1βn−1)Akα

1 + αβ + α2β2 + · · ·+ αn−1βn−1
=

∑∞
i=0(αβ)i∑∞
i=0(αβ)i

αβAkα = αβAkα

lim
n→∞

cn(k) = lim
n→∞

(Akα − k̃n(k)) = (1− αβAkα)

and the value function

lim
n→∞

Vn(k) = lim
n→∞

{
n−1∑
t=0

βt ln
A

1−(αβ)
1−αβ

n−t +
n−2∑
t=0

βtαβ 1− (αβ)

1− αβ

n−1−t

ln

1−(αβ)
1−αβ

n−1−t

1−(αβ)
1−αβ

n−t αβA


+α(1 + αβ + α2β2 + . . .+ αn−1βn−1) ln k

}

=
∞∑
t=0

βt ln
A
1

1−αβ
+
∞∑
t=0

[
βtαβ

1

1− αβ
ln

1
1−αβ

1
1−αβ

αβA

]
+ α

∞∑
t=0

(αβ)t ln k

=
1

1− β
ln(1− αβ)A+

1

1− β
αβ

1− αβ
lnαβA+

α

1− αβ
ln k

Extra: Analytical dynamic programming without substitution We have seen how
we can derive the first order conditions, envelope conditions and euler equation by substitut-
ing out one variable by use of the constraint. This approach yields the desired results and
is usefull especially in some situtiations. However, this requires that we substitute out the
’correct’ variable (for example, try to substitute out kt+1 instead of ct, to see where it leads).
More importatly, sometimes we cannot simplify the constraint to get closed form solution

6

for the variables we want to substitute out. For these situations, and also for the basic sit-
uations, we can decide not to substitute out and leave the constraint in the eqaution. This
note is going to illustrate this approach, which might be useful to know in some situations.

Consider the basic Robinson Crusoe problem:

max
{ct}∞t=0

∞∑
t=0

βtu(ct)

s.t. ct = f(kt) + (1− δ)kt − kt+1

k0 given

Normally we would substitute consumption out and write the Bellan equation as follows:

V (k) = max
k̃

{
u
[
f(k) + (1− δ)k − k̃

]
+ βV (k̃)

}
and proceed with FOCs and ET.

However, we can add the constraint at the end of the standard Bellman equation with
lagrange multiplier as we would in situation when we would not set up the problem in terms
of dynamic programming:

V (k) = max
c,k̃

{
u(c) + βV (k̃)− λt(c+ k̃ − f(k) + (1− δ)k)

}
So the relationship between choice and state variables is fully captured through the lan-

grangian and lagrange multiplier becomes new variable in the problem. Note that the signs
matter as in usual problem (i.e. +λ and −λ yiled two different problems). Its enough to
remember that the shadow value of current capital (i.e. our budget) has to be positive and
hence the sign of lagrange multiplier and sign of current capital kt must together give positive
sign. We could easily put +λ and change the sings inside of the bracket. Also note that the
lagrange multiplier is time-varysing!

Now we want illustrate the solution method by solving the model. Derive the FOC as
normally, taking into account the constraint:

F.O.C. w.r.t. c:
∂V (k)

∂c
= u′(c)− λt = 0

Note that since all the relationship between our variables are captured in the multiplier, we
do not consider the usual indirect effects. This however means that we have to take FOC
w.r.t. the other choice as well:

F.O.C. w.r.t. k̃ :
∂V (k)

∂k
= β

∂V (k̃)

∂k̃
− λt = 0

7

Now we can substitute out the lagrange multiplier from the firts equation into second equa-
tion to obtain:

β
∂V (k̃)

∂k̃
= u′(c)

To eliminate the partial of the value function we use the evelope theorem as usual:

E.T.:
∂V (k)

∂k
= λt (f ′(k) + 1− δ)

First, again substitute out the multiplier from first equation:1

∂V (k)

∂k
= u′(c) (f ′(k) + 1− δ)

And finally substitute after shifting forward back in the FOC for k :

u′(c) = βu′(c̃)
(
f ′(k̃) + 1− δ

)
This is the standard EE equation obtained in the substitution way. Note that we could

have substituted out u′(c) instead and obtain the EE in the (unobserved) lagrange multiplier,
which would say exactly the same thing in different way. In some problems this is easier
than trying to substitute the multiplier out.

I personally prefer to use this method in all problems because I think its less prone to
mistakes, as it requires less manipulation. However, the great advantage is in situation when
substitution is complicated and hence this approach simplifies our life. Furthermore, by
eliminating indirect relationships between variables it is less prone to the typical question
’should I take derivative with respect to this variables as well?’.

1Alternatively you could shift forward and then substitute into following equation:

λt+1

(
f ′(k̃) + 1− δ

)
with λt+1 = u′(c̃) from FOC

8

