
Formal Languages, Automata and

Codes

Oleg Gutik

Lecture 17
Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

We �rst raise an issue that is somewhat of a nuisance with grammars and
languages in general: the presence of the empty word. The empty word plays a
rather singular role in many theorems and proofs, and it is often necessary to
give it special attention. We prefer to remove it from consideration altogether,
looking only at languages that do not contain λ. In doing so, we do not lose
generality, as we see from the following considerations. Let L be any
context-free language, and let G = (V, T, S, P) be a context-free grammar for
L− {λ}. Then the grammar we obtain by adding to V the new variable S0,
making S0 the start variable, and adding to P the productions

S0 → S|λ
generates L. Therefore, any nontrivial conclusion we can make for L− {λ} will
almost certainly transfer to L. Also, given any context-free grammar G, there is
a method for obtaining Ĝ such that L(Ĝ) = L(G)− {λ}. Consequently, for all
practical purposes, there is no di�erence between context-free languages that
include λ and those that do not. For the rest of this chapter, unless otherwise
stated, we will restrict our discussion to λ-free languages.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

A Useful Substitution Rule

Many rules govern generating equivalent grammars by means of substitutions.
Here we give one that is very useful for simplifying grammars in various ways.
We shall not de�ne the term simpli�cation precisely, but we shall use it
nevertheless. What we mean by it is the removal of certain types of undesirable
productions; the process does not necessarily result in an actual reduction of
the number of rules.

Theorem 6.1

Let G = (V, T, S, P) be a context-free grammar. Suppose that P contains a
production of the form

A → x1Bx2.
Assume that A and B are di�erent variables and that

B → y1|y2| · · · |yn
is the set of all productions in P that have B as the left side. Let
Ĝ = (V, T, S, P̂) be the grammar in which P̂ is constructed by deleting

A → x1Bx2 (1)
from P , and adding to it

A → x1y1x2|x1y2x2| · · · |x1ynx2.
Then

L(Ĝ) = L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Suppose that w ∈ L(G), so that
S

∗⇒G w.
The subscript on the derivation sign ⇒ is used here to distinguish between
derivations with di�erent grammars. If this derivation does not involve the
production (1)

A → x1Bx2, (1)
then obviously

S
∗⇒Ĝ w.

If it does, then look at the derivation the �rst time (6.1) is used. The B so
introduced eventually has to be replaced; we lose nothing by assuming that this
is done immediately. Thus

S
∗⇒G u1Au2 ⇒G u1x1Bx2u2 ⇒G u1x1yjx2u2.

But with grammar Ĝ we can get
S

∗⇒Ĝ u1Au2 ⇒Ĝ u1x1yjx2u2.

Thus we can reach the same sentential form with G and Ĝ. If (1) is used again
later, we can repeat the argument. It follows then, by induction on the number
of times the production is applied, that

S
∗⇒Ĝ w.

Therefore, if w ∈ L(G), then w ∈ L(Ĝ).

By similar reasoning, we can show that if w ∈ L(Ĝ), then w ∈ L(G),
completing the proof. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars
Theorem 6.1 is a simple and quite intuitive substitution rule: A production
A → x1Bx2 can be eliminated from a grammar if we put in its place the set of
productions in which B is replaced by all strings it derives in one step. In this
result, it is necessary that A and B be di�erent variables.

Example 6.1

Consider G = ({A,B}, {a, b, c}, A, P) with productions
A → a|aaA|abBc,

B → abbA|b.
Using the suggested substitution for the variable B, we get the grammar Ĝ
with productions

A → a|aaA|ababbAc|abbc,
B → abbA|b.

The new grammar Ĝ is equivalent to G. The string aaabbc has the derivation
A ⇒ aaA ⇒ aaabBc ⇒ aaabbc

in G, and the corresponding derivation
A ⇒ aaA ⇒ aaabbc

in Ĝ.

Notice that, in this case, the variable B and its associated productions are still
in the grammar even though they can no longer play a part in any derivation.
We shall next show how such unnecessary productions can be removed from a
grammar.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Useless Productions

One invariably wants to remove productions from a grammar that can never
take part in any derivation. For example, in the grammar whose entire
production set is

S → aSb|λ|A,

A → aA,
the production S → A clearly plays no role, as A cannot be transformed into a
terminal string. While A can occur in a string derived from S, this can never
lead to a sentence. Removing this production leaves the language una�ected
and is a simpli�cation by any de�nition.

De�nition 6.1

Let G = (V, T, S, P) be a context-free grammar. A variable A ∈ V is said to be
useful if and only if there is at least one w ∈ L(G) such that

S
∗⇒ xAy

∗⇒ w. (2)
with x, y ∈ (V ∪ T)∗. In words, a variable is useful if and only if it occurs in at
least one derivation. A variable that is not useful is called useless. A production
is useless if it involves any useless variable.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.2

A variable may be useless because there is no way of getting a terminal string
from it. The case just mentioned is of this kind. Another reason a variable may
be useless is shown in the next grammar. In a grammar with start symbol S
and productions

S → A,

A → aA|λ,
B → bA,

the variable B is useless and so is the production B → bA. Although B can
derive a terminal string, there is no way we can achieve S

∗⇒ xBy.

This example illustrates the two reasons why a variable is useless: either
because it cannot be reached from the start symbol or because it cannot derive
a terminal word. A procedure for removing useless variables and productions is
based on recognizing these two situations. Before we present the general case
and the corresponding theorem, let us look at another example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3

Eliminate useless symbols and productions from G = (V, T, S, P), where
V = {S,A,B,C} and T = {a, b}, with P consisting of

S → aS|A|C,
A → a,

B → aa,

C → aCb.

First, we identify the set of variables that can lead to a terminal word. Since
A → a and B → aa, the variables A and B belong to this set. So does S,
because S ⇒ A ⇒ a. However, this argument cannot be made for C, thus
identifying it as useless. Removing C and its corresponding productions, we are
led to the grammar G1 with variables V1 = {S,A,B}, terminals T = {a}, and
productions

S → aS|A,

A → a,

B → aa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

Next we want to eliminate the variables that cannot be reached from the start
variable. For this, we can draw a dependency graph for the variables.
Dependency graphs are a way of visualizing complex relationships and are
found in many applications. For context-free grammars, a dependency graph
has its vertices labeled with variables, with an edge between vertices C and D
if and only if there is a production of the form

C → xDy.
A dependency graph for V1 is shown in the Figure.

S A B

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable. In our case, the Figure shows that B is
useless.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

S A B

Removing it and the a�ected productions and terminals, we are led to the �nal
answer Ĝ = (V̂ , T̂ , S, P̂) with V̂ = {S,A}, T̂ = {a}, and productions

S → aS|A,

A → a.

The formalization of this process leads to a general construction and the
corresponding theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

S A B

Removing it and the a�ected productions and terminals, we are led to the �nal
answer Ĝ = (V̂ , T̂ , S, P̂) with V̂ = {S,A}, T̂ = {a}, and productions

S → aS|A,

A → a.

The formalization of this process leads to a general construction and the
corresponding theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

S A B

Removing it and the a�ected productions and terminals, we are led to the �nal
answer Ĝ = (V̂ , T̂ , S, P̂) with V̂ = {S,A}, T̂ = {a}, and productions

S → aS|A,

A → a.

The formalization of this process leads to a general construction and the
corresponding theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

S A B

Removing it and the a�ected productions and terminals, we are led to the �nal
answer Ĝ = (V̂ , T̂ , S, P̂) with V̂ = {S,A}, T̂ = {a}, and productions

S → aS|A,

A → a.

The formalization of this process leads to a general construction and the
corresponding theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

S A B

Removing it and the a�ected productions and terminals, we are led to the �nal
answer Ĝ = (V̂ , T̂ , S, P̂) with V̂ = {S,A}, T̂ = {a}, and productions

S → aS|A,

A → a.

The formalization of this process leads to a general construction and the
corresponding theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.3 (continuation)

S A B

Removing it and the a�ected productions and terminals, we are led to the �nal
answer Ĝ = (V̂ , T̂ , S, P̂) with V̂ = {S,A}, T̂ = {a}, and productions

S → aS|A,

A → a.

The formalization of this process leads to a general construction and the
corresponding theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.2

Let G = (V, T, S, P) be a context-free grammar. Then there exists an

equivalent grammar Ĝ = (V̂ , T̂ , S, P̂) that does not contain any useless
variables or productions.

Proof. The grammar Ĝ can be generated from G by an algorithm consisting of
two parts. In the �rst part we construct an intermediate grammar
G1 = (V1, T2, S, P1) such that V1 contains only variables A for which

A
∗⇒ w ∈ T ∗

is possible. The steps in the algorithm are

1 Set V1 to ∅.
2 Repeat the following step until no more variables are added to V1. For

every A ∈ V for which P has a production of the form
A → x1x2 · · ·xn, with all xi ∈ V1 ∪ T,

add A to V1.

3 Take P1 as all the productions in P whose symbols are all in (V1 ∪ T).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Clearly this procedure terminates. It is equally clear that if A ∈ V1, then
A

∗⇒ w ∈ T ∗ is a possible derivation with G1. The remaining issue is whether
every A for which A

∗⇒ w = ab · · · is added to V1 before the procedure
terminates. To see this, consider any such A and look at the partial derivation
tree corresponding to that derivation (see the Figure).

A

···

Aj

Ai c

a b Level k

Level k − 1

Level k − 2

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Clearly this procedure terminates. It is equally clear that if A ∈ V1, then
A

∗⇒ w ∈ T ∗ is a possible derivation with G1. The remaining issue is whether
every A for which A

∗⇒ w = ab · · · is added to V1 before the procedure
terminates. To see this, consider any such A and look at the partial derivation
tree corresponding to that derivation (see the Figure).

A

···

Aj

Ai c

a b Level k

Level k − 1

Level k − 2

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Clearly this procedure terminates. It is equally clear that if A ∈ V1, then
A

∗⇒ w ∈ T ∗ is a possible derivation with G1. The remaining issue is whether
every A for which A

∗⇒ w = ab · · · is added to V1 before the procedure
terminates. To see this, consider any such A and look at the partial derivation
tree corresponding to that derivation (see the Figure).

A

···

Aj

Ai c

a b Level k

Level k − 1

Level k − 2

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Clearly this procedure terminates. It is equally clear that if A ∈ V1, then
A

∗⇒ w ∈ T ∗ is a possible derivation with G1. The remaining issue is whether
every A for which A

∗⇒ w = ab · · · is added to V1 before the procedure
terminates. To see this, consider any such A and look at the partial derivation
tree corresponding to that derivation (see the Figure).

A

···

Aj

Ai c

a b Level k

Level k − 1

Level k − 2

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Clearly this procedure terminates. It is equally clear that if A ∈ V1, then
A

∗⇒ w ∈ T ∗ is a possible derivation with G1. The remaining issue is whether
every A for which A

∗⇒ w = ab · · · is added to V1 before the procedure
terminates. To see this, consider any such A and look at the partial derivation
tree corresponding to that derivation (see the Figure).

A

···

Aj

Ai c

a b Level k

Level k − 1

Level k − 2

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Clearly this procedure terminates. It is equally clear that if A ∈ V1, then
A

∗⇒ w ∈ T ∗ is a possible derivation with G1. The remaining issue is whether
every A for which A

∗⇒ w = ab · · · is added to V1 before the procedure
terminates. To see this, consider any such A and look at the partial derivation
tree corresponding to that derivation (see the Figure).

A

···

Aj

Ai c

a b Level k

Level k − 1

Level k − 2

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Clearly this procedure terminates. It is equally clear that if A ∈ V1, then
A

∗⇒ w ∈ T ∗ is a possible derivation with G1. The remaining issue is whether
every A for which A

∗⇒ w = ab · · · is added to V1 before the procedure
terminates. To see this, consider any such A and look at the partial derivation
tree corresponding to that derivation (see the Figure).

A

···

Aj

Ai c

a b Level k

Level k − 1

Level k − 2

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

At level k, there are only terminals, so every variable Ai at level k − 1 will be
added to V1 on the �rst pass through Step 2 of the algorithm. Any variable at
level k − 2 will then be added to V1 on the second pass through Step 2. The
third time through Step 2, all variables at level k − 3 will be added, and so on.
The algorithm cannot terminate while there are variables in the tree that are
not yet in V1. Hence A will eventually be added to V1.

In the second part of the construction, we get the �nal answer Ĝ from G1. We
draw the variable dependency graph for G1 and from it �nd all variables that
cannot be reached from S. These are removed from the variable set, as are the
productions involving them. We can also eliminate any terminal that does not
occur in some useful production. The result is the grammar Ĝ = (V̂ , T̂ , S, P̂).

Because of the construction, Ĝ does not contain any useless symbols or
productions. Also, for each w ∈ L(G) we have a derivation

S
∗⇒ xAy

∗⇒ w.
Since the construction of Ĝ retains A and all associated productions, we have
everything needed to make the derivation

S
∗⇒Ĝ xAy

∗⇒Ĝ w.

The grammar Ĝ is constructed from G by the removal of productions, so that
P̂ ⊂ P . Consequently L(Ĝ) ⊆ L(G). Putting the two results together, we see

that G and Ĝ are equivalent. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing λ-Productions
One kind of production that is sometimes undesirable is one in which the right
side is the empty string.

De�nition 6.2

Any production of a context-free grammar of the form
A → λ

is called a λ-production. Any variable A for which the derivation
A

∗⇒ λ (3)
is possible is called nullable.

A grammar may generate a language not containing λ, yet have some
λ-productions or nullable variables. In such cases, the λ-productions can be
removed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.4

Consider the grammar
S → aS1b,

S1 → aS1b|λ,
with start variable S. This grammar generates the λ-free language
{anbn : n ⩾ 1}. The λ-production S1 → λ can be removed after adding new
productions obtained by substituting λ for S1 where it occurs on the right.
Doing this we get the grammar

S → aS1b|ab,
S1 → aS1b|ab.

We can easily show that this new grammar generates the same language as the
original one.

In more general situations, substitutions for λ-productions can be made in a
similar, although more complicated, manner.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.3

Let G be any context-free grammar with λ not in L(G). Then there exists an

equivalent grammar Ĝ having no λ-productions.

Proof. We �rst �nd the set VN of all nullable variables of G, using the
following steps.

1 For all productions A → λ, put A into VN .

2 Repeat the following step until no further variables are added to VN .
For all productions

B → A1A2 · · ·An,
where A1, A2, · · · , An are in VN , put B into VN .

Once the set VN has been found, we are ready to construct P̂ . To do so, we
look at all productions in P of the form

A → x1x2 · · ·xm, m ⩾ 1,
where each xi ∈ V ∪ T . For each such production of P , we put into P̂ that
production as well as all those generated by replacing nullable variables with λ
in all possible combinations. For example, if xi and xj are both nullable, there
will be one production in P̂ with xi replaced with λ, one in which xj is replaced
with λ, and one in which both xi and xj are replaced with λ. There is one
exception: If all xi are nullable, then the production A → λ is not put into P̂ .

The argument that this grammar Ĝ is equivalent to G is straightforward and
will be left to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.5

Find a context-free grammar without λ-productions equivalent to the grammar
de�ned by

S → ABaC,

A → BC,

B → b|λ,
C → D|λ,
D → d.

From the �rst step of the construction in Theorem 6.3, we �nd that the
nullable variables are A, B, C. Then, following the second step of the
construction, we get

S → ABaC|BaC|AaC|ABa|aC|Aa|Ba|a,
A → BC,

B → b|λ,
C → D|λ,
D → d.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.5

Find a context-free grammar without λ-productions equivalent to the grammar
de�ned by

S → ABaC,

A → BC,

B → b|λ,
C → D|λ,
D → d.

From the �rst step of the construction in Theorem 6.3, we �nd that the
nullable variables are A, B, C. Then, following the second step of the
construction, we get

S → ABaC|BaC|AaC|ABa|aC|Aa|Ba|a,
A → BC,

B → b|λ,
C → D|λ,
D → d.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.5

Find a context-free grammar without λ-productions equivalent to the grammar
de�ned by

S → ABaC,

A → BC,

B → b|λ,
C → D|λ,
D → d.

From the �rst step of the construction in Theorem 6.3, we �nd that the
nullable variables are A, B, C. Then, following the second step of the
construction, we get

S → ABaC|BaC|AaC|ABa|aC|Aa|Ba|a,
A → BC,

B → b|λ,
C → D|λ,
D → d.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.5

Find a context-free grammar without λ-productions equivalent to the grammar
de�ned by

S → ABaC,

A → BC,

B → b|λ,
C → D|λ,
D → d.

From the �rst step of the construction in Theorem 6.3, we �nd that the
nullable variables are A, B, C. Then, following the second step of the
construction, we get

S → ABaC|BaC|AaC|ABa|aC|Aa|Ba|a,
A → BC,

B → b|λ,
C → D|λ,
D → d.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.5

Find a context-free grammar without λ-productions equivalent to the grammar
de�ned by

S → ABaC,

A → BC,

B → b|λ,
C → D|λ,
D → d.

From the �rst step of the construction in Theorem 6.3, we �nd that the
nullable variables are A, B, C. Then, following the second step of the
construction, we get

S → ABaC|BaC|AaC|ABa|aC|Aa|Ba|a,
A → BC,

B → b|λ,
C → D|λ,
D → d.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.5

Find a context-free grammar without λ-productions equivalent to the grammar
de�ned by

S → ABaC,

A → BC,

B → b|λ,
C → D|λ,
D → d.

From the �rst step of the construction in Theorem 6.3, we �nd that the
nullable variables are A, B, C. Then, following the second step of the
construction, we get

S → ABaC|BaC|AaC|ABa|aC|Aa|Ba|a,
A → BC,

B → b|λ,
C → D|λ,
D → d.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.5

Find a context-free grammar without λ-productions equivalent to the grammar
de�ned by

S → ABaC,

A → BC,

B → b|λ,
C → D|λ,
D → d.

From the �rst step of the construction in Theorem 6.3, we �nd that the
nullable variables are A, B, C. Then, following the second step of the
construction, we get

S → ABaC|BaC|AaC|ABa|aC|Aa|Ba|a,
A → BC,

B → b|λ,
C → D|λ,
D → d.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.5

Find a context-free grammar without λ-productions equivalent to the grammar
de�ned by

S → ABaC,

A → BC,

B → b|λ,
C → D|λ,
D → d.

From the �rst step of the construction in Theorem 6.3, we �nd that the
nullable variables are A, B, C. Then, following the second step of the
construction, we get

S → ABaC|BaC|AaC|ABa|aC|Aa|Ba|a,
A → BC,

B → b|λ,
C → D|λ,
D → d.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Unit-Productions

As we have seen in Theorem 5.2, productions in which both sides are a single
variable are at times undesirable.

De�nition 6.3

Any production of a context-free grammar of the form
A → B,

where A,B ∈ V , is called a unit-production.

To remove unit-productions, we use the substitution rule discussed in Theorem
6.1. As the construction in the next theorem shows, this can be done if we
proceed with some care.

Theorem 6.4

Let G = (V, T, S, P) be any context-free grammar without λ-productions.

Then there exists a context-free grammar Ĝ = (V̂ , T̂ , S, P̂) that does not have
any unit-productions and that is equivalent to G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Unit-Productions

As we have seen in Theorem 5.2, productions in which both sides are a single
variable are at times undesirable.

De�nition 6.3

Any production of a context-free grammar of the form
A → B,

where A,B ∈ V , is called a unit-production.

To remove unit-productions, we use the substitution rule discussed in Theorem
6.1. As the construction in the next theorem shows, this can be done if we
proceed with some care.

Theorem 6.4

Let G = (V, T, S, P) be any context-free grammar without λ-productions.

Then there exists a context-free grammar Ĝ = (V̂ , T̂ , S, P̂) that does not have
any unit-productions and that is equivalent to G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Unit-Productions

As we have seen in Theorem 5.2, productions in which both sides are a single
variable are at times undesirable.

De�nition 6.3

Any production of a context-free grammar of the form
A → B,

where A,B ∈ V , is called a unit-production.

To remove unit-productions, we use the substitution rule discussed in Theorem
6.1. As the construction in the next theorem shows, this can be done if we
proceed with some care.

Theorem 6.4

Let G = (V, T, S, P) be any context-free grammar without λ-productions.

Then there exists a context-free grammar Ĝ = (V̂ , T̂ , S, P̂) that does not have
any unit-productions and that is equivalent to G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Unit-Productions

As we have seen in Theorem 5.2, productions in which both sides are a single
variable are at times undesirable.

De�nition 6.3

Any production of a context-free grammar of the form
A → B,

where A,B ∈ V , is called a unit-production.

To remove unit-productions, we use the substitution rule discussed in Theorem
6.1. As the construction in the next theorem shows, this can be done if we
proceed with some care.

Theorem 6.4

Let G = (V, T, S, P) be any context-free grammar without λ-productions.

Then there exists a context-free grammar Ĝ = (V̂ , T̂ , S, P̂) that does not have
any unit-productions and that is equivalent to G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Unit-Productions

As we have seen in Theorem 5.2, productions in which both sides are a single
variable are at times undesirable.

De�nition 6.3

Any production of a context-free grammar of the form
A → B,

where A,B ∈ V , is called a unit-production.

To remove unit-productions, we use the substitution rule discussed in Theorem
6.1. As the construction in the next theorem shows, this can be done if we
proceed with some care.

Theorem 6.4

Let G = (V, T, S, P) be any context-free grammar without λ-productions.

Then there exists a context-free grammar Ĝ = (V̂ , T̂ , S, P̂) that does not have
any unit-productions and that is equivalent to G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Unit-Productions

As we have seen in Theorem 5.2, productions in which both sides are a single
variable are at times undesirable.

De�nition 6.3

Any production of a context-free grammar of the form
A → B,

where A,B ∈ V , is called a unit-production.

To remove unit-productions, we use the substitution rule discussed in Theorem
6.1. As the construction in the next theorem shows, this can be done if we
proceed with some care.

Theorem 6.4

Let G = (V, T, S, P) be any context-free grammar without λ-productions.

Then there exists a context-free grammar Ĝ = (V̂ , T̂ , S, P̂) that does not have
any unit-productions and that is equivalent to G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Unit-Productions

As we have seen in Theorem 5.2, productions in which both sides are a single
variable are at times undesirable.

De�nition 6.3

Any production of a context-free grammar of the form
A → B,

where A,B ∈ V , is called a unit-production.

To remove unit-productions, we use the substitution rule discussed in Theorem
6.1. As the construction in the next theorem shows, this can be done if we
proceed with some care.

Theorem 6.4

Let G = (V, T, S, P) be any context-free grammar without λ-productions.

Then there exists a context-free grammar Ĝ = (V̂ , T̂ , S, P̂) that does not have
any unit-productions and that is equivalent to G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Unit-Productions

As we have seen in Theorem 5.2, productions in which both sides are a single
variable are at times undesirable.

De�nition 6.3

Any production of a context-free grammar of the form
A → B,

where A,B ∈ V , is called a unit-production.

To remove unit-productions, we use the substitution rule discussed in Theorem
6.1. As the construction in the next theorem shows, this can be done if we
proceed with some care.

Theorem 6.4

Let G = (V, T, S, P) be any context-free grammar without λ-productions.

Then there exists a context-free grammar Ĝ = (V̂ , T̂ , S, P̂) that does not have
any unit-productions and that is equivalent to G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Unit-Productions

As we have seen in Theorem 5.2, productions in which both sides are a single
variable are at times undesirable.

De�nition 6.3

Any production of a context-free grammar of the form
A → B,

where A,B ∈ V , is called a unit-production.

To remove unit-productions, we use the substitution rule discussed in Theorem
6.1. As the construction in the next theorem shows, this can be done if we
proceed with some care.

Theorem 6.4

Let G = (V, T, S, P) be any context-free grammar without λ-productions.

Then there exists a context-free grammar Ĝ = (V̂ , T̂ , S, P̂) that does not have
any unit-productions and that is equivalent to G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Unit-Productions

As we have seen in Theorem 5.2, productions in which both sides are a single
variable are at times undesirable.

De�nition 6.3

Any production of a context-free grammar of the form
A → B,

where A,B ∈ V , is called a unit-production.

To remove unit-productions, we use the substitution rule discussed in Theorem
6.1. As the construction in the next theorem shows, this can be done if we
proceed with some care.

Theorem 6.4

Let G = (V, T, S, P) be any context-free grammar without λ-productions.

Then there exists a context-free grammar Ĝ = (V̂ , T̂ , S, P̂) that does not have
any unit-productions and that is equivalent to G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Removing Unit-Productions

As we have seen in Theorem 5.2, productions in which both sides are a single
variable are at times undesirable.

De�nition 6.3

Any production of a context-free grammar of the form
A → B,

where A,B ∈ V , is called a unit-production.

To remove unit-productions, we use the substitution rule discussed in Theorem
6.1. As the construction in the next theorem shows, this can be done if we
proceed with some care.

Theorem 6.4

Let G = (V, T, S, P) be any context-free grammar without λ-productions.

Then there exists a context-free grammar Ĝ = (V̂ , T̂ , S, P̂) that does not have
any unit-productions and that is equivalent to G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Proof. Obviously, any unit-production of the form A → A can be removed from
the grammar without e�ect, and we need only consider A → B, where A and
B are di�erent variables. At �rst sight, it may seem that we can use Theorem
6.1 directly with x1 = x2 = λ to replace

A → B
with

A → y1|y2| · · · |yn.
But this will not always work; in the special case

A → B,

B → A,
the unit-productions are not removed. To get around this, we �rst �nd, for each
A, all variables B such that

A
∗⇒ B. (4)

We can do this by drawing a dependency graph with an edge (C,D) whenever
the grammar has a unit-production C → D; then (4) holds whenever there is a

walk between A and B. The new grammar Ĝ is generated by �rst putting into
P̂ all non-unit productions of P . Next, for all A and B satisfying (4), we add

to P̂
A → y1|y2| · · · |yn,

where B → y1|y2| · · · |yn is the set of all rules in P̂ with B on the left. Note

that since B → y1|y2| · · · |yn is taken from P̂ , none of the yi can be a single
variable, so that no unit-productions are created by the last step.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

To show that the resulting grammar is equivalent to the original one, we can
follow the same line of reasoning as in Theorem 6.1. ■

Example 6.6

Remove all unit-productions from
S → Aa|B,

B → A|bb,
A → a|bc|B.

The dependency graph for the unit-productions is given in the Figure.

S A B

We see from it that S
∗⇒ A, S

∗⇒ B, B
∗⇒ A, and A

∗⇒ B. Hence, we add to
the original non-unit productions

S → Aa,

A → a|bc,
B → bb,

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.6 (continuation)

the new rules
S → a|bc|bb,
A → bb,

B → a|bc,
to obtain the equivalent grammar

S → a|bc|bb|Aa,

A → a|bb|bc,
B → a|bb|bc.

Note that the removal of the unit-productions has made B and the associated
productions useless.

We can put all these results together to show that grammars for context-free
languages can be made free of useless productions, λ-productions, and
unit-productions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.6 (continuation)

the new rules
S → a|bc|bb,
A → bb,

B → a|bc,
to obtain the equivalent grammar

S → a|bc|bb|Aa,

A → a|bb|bc,
B → a|bb|bc.

Note that the removal of the unit-productions has made B and the associated
productions useless.

We can put all these results together to show that grammars for context-free
languages can be made free of useless productions, λ-productions, and
unit-productions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.6 (continuation)

the new rules
S → a|bc|bb,
A → bb,

B → a|bc,
to obtain the equivalent grammar

S → a|bc|bb|Aa,

A → a|bb|bc,
B → a|bb|bc.

Note that the removal of the unit-productions has made B and the associated
productions useless.

We can put all these results together to show that grammars for context-free
languages can be made free of useless productions, λ-productions, and
unit-productions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.6 (continuation)

the new rules
S → a|bc|bb,
A → bb,

B → a|bc,
to obtain the equivalent grammar

S → a|bc|bb|Aa,

A → a|bb|bc,
B → a|bb|bc.

Note that the removal of the unit-productions has made B and the associated
productions useless.

We can put all these results together to show that grammars for context-free
languages can be made free of useless productions, λ-productions, and
unit-productions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.6 (continuation)

the new rules
S → a|bc|bb,
A → bb,

B → a|bc,
to obtain the equivalent grammar

S → a|bc|bb|Aa,

A → a|bb|bc,
B → a|bb|bc.

Note that the removal of the unit-productions has made B and the associated
productions useless.

We can put all these results together to show that grammars for context-free
languages can be made free of useless productions, λ-productions, and
unit-productions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.6 (continuation)

the new rules
S → a|bc|bb,
A → bb,

B → a|bc,
to obtain the equivalent grammar

S → a|bc|bb|Aa,

A → a|bb|bc,
B → a|bb|bc.

Note that the removal of the unit-productions has made B and the associated
productions useless.

We can put all these results together to show that grammars for context-free
languages can be made free of useless productions, λ-productions, and
unit-productions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.6 (continuation)

the new rules
S → a|bc|bb,
A → bb,

B → a|bc,
to obtain the equivalent grammar

S → a|bc|bb|Aa,

A → a|bb|bc,
B → a|bb|bc.

Note that the removal of the unit-productions has made B and the associated
productions useless.

We can put all these results together to show that grammars for context-free
languages can be made free of useless productions, λ-productions, and
unit-productions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Example 6.6 (continuation)

the new rules
S → a|bc|bb,
A → bb,

B → a|bc,
to obtain the equivalent grammar

S → a|bc|bb|Aa,

A → a|bb|bc,
B → a|bb|bc.

Note that the removal of the unit-productions has made B and the associated
productions useless.

We can put all these results together to show that grammars for context-free
languages can be made free of useless productions, λ-productions, and
unit-productions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

6.1 Methods for Transforming Grammars

Theorem 6.5

Let L be a context-free language that does not contain λ. Then there exists a
context-free grammar that generates L and that does not have any useless
productions, λ-productions, or unit-productions.

Proof. The procedures given in Theorems 6.2, 6.3, and 6.4 remove these kinds
of productions in turn. The only point that needs consideration is that the
removal of one type of production may introduce productions of another type;
for example, the procedure for removing λ-productions can create new
unit-productions. Also, Theorem 6.4 requires that the grammar have no
λ-productions. But note that the removal of unit-productions does not create
λ-productions, and the removal of useless productions does not create
λ-productions or unit-productions. Therefore, we can remove all undesirable
productions using the following sequence of steps:

1 Remove λ-productions.

2 Remove unit-productions.

3 Remove useless productions.

The result will then have none of these productions, and the theorem is proved.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

Thank You

Thank You for attention!

Oleg Gutik Formal Languages, Automata and Codes. Lecture 17

