
Formal Languages, Automata and

Codes

Oleg Gutik

Lecture 16
Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

One of the most important uses of the theory of formal languages is in the

de�nition of programming languages and in the construction of interpreters and

compilers for them. The basic problem here is to de�ne a programming

language precisely and to use this de�nition as the starting point for the writing

of e�cient and reliable translation programs. Both regular and context-free

languages are important in achieving this. As we have seen, regular languages

are used in the recognition of certain simple patterns that occur in

programming languages, but as we argue in the introduction to this part of

lectures, we need context-free languages to model more complicated aspects.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

One of the most important uses of the theory of formal languages is in the

de�nition of programming languages and in the construction of interpreters and

compilers for them. The basic problem here is to de�ne a programming

language precisely and to use this de�nition as the starting point for the writing

of e�cient and reliable translation programs. Both regular and context-free

languages are important in achieving this. As we have seen, regular languages

are used in the recognition of certain simple patterns that occur in

programming languages, but as we argue in the introduction to this part of

lectures, we need context-free languages to model more complicated aspects.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

One of the most important uses of the theory of formal languages is in the

de�nition of programming languages and in the construction of interpreters and

compilers for them. The basic problem here is to de�ne a programming

language precisely and to use this de�nition as the starting point for the writing

of e�cient and reliable translation programs. Both regular and context-free

languages are important in achieving this. As we have seen, regular languages

are used in the recognition of certain simple patterns that occur in

programming languages, but as we argue in the introduction to this part of

lectures, we need context-free languages to model more complicated aspects.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

One of the most important uses of the theory of formal languages is in the

de�nition of programming languages and in the construction of interpreters and

compilers for them. The basic problem here is to de�ne a programming

language precisely and to use this de�nition as the starting point for the writing

of e�cient and reliable translation programs. Both regular and context-free

languages are important in achieving this. As we have seen, regular languages

are used in the recognition of certain simple patterns that occur in

programming languages, but as we argue in the introduction to this part of

lectures, we need context-free languages to model more complicated aspects.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

One of the most important uses of the theory of formal languages is in the

de�nition of programming languages and in the construction of interpreters and

compilers for them. The basic problem here is to de�ne a programming

language precisely and to use this de�nition as the starting point for the writing

of e�cient and reliable translation programs. Both regular and context-free

languages are important in achieving this. As we have seen, regular languages

are used in the recognition of certain simple patterns that occur in

programming languages, but as we argue in the introduction to this part of

lectures, we need context-free languages to model more complicated aspects.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

One of the most important uses of the theory of formal languages is in the

de�nition of programming languages and in the construction of interpreters and

compilers for them. The basic problem here is to de�ne a programming

language precisely and to use this de�nition as the starting point for the writing

of e�cient and reliable translation programs. Both regular and context-free

languages are important in achieving this. As we have seen, regular languages

are used in the recognition of certain simple patterns that occur in

programming languages, but as we argue in the introduction to this part of

lectures, we need context-free languages to model more complicated aspects.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

One of the most important uses of the theory of formal languages is in the

de�nition of programming languages and in the construction of interpreters and

compilers for them. The basic problem here is to de�ne a programming

language precisely and to use this de�nition as the starting point for the writing

of e�cient and reliable translation programs. Both regular and context-free

languages are important in achieving this. As we have seen, regular languages

are used in the recognition of certain simple patterns that occur in

programming languages, but as we argue in the introduction to this part of

lectures, we need context-free languages to model more complicated aspects.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

As with most other languages, we can de�ne a programming language by a

grammar. It is traditional in writing on programming languages to use a

convention for specifying grammars called the Backus-Naur form or BNF. This

form is in essence the same as the notation we have used here, but the

appearance is di�erent. In the Backus-Naur form, variables are enclosed in

triangular brackets. Terminal symbols are written without any special marking.

The Backus-Naur form also uses subsidiary symbols such as |, much in the way

we have done. Thus, the grammar in Example 5.12 might appear in the

Backus-Naur form as

⟨expression⟩ ::= ⟨term⟩|⟨expression⟩+ ⟨term⟩,

⟨term⟩ ::= ⟨factor⟩|⟨term⟩⟨factor⟩,
and so on. The symbols + and ∗ are terminals. The symbol | is used as an

alternator as in our notation, but ::= is used instead of →. The Backus-Naur

form descriptions of programming languages tend to use more explicit variable

identi�ers to make the intent of the production explicit. But otherwise there are

no signi�cant di�erences between the two notations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Many parts of C-like programming languages are susceptible to de�nition by

restricted forms of context-free grammars. For example, the while statement in

C can be de�ned as

⟨while_statement⟩ ::= while⟨expression⟩⟨statement⟩.
Here the keyword while is a terminal symbol. All other terms are variables,

which still have to be de�ned. If we check this against De�nition 5.4, we see

that this looks like an s-grammar production. The variable ⟨while statement⟩
on the left is always associated with the terminal while on the right. For this

reason such a statement is easily and e�ciently parsed. We see here a reason

why we use keywords in programming languages. Keywords not only provide

some visual structure that can guide the reader of a program, but also make

the work of a compiler much easier.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Unfortunately, not all features of a typical programming language can be

expressed by an s-grammar. The rules for ⟨expression⟩ above are not of this
type, so that parsing becomes less obvious. The question then arises what

grammatical rules we can permit and still parse e�ciently. In compilers,

extensive use has been made of what are called LL and LR grammars. These

grammars have the ability to express the less obvious features of a

programming language, yet allow us to parse in linear time. This is not a simple

matter, and much of it is beyond the scope of our discussion. We will brie�y

touch on this topic in next lectures, but for our purposes it su�ces to realize

that such grammars exist and have been widely studied.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Unfortunately, not all features of a typical programming language can be

expressed by an s-grammar. The rules for ⟨expression⟩ above are not of this
type, so that parsing becomes less obvious. The question then arises what

grammatical rules we can permit and still parse e�ciently. In compilers,

extensive use has been made of what are called LL and LR grammars. These

grammars have the ability to express the less obvious features of a

programming language, yet allow us to parse in linear time. This is not a simple

matter, and much of it is beyond the scope of our discussion. We will brie�y

touch on this topic in next lectures, but for our purposes it su�ces to realize

that such grammars exist and have been widely studied.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Unfortunately, not all features of a typical programming language can be

expressed by an s-grammar. The rules for ⟨expression⟩ above are not of this
type, so that parsing becomes less obvious. The question then arises what

grammatical rules we can permit and still parse e�ciently. In compilers,

extensive use has been made of what are called LL and LR grammars. These

grammars have the ability to express the less obvious features of a

programming language, yet allow us to parse in linear time. This is not a simple

matter, and much of it is beyond the scope of our discussion. We will brie�y

touch on this topic in next lectures, but for our purposes it su�ces to realize

that such grammars exist and have been widely studied.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Unfortunately, not all features of a typical programming language can be

expressed by an s-grammar. The rules for ⟨expression⟩ above are not of this
type, so that parsing becomes less obvious. The question then arises what

grammatical rules we can permit and still parse e�ciently. In compilers,

extensive use has been made of what are called LL and LR grammars. These

grammars have the ability to express the less obvious features of a

programming language, yet allow us to parse in linear time. This is not a simple

matter, and much of it is beyond the scope of our discussion. We will brie�y

touch on this topic in next lectures, but for our purposes it su�ces to realize

that such grammars exist and have been widely studied.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Unfortunately, not all features of a typical programming language can be

expressed by an s-grammar. The rules for ⟨expression⟩ above are not of this
type, so that parsing becomes less obvious. The question then arises what

grammatical rules we can permit and still parse e�ciently. In compilers,

extensive use has been made of what are called LL and LR grammars. These

grammars have the ability to express the less obvious features of a

programming language, yet allow us to parse in linear time. This is not a simple

matter, and much of it is beyond the scope of our discussion. We will brie�y

touch on this topic in next lectures, but for our purposes it su�ces to realize

that such grammars exist and have been widely studied.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Unfortunately, not all features of a typical programming language can be

expressed by an s-grammar. The rules for ⟨expression⟩ above are not of this
type, so that parsing becomes less obvious. The question then arises what

grammatical rules we can permit and still parse e�ciently. In compilers,

extensive use has been made of what are called LL and LR grammars. These

grammars have the ability to express the less obvious features of a

programming language, yet allow us to parse in linear time. This is not a simple

matter, and much of it is beyond the scope of our discussion. We will brie�y

touch on this topic in next lectures, but for our purposes it su�ces to realize

that such grammars exist and have been widely studied.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Unfortunately, not all features of a typical programming language can be

expressed by an s-grammar. The rules for ⟨expression⟩ above are not of this
type, so that parsing becomes less obvious. The question then arises what

grammatical rules we can permit and still parse e�ciently. In compilers,

extensive use has been made of what are called LL and LR grammars. These

grammars have the ability to express the less obvious features of a

programming language, yet allow us to parse in linear time. This is not a simple

matter, and much of it is beyond the scope of our discussion. We will brie�y

touch on this topic in next lectures, but for our purposes it su�ces to realize

that such grammars exist and have been widely studied.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Unfortunately, not all features of a typical programming language can be

expressed by an s-grammar. The rules for ⟨expression⟩ above are not of this
type, so that parsing becomes less obvious. The question then arises what

grammatical rules we can permit and still parse e�ciently. In compilers,

extensive use has been made of what are called LL and LR grammars. These

grammars have the ability to express the less obvious features of a

programming language, yet allow us to parse in linear time. This is not a simple

matter, and much of it is beyond the scope of our discussion. We will brie�y

touch on this topic in next lectures, but for our purposes it su�ces to realize

that such grammars exist and have been widely studied.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Unfortunately, not all features of a typical programming language can be

expressed by an s-grammar. The rules for ⟨expression⟩ above are not of this
type, so that parsing becomes less obvious. The question then arises what

grammatical rules we can permit and still parse e�ciently. In compilers,

extensive use has been made of what are called LL and LR grammars. These

grammars have the ability to express the less obvious features of a

programming language, yet allow us to parse in linear time. This is not a simple

matter, and much of it is beyond the scope of our discussion. We will brie�y

touch on this topic in next lectures, but for our purposes it su�ces to realize

that such grammars exist and have been widely studied.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Unfortunately, not all features of a typical programming language can be

expressed by an s-grammar. The rules for ⟨expression⟩ above are not of this
type, so that parsing becomes less obvious. The question then arises what

grammatical rules we can permit and still parse e�ciently. In compilers,

extensive use has been made of what are called LL and LR grammars. These

grammars have the ability to express the less obvious features of a

programming language, yet allow us to parse in linear time. This is not a simple

matter, and much of it is beyond the scope of our discussion. We will brie�y

touch on this topic in next lectures, but for our purposes it su�ces to realize

that such grammars exist and have been widely studied.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Unfortunately, not all features of a typical programming language can be

expressed by an s-grammar. The rules for ⟨expression⟩ above are not of this
type, so that parsing becomes less obvious. The question then arises what

grammatical rules we can permit and still parse e�ciently. In compilers,

extensive use has been made of what are called LL and LR grammars. These

grammars have the ability to express the less obvious features of a

programming language, yet allow us to parse in linear time. This is not a simple

matter, and much of it is beyond the scope of our discussion. We will brie�y

touch on this topic in next lectures, but for our purposes it su�ces to realize

that such grammars exist and have been widely studied.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

In connection with this, the issue of ambiguity takes on added signi�cance. The

speci�cation of a programming language must be unambiguous, otherwise a

program may yield very di�erent results when processed by di�erent compilers

or run on di�erent systems. As Example 5.11 shows, a naive approach can

easily introduce ambiguity in the grammar. To avoid such mistakes we must be

able to recognize and remove ambiguities. A related question is whether a

language is or is not inherently ambiguous. What we need for this purpose are

algorithms for detecting and removing ambiguities in context-free grammars

and for deciding whether or not a context-free language is inherently

ambiguous. Unfortunately, these are very di�cult tasks, impossible in the most

general sense, as we will see later.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

In connection with this, the issue of ambiguity takes on added signi�cance. The

speci�cation of a programming language must be unambiguous, otherwise a

program may yield very di�erent results when processed by di�erent compilers

or run on di�erent systems. As Example 5.11 shows, a naive approach can

easily introduce ambiguity in the grammar. To avoid such mistakes we must be

able to recognize and remove ambiguities. A related question is whether a

language is or is not inherently ambiguous. What we need for this purpose are

algorithms for detecting and removing ambiguities in context-free grammars

and for deciding whether or not a context-free language is inherently

ambiguous. Unfortunately, these are very di�cult tasks, impossible in the most

general sense, as we will see later.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

In connection with this, the issue of ambiguity takes on added signi�cance. The

speci�cation of a programming language must be unambiguous, otherwise a

program may yield very di�erent results when processed by di�erent compilers

or run on di�erent systems. As Example 5.11 shows, a naive approach can

easily introduce ambiguity in the grammar. To avoid such mistakes we must be

able to recognize and remove ambiguities. A related question is whether a

language is or is not inherently ambiguous. What we need for this purpose are

algorithms for detecting and removing ambiguities in context-free grammars

and for deciding whether or not a context-free language is inherently

ambiguous. Unfortunately, these are very di�cult tasks, impossible in the most

general sense, as we will see later.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

In connection with this, the issue of ambiguity takes on added signi�cance. The

speci�cation of a programming language must be unambiguous, otherwise a

program may yield very di�erent results when processed by di�erent compilers

or run on di�erent systems. As Example 5.11 shows, a naive approach can

easily introduce ambiguity in the grammar. To avoid such mistakes we must be

able to recognize and remove ambiguities. A related question is whether a

language is or is not inherently ambiguous. What we need for this purpose are

algorithms for detecting and removing ambiguities in context-free grammars

and for deciding whether or not a context-free language is inherently

ambiguous. Unfortunately, these are very di�cult tasks, impossible in the most

general sense, as we will see later.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

In connection with this, the issue of ambiguity takes on added signi�cance. The

speci�cation of a programming language must be unambiguous, otherwise a

program may yield very di�erent results when processed by di�erent compilers

or run on di�erent systems. As Example 5.11 shows, a naive approach can

easily introduce ambiguity in the grammar. To avoid such mistakes we must be

able to recognize and remove ambiguities. A related question is whether a

language is or is not inherently ambiguous. What we need for this purpose are

algorithms for detecting and removing ambiguities in context-free grammars

and for deciding whether or not a context-free language is inherently

ambiguous. Unfortunately, these are very di�cult tasks, impossible in the most

general sense, as we will see later.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

In connection with this, the issue of ambiguity takes on added signi�cance. The

speci�cation of a programming language must be unambiguous, otherwise a

program may yield very di�erent results when processed by di�erent compilers

or run on di�erent systems. As Example 5.11 shows, a naive approach can

easily introduce ambiguity in the grammar. To avoid such mistakes we must be

able to recognize and remove ambiguities. A related question is whether a

language is or is not inherently ambiguous. What we need for this purpose are

algorithms for detecting and removing ambiguities in context-free grammars

and for deciding whether or not a context-free language is inherently

ambiguous. Unfortunately, these are very di�cult tasks, impossible in the most

general sense, as we will see later.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

In connection with this, the issue of ambiguity takes on added signi�cance. The

speci�cation of a programming language must be unambiguous, otherwise a

program may yield very di�erent results when processed by di�erent compilers

or run on di�erent systems. As Example 5.11 shows, a naive approach can

easily introduce ambiguity in the grammar. To avoid such mistakes we must be

able to recognize and remove ambiguities. A related question is whether a

language is or is not inherently ambiguous. What we need for this purpose are

algorithms for detecting and removing ambiguities in context-free grammars

and for deciding whether or not a context-free language is inherently

ambiguous. Unfortunately, these are very di�cult tasks, impossible in the most

general sense, as we will see later.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

In connection with this, the issue of ambiguity takes on added signi�cance. The

speci�cation of a programming language must be unambiguous, otherwise a

program may yield very di�erent results when processed by di�erent compilers

or run on di�erent systems. As Example 5.11 shows, a naive approach can

easily introduce ambiguity in the grammar. To avoid such mistakes we must be

able to recognize and remove ambiguities. A related question is whether a

language is or is not inherently ambiguous. What we need for this purpose are

algorithms for detecting and removing ambiguities in context-free grammars

and for deciding whether or not a context-free language is inherently

ambiguous. Unfortunately, these are very di�cult tasks, impossible in the most

general sense, as we will see later.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

In connection with this, the issue of ambiguity takes on added signi�cance. The

speci�cation of a programming language must be unambiguous, otherwise a

program may yield very di�erent results when processed by di�erent compilers

or run on di�erent systems. As Example 5.11 shows, a naive approach can

easily introduce ambiguity in the grammar. To avoid such mistakes we must be

able to recognize and remove ambiguities. A related question is whether a

language is or is not inherently ambiguous. What we need for this purpose are

algorithms for detecting and removing ambiguities in context-free grammars

and for deciding whether or not a context-free language is inherently

ambiguous. Unfortunately, these are very di�cult tasks, impossible in the most

general sense, as we will see later.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

In connection with this, the issue of ambiguity takes on added signi�cance. The

speci�cation of a programming language must be unambiguous, otherwise a

program may yield very di�erent results when processed by di�erent compilers

or run on di�erent systems. As Example 5.11 shows, a naive approach can

easily introduce ambiguity in the grammar. To avoid such mistakes we must be

able to recognize and remove ambiguities. A related question is whether a

language is or is not inherently ambiguous. What we need for this purpose are

algorithms for detecting and removing ambiguities in context-free grammars

and for deciding whether or not a context-free language is inherently

ambiguous. Unfortunately, these are very di�cult tasks, impossible in the most

general sense, as we will see later.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Those aspects of a programming language that can be modeled by a

context-free grammar are usually referred to as its syntax. However, it is

normally the case that not all programs that are syntactically correct in this

sense are in fact acceptable programs. For C, the usual Backus-Naur form

de�nition allows constructs such as

char a, b, c;
followed by

c = 3.2;
This combination is not acceptable to C compilers since it violates the

constraint, �a character variable cannot be assigned a real value.� Context-free

grammars cannot express the fact that type clashes may not be permitted.

Such rules are part of programming language semantics, since they have to do

with how we interpret the meaning of a particular construct.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Programming language semantics are a complicated matter. Nothing as elegant

and concise as context-free grammars exists for the speci�cation of

programming language semantics, and consequently some semantic features

may be poorly de�ned or ambiguous. It is an ongoing concern both in

programming languages and in formal language theory to �nd e�ective

methods for de�ning programming language semantics. Several methods have

been proposed, but none of them has been as universally accepted and are as

successful for semantic de�nition as context-free languages have been for

syntax.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Programming language semantics are a complicated matter. Nothing as elegant

and concise as context-free grammars exists for the speci�cation of

programming language semantics, and consequently some semantic features

may be poorly de�ned or ambiguous. It is an ongoing concern both in

programming languages and in formal language theory to �nd e�ective

methods for de�ning programming language semantics. Several methods have

been proposed, but none of them has been as universally accepted and are as

successful for semantic de�nition as context-free languages have been for

syntax.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Programming language semantics are a complicated matter. Nothing as elegant

and concise as context-free grammars exists for the speci�cation of

programming language semantics, and consequently some semantic features

may be poorly de�ned or ambiguous. It is an ongoing concern both in

programming languages and in formal language theory to �nd e�ective

methods for de�ning programming language semantics. Several methods have

been proposed, but none of them has been as universally accepted and are as

successful for semantic de�nition as context-free languages have been for

syntax.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Programming language semantics are a complicated matter. Nothing as elegant

and concise as context-free grammars exists for the speci�cation of

programming language semantics, and consequently some semantic features

may be poorly de�ned or ambiguous. It is an ongoing concern both in

programming languages and in formal language theory to �nd e�ective

methods for de�ning programming language semantics. Several methods have

been proposed, but none of them has been as universally accepted and are as

successful for semantic de�nition as context-free languages have been for

syntax.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Programming language semantics are a complicated matter. Nothing as elegant

and concise as context-free grammars exists for the speci�cation of

programming language semantics, and consequently some semantic features

may be poorly de�ned or ambiguous. It is an ongoing concern both in

programming languages and in formal language theory to �nd e�ective

methods for de�ning programming language semantics. Several methods have

been proposed, but none of them has been as universally accepted and are as

successful for semantic de�nition as context-free languages have been for

syntax.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Programming language semantics are a complicated matter. Nothing as elegant

and concise as context-free grammars exists for the speci�cation of

programming language semantics, and consequently some semantic features

may be poorly de�ned or ambiguous. It is an ongoing concern both in

programming languages and in formal language theory to �nd e�ective

methods for de�ning programming language semantics. Several methods have

been proposed, but none of them has been as universally accepted and are as

successful for semantic de�nition as context-free languages have been for

syntax.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



5.3 Context-Free Grammars and Programming Languages

Programming language semantics are a complicated matter. Nothing as elegant

and concise as context-free grammars exists for the speci�cation of

programming language semantics, and consequently some semantic features

may be poorly de�ned or ambiguous. It is an ongoing concern both in

programming languages and in formal language theory to �nd e�ective

methods for de�ning programming language semantics. Several methods have

been proposed, but none of them has been as universally accepted and are as

successful for semantic de�nition as context-free languages have been for

syntax.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16



Thank You

Thank You for attention!

Oleg Gutik Formal Languages, Automata and Codes. Lecture 16


