
Formal Languages, Automata and

Codes

Oleg Gutik

Lecture 15
Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

We have so far concentrated on the generative aspects of grammars. Given a
grammar G, we studied the set of strings that can be derived using G. In cases
of practical applications, we are also concerned with the analytical side of the
grammar: Given a string w of terminals, we want to know whether or not w is
in L(G). If so, we may want to �nd a derivation of w. An algorithm that can
tell us whether w is in L(G) is a membership algorithm. The term parsing
describes �nding a sequence of productions by which a word w ∈ L(G) is
derived.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

We have so far concentrated on the generative aspects of grammars. Given a
grammar G, we studied the set of strings that can be derived using G. In cases
of practical applications, we are also concerned with the analytical side of the
grammar: Given a string w of terminals, we want to know whether or not w is
in L(G). If so, we may want to �nd a derivation of w. An algorithm that can
tell us whether w is in L(G) is a membership algorithm. The term parsing
describes �nding a sequence of productions by which a word w ∈ L(G) is
derived.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

We have so far concentrated on the generative aspects of grammars. Given a
grammar G, we studied the set of strings that can be derived using G. In cases
of practical applications, we are also concerned with the analytical side of the
grammar: Given a string w of terminals, we want to know whether or not w is
in L(G). If so, we may want to �nd a derivation of w. An algorithm that can
tell us whether w is in L(G) is a membership algorithm. The term parsing
describes �nding a sequence of productions by which a word w ∈ L(G) is
derived.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

We have so far concentrated on the generative aspects of grammars. Given a
grammar G, we studied the set of strings that can be derived using G. In cases
of practical applications, we are also concerned with the analytical side of the
grammar: Given a string w of terminals, we want to know whether or not w is
in L(G). If so, we may want to �nd a derivation of w. An algorithm that can
tell us whether w is in L(G) is a membership algorithm. The term parsing
describes �nding a sequence of productions by which a word w ∈ L(G) is
derived.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

We have so far concentrated on the generative aspects of grammars. Given a
grammar G, we studied the set of strings that can be derived using G. In cases
of practical applications, we are also concerned with the analytical side of the
grammar: Given a string w of terminals, we want to know whether or not w is
in L(G). If so, we may want to �nd a derivation of w. An algorithm that can
tell us whether w is in L(G) is a membership algorithm. The term parsing
describes �nding a sequence of productions by which a word w ∈ L(G) is
derived.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

We have so far concentrated on the generative aspects of grammars. Given a
grammar G, we studied the set of strings that can be derived using G. In cases
of practical applications, we are also concerned with the analytical side of the
grammar: Given a string w of terminals, we want to know whether or not w is
in L(G). If so, we may want to �nd a derivation of w. An algorithm that can
tell us whether w is in L(G) is a membership algorithm. The term parsing
describes �nding a sequence of productions by which a word w ∈ L(G) is
derived.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

We have so far concentrated on the generative aspects of grammars. Given a
grammar G, we studied the set of strings that can be derived using G. In cases
of practical applications, we are also concerned with the analytical side of the
grammar: Given a string w of terminals, we want to know whether or not w is
in L(G). If so, we may want to �nd a derivation of w. An algorithm that can
tell us whether w is in L(G) is a membership algorithm. The term parsing
describes �nding a sequence of productions by which a word w ∈ L(G) is
derived.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

We have so far concentrated on the generative aspects of grammars. Given a
grammar G, we studied the set of strings that can be derived using G. In cases
of practical applications, we are also concerned with the analytical side of the
grammar: Given a string w of terminals, we want to know whether or not w is
in L(G). If so, we may want to �nd a derivation of w. An algorithm that can
tell us whether w is in L(G) is a membership algorithm. The term parsing
describes �nding a sequence of productions by which a word w ∈ L(G) is
derived.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashion: We
systematically construct all possible (say, leftmost) derivations and see whether
any of them match w. Speci�cally, we start at round one by looking at all
productions of the form

S → x,
�nding all x that can be derived from S in one step. If none of these results in
a match with w, we go to the next round, in which we apply all applicable
productions to the leftmost variable of every x. This gives us a set of sentential
forms, some of them possibly leading to w. On each subsequent round, we
again take all leftmost variables and apply all possible productions. It may be
that some of these sentential forms can be rejected on the grounds that w can
never be derived from them, but in general, we shall have on each round a set
of possible sentential forms. After the �rst round, we have sentential forms that
can be derived by applying a single production, after the second round we have
the sentential forms that can be derived in two steps, and so on. If w ∈ L(G),
then it must have a leftmost derivation of �nite length. Thus, the method will
eventually give a leftmost derivation of w.

For reference below, we will call this exhaustive search parsing or brute force
parsing. It is a form of top-down parsing, which we can view as the
construction of a derivation tree from the root down.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7

Consider the grammar
S → SS|aSb|bSa|λ

and the string w = aabb. Round one gives us
1. S ⇒ SS,

2. S ⇒ aSb,

3. S ⇒ bSa,

4. S ⇒ λ
The last two of these can be removed from further consideration for obvious
reasons. Round two then yields sentential forms

S ⇒ SS ⇒ SSS,

S ⇒ SS ⇒ aSbS,

S ⇒ SS ⇒ bSaS,

S ⇒ SS ⇒ S,
which are obtained by replacing the leftmost S in sentential form 1 with all
applicable substitutes. Similarly, from sentential form 2 we get the additional
sentential forms S ⇒ aSb ⇒ aSSb,

S ⇒ aSb ⇒ aaSbb,

S ⇒ aSb ⇒ abSab,

S ⇒ aSb ⇒ ab.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.7 (continuation)

Again, several of these can be removed from contention. On the next round, we
�nd the actual target string from the sequence

S ⇒ aSb ⇒ aaSbb ⇒ aabb.
Therefore, aabb is in the language generated by the grammar under
consideration.

Exhaustive search parsing has serious �aws. The most obvious one is its
tediousness; it is not to be used where e�cient parsing is required. But even
when e�ciency is a secondary issue, there is a more pertinent objection. While
the method always parses a word w ∈ L(G), it is possible that it never
terminates for strings not in L(G). This is certainly the case in the previous
example; with w = abb, the method will go on producing trial sentential forms
inde�nitely unless we build into it some way of stopping.
The problem of nontermination of exhaustive search parsing is relatively easy to
overcome if we restrict the form that the grammar can have. If we examine
Example 5.7, we see that the di�culty comes from the productions S → λ; this
production can be used to decrease the length of successive sentential forms, so
that we cannot tell easily when to stop. If we do not have any such
productions, then we have many fewer di�culties. In fact, there are two types
of productions we want to rule out, those of the form A → λ as well as those
of the form A → B. As we will see in the next lectures, this restriction does not
a�ect the power of the resulting grammars in any signi�cant way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.8

The grammar
S → SS|aSb|bSa|ab|ba

satis�es the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w ∈ {a, b}+, the exhaustive search parsing method will always
terminate in no more than |w| rounds. This is clear because the length of the
sentential form grows by at least one symbol in each round. After |w| rounds
we have either produced a parsing or we know that w /∈ L(G).

The idea in this example can be generalized and made into a theorem for
context-free languages in general.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.8

The grammar
S → SS|aSb|bSa|ab|ba

satis�es the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w ∈ {a, b}+, the exhaustive search parsing method will always
terminate in no more than |w| rounds. This is clear because the length of the
sentential form grows by at least one symbol in each round. After |w| rounds
we have either produced a parsing or we know that w /∈ L(G).

The idea in this example can be generalized and made into a theorem for
context-free languages in general.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.8

The grammar
S → SS|aSb|bSa|ab|ba

satis�es the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w ∈ {a, b}+, the exhaustive search parsing method will always
terminate in no more than |w| rounds. This is clear because the length of the
sentential form grows by at least one symbol in each round. After |w| rounds
we have either produced a parsing or we know that w /∈ L(G).

The idea in this example can be generalized and made into a theorem for
context-free languages in general.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.8

The grammar
S → SS|aSb|bSa|ab|ba

satis�es the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w ∈ {a, b}+, the exhaustive search parsing method will always
terminate in no more than |w| rounds. This is clear because the length of the
sentential form grows by at least one symbol in each round. After |w| rounds
we have either produced a parsing or we know that w /∈ L(G).

The idea in this example can be generalized and made into a theorem for
context-free languages in general.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.8

The grammar
S → SS|aSb|bSa|ab|ba

satis�es the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w ∈ {a, b}+, the exhaustive search parsing method will always
terminate in no more than |w| rounds. This is clear because the length of the
sentential form grows by at least one symbol in each round. After |w| rounds
we have either produced a parsing or we know that w /∈ L(G).

The idea in this example can be generalized and made into a theorem for
context-free languages in general.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.8

The grammar
S → SS|aSb|bSa|ab|ba

satis�es the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w ∈ {a, b}+, the exhaustive search parsing method will always
terminate in no more than |w| rounds. This is clear because the length of the
sentential form grows by at least one symbol in each round. After |w| rounds
we have either produced a parsing or we know that w /∈ L(G).

The idea in this example can be generalized and made into a theorem for
context-free languages in general.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.8

The grammar
S → SS|aSb|bSa|ab|ba

satis�es the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w ∈ {a, b}+, the exhaustive search parsing method will always
terminate in no more than |w| rounds. This is clear because the length of the
sentential form grows by at least one symbol in each round. After |w| rounds
we have either produced a parsing or we know that w /∈ L(G).

The idea in this example can be generalized and made into a theorem for
context-free languages in general.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.8

The grammar
S → SS|aSb|bSa|ab|ba

satis�es the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w ∈ {a, b}+, the exhaustive search parsing method will always
terminate in no more than |w| rounds. This is clear because the length of the
sentential form grows by at least one symbol in each round. After |w| rounds
we have either produced a parsing or we know that w /∈ L(G).

The idea in this example can be generalized and made into a theorem for
context-free languages in general.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.8

The grammar
S → SS|aSb|bSa|ab|ba

satis�es the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w ∈ {a, b}+, the exhaustive search parsing method will always
terminate in no more than |w| rounds. This is clear because the length of the
sentential form grows by at least one symbol in each round. After |w| rounds
we have either produced a parsing or we know that w /∈ L(G).

The idea in this example can be generalized and made into a theorem for
context-free languages in general.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.8

The grammar
S → SS|aSb|bSa|ab|ba

satis�es the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w ∈ {a, b}+, the exhaustive search parsing method will always
terminate in no more than |w| rounds. This is clear because the length of the
sentential form grows by at least one symbol in each round. After |w| rounds
we have either produced a parsing or we know that w /∈ L(G).

The idea in this example can be generalized and made into a theorem for
context-free languages in general.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.8

The grammar
S → SS|aSb|bSa|ab|ba

satis�es the given requirements. It generates the language in Example 5.7
without the empty string.

Given any w ∈ {a, b}+, the exhaustive search parsing method will always
terminate in no more than |w| rounds. This is clear because the length of the
sentential form grows by at least one symbol in each round. After |w| rounds
we have either produced a parsing or we know that w /∈ L(G).

The idea in this example can be generalized and made into a theorem for
context-free languages in general.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have
any rules of the form

A → λ,
or

A → B.
where A,B ∈ V . Then the exhaustive search parsing method can be made into
an algorithm that, for any w ∈ Σ∗, either produces a parsing of w or tells us
that no parsing is possible.

Proof. For each sentential form, consider both its length and the number of
terminal symbols. Each step in the derivation increases at least one of these.
Since neither the length of a sentential form nor the number of terminal
symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at
which time we either have a successful parsing or w cannot be generated by the
grammar. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

While the exhaustive search method gives a theoretical guarantee that parsing
can always be done, its practical usefulness is limited because the number of
sentential forms generated by it may be excessively large. Exactly how many
sentential forms are generated di�ers from case to case; no precise general
result can be established, but we can put some rough upper bounds on it. If we
restrict ourselves to leftmost derivations, we can have no more than |P |
sentential forms after one round, no more than |P |2 sentential forms after the
second round, and so on. In the proof of Theorem 5.2, we observed that
parsing cannot involve more than 2|w| rounds; therefore, the total number of
sentential forms cannot exceed

M = |P |+ |P |2 + · · ·+ |P |2|w| = O(P 2|w|+1). (1)
This indicates that the work for exhaustive search parsing may grow
exponentially with the length of the string, making the cost of the method
prohibitive. Of course, Equation (1) is only a bound, and often the number of
sentential forms is much smaller. Nevertheless, practical observation shows that
exhaustive search parsing is very ine�cient in most cases.

The construction of more e�cient parsing methods for context-free grammars
is a complicated matter that belongs to a course on compilers. We shall not
pursue it here except for some isolated results.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Theorem 5.3

For every context-free grammar there exists an algorithm that parses any
w ∈ L(G) in a number of steps proportional to |w|3.

There are several known methods to achieve this, but all of them are
su�ciently complicated that we cannot even describe them without developing
some additional results. In next lectures we shall take this question up again
brie�y. More details can be found in Harrison (1978) and Hopcroft and Ullman
(1979). One reason for not pursuing this in detail is that even these algorithms
are unsatisfactory. A method in which the work rises with the third power of
the length of the string, while better than an exponential algorithm, is still
quite ine�cient, and a parser based on it would need an excessive amount of
time to analyze even a moderately long program. What we would like to have is
a parsing method that takes time proportional to the length of the string. We
refer to such a method as a linear time parsing algorithm. We do not know any
linear time parsing methods for context-free languages in general, but such
algorithms can be found for restricted, but important, special cases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

De�nition 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or
s-grammar if all its productions are of the form

A → ax,
where A ∈ V , a ∈ T , x ∈ V ∗, and any pair (A, a) occurs at most once in P .

Example 5.9

The grammar
S → aS|bSS|c

is an s-grammar. The grammar
S → aS|bSS|aSS|c

is not an s-grammar because the pair (S, a) occurs in the two productions
S → aS and S → aSS.

While s-grammars are quite restrictive, they are of some interest. As we will see
in the next lecture, many features of common programming languages can be
described by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

If G is an s-grammar, then any string w in L(G) can be parsed with an e�ort
proportional to |w|. To see this, look at the exhaustive search method and the
string w = a1a2 · · · an. Since there can be at most one rule with S on the left,
and starting with a1 on the right, the derivation must begin with

S ⇒ a1A1A2 · · ·Am.
Next, we substitute for the variable A1, but since again there is at most one
choice, we must have

S
∗⇒ a1a2B1B2 · · ·A2 · · ·Am.

We see from this that each step produces one terminal symbol and hence the
whole process must be completed in no more than |w| steps.
Ambiguity in Grammars and Languages

On the basis of our argument we can claim that given any w ∈ L(G),
exhaustive search parsing will produce a derivation tree for w. We say �a�
derivation tree rather than �the� derivation tree because of the possibility that
a number of di�erent derivation trees may exist. This situation is referred to as
ambiguity.

De�nition 5.5

A context-free grammar G is said to be ambiguous if there exists some
w ∈ L(G) that has at least two distinct derivation trees. Alternatively,
ambiguity implies the existence of two or more leftmost or rightmost
derivations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.10

The grammar in Example 5.4, with productions S → aSb|SS|λ, is ambiguous.
The sentence aabb has the two derivation trees shown in the Figure.

S

a S b

a S b

λ

S

S

λ

S

a S b

a S b

λ

Ambiguity is a common feature of natural languages, where it is tolerated and dealt

with in a variety of ways. In programming languages, where there should be only one

interpretation of each statement, ambiguity must be removed when possible. Often we

can achieve this by rewriting the grammar in an equivalent, unambiguous form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.10

The grammar in Example 5.4, with productions S → aSb|SS|λ, is ambiguous.
The sentence aabb has the two derivation trees shown in the Figure.

S

a S b

a S b

λ

S

S

λ

S

a S b

a S b

λ

Ambiguity is a common feature of natural languages, where it is tolerated and dealt

with in a variety of ways. In programming languages, where there should be only one

interpretation of each statement, ambiguity must be removed when possible. Often we

can achieve this by rewriting the grammar in an equivalent, unambiguous form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.10

The grammar in Example 5.4, with productions S → aSb|SS|λ, is ambiguous.
The sentence aabb has the two derivation trees shown in the Figure.

S

a S b

a S b

λ

S

S

λ

S

a S b

a S b

λ

Ambiguity is a common feature of natural languages, where it is tolerated and dealt

with in a variety of ways. In programming languages, where there should be only one

interpretation of each statement, ambiguity must be removed when possible. Often we

can achieve this by rewriting the grammar in an equivalent, unambiguous form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.10

The grammar in Example 5.4, with productions S → aSb|SS|λ, is ambiguous.
The sentence aabb has the two derivation trees shown in the Figure.

S

a S b

a S b

λ

S

S

λ

S

a S b

a S b

λ

Ambiguity is a common feature of natural languages, where it is tolerated and dealt

with in a variety of ways. In programming languages, where there should be only one

interpretation of each statement, ambiguity must be removed when possible. Often we

can achieve this by rewriting the grammar in an equivalent, unambiguous form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.10

The grammar in Example 5.4, with productions S → aSb|SS|λ, is ambiguous.
The sentence aabb has the two derivation trees shown in the Figure.

S

a S b

a S b

λ

S

S

λ

S

a S b

a S b

λ

Ambiguity is a common feature of natural languages, where it is tolerated and dealt

with in a variety of ways. In programming languages, where there should be only one

interpretation of each statement, ambiguity must be removed when possible. Often we

can achieve this by rewriting the grammar in an equivalent, unambiguous form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.10

The grammar in Example 5.4, with productions S → aSb|SS|λ, is ambiguous.
The sentence aabb has the two derivation trees shown in the Figure.

S

a S b

a S b

λ

S

S

λ

S

a S b

a S b

λ

Ambiguity is a common feature of natural languages, where it is tolerated and dealt

with in a variety of ways. In programming languages, where there should be only one

interpretation of each statement, ambiguity must be removed when possible. Often we

can achieve this by rewriting the grammar in an equivalent, unambiguous form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.10

The grammar in Example 5.4, with productions S → aSb|SS|λ, is ambiguous.
The sentence aabb has the two derivation trees shown in the Figure.

S

a S b

a S b

λ

S

S

λ

S

a S b

a S b

λ

Ambiguity is a common feature of natural languages, where it is tolerated and dealt

with in a variety of ways. In programming languages, where there should be only one

interpretation of each statement, ambiguity must be removed when possible. Often we

can achieve this by rewriting the grammar in an equivalent, unambiguous form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.10

The grammar in Example 5.4, with productions S → aSb|SS|λ, is ambiguous.
The sentence aabb has the two derivation trees shown in the Figure.

S

a S b

a S b

λ

S

S

λ

S

a S b

a S b

λ

Ambiguity is a common feature of natural languages, where it is tolerated and dealt

with in a variety of ways. In programming languages, where there should be only one

interpretation of each statement, ambiguity must be removed when possible. Often we

can achieve this by rewriting the grammar in an equivalent, unambiguous form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.10

The grammar in Example 5.4, with productions S → aSb|SS|λ, is ambiguous.
The sentence aabb has the two derivation trees shown in the Figure.

S

a S b

a S b

λ

S

S

λ

S

a S b

a S b

λ

Ambiguity is a common feature of natural languages, where it is tolerated and dealt

with in a variety of ways. In programming languages, where there should be only one

interpretation of each statement, ambiguity must be removed when possible. Often we

can achieve this by rewriting the grammar in an equivalent, unambiguous form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.10

The grammar in Example 5.4, with productions S → aSb|SS|λ, is ambiguous.
The sentence aabb has the two derivation trees shown in the Figure.

S

a S b

a S b

λ

S

S

λ

S

a S b

a S b

λ

Ambiguity is a common feature of natural languages, where it is tolerated and dealt

with in a variety of ways. In programming languages, where there should be only one

interpretation of each statement, ambiguity must be removed when possible. Often we

can achieve this by rewriting the grammar in an equivalent, unambiguous form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.10

The grammar in Example 5.4, with productions S → aSb|SS|λ, is ambiguous.
The sentence aabb has the two derivation trees shown in the Figure.

S

a S b

a S b

λ

S

S

λ

S

a S b

a S b

λ

Ambiguity is a common feature of natural languages, where it is tolerated and dealt

with in a variety of ways. In programming languages, where there should be only one

interpretation of each statement, ambiguity must be removed when possible. Often we

can achieve this by rewriting the grammar in an equivalent, unambiguous form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.11

Consider the grammar G = (V, T,E, P) with

V = {E, I},
T = {a, b, c,+, ∗, (,)},

and productions

E → I,

E → E + E,

E → E ∗ E,

E → (E),

I → a|b|c.
The strings (a+ b) ∗ c and a ∗ b+ c are in L(G). It is easy to see that this
grammar generates a restricted subset of arithmetic expressions for C-like
programming languages. The grammar is ambiguous. For instance, the string
a+ b ∗ c has two di�erent derivation trees, as shown in the following two
Figures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.11

Consider the grammar G = (V, T,E, P) with

V = {E, I},
T = {a, b, c,+, ∗, (,)},

and productions

E → I,

E → E + E,

E → E ∗ E,

E → (E),

I → a|b|c.
The strings (a+ b) ∗ c and a ∗ b+ c are in L(G). It is easy to see that this
grammar generates a restricted subset of arithmetic expressions for C-like
programming languages. The grammar is ambiguous. For instance, the string
a+ b ∗ c has two di�erent derivation trees, as shown in the following two
Figures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.11

Consider the grammar G = (V, T,E, P) with

V = {E, I},
T = {a, b, c,+, ∗, (,)},

and productions

E → I,

E → E + E,

E → E ∗ E,

E → (E),

I → a|b|c.
The strings (a+ b) ∗ c and a ∗ b+ c are in L(G). It is easy to see that this
grammar generates a restricted subset of arithmetic expressions for C-like
programming languages. The grammar is ambiguous. For instance, the string
a+ b ∗ c has two di�erent derivation trees, as shown in the following two
Figures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.11

Consider the grammar G = (V, T,E, P) with

V = {E, I},
T = {a, b, c,+, ∗, (,)},

and productions

E → I,

E → E + E,

E → E ∗ E,

E → (E),

I → a|b|c.
The strings (a+ b) ∗ c and a ∗ b+ c are in L(G). It is easy to see that this
grammar generates a restricted subset of arithmetic expressions for C-like
programming languages. The grammar is ambiguous. For instance, the string
a+ b ∗ c has two di�erent derivation trees, as shown in the following two
Figures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.11

Consider the grammar G = (V, T,E, P) with

V = {E, I},
T = {a, b, c,+, ∗, (,)},

and productions

E → I,

E → E + E,

E → E ∗ E,

E → (E),

I → a|b|c.
The strings (a+ b) ∗ c and a ∗ b+ c are in L(G). It is easy to see that this
grammar generates a restricted subset of arithmetic expressions for C-like
programming languages. The grammar is ambiguous. For instance, the string
a+ b ∗ c has two di�erent derivation trees, as shown in the following two
Figures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.11

Consider the grammar G = (V, T,E, P) with

V = {E, I},
T = {a, b, c,+, ∗, (,)},

and productions

E → I,

E → E + E,

E → E ∗ E,

E → (E),

I → a|b|c.
The strings (a+ b) ∗ c and a ∗ b+ c are in L(G). It is easy to see that this
grammar generates a restricted subset of arithmetic expressions for C-like
programming languages. The grammar is ambiguous. For instance, the string
a+ b ∗ c has two di�erent derivation trees, as shown in the following two
Figures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.11

Consider the grammar G = (V, T,E, P) with

V = {E, I},
T = {a, b, c,+, ∗, (,)},

and productions

E → I,

E → E + E,

E → E ∗ E,

E → (E),

I → a|b|c.
The strings (a+ b) ∗ c and a ∗ b+ c are in L(G). It is easy to see that this
grammar generates a restricted subset of arithmetic expressions for C-like
programming languages. The grammar is ambiguous. For instance, the string
a+ b ∗ c has two di�erent derivation trees, as shown in the following two
Figures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.11

Consider the grammar G = (V, T,E, P) with

V = {E, I},
T = {a, b, c,+, ∗, (,)},

and productions

E → I,

E → E + E,

E → E ∗ E,

E → (E),

I → a|b|c.
The strings (a+ b) ∗ c and a ∗ b+ c are in L(G). It is easy to see that this
grammar generates a restricted subset of arithmetic expressions for C-like
programming languages. The grammar is ambiguous. For instance, the string
a+ b ∗ c has two di�erent derivation trees, as shown in the following two
Figures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.11

Consider the grammar G = (V, T,E, P) with

V = {E, I},
T = {a, b, c,+, ∗, (,)},

and productions

E → I,

E → E + E,

E → E ∗ E,

E → (E),

I → a|b|c.
The strings (a+ b) ∗ c and a ∗ b+ c are in L(G). It is easy to see that this
grammar generates a restricted subset of arithmetic expressions for C-like
programming languages. The grammar is ambiguous. For instance, the string
a+ b ∗ c has two di�erent derivation trees, as shown in the following two
Figures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.11

Consider the grammar G = (V, T,E, P) with

V = {E, I},
T = {a, b, c,+, ∗, (,)},

and productions

E → I,

E → E + E,

E → E ∗ E,

E → (E),

I → a|b|c.
The strings (a+ b) ∗ c and a ∗ b+ c are in L(G). It is easy to see that this
grammar generates a restricted subset of arithmetic expressions for C-like
programming languages. The grammar is ambiguous. For instance, the string
a+ b ∗ c has two di�erent derivation trees, as shown in the following two
Figures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

E

E

I

a

+ E

E

I

b

∗ E

I

c

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

E

E

I

a

+ E

E

I

b

∗ E

I

c

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

E

E

E

I

a

+ E

I

b

∗ E

I

c

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

E

E

E

I

a

+ E

I

b

∗ E

I

c

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

One way to resolve the ambiguity is, as is done in programming manuals, to
associate precedence rules with the operators + and ∗. Since ∗ normally has
higher precedence than +, we would take the �rst Figure as the correct parsing
as it indicates that b ∗ c is a subexpression to be evaluated before performing
the addition. However, this resolution is completely outside the grammar. It is
better to rewrite the grammar so that only one parsing is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables, taking V
as {E, T, F, I}, and replacing the productions with

E → T,

T → F,

F → I,

E → E + T,

T → T ∗ F,
F → (E),

I → a|b|c.
A derivation tree of the sentence a+ b ∗ c is shown in the following Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

E

E

T

F

I

a

+ T

T

F

I

b

∗ F

I

c

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

E

E

T

F

I

a

+ T

T

F

I

b

∗ F

I

c

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.12 (continuation)

No other derivation tree is possible for this string: The grammar is
unambiguous. It is also equivalent to the grammar in Example 5.11. It is not
too hard to justify these claims in this speci�c instance, but, in general, the
questions of whether a given context-free grammar is ambiguous or whether
two given context-free grammars are equivalent are very di�cult to answer. In
fact, we shall later show that there are no general algorithms by which these
questions can always be resolved.

In the foregoing example the ambiguity came from the grammar in the sense
that it could be removed by �nding an equivalent unambiguous grammar. In
some instances, however, this is not possible because the ambiguity is in the
language.

De�nition 5.6

If L is a context-free language for which there exists an unambiguous grammar,
then L is said to be unambiguous. If every grammar that generates L is
ambiguous, then the language is called inherently ambiguous.

It is a somewhat di�cult matter even to exhibit an inherently ambiguous
language. The best we can do here is give an example with some reasonably
plausible claim that it is inherently ambiguous.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13

The language
L = {anbncm : n,m ⩾ 0} ∪ {anbmcm : n,m ⩾ 0},

is an inherently ambiguous context-free language.
That L is context-free is easy to show. Notice that

L = L1 ∪ L2,
where L1 is generated by

S1 → S1c|A,

A → aAb|λ
and L2 is given by an analogous grammar with start symbol S2 and productions

S2 → aS2|B,

B → bBc|λ.
Then L is generated by the combination of these two grammars with the
additional production

S → S1|S2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13 (continuation)

The grammar is ambiguous since the string anbncn has two distinct
derivations, one starting with S ⇒ S1, the other with S ⇒ S2. It does not, of
course, follow from this that L is inherently ambiguous as there might exist
some other unambiguous grammars for it. But in some way L1 and L2 have
con�icting requirements, the �rst putting a restriction on the number of a's
and b's, while the second does the same for b's and c's. A few tries will quickly
convince you of the impossibility of combining these requirements in a single
set of rules that cover the case n = m uniquely. A rigorous argument, though,
is quite technical. One proof can be found in Harrison (1978).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13 (continuation)

The grammar is ambiguous since the string anbncn has two distinct
derivations, one starting with S ⇒ S1, the other with S ⇒ S2. It does not, of
course, follow from this that L is inherently ambiguous as there might exist
some other unambiguous grammars for it. But in some way L1 and L2 have
con�icting requirements, the �rst putting a restriction on the number of a's
and b's, while the second does the same for b's and c's. A few tries will quickly
convince you of the impossibility of combining these requirements in a single
set of rules that cover the case n = m uniquely. A rigorous argument, though,
is quite technical. One proof can be found in Harrison (1978).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13 (continuation)

The grammar is ambiguous since the string anbncn has two distinct
derivations, one starting with S ⇒ S1, the other with S ⇒ S2. It does not, of
course, follow from this that L is inherently ambiguous as there might exist
some other unambiguous grammars for it. But in some way L1 and L2 have
con�icting requirements, the �rst putting a restriction on the number of a's
and b's, while the second does the same for b's and c's. A few tries will quickly
convince you of the impossibility of combining these requirements in a single
set of rules that cover the case n = m uniquely. A rigorous argument, though,
is quite technical. One proof can be found in Harrison (1978).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13 (continuation)

The grammar is ambiguous since the string anbncn has two distinct
derivations, one starting with S ⇒ S1, the other with S ⇒ S2. It does not, of
course, follow from this that L is inherently ambiguous as there might exist
some other unambiguous grammars for it. But in some way L1 and L2 have
con�icting requirements, the �rst putting a restriction on the number of a's
and b's, while the second does the same for b's and c's. A few tries will quickly
convince you of the impossibility of combining these requirements in a single
set of rules that cover the case n = m uniquely. A rigorous argument, though,
is quite technical. One proof can be found in Harrison (1978).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13 (continuation)

The grammar is ambiguous since the string anbncn has two distinct
derivations, one starting with S ⇒ S1, the other with S ⇒ S2. It does not, of
course, follow from this that L is inherently ambiguous as there might exist
some other unambiguous grammars for it. But in some way L1 and L2 have
con�icting requirements, the �rst putting a restriction on the number of a's
and b's, while the second does the same for b's and c's. A few tries will quickly
convince you of the impossibility of combining these requirements in a single
set of rules that cover the case n = m uniquely. A rigorous argument, though,
is quite technical. One proof can be found in Harrison (1978).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13 (continuation)

The grammar is ambiguous since the string anbncn has two distinct
derivations, one starting with S ⇒ S1, the other with S ⇒ S2. It does not, of
course, follow from this that L is inherently ambiguous as there might exist
some other unambiguous grammars for it. But in some way L1 and L2 have
con�icting requirements, the �rst putting a restriction on the number of a's
and b's, while the second does the same for b's and c's. A few tries will quickly
convince you of the impossibility of combining these requirements in a single
set of rules that cover the case n = m uniquely. A rigorous argument, though,
is quite technical. One proof can be found in Harrison (1978).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13 (continuation)

The grammar is ambiguous since the string anbncn has two distinct
derivations, one starting with S ⇒ S1, the other with S ⇒ S2. It does not, of
course, follow from this that L is inherently ambiguous as there might exist
some other unambiguous grammars for it. But in some way L1 and L2 have
con�icting requirements, the �rst putting a restriction on the number of a's
and b's, while the second does the same for b's and c's. A few tries will quickly
convince you of the impossibility of combining these requirements in a single
set of rules that cover the case n = m uniquely. A rigorous argument, though,
is quite technical. One proof can be found in Harrison (1978).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13 (continuation)

The grammar is ambiguous since the string anbncn has two distinct
derivations, one starting with S ⇒ S1, the other with S ⇒ S2. It does not, of
course, follow from this that L is inherently ambiguous as there might exist
some other unambiguous grammars for it. But in some way L1 and L2 have
con�icting requirements, the �rst putting a restriction on the number of a's
and b's, while the second does the same for b's and c's. A few tries will quickly
convince you of the impossibility of combining these requirements in a single
set of rules that cover the case n = m uniquely. A rigorous argument, though,
is quite technical. One proof can be found in Harrison (1978).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13 (continuation)

The grammar is ambiguous since the string anbncn has two distinct
derivations, one starting with S ⇒ S1, the other with S ⇒ S2. It does not, of
course, follow from this that L is inherently ambiguous as there might exist
some other unambiguous grammars for it. But in some way L1 and L2 have
con�icting requirements, the �rst putting a restriction on the number of a's
and b's, while the second does the same for b's and c's. A few tries will quickly
convince you of the impossibility of combining these requirements in a single
set of rules that cover the case n = m uniquely. A rigorous argument, though,
is quite technical. One proof can be found in Harrison (1978).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13 (continuation)

The grammar is ambiguous since the string anbncn has two distinct
derivations, one starting with S ⇒ S1, the other with S ⇒ S2. It does not, of
course, follow from this that L is inherently ambiguous as there might exist
some other unambiguous grammars for it. But in some way L1 and L2 have
con�icting requirements, the �rst putting a restriction on the number of a's
and b's, while the second does the same for b's and c's. A few tries will quickly
convince you of the impossibility of combining these requirements in a single
set of rules that cover the case n = m uniquely. A rigorous argument, though,
is quite technical. One proof can be found in Harrison (1978).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

5.2 Parsing and Ambiguity

Example 5.13 (continuation)

The grammar is ambiguous since the string anbncn has two distinct
derivations, one starting with S ⇒ S1, the other with S ⇒ S2. It does not, of
course, follow from this that L is inherently ambiguous as there might exist
some other unambiguous grammars for it. But in some way L1 and L2 have
con�icting requirements, the �rst putting a restriction on the number of a's
and b's, while the second does the same for b's and c's. A few tries will quickly
convince you of the impossibility of combining these requirements in a single
set of rules that cover the case n = m uniquely. A rigorous argument, though,
is quite technical. One proof can be found in Harrison (1978).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

Thank You

Thank You for attention!

Oleg Gutik Formal Languages, Automata and Codes. Lecture 15

