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5.1 Context-Free Grammars

The productions in a regular grammar are restricted in two ways: The left side
must be a single variable, while the right side has a special form. To create
grammars that are more powerful, we must relax some of these restrictions. By
retaining the restriction on the left side, but permitting anything on the right,
we get context-free grammars.

De�nition 5.1

A grammar G = (V, T, S, P ) is said to be context-free if all productions in P
have the form A → x,
where A ∈ V and x ∈ (V ∪ T )∗.
A language L is said to be context-free if and only if there is a context-free
grammar G such that L = L(G).

Every regular grammar is context-free, so a regular language is also a
context-free one. But, as we know from simple examples such as
{anbn : n ⩾ 0}, there are nonregular languages. We have already shown in
Example 1.11 that this language can be generated by a context-free grammar,
so we see that the family of regular languages is a proper subset of the family
of context-free languages.

Context-free grammars derive their name from the fact that the substitution of
the variable on the left of a production can be made any time such a variable
appears in a sentential form. It does not depend on the symbols in the rest of
the sentential form (the context). This feature is the consequence of allowing
only a single variable on the left side of the production.
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the variable on the left of a production can be made any time such a variable
appears in a sentential form. It does not depend on the symbols in the rest of
the sentential form (the context). This feature is the consequence of allowing
only a single variable on the left side of the production.
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5.1 Context-Free Grammars

Examples of Context-Free Languages

Example 5.1

The grammar G = ({S}, {a, b}, S, P ), with productions
S → aSa,

S → bSb,

S → λ,
is context-free. A typical derivation in this grammar is

S ⇒ aSa ⇒ aaSaa ⇒ aabSbaa ⇒ aabbaa.

This, and similar derivations, make it clear that
L(G) =

{
wwR : w ∈ {a, b}

}
.

The language is context-free, but as shown in Example 4.8, it is not regular.

Example 5.2

The grammar G = ({S}, {a, b}, S, P ), with productions
S → abB,

A → aaBb,

B → bbAa,

A → λ,
is context-free. We leave it to the reader to show that

L(G) =
{
ab(bbaa)nbba(ba)n : n ⩾ 0

}
.
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5.1 Context-Free Grammars

Both of the above examples involve grammars that are not only context-free,
but linear. Regular and linear grammars are clearly context-free, but a
context-free grammar is not necessarily linear.

Example 5.3

The language
L = {anbm : n ̸= m}

is context-free.
To show this, we need to produce a context-free grammar for the language.
The case of n = m is solved in Example 1.11 and we can build on that
solution. Take the case n > m. We �rst generate a string with an equal
number of a's and b's, then add extra a's on the left. This is done with

S → AS1,

S1 → aS1b|λ,
A → aA|a.

We can use similar reasoning for the case n < m, and we get the answer
S → AS1|S1B,

S1 → aS1b|λ,
A → aA|a,
B → bB|b.

The resulting grammar is context-free, hence L is a context-free language.
However, the grammar is not linear.
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5.1 Context-Free Grammars

Example 5.4

Consider the grammar with productions
S → aSb|SS|λ.

This is another grammar that is context-free, but not linear. Some strings in
L(G) are abaabb, aababb, and ababab. It is not di�cult to conjecture and prove
that

L = {w ∈ {a, b}∗ : na(w) = nb(w) and na(v) ⩾ nb(v),

where v is any pre�x of w}.
(1)

We can see the connection with programming languages clearly if we replace a
and b with left and right parentheses, respectively. The language L includes
such strings as (()) and ()()() and is in fact the set of all properly nested
parenthesis structures for the common programming languages.

Here again there are many other equivalent grammars. But, in contrast to
Example 5.3, it is not so easy to see if there are any linear ones.
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5.1 Context-Free Grammars

Leftmost and Rightmost Derivations

In a grammar that is not linear, a derivation may involve sentential forms with
more than one variable. In such cases, we have a choice in the order in which
variables are replaced. Take, for example, the grammar
G = ({A,B, S}, {a, b}, S, P ) with productions

1. S → AB.

2. A → aaA.

3. A → λ.

4. B → Bb.

5. B → λ.
This grammar generates the language L(G) = {a2nbm : n ⩾ 0,m ⩾ 0}. Carry
out a few derivations to convince yourself of this.
Consider now the two derivations

S
1⇒ AB

2⇒ aaAB
3⇒ aaB

4⇒ aaBb
5⇒ aab

and
S

1⇒ AB
4⇒ ABb

2⇒ aaABb
5⇒ aaAb

3⇒ aab.
In order to show which production is applied, we have numbered the
productions and written the appropriate number on the ⇒ symbol. From this
we see that the two derivations not only yield the same sentence but also use
exactly the same productions. The di�erence is entirely in the order in which
the productions are applied. To remove such irrelevant factors, we often require
that the variables be replaced in a speci�c order.
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5.1 Context-Free Grammars

De�nition 5.2

A derivation is said to be leftmost if in each step the leftmost variable in the
sentential form is replaced. If in each step the rightmost variable is replaced, we
call the derivation rightmost.

Example 5.5

Consider the grammar with productions
S → aAB,

A → bBb,

B → A|λ.
Then

S ⇒ aAB ⇒ abBbB ⇒ abAbB ⇒ abbBbbB ⇒ abbbbB ⇒ abbbb
is a leftmost derivation of the string abbbb. A rightmost derivation of the same
string is

S ⇒ aAB ⇒ aA ⇒ abBb ⇒ abAb ⇒ abbBbb ⇒ abbbb.
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5.1 Context-Free Grammars

Derivation Trees

A second way of showing derivations, independent of the order in which
productions are used, is by a derivation or parse tree. A derivation tree is an
ordered tree in which nodes are labeled with the left sides of productions and in
which the children of a node represent its corresponding right sides. For
example, the Figure

A

a b A B c

shows part of a derivation tree representing the production
A → abABc.

In a derivation tree, a node labeled with a variable occurring on the left side of
a production has children consisting of the symbols on the right side of that
production. Beginning with the root, labeled with the start symbol and ending
in leaves that are terminals, a derivation tree shows how each variable is
replaced in the derivation. The following de�nition makes this notion precise.
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5.1 Context-Free Grammars

De�nition 5.3

Let G = (V, T, S, P ) be a context-free grammar. An ordered tree is a derivation tree
for G if and only if it has the following properties.

1 The root is labeled S.

2 Every leaf has a label from T ∪ {λ}.

3 Every interior vertex (a vertex that is not a leaf) has a label from V .

4 If a vertex has label A ∈ V , and its children are labeled (from left to right)
a1, a2, . . . , an, then P must contain a production of the form

A → a1a2 · · · an.

5 A leaf labeled λ has no siblings, that is, a vertex with a child labeled λ can have
no other children.

A tree that has properties 3, 4, and 5, but in which 1 does not necessarily hold and in
which property 2 is replaced by

(2a) Every leaf has a label from V ∪ T ∪ {λ},
is said to be a partial derivation tree.

The string of symbols obtained by reading the leaves of the tree from left to right,
omitting any λ's encountered, is said to be the yield of the tree. The descriptive term
left to right can be given a precise meaning. The yield is the string of terminals in the
order they are encountered when the tree is traversed in a depth-�rst manner, always
taking the leftmost unexplored branch.
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5.1 Context-Free Grammars

Example 5.6

Consider the grammar G, with productions

S → aAB,

A → bBb,

B → A|λ.
The tree in the Figure is a partial derivation tree for G,

S

a A B

b B b

while the tree in the following Figure is a derivation tree.
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5.1 Context-Free Grammars

Example 5.6 (continuation)

S

a A B

b B b

λ

A

b B b

λ

The string abBbB, which is the yield of the �rst tree, is a sentential form of G.
The yield of the second tree, abbbb, is a sentence of L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 14



5.1 Context-Free Grammars

Example 5.6 (continuation)

S

a A B

b B b

λ

A

b B b

λ

The string abBbB, which is the yield of the �rst tree, is a sentential form of G.
The yield of the second tree, abbbb, is a sentence of L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 14



5.1 Context-Free Grammars

Example 5.6 (continuation)

S

a A B

b B b

λ

A

b B b

λ

The string abBbB, which is the yield of the �rst tree, is a sentential form of G.
The yield of the second tree, abbbb, is a sentence of L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 14



5.1 Context-Free Grammars

Example 5.6 (continuation)

S

a A B

b B b

λ

A

b B b

λ

The string abBbB, which is the yield of the �rst tree, is a sentential form of G.
The yield of the second tree, abbbb, is a sentence of L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 14



5.1 Context-Free Grammars

Example 5.6 (continuation)

S

a A B

b B b

λ

A

b B b

λ

The string abBbB, which is the yield of the �rst tree, is a sentential form of G.
The yield of the second tree, abbbb, is a sentence of L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 14



5.1 Context-Free Grammars

Example 5.6 (continuation)

S

a A B

b B b

λ

A

b B b

λ

The string abBbB, which is the yield of the �rst tree, is a sentential form of G.
The yield of the second tree, abbbb, is a sentence of L(G).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 14



5.1 Context-Free Grammars

Relation Between Sentential Forms and Derivation Trees

Derivation trees give a very explicit and easily comprehended description of a
derivation. Like transition graphs for �nite automata, this explicitness is a great
help in making arguments. First, though, we must establish the connection
between derivations and derivation trees.
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5.1 Context-Free Grammars

Theorem 5.1

Let G = (V, T, S, P ) be a context-free grammar. Then for every w ∈ L(G),
there exists a derivation tree of G whose yield is w. Conversely, the yield of any
derivation tree is in L(G). Also, if tG is any partial derivation tree for G whose
root is labeled S, then the yield of tG is a sentential form of G.

Proof. First we show that for every sentential form of L(G) there is a
corresponding partial derivation tree. We do this by induction on the number of
steps in the derivation. As a basis, we note that the claimed result is true for
every sentential form derivable in one step. Since S ⇒ u implies that there is a
production S → u, this follows immediately from De�nition 5.3.

Assume that for every sentential form derivable in n steps, there is a
corresponding partial derivation tree. Now any w derivable in n+ 1 steps must
be such that

S
∗⇒ xAy, x, y ∈ (V ∪ T )∗, A ∈ V,

in n steps, and
xAy ⇒ xa1a2 · · · amy = w, ai ∈ V ∪ T.

Since by the inductive assumption there is a partial derivation tree with yield
xAy, and since the grammar must have production A → a1a2 · · · am, we see
that by expanding the leaf labeled A, we get a partial derivation tree with yield
xa1a2 · · · amy = w. By induction, we therefore claim that the result is true for
all sentential forms.
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5.1 Context-Free Grammars

In a similar vein, we can show that every partial derivation tree represents some
sentential form. We will leave this as an exercise.

Since a derivation tree is also a partial derivation tree whose leaves are
terminals, it follows that every sentence in L(G) is the yield of some derivation
tree of G and that the yield of every derivation tree is in L(G). ■

Derivation trees show which productions are used in obtaining a sentence, but
do not give the order of their application. Derivation trees are able to represent
any derivation, re�ecting the fact that this order is irrelevant, an observation
that allows us to close a gap in the preceding discussion. By de�nition, any
w ∈ L(G) has a derivation, but we have not claimed that it also had a leftmost
or rightmost derivation. However, once we have a derivation tree, we can
always get a leftmost derivation by thinking of the tree as having been built in
such a way that the leftmost variable in the tree was always expanded �rst.
Filling in a few details, we are led to the not surprising result that any
w ∈ L(G) has a leftmost and a rightmost derivation.
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Thank You

Thank You for attention!
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