
Formal Languages, Automata and

Codes

Oleg Gutik

Lecture 13
Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Regular languages can be in�nite, as most of our examples have demonstrated.
The fact that regular languages are associated with automata that have �nite
memory, however, imposes some limits on the structure of a regular language.
Some narrow restrictions must be obeyed if regularity is to hold. Intuition tells
us that a language is regular only if, in processing any string, the information
that has to be remembered at any stage is strictly limited. This is true, but has
to be shown precisely to be used in any meaningful way. There are several ways
in which this can be done.

Using the Pigeonhole Principle

The term �pigeonhole principle� is used by mathematicians to refer to the
following simple observation. If we put n objects into m boxes (pigeonholes),
and if n > m then at least one box must have more than one item in it. This is
such an obvious fact that it is surprising how many deep results can be
obtained from it.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.6

Is the language L = {anbn : n ⩾ 0} regular? The answer is no, as we show
using a proof by contradiction.

Suppose L is regular. Then some DFA M = (Q, {a, b}, δ, q0, F) exists for it.
Now look at δ∗(q0, a

i) for i = 1, 2, 3, Since there are an unlimited number
of i's, but only a �nite number of states in M , the Pigeonhole Principle tells us
that there must be some state, say q, such that

δ∗(q0, a
n) = q

and
δ∗(q0, a

m) = q,

with n ̸= m. But since M accepts anbn we must have
δ∗(q, bn) = qf ∈ F.

From this we can conclude that

δ∗(q0, a
mbn) = δ∗(δ∗(q0, a

m), bn) =

= δ∗(q, bn) =

= qf .

This contradicts the original assumption that M accepts ambn only if n = m,
and leads us to conclude that L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In this argument, the Pigeonhole Principle is just a way of stating
unambiguously what we mean when we say that a �nite automaton has a
limited memory. To accept all anbn, an automaton would have to di�erentiate
between all pre�xes an and am. But since there are only a �nite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is convenient
to codify it as a general theorem. There are several ways to do this; the one we
give here is perhaps the most famous one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In this argument, the Pigeonhole Principle is just a way of stating
unambiguously what we mean when we say that a �nite automaton has a
limited memory. To accept all anbn, an automaton would have to di�erentiate
between all pre�xes an and am. But since there are only a �nite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is convenient
to codify it as a general theorem. There are several ways to do this; the one we
give here is perhaps the most famous one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In this argument, the Pigeonhole Principle is just a way of stating
unambiguously what we mean when we say that a �nite automaton has a
limited memory. To accept all anbn, an automaton would have to di�erentiate
between all pre�xes an and am. But since there are only a �nite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is convenient
to codify it as a general theorem. There are several ways to do this; the one we
give here is perhaps the most famous one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In this argument, the Pigeonhole Principle is just a way of stating
unambiguously what we mean when we say that a �nite automaton has a
limited memory. To accept all anbn, an automaton would have to di�erentiate
between all pre�xes an and am. But since there are only a �nite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is convenient
to codify it as a general theorem. There are several ways to do this; the one we
give here is perhaps the most famous one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In this argument, the Pigeonhole Principle is just a way of stating
unambiguously what we mean when we say that a �nite automaton has a
limited memory. To accept all anbn, an automaton would have to di�erentiate
between all pre�xes an and am. But since there are only a �nite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is convenient
to codify it as a general theorem. There are several ways to do this; the one we
give here is perhaps the most famous one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In this argument, the Pigeonhole Principle is just a way of stating
unambiguously what we mean when we say that a �nite automaton has a
limited memory. To accept all anbn, an automaton would have to di�erentiate
between all pre�xes an and am. But since there are only a �nite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is convenient
to codify it as a general theorem. There are several ways to do this; the one we
give here is perhaps the most famous one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In this argument, the Pigeonhole Principle is just a way of stating
unambiguously what we mean when we say that a �nite automaton has a
limited memory. To accept all anbn, an automaton would have to di�erentiate
between all pre�xes an and am. But since there are only a �nite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is convenient
to codify it as a general theorem. There are several ways to do this; the one we
give here is perhaps the most famous one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In this argument, the Pigeonhole Principle is just a way of stating
unambiguously what we mean when we say that a �nite automaton has a
limited memory. To accept all anbn, an automaton would have to di�erentiate
between all pre�xes an and am. But since there are only a �nite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is convenient
to codify it as a general theorem. There are several ways to do this; the one we
give here is perhaps the most famous one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In this argument, the Pigeonhole Principle is just a way of stating
unambiguously what we mean when we say that a �nite automaton has a
limited memory. To accept all anbn, an automaton would have to di�erentiate
between all pre�xes an and am. But since there are only a �nite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is convenient
to codify it as a general theorem. There are several ways to do this; the one we
give here is perhaps the most famous one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In this argument, the Pigeonhole Principle is just a way of stating
unambiguously what we mean when we say that a �nite automaton has a
limited memory. To accept all anbn, an automaton would have to di�erentiate
between all pre�xes an and am. But since there are only a �nite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is convenient
to codify it as a general theorem. There are several ways to do this; the one we
give here is perhaps the most famous one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In this argument, the Pigeonhole Principle is just a way of stating
unambiguously what we mean when we say that a �nite automaton has a
limited memory. To accept all anbn, an automaton would have to di�erentiate
between all pre�xes an and am. But since there are only a �nite number of
internal states with which to do this, there are some n and m for which the
distinction cannot be made.

In order to use this type of argument in a variety of situations, it is convenient
to codify it as a general theorem. There are several ways to do this; the one we
give here is perhaps the most famous one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Here is what we know about transition graphs for regular languages:

If the transition graph has no cycles, the language is �nite and therefore
regular.

If the transition graph has a cycle with a nonempty label, the language is
in�nite. Conversely, every in�nite regular language has a DFA with such a
cycle.

If there is a cycle, this cycle can either be skipped or repeated an arbitrary
number of times. So, if the cycle has label v and if the string w1vw2 is in
the language, so must be the strings w1w2, w1vvw2, w1vvvw2, and so on.

We do not know where in the DFA this cycle is, but if the DFA has m
states, the cycle must be entered by the time m symbols have been read.

If, for some language L, there is even one string w that does not have this
property, L cannot be regular. This observation can be formally stated as a
theorem called the Pumping Lemma.

The Pumping Lemma

The following result, known as the Pumping Lemma for regular languages, uses
the Pigeonhole Principle in another form. The proof is based on the observation
that in a transition graph with n vertices, any walk of length n or longer must
repeat some vertex, that is, contain a cycle.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Theorem 4.8

Let L be an in�nite regular language. Then there exists some positive integer
m such that any w ∈ L with |w| ⩾ m can be decomposed as

w = xyz
with

|xy| ⩽ m,
and

|y| ⩾ 1,
such that

wi = xyiz, (1)

is also in L for all i = 0, 1, 2,

To paraphrase this, every su�ciently long string in L can be broken into three
parts in such a way that an arbitrary number of repetitions of the middle part
yields another string in L. We say that the middle string is �pumped,� hence
the term Pumping Lemma for this result.

Proof. If L is regular the there exists a DFA that recognizes it. Let such a DFA
have states labeled q0, q1, q2, . . ., qn. Now take a string w in L such that
|w| ⩾ m = n+ 1. Since L is assumed to be in�nite, this can always be done.
Consider the set of states the automaton goes through as it processes w, say

q0, qi, qj , . . . , qf .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Since this sequence has exactly |w|+ 1 entries, at least one state must be
repeated, and such a repetition must start no later than the nth move. Thus,
the sequence must look like

q0, qi, qj , . . . , qr, . . . , qr, . . . , qf ,

indicating there must be substrings x, y, z of w such that
δ∗(q0, x) = qr,

δ∗(qr, y) = qr,

δ∗(qr, z) = qf ,

with |xy| ⩽ n+ 1 = m and |y| ⩾ 1. From this it immediately follows that
δ∗(q0, xz) = qf ,

as well as
δ∗(q0, xy

2z) = qf ,

δ∗(qr, xy
3z) = qf ,

and so on, completing the proof of the theorem. ■

We have given the Pumping Lemma only for in�nite languages. Finite
languages, although always regular, cannot be pumped because pumping
automatically creates an in�nite set. The theorem does hold for �nite
languages, but it is vacuous. The m in the Pumping Lemma is to be taken
larger than the longest string, so that no string can be pumped.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma, like the pigeonhole argument in Example 4.6, is used to
show that certain languages are not regular. The demonstration is always by
contradiction. There is nothing in the Pumping Lemma, as we have stated it
here, that can be used for proving that a language is regular. Even if we could
show (and this is normally quite di�cult) that any pumped string must be in
the original language, there is nothing in the statement of Theorem 4.8 that
allows us to conclude from this that the language is regular.

Example 4.7

Use the Pumping Lemma to show that L = {anbn : n ⩾ 0} is not regular.
Assume that L is regular, so that the Pumping Lemma must hold. We do not
know the value of m, but whatever it is, we can always choose n = m.
Therefore, the substring y must consist entirely of a's. Suppose |y| = k. Then
the string obtained by using i = 0 in Equation (1)

wi = xyiz, (1)
is

w0 = am−kbm

and is clearly not in L. This contradicts the Pumping Lemma and thereby
indicates that the assumption that L is regular must be false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

In applying the Pumping Lemma, we must keep in mind what the theorem
says. We are guaranteed the existence of an m as well as the decomposition
xyz, but we do not know what they are. We cannot claim that we have
reached a contradiction just because the Pumping Lemma is violated for some
speci�c values of m or xyz. On the other hand, the Pumping Lemma holds for
every w ∈ L and every i. Therefore, if the Pumping Lemma is violated even for
one w or i, then the language cannot be regular.

The correct argument can be visualized as a game we play against an opponent.
Our goal is to win the game by establishing a contradiction of the Pumping
Lemma, while the opponent tries to foil us. There are four moves in the game.

1 The opponent picks m.

2 Given m, we pick a string w in L of length equal or greater than m. We
are free to choose any w, subject to w ∈ L and |w| ⩾ m.

3 The opponent chooses the decomposition xyz, subject to |xy| ⩽ m,
|y| ⩾ 1. We have to assume that the opponent makes the choice that will
make it hardest for us to win the game.

4 We try to pick i in such a way that the pumped string wi, de�ned in
Equation (1)

wi = xyiz, (1)

is not in L. If we can do so, we win the game.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

A strategy that allows us to win whatever the opponent's choices is
tantamount to a proof that the language is not regular. In this, Step 2 is
crucial. While we cannot force the opponent to pick a particular decomposition
of w, we may be able to choose w so that the opponent is very restricted in
Step 3, forcing a choice of x, y, and z that allows us to produce a violation of
the Pumping Lemma on our next move.

Example 4.8

Show that L =
{
wwR : w ∈ Σ∗} is not regular.

Whatever m the opponent picks on Step 1, we can always choose a w as
shown in the Figure.

am bm bm am

aa . . . a a . . . a bb b b b aa a

x y z

Because of this choice, and the requirement that |xy| ⩽ m, the opponent is
restricted in Step 3 to choosing a string y that consists entirely of a's. In Step
4, we use i = 0. The string obtained in this fashion has fewer a's on the left
than on the right and so cannot be of the form wwR. Therefore, L is not
regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.8 (continuation)

Note that if we had chosen a string w too short, then the opponent could have
chosen a string y with an even number of b's. In that case, we could not have
reached a violation of the Pumping Lemma on the last step. We would also fail
if we were to choose a string consisting of all a's, say,

w = a2m,

which is in L. To defeat us, the opponent need only pick
y = aa.

Now wi is in L for all i, and we lose.

To apply the Pumping Lemma we cannot assume that the opponent will make a
wrong move. If, in the case where we pick w = a2m, the opponent were to pick

y = a,

then w0 is a string of odd length and therefore not in L. But any argument that
assumes that the opponent is so accommodating is automatically incorrect.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.9

Let Σ = {a, b}. The language

L =
{
w ∈ Σ∗ : na(w) < nb(w)

}
is not regular.

Suppose we are given m. Since we have complete freedom in choosing w, we
pick w = ambm+1. Now, because |xy| cannot be greater than m, the opponent
cannot do anything but pick a string y with all a's, that is

y = ak, 1 ⩽ k ⩽ m.

We now pump up, using i = 2. The resulting string

w2 = am+kbm+1

is not in L. Therefore, the Pumping Lemma is violated, and L is not regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.10

Let Σ = {a, b}. The language

L =
{
(ab)nak : n > k, k ⩾ 0

}
is not regular.

Given m, we pick as our string

w = (ab)m+1am,

which is in L. Since of the constraint |xy| ⩽ m, both x and y must be in the
part of the string made up of ab's. The choice of x does not a�ect the
argument, so let us see what can be done with y. If our opponent picks y = a,
we choose i = 0 and get a string not in L((ab)∗a∗). If the opponent picks
y = ab, then we can choose i = 0 again. Now we get the string (ab)mam,
which is not in L. In the same way, we can deal with any possible choice by the
opponent, thereby proving our claim.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.11

Let Σ = {a, b}. The language

L = {an : n is a perfect square}
is not regular.

Given the opponent's choice of m, we pick

w = am2

.

If w = xyz is the decomposition, then clearly

y = ak

with 1 ⩽ k ⩽ m. In that case,

w0 = am2−k

But m2 − k > (m− 1)2, so that w0 cannot be in L. Therefore, the language is
not regular.

In some cases, closure properties can be used to relate a given problem to one
we have already classi�ed. This may be simpler than a direct application of the
Pumping Lemma.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.12

Let Σ = {a, b, c}. The language

L =
{
anbkcn+k : n ⩾ 0, k ⩾ 0

}
is not regular.

It is not di�cult to apply the Pumping Lemma directly, but it is even easier to
use closure under homomorphism. Take

h(a) = a, h(b) = a, h(c) = c,

then

h(L) =
{
an+kcn+k : n+ k ⩾ 0

}
=

=
{
aici : i ⩾ 0

}
.

But we know this language is not regular; therefore, L cannot be regular either.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Example 4.13

Let Σ = {a, b}. The language
L =

{
anbl : n ̸= l

}
is not regular.
Here we need a bit of ingenuity to apply the Pumping Lemma directly.
Choosing a string with n = l+1 or n = l+2 will not do, because our opponent
can always choose a decomposition that will make it impossible to pump the
string out of the language (that is, pump it so that it has an equal number of
a's and b's). We must be more inventive. Let us take n = m! and l = (m+ 1)!.
If the opponent now chooses a string y (by necessity consisting of all a's) of
length k < m, we pump i times to generate a string with m! + (i− 1)k a's. We
can get a contradiction of the Pumping Lemma if we can pick i such that

m! + (i− 1)k = (m+ 1)!
This is always possible because

i = 1 +
mm!

k
and k ⩽ m. The right side is therefore an integer, and we have succeeded in
violating the conditions of the Pumping Lemma.
However, there is a much more elegant way of solving this problem. Suppose L
were regular. Then by Theorem 4.1, L and the language

L1 = L ∩ L(a∗b∗)
would also be regular. But L1 = {anbn : n ⩾ 0}, which we have already
classi�ed as nonregular. Consequently, L cannot be regular.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

The Pumping Lemma is di�cult to understand and it is easy to go astray when
applying it. Here are some common pitfalls. Watch out for them.

One mistake is to try using the Pumping Lemma to show that a language is
regular. Even if you can show that no string in a language L can ever be
pumped out, you cannot conclude that L is regular. The Pumping Lemma can
only be used to prove that a language is not regular.

Another mistake is to start (usually inadvertently) with a string not in L. For
example, suppose we try to show that

L = {an : n is a prime number} (2)

is not regular. An argument that starts with �Given m, let w = am . . .,� is
incorrect because m is not necessarily prime. To avoid this pitfall, we need to
start with something like �Given m, let w = aM , where M is a prime number
larger than m.�

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

4.3 Identifying Nonregular Languages

Finally, perhaps the most common mistake is to make some assumptions about
the decomposition xyz. The only thing we can say about the decomposition is
what the Pumping Lemma tells us, namely, that y is not empty and that
|xy| ⩽ m; that is, that y must be within m symbols of the left end of the
string. Anything else makes the argument invalid. A typical mistake in trying to
prove that the language in Equation (2)

L = {an : n is a prime number} (2)

is not regular is to say that y = ak, with k odd. Then of course w = xz is an
even-length string and thus not in L. But the assumption on k is not permitted
and the proof is wrong.

But even if you master the technical di�culties of the Pumping Lemma, it may
still be hard to see exactly how to use it. The Pumping Lemma is like a game
with complicated rules. Knowledge of the rules is essential, but that alone is
not enough to play a good game. You also need a good strategy to win. If you
can apply the Pumping Lemma correctly to some of the more di�cult cases in
this course of lectures, you are to be congratulated.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

Thank You

Thank You for attention!

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

