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4.2 Elementary Questions about Regular Languages

We now come to a very fundamental issue: Given a language L and a string w,
can we determine whether or not w is an element of L? This is the

membership question and a method for answering it is called a membership

algorithm.1 Very little can be done with languages for which we cannot �nd

e�cient membership algorithms. The question of the existence and nature of

membership algorithms will be of great concern in later discussions; it is an

issue that is often di�cult. For regular languages, though, it is an easy matter.

We �rst consider what exactly we mean when we say �given a language ...�. In

many arguments, it is important that this be unambiguous. We have used

several ways of describing regular languages: informal verbal descriptions, set

notation, �nite automata, regular expressions, and regular grammars. Only the

last three are su�ciently well de�ned for use in theorems. We therefore say that

a regular language is given in a standard representation if and only if it is

described by a �nite automaton, a regular expression, or a regular grammar.

Theorem 4.5

Given a standard representation of any regular language L on Σ and any

w ∈ Σ∗, there exists an algorithm for determining whether or not w is in L.

Proof. We represent the language by some DFA, then test w to see if it is

accepted by this automaton. ■
1Later we shall make precise what the term �algorithm� means. For the moment, think of it

as a method for which one can write a computer program.
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4.2 Elementary Questions about Regular Languages

Other important questions are whether a language is �nite or in�nite, whether

two languages are the same, and whether one language is a subset of another.

For regular languages at least, these questions are easily answered.

Theorem 4.6

There exists an algorithm for determining whether a regular language, given in

standard representation, is empty, �nite, or in�nite.

Proof. The answer is apparent if we represent the language as a transition

graph of a DFA. If there is a simple path from the initial vertex to any �nal

vertex, then the language is not empty.

To determine whether or not a language is in�nite, �nd all the vertices that are

the base of some cycle. If any of these are on a path from an initial to a �nal

vertex, the language is in�nite. Otherwise, it is �nite. ■

The question of the equality of two languages is also an important practical

issue. Often several de�nitions of a programming language exist, and we need

to know whether, in spite of their di�erent appearances, they specify the same

language. This is generally a di�cult problem; even for regular languages the

argument is not obvious. It is not possible to argue on a sentence-by-sentence

comparison, because this works only for �nite languages. Nor is it easy to see

the answer by looking at the regular expressions, grammars, or DFA's. An

elegant solution uses the already established closure properties.
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vertex, the language is in�nite. Otherwise, it is �nite. ■

The question of the equality of two languages is also an important practical

issue. Often several de�nitions of a programming language exist, and we need

to know whether, in spite of their di�erent appearances, they specify the same

language. This is generally a di�cult problem; even for regular languages the

argument is not obvious. It is not possible to argue on a sentence-by-sentence

comparison, because this works only for �nite languages. Nor is it easy to see

the answer by looking at the regular expressions, grammars, or DFA's. An

elegant solution uses the already established closure properties.
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4.2 Elementary Questions about Regular Languages

Theorem 4.7

Given standard representations of two regular languages L1 and L2, there exists

an algorithm to determine whether or not L1 = L2.

Proof. Using L1 and L2 we de�ne the language

L3 = (L1 ∩ L2) ∪ (L1 ∩ L2).

By closure, L3 is regular, and we can �nd a DFA M that accepts L3. Once we

have M we can then use the algorithm in Theorem 4.6 to determine if L3 is

empty. But that L3 = ∅ if and only if L1 = L2. ■

These results are fundamental, in spite of being obvious and unsurprising. For

regular languages, the questions raised by Theorems 4.5 to 4.7 can be answered

easily, but this is not always the case when we deal with other language

families. We shall encounter questions like these on several occasions later on.

Anticipating a little, we shall see that the answers become increasingly more

di�cult and eventually impossible to �nd.
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Thank You

Thank You for attention!
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