Formal Languages, Automata and Codes

Oleg Gutik

Lecture 11

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Consider the following question: Given two regular languages L_1 and L_2 , is their union also regular? In specific instances, the answer may be obvious, but

here we want to address the problem in general. Is it true for all regular L_1 and L_2 ? It turns out that the answer is yes, a fact we express by saying that the family of regular languages is **closed** under union. We can ask similar questions about other types of operations on languages; this leads us to the study of the closure properties of languages in general.

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

Closure properties of various language families under different operations are of considerable theoretical interest. At first sight, it may not be clear what practical significance these properties have. Admittedly, some of them have very little, but many results are useful. By giving us insight into the general nature of language families, closure properties help us answer other, more practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts $L_1.$ Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts $L_1.$ Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , $\overline{L_1}$, and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M = (Q, \Sigma, \delta, q_0, F)$ be a dfa that accepts L_1 . Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M = (Q, \Sigma, \delta, q_0, F)$ be a dfa that accepts L_1 . Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M = (Q, \Sigma, \delta, q_0, F)$ be a dfa that accepts L_1 . Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M = (Q, \Sigma, \delta, q_0, F)$ be a dfa that accepts L_1 . Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M = (Q, \Sigma, \delta, q_0, F)$ be a dfa that accepts L_1 . Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively.

Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts $L_1.$ Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts $L_1.$ Then the dfa

 $\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts L_1 . Then the dfa

 $\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts $L_1.$ Then the dfa

 $\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts $L_1.$ Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts $L_1.$ Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts $L_1.$ Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts $L_1.$ Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts $L_1.$ Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , L_1 , and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.

Proof. If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^* , respectively. Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let $M=(Q,\Sigma,\delta,q_0,F)$ be a dfa that accepts $L_1.$ Then the dfa

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

Demonstrating closure under intersection takes a little more work. Let

 $\begin{array}{l} L_1=L(M_1) \text{ and } L_2=L(M_2), \text{ where } M_1=(Q,\Sigma,\delta_1,q_0,F_1) \text{ and} \\ M_2=(P,\Sigma,\delta_2,p_0,F_2) \text{ are dfa's. We construct from } M_1 \text{ and } M_2 \text{ a combined} \\ \text{automaton } \widehat{M}=(\widehat{Q},\Sigma,\widehat{\delta},(q_0,p_0),\widehat{F}), \text{ whose state set } \widehat{Q}=Q\times P \text{ consists of} \\ \text{pairs } (q_i,p_j), \text{ and whose transition function } \widehat{\delta} \text{ is such that } \widehat{M} \text{ is in state } (q_i,p_j) \\ \text{whenever } M_1 \text{ is in state } q_i \text{ and } M_2 \text{ is in state } p_j. \text{ This is achieved by taking} \\ \widehat{\delta}((q_i,p_j),a)=(q_k,p_l), \end{array}$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

whenever

$$\delta_1(q_i, a) = q_k$$

and

$$\delta_2(p_j, a) = p_l.$$

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

4.1 Closure Properties of Regular Languages

The proof of closure under intersection is a good example of a constructive proof. Not only does it establish the desired result, but it also shows explicitly how to construct a finite accepter for the intersection of two regular languages. Constructive proofs occur throughout this course of lectures; they are important because they give us insight into the results and often serve as the starting point for practical algorithms. Here, as in many cases, there are shorter but nonconstructive (or at least not so obviously constructive) arguments. For closure under intersection, we start with DeMorgan's law, taking the complement of both sides. Then

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

4.1 Closure Properties of Regular Languages

The proof of closure under intersection is a good example of a constructive proof. Not only does it establish the desired result, but it also shows explicitly how to construct a finite accepter for the intersection of two regular languages. Constructive proofs occur throughout this course of lectures; they are important because they give us insight into the results and often serve as the starting point for practical algorithms. Here, as in many cases, there are shorter but nonconstructive (or at least not so obviously constructive) arguments. For closure under intersection, we start with DeMorgan's law, taking the complement of both sides. Then

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

The proof of closure under intersection is a good example of a constructive proof. Not only does it establish the desired result, but it also shows explicitly how to construct a finite accepter for the intersection of two regular languages.

Constructive proofs occur throughout this course of lectures; they are important because they give us insight into the results and often serve as the starting point for practical algorithms. Here, as in many cases, there are shorter but nonconstructive (or at least not so obviously constructive) arguments. For closure under intersection, we start with DeMorgan's law, taking the complement of both sides. Then

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

The proof of closure under intersection is a good example of a constructive proof. Not only does it establish the desired result, but it also shows explicitly how to construct a finite accepter for the intersection of two regular languages. Constructive proofs occur throughout this course of lectures; they are

important because they give us insight into the results and often serve as the starting point for practical algorithms. Here, as in many cases, there are shorter but nonconstructive (or at least not so obviously constructive) arguments. For closure under intersection, we start with DeMorgan's law, taking the complement of both sides. Then

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

 $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

 $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{L_1} \cup \overline{L_2} = L_1 \cap L_2$$

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{L_1} \cup \overline{L_2} = L_1 \cap L_2$$

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

for any languages L_1 and L_2 . Now, if L_1 and L_2 are regular, then by closure under complementation, so are $\overline{L_1}$ and $\overline{L_2}$. Using closure under union, we next get that $\overline{L_1} \cup \overline{L_2}$ is regular. Using closure under complementation once more, we see that

$$\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$$

4.1 Closure Properties of Regular Languages

The following example is a variation on the same idea.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then $L_1 - L_2$ is necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that L_2 is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L_2}$ is regular, and the argument is complete.

A variety of other closure properties can be derived directly by elementary arguments.

4.1 Closure Properties of Regular Languages

The following example is a variation on the same idea.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then L_1-L_2 is necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that L_2 is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L_2}$ is regular, and the argument is complete.

A variety of other closure properties can be derived directly by elementary arguments.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then $L_1 - L_2$ is necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that $\overline{L_2}$ is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L_2}$ is regular, and the argument is complete.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then $L_1 - L_2$ is necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that $\overline{L_2}$ is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L_2}$ is regular, and the argument is complete.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then $L_1 - L_2$ is

necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that $\overline{L_2}$ is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L_2}$ is regular, and the argument is complete.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then $L_1 - L_2$ is necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that \overline{L}_2 is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L}_2$ is regular, and the argument is complete.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then $L_1 - L_2$ is necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that $\overline{L_2}$ is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L_2}$ is regular, and the argument is complete.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then $L_1 - L_2$ is necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that L_2 is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L_2}$ is regular, and the argument is complete.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then $L_1 - L_2$ is necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that $\overline{L_2}$ is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L_2}$ is regular, and the argument is complete.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then $L_1 - L_2$ is necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that $\overline{L_2}$ is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L_2}$ is regular, and the argument is complete.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then $L_1 - L_2$ is necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that $\overline{L_2}$ is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L_2}$ is regular, and the argument is complete.

Example 4.1

Show that the family of regular languages is closed under difference. In other words, we want to show that if L_1 and L_2 are regular, then $L_1 - L_2$ is necessarily regular also.

The needed set identity is immediately obvious from the definition of a set difference, namely

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

The fact that L_2 is regular implies that $\overline{L_2}$ is also regular. Then, because of the closure of regular languages under intersection, we know that $L_1 \cap \overline{L_2}$ is regular, and the argument is complete.

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final

vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a single final state for it. In the previous lectures we show that this is always possible. In the transition graph for this nfa we make the initial vertex a final vertex, the final vertex the initial vertex, and reverse the direction on all the edges. It is a fairly straightforward matter to show that the modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R , proving closure under reversal.

Closure under Other Operations

Definition 4.1

```
Suppose \Sigma and \Gamma are alphabets. Then a function

h: \Sigma \to \Gamma^*

is called a homomorphism. In words, a homomorphism is a substitution in

which a single letter is replaced with a string. The domain of the function h is

extended to strings in an obvious fashion; if

then

w = a_1 a_2 \cdots a_n,

h(w) = h(a_1)h(a_2)\cdots h(a_n).

If L is a language on \Sigma, then its homomorphic image is defined as

h(L) = \{h(w) : w \in L\}.
```

Example 4.2

Let
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{a, b, c\}$ and define h by $h(a) = ab,$
 $h(b) = bbc.$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on Σ , then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{a, b, c\}$ and define h by $h(a) = ab,$
 $h(b) = bbc.$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on Σ , then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{a, b, c\}$ and define h by $h(a) = ab,$
 $h(b) = bbc.$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function

 $h\colon \Sigma \to \Gamma$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on $\Sigma,$ then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{a, b, c\}$ and define h by $h(a) = ab,$
 $h(b) = bbc.$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on Σ , then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{a, b, c\}$ and define h by $h(a) = ab,$
 $h(b) = bbc.$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on Σ , then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{a, b, c\}$ and define h by $h(a) = ab,$
 $h(b) = bbc.$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on Σ , then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{a, b, c\}$ and define h by $h(a) = ab,$
 $h(b) = bbc.$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

```
w = a_1 a_2 \cdots a_n,
```

 $h(w) = h(a_1)h(a_2)\cdots h(a_n).$

If L is a language on $\Sigma,$ then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

```
Let \Sigma = \{a, b\} and \Gamma = \{a, b, c\} and define h by

h(a) = ab,

h(b) = bbc.
```

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

```
w = a_1 a_2 \cdots a_n,
```

 $h(w) = h(a_1)h(a_2)\cdots h(a_n).$

If L is a language on $\Sigma,$ then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

```
Let \Sigma = \{a, b\} and \Gamma = \{a, b, c\} and define h by

h(a) = ab,

h(b) = bbc.
```

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

 $w = a_1 a_2 \cdots a_n,$

 $h(w) = h(a_1)h(a_2)\cdots h(a_n).$

If L is a language on $\Sigma,$ then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{a, b, c\}$ and define h by $h(a) = ab,$
 $h(b) = bbc.$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

 $h(w) = h(a_1)h(a_2)\cdots h(a_n).$

If L is a language on $\Sigma,$ then its homomorphic image is defined as $h(L)=\{h(w)\colon w\in L\}.$

Example 4.2

```
Let \Sigma = \{a, b\} and \Gamma = \{a, b, c\} and define h by

h(a) = ab,

h(b) = bbc.
```

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on $\Sigma,$ then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{a, b, c\}$ and define h by $h(a) = ab,$
 $h(b) = bbc.$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on Σ , then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{a, b, c\}$ and define h by $h(a) = ab,$
 $h(b) = bbc.$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on Σ , then its homomorphic image is defined as $h(L) = \{h(m) : m \in L\}$

Example 4.2

```
Let \Sigma = \{a, b\} and \Gamma = \{a, b, c\} and define h by

h(a) = ab,

h(b) = bbc.
```

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on $\Sigma,$ then its homomorphic image is defined as $h(L)=\{h(w)\colon w\in L\}.$

Example 4.2

```
Let \Sigma = \{a, b\} and \Gamma = \{a, b, c\} and define h by

h(a) = ab,

h(b) = bbc.
```

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on $\Sigma,$ then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma=\{a,b\}$$
 and $\Gamma=\{a,b,c\}$ and define h by
$$h(a)=ab,$$

$$h(b)=bbc.$$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on $\Sigma,$ then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma = \{a,b\}$$
 and $\Gamma = \{a,b,c\}$ and define h by
$$h(a) = ab,$$

h(b) = bbc

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on Σ , then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma=\{a,b\}$$
 and $\Gamma=\{a,b,c\}$ and define h by
$$h(a)=ab,$$

$$h(b)=bbc.$$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on Σ , then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma=\{a,b\}$$
 and $\Gamma=\{a,b,c\}$ and define h by
$$h(a)=ab,$$

$$h(b)=bbc.$$

Definition 4.1

Suppose Σ and Γ are alphabets. Then a function $h\colon \Sigma\to \Gamma^*$

is called a *homomorphism*. In words, a homomorphism is a substitution in which a single letter is replaced with a string. The domain of the function h is extended to strings in an obvious fashion; if

then

$$w = a_1 a_2 \cdots a_n,$$

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

If L is a language on Σ , then its homomorphic image is defined as $h(L) = \{h(w) \colon w \in L\}.$

Example 4.2

Let
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{a, b, c\}$ and define h by $h(a) = ab,$ $h(b) = bbc.$

Example 4.3

Take
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{b, c, d\}$. Define h by $h(a) = dbcc,$

If L is the regular language denoted by

$$r = (a+b^*)(aa)^*,$$

then

 $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

denotes the regular language h(L)

If we have a regular expression r for a language L, then a regular expression for h(L) can be obtained by simply applying the homomorphism to each Σ symbol of r.

Example 4.3

Take
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{b, c, d\}$. Define h by $h(a) = dbcc,$
 $h(b) = bdc$

If L is the regular language denoted by

$$r = (a+b^*)(aa)^*,$$

then

 $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

denotes the regular language h(L)

Example 4.3 Take $\Sigma = \{a, b\}$ and $\Gamma = \{b, c, d\}$. Define *h* by h(a) = dbcc, h(b) = bdc.If *L* is the regular language denoted by $r = (a + b^*)(aa)^*,$ then $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$ denotes the regular language h(t)

Example 4.3

Take
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{b, c, d\}$. Define h by
 $h(a) = dbcc,$
 $h(b) = bdc.$

If L is the regular language denoted by

$$r = (a+b^*)(aa)^*,$$

then

 $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

denotes the regular language h(L).

Example 4.3

Take
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{b, c, d\}$. Define h by
 $h(a) = dbcc,$
 $h(b) = bdc.$

If L is the regular language denoted by

$$r = (a+b^*)(aa)^*,$$

then

 $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

denotes the regular language h(L).

Example 4.3 Take $\Sigma = \{a, b\}$ and $\Gamma = \{b, c, d\}$. Define h by h(a) = dbcc, h(b) = bdc.If L is the regular language denoted by $r = (a + b^*)(aa)^*,$ then $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

```
denotes the regular language h(L).
```

Example 4.3

Take
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{b, c, d\}$. Define h by
 $h(a) = dbcc,$
 $h(b) = bdc.$

If L is the regular language denoted by $L = \frac{1}{2} \int \frac{1}{2} \frac{1}{2$

 $r = (a+b^*)(aa)^*$

then

 $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

denotes the regular language h(L).

Example 4.3

Take
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{b, c, d\}$. Define h by
 $h(a) = dbcc,$
 $h(b) = bdc.$

If L is the regular language denoted by

 $r = (a+b^*)(aa)^*,$

then

 $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

denotes the regular language h(L).

Example 4.3

Take
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{b, c, d\}$. Define h by
 $h(a) = dbcc,$
 $h(b) = bdc.$

If
$$L$$
 is the regular language denoted by
$$r = (a + b^{\ast})(aa)^{\ast}$$

then

 $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

denotes the regular language h(L).

Example 4.3

Take
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{b, c, d\}$. Define h by
 $h(a) = dbcc,$
 $h(b) = bdc.$

If
$$L$$
 is the regular language denoted by
$$r = (a + b^{\ast})(aa)^{\ast}$$

then

 $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

denotes the regular language h(L).

Example 4.3

Take
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{b, c, d\}$. Define h by
 $h(a) = dbcc,$
 $h(b) = bdc.$

If L is the regular language denoted by $r = (a + b^*)(aa)^*, \label{eq:regular}$

then

 $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

denotes the regular language h(L).

Example 4.3

Take
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{b, c, d\}$. Define h by
 $h(a) = dbcc,$
 $h(b) = bdc.$

If L is the regular language denoted by $r = (a + b^*)(aa)^*, \label{eq:regular}$

then

 $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

denotes the regular language h(L).

Example 4.3

Take
$$\Sigma = \{a, b\}$$
 and $\Gamma = \{b, c, d\}$. Define h by
 $h(a) = dbcc,$
 $h(b) = bdc.$

If L is the regular language denoted by $r = (a + b^*)(aa)^*,$

then

 $r_1 = (dbcc + (bdc)^*) (dbccdbcc)^*$

denotes the regular language h(L).

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

 $L_1/L_2 = \{x \colon xy \in L_1 \text{ for some } y \in L_2\}.$

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

 $L_1/L_2 = \{x \colon xy \in L_1 \text{ for some } y \in L_2\}.$

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as $L_1/L_2 = \{x : xy \in L_1 \text{ for some } y \in L_2\}.$ (1)

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as $L_1/L_2 = \{x : xy \in L_1 \text{ for some } y \in L_2\}.$ (1)

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as $L_1/L_2 = \{x \colon xy \in L_1 \text{ for some } y \in L_2\}.$ (1)

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

 $L_1/L_2 = \{x \colon xy \in L_1 \text{ for some } y \in L_2\}.$

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as $L_2/L_2 = \{x: xy \in L_1 \text{ for some } y \in L_2\}$ (1)

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

 $L_1/L_2 = \{x \colon xy \in L_1 \text{ for some } y \in L_2\}.$

(1)

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

$$L_1/L_2 = \{x \colon xy \in L_1 \text{ for some } y \in L_2\}.$$
 (1)

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

$$L_1/L_2 = \{x \colon xy \in L_1 \text{ for some } y \in L_2\}.$$
 (1)

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

$$L_1/L_2 = \{x \colon xy \in L_1 \text{ for some } y \in L_2\}.$$
 (1)

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic image h(L) is also regular. The family of regular languages is therefore closed under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We find h(r) by substituting h(a) for each symbol $a \in \Sigma$ of r. It can be shown directly by an appeal to the definition of a regular expression that the result is a regular expression. It is equally easy to see that the resulting expression denotes h(L). All we need to do is to show that for every $w \in L(r)$, the corresponding h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w in L, such that v = h(w). Leaving the details as an exercise, we claim that h(L) is regular.

Definition 4.2

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as

$$L_1/L_2 = \{x \colon xy \in L_1 \text{ for some } y \in L_2\}.$$
 (1)

and

then

 $L_1 = \{a^n b^m : n \ge 1, m \ge 0\} \cup \{ba\}$ $L_2 = \{b^m : m \ge 1\},$

The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer by removing one or more b's from those strings in L_1 that terminate with at least one b.

Example 4.4	
If and $L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$	
then $L_2 = \{b^m \colon m \ge 1\},$	
$L_1/L_2=\{a^nb^m\colon n\geqslant 1, m\geqslant 0\}\ .$ The strings in L_2 consist of one or more b 's. Therefore, we arrive at the an	nswer
by removing one or more b 's from those strings in L_1 that terminate with least one b .	at
Note that here L_1 , L_2 , and L_1/L_2 are all regular. This suggests that the r quotient of any two regular languages is also regular. We shall prove this in next theorem by a construction that takes the dfa's for L_1 and L_2 and constructs from them a dfa for L_1/L_2 . Before we describe the construction	n the
full, let us see how it applies to this example. We start with a dfa for L_1 ; s the automaton $M_1 = (Q, \Sigma, \delta, q_0, F)$ in the Figure.	say

Example 4.4 lf $L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$

Exa	imple 4.4
lf and	$L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$
the The	n $L_2 = \{b^m : m \ge 1\},$ $L_1/L_2 = \{a^n b^m : n \ge 1, m \ge 0\}.$ e strings in L_2 consist of one or more b's. Therefore, we arrive at the answer
	removing one or more b 's from those strings in L_1 that terminate with at st one b . St one b . St that here L_1 , L_2 , and L_1/L_2 are all regular. This suggests that the right
nex con full	tient of any two regular languages is also regular. We shall prove this in the t theorem by a construction that takes the dfa's for L_1 and L_2 and structs from them a dfa for L_1/L_2 . Before we describe the construction in , let us see how it applies to this example. We start with a dfa for L_1 ; say automaton $M_1 = (Q, \Sigma, \delta, q_0, F)$ in the Figure.

Example 4.4	
lf and	$L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$
then	$L_2 = \left\{ b^m \colon m \ge 1 \right\},$
	$L_1/L_2 = \{a^n b^m \colon n \ge 1, m \ge 0\}.$
The strings in L_2	consist of one or more b 's. Therefore, we arrive at the answer
by removing one cleast one b .	or more b 's from those strings in L_1 that terminate with at
Note that here L_1	, L_2 , and L_1/L_2 are all regular. This suggests that the right
	o regular languages is also regular. We shall prove this in the
	construction that takes the dfa's for L_1 and L_2 and
	nem a dfa for L_1/L_2 . Before we describe the construction in $_{\prime}$, it applies to this example. We start with a dfa for L_1 ; say
	$A_1 = (Q, \Sigma, \delta, q_0, F)$ in the Figure.

Example 4.4
If and $L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$
then $L_2 = \{b^m \colon m \geqslant 1\},$
$L_1/L_2 = \{a^n b^m \colon n \ge 1, m \ge 0\}.$ The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer by removing one or more b's from those strings in L_1 that terminate with at least one b.
Note that here L_1 , L_2 , and L_1/L_2 are all regular. This suggests that the right quotient of any two regular languages is also regular. We shall prove this in the next theorem by a construction that takes the dfa's for L_1 and L_2 and constructs from them a dfa for L_1/L_2 . Before we describe the construction in full, let us see how it applies to this example. We start with a dfa for L_1 ; say the automaton $M_1 = (Q, \Sigma, \delta, q_0, F)$ in the Figure.

Example 4.4	
lf	$L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$
and	$L_2 = \{b^m : m \ge 1\},\$
then	$L_1/L_2 = \{a^n b^m : n \ge 1, m \ge 0\}.$
The strings in L_2	consist of one or more b 's. Therefore, we arrive at the answer
by removing one of	or more b's from those strings in L_1 that terminate with at

east one b.

Example 4.4		
lf	$L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$	
and		
then	$L_2 = \left\{ b^m \colon m \ge 1 \right\},$	
	$L_1/L_2 = \{a^n b^m \colon n \ge 1, m \ge 0\}.$	
The strings in L_2 consist of one or more b 's. Therefore, we arrive at the answer		
by removing on	e or more b 's from those strings in L_1 that terminate with at	
least one b.		
	L_1 , L_2 , and L_1/L_2 are all regular. This suggests that the right $-$	
	two regular languages is also regular. We shall prove this in the	
	, a construction that takes the dfa's for L_1 and L_2 and	
	them a dfa for L_1/L_2 . Before we describe the construction in	
	ow it applies to this example. We start with a dfa for L_1 ; say	

Example 4.4		
If $L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$		
and		
then $L_2 = \{b^m \colon m \geqslant 1\},$		
$L_1/L_2 = \{a^n b^m \colon n \ge 1, m \ge 0\}.$		
The strings in L_2 consist of one or more b 's. Therefore, we arrive at the answer		
by removing one or more b 's from those strings in L_1 that terminate with at		
least one b.		
Note that here L_1 , L_2 , and L_1/L_2 are all regular. This suggests that the right		
quotient of any two regular languages is also regular. We shall prove this in the next theorem by a construction that takes the dfa's for L_1 and L_2 and		
constructs from them a dfa for L_1/L_2 . Before we describe the construction in		
full, let us see how it applies to this example. We start with a dfa for L_1 ; say		
the automaton $M_1 = (Q, \Sigma, \delta, q_0, F)$ in the Figure.		

Example 4.4	
$f \qquad \qquad T \qquad (n_1 m > 1 > 0) \cup (L)$	
and $L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$	
then $L_2 = \{b^m \colon m \ge 1\},$	
$L_1/L_2 = \{a^n b^m \colon n \ge 1, m \ge 0\}.$	
The strings in L_2 consist of one or more b 's. Therefore, we arrive at the answer	
by removing one or more b 's from those strings in L_1 that terminate with at	
east one b	

Example 4.4 If and $L_1 = \{a^n b^m : n \ge 1, m \ge 0\} \cup \{ba\}$ then $L_2 = \{b^m : m \ge 1\},$ $L_1/L_2 = \{a^n b^m : n \ge 1, m \ge 0\}.$ The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer

The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer by removing one or more b's from those strings in L_1 that terminate with at least one b.

Example 4.4 If and $L_1 = \{a^n b^m : n \ge 1, m \ge 0\} \cup \{ba\}$ then $L_2 = \{b^m : m \ge 1\},$ $L_1/L_2 = \{a^n b^m : n \ge 1, m \ge 0\}.$ The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer

The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer by removing one or more b's from those strings in L_1 that terminate with at least one b.

lf

and

then

$$L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$$
$$L_2 = \{b^m \colon m \ge 1\},$$

$$L_1/L_2 = \{a^n b^m \colon n \ge 1, m \ge 0\}.$$

The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer by removing one or more b's from those strings in L_1 that terminate with at least one b.

Note that here L_1 , L_2 , and L_1/L_2 are all regular. This suggests that the right quotient of any two regular languages is also regular. We shall prove this in the next theorem by a construction that takes the dfa's for L_1 and L_2 and

constructs from them a dfa for L_1/L_2 . Before we describe the construction in full, let us see how it applies to this example. We start with a dfa for L_1 ; say the automaton $M_1 = (Q, \Sigma, \delta, q_0, F)$ in the Figure.

lf

and

then

$$L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$$
$$L_2 = \{b^m \colon m \ge 1\},$$

$$L_1/L_2 = \{a^n b^m \colon n \ge 1, m \ge 0\}.$$

The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer by removing one or more b's from those strings in L_1 that terminate with at least one b.

lf

and

then

$$L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$$
$$L_2 = \{b^m \colon m \ge 1\},$$

$$L_1/L_2 = \{a^n b^m \colon n \ge 1, m \ge 0\}.$$

The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer by removing one or more b's from those strings in L_1 that terminate with at least one b.

lf

and

then

$$L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$$
$$L_2 = \{b^m \colon m \ge 1\},$$

$$L_1/L_2 = \{a^n b^m \colon n \ge 1, m \ge 0\}.$$

The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer by removing one or more b's from those strings in L_1 that terminate with at least one b.

lf

and

then

$$L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$$
$$L_2 = \{b^m \colon m \ge 1\},$$

$$L_1/L_2 = \{a^n b^m \colon n \ge 1, m \ge 0\}.$$

The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer by removing one or more b's from those strings in L_1 that terminate with at least one b.

lf

and

then

$$L_1 = \{a^n b^m \colon n \ge 1, m \ge 0\} \cup \{ba\}$$
$$L_2 = \{b^m \colon m \ge 1\},$$

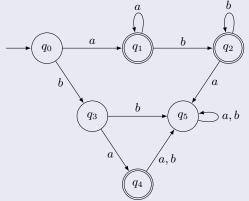
$$L_1/L_2 = \{a^n b^m \colon n \ge 1, m \ge 0\}.$$

The strings in L_2 consist of one or more b's. Therefore, we arrive at the answer by removing one or more b's from those strings in L_1 that terminate with at least one b.

Example 4.4 (continuation)

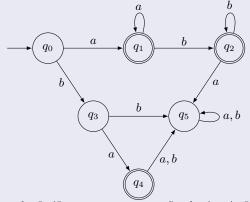
tate labeled v such that $v \in L_2$. If this is so, any x such that $\delta(q_0, x) = q$ will be in U_1/L_2 . We modify the automaton accordingly to make q a final state.

Example 4.4 (continuation)



Since an automaton for L_1/L_2 must accept any prefix of strings in L_1 , we shall try to modify M_1 so that it accepts x if there is any y satisfying (1). $L_1/L_2 = \{x: xy \in L_1 \text{ for some } y \in L_2\}.$ (1) The difficulty comes in finding whether there is some y such that $xy \in L_1$ and $y \in L_2$. To solve it, we determine, for each $q \in Q$, whether there is a walk to a final state labeled v such that $v \in L_2$. If this is so, any x such that $\delta(q_0, x) = q$ will be in L_1/L_2 . We modify the automaton accordingly to make q a final state.

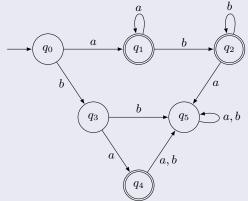
Example 4.4 (continuation)



Since an automaton for L_1/L_2 must accept any prefix of strings in L_1 , we shall try to modify M_1 so that it accepts x if there is any y satisfying (1). $L_1/L_2 = \{x : xy \in L_1 \text{ for some } y \in L_2\}.$ (1) The difficulty comes in finding whether there is some y such that $xy \in L_1$ and $y \in L_2$. To solve it, we determine, for each $q \in Q$, whether there is a walk to a final state labeled v such that $v \in L_2$. If this is so, any x such that $\delta(q_0, x) = q$ will be in

 $L_1/L_2.$ We modify the automaton accordingly to make q a final state.

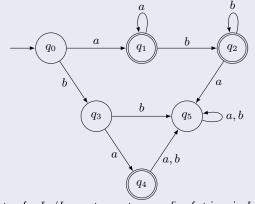
Example 4.4 (continuation)



Since an automaton for L_1/L_2 must accept any prefix of strings in L_1 , we shall try to modify M_1 so that it accepts x if there is any y satisfying (1).

 $L_1/L_2 = \{x : xy \in L_1 \text{ for some } y \in L_2\}.$ (1) The difficulty comes in finding whether there is some y such that $xy \in L_1$ and $y \in L_2$. To solve it, we determine, for each $q \in Q$, whether there is a walk to a final state labeled v such that $v \in L_2$. If this is so, any x such that $\delta(q_0, x) = q$ will be in L_1/L_2 . We modify the automaton accordingly to make q a final state.

Example 4.4 (continuation)



Since an automaton for L_1/L_2 must accept any prefix of strings in L_1 , we shall try to modify M_1 so that it accepts x if there is any y satisfying (1).

 $L_1/L_2 = \{x \colon xy \in L_1 \text{ for some } y \in L_2\}.$

(1)

The difficulty comes in finding whether there is some y such that $xy \in L_1$ and $y \in L_2$. To solve it, we determine, for each $q \in Q$, whether there is a walk to a final state labeled v such that $v \in L_2$. If this is so, any x such that $\delta(q_0, x) = q$ will be in L_1/L_2 . We modify the automaton accordingly to make q a final state.

Example 4.4 (continuation)

a ba q_0 bba.b q_3 q_5 a, b

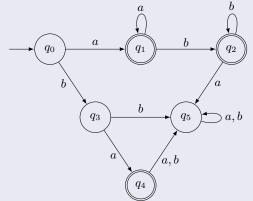
Since an automaton for L_1/L_2 must accept any prefix of strings in L_1 , we shall try to modify M_1 so that it accepts x if there is any y satisfying (1).

 $L_1/L_2 = \{x \colon xy \in L_1 \text{ for some } y \in L_2\}.$ (1)

The difficulty comes in finding whether there is some y such that $xy \in L_1$ and

 $y \in L_2$. To solve it, we determine, for each $q \in Q$, whether there is a walk to a final state labeled v such that $v \in L_2$. If this is so, any x such that $\delta(q_0, x) = q$ will be in L_1/L_2 . We modify the automaton accordingly to make q a final state.

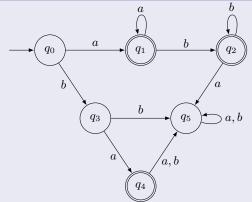
Example 4.4 (continuation)



Since an automaton for L_1/L_2 must accept any prefix of strings in L_1 , we shall try to modify M_1 so that it accepts x if there is any y satisfying (1).

 $L_1/L_2 = \{x : xy \in L_1 \text{ for some } y \in L_2\}.$ (1) The difficulty comes in finding whether there is some y such that $xy \in L_1$ and $y \in L_2$. To solve it, we determine, for each $q \in Q$, whether there is a walk to a final state labeled v such that $v \in L_2$. If this is so, any x such that $\delta(q_0, x) = q$ will be in L_1/L_2 . We modify the automaton accordingly to make q a final state.

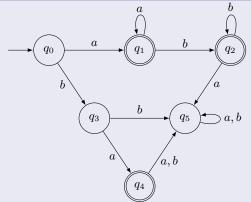
Example 4.4 (continuation)



Since an automaton for L_1/L_2 must accept any prefix of strings in L_1 , we shall try to modify M_1 so that it accepts x if there is any y satisfying (1).

 $L_1/L_2 = \{x : xy \in L_1 \text{ for some } y \in L_2\}. \tag{1}$ The difficulty comes in finding whether there is some y such that $xy \in L_1$ and $y \in L_2$. To solve it, we determine, for each $q \in Q$, whether there is a walk to a final state labeled v such that $v \in L_2$. If this is so, any x such that $\delta(q_0, x) = q$ will be in L_1/L_2 . We modify the automaton accordingly to make q a final state.

Example 4.4 (continuation)

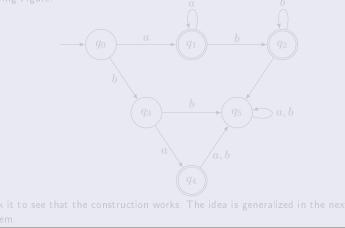


Since an automaton for L_1/L_2 must accept any prefix of strings in L_1 , we shall try to modify M_1 so that it accepts x if there is any y satisfying (1).

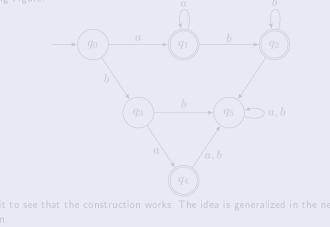
 $L_1/L_2 = \{x : xy \in L_1 \text{ for some } y \in L_2\}. \tag{1}$ The difficulty comes in finding whether there is some y such that $xy \in L_1$ and $y \in L_2$. To solve it, we determine, for each $q \in Q$, whether there is a walk to a final state labeled v such that $v \in L_2$. If this is so, any x such that $\delta(q_0, x) = q$ will be in L_1/L_2 . We modify the automaton accordingly to make q a final state.

Example 4.4 (continuation)

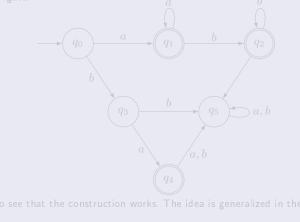
Example 4.4 (continuation)



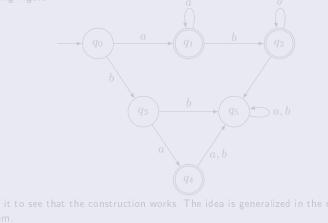
Example 4.4 (continuation)



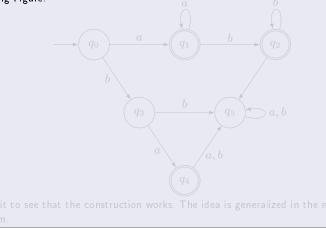
Example 4.4 (continuation)



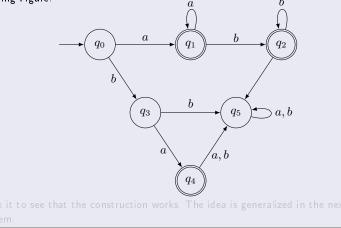
Example 4.4 (continuation)



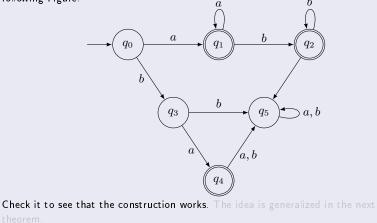
Example 4.4 (continuation)



Example 4.4 (continuation)

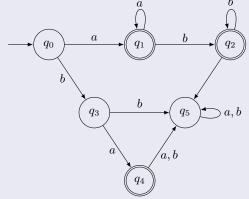


Example 4.4 (continuation)



Example 4.4 (continuation)

To apply this to our present case, we check each state q_0 , q_1 , q_2 , q_3 , q_4 , q_5 to see whether there is a walk labeled bb^* to any of the q_1 , q_2 , or q_4 . We see that only q_1 and q_2 qualify; q_0 , q_3 , q_4 do not. The resulting automaton for L_1/L_2 is shown in the following Figure.



Check it to see that the construction works. The idea is generalized in the next theorem.

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

$$\delta^*(q_i, y) = q_f \in F.$$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

$$\delta^*(q_i, y) = q_f \in F.$$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

$$\delta^*(q_i, y) = q_f \in F.$$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

$$\delta^*(q_i, y) = q_f \in F.$$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

 $\delta^*(q_i, y) = q_f \in F.$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

 $\delta^*(q_i, y) = q_f \in F.$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

 $\delta^*(q_i, y) = q_f \in F.$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

 $\delta^*(q_i, y) = q_f \in F.$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

 $\delta^*(q_i, y) = q_f \in F.$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

 $\delta^*(q_i, y) = q_f \in F.$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

 $\delta^*(q_i, y) = q_f \in F.$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

 $\delta^*(q_i, y) = q_f \in F.$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

 $\delta^*(q_i, y) = q_f \in F.$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

$$\delta^*(q_i, y) = q_f \in F.$$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

$$\delta^*(q_i, y) = q_f \in F.$$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

$$\delta^*(q_i, y) = q_f \in F.$$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

$$\delta^*(q_i, y) = q_f \in F.$$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

$$\delta^*(q_i, y) = q_f \in F.$$

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. We say that the family of regular languages is closed under right quotient with a regular language.

Proof. Let $L_1 = L(M)$, where $M = (Q, \Sigma, \delta, q_0, F)$ is a dfa. We construct another dfa $\widehat{M} = (Q, \Sigma, \delta, q_0, \widehat{F})$ as follows. For each $q_i \in Q$, determine if there exists a word $y \in L_2$ such that

$$\delta^*(q_i, y) = q_f \in F.$$

To prove that $L(M) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q\in Q$ such that

$$\delta^*(q_0, x) = q$$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M})=L_1/L_2$, let x be any element of $L_1/L_2.$ Then there

must be a word $y\in L_2$ such that $xy\in L_1.$ This implies that

$$\delta^*(q_0, xy) \in F_1$$

so that there must be some $q\in Q$ such that

$$\delta^*(q_0, x) = q$$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

so that there must be some $q \in Q$ such that

$$\delta^*(q_0, x) = q$$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

so that there must be some $q \in Q$ such that

 $\delta^*(q_0, x) = q$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

 $L(\widehat{M}) = L_1/L_2,$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

 $\delta^*(q_0, xy) \in F,$

so that there must be some $q \in Q$ such that

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

 $L(\widehat{M}) = L_1/L_2,$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q \in Q$ such that

$$\delta^*(q_0, x) = q$$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q\in Q$ such that $\delta^*(q_0,x)=q$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q\in Q$ such that $\delta^*(q_0,x)=q$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q\in Q$ such that $\delta^*(q_0,x)=q$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$. But again by construction, this implies that there exists a word $x \in I$, such

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q \in Q$ such that $\delta^*(q_0, x) = q$

and

 $\delta^*(q, y) \in F.$ Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}.$ But again by construction, this implies that there exists a word $u \in I$, such

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q,y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q \in Q$ such that $\delta^*(q_0, x) = q$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q\in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0,x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have

 $\delta^*(q_0, x) = q \in F.$

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q \in Q$ such that $\delta^*(q_0, x) = q$

and

 $\delta^*(q,y) \in F.$ Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}.$

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q \in Q$ such that $\delta^*(q_0, x) = q$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

 $L(\widehat{M}) = L_1/L_2,$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q \in Q$ such that $\delta^*(q_0, x) = q$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

 $L(\widehat{M}) = L_1/L_2,$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q \in Q$ such that $\delta^*(q_0, x) = q$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

 $L(\widehat{M}) = L_1/L_2,$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q \in Q$ such that $\delta^*(q_0, x) = q$

and

 $\delta^*(q,y) \in F.$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q \in Q$ such that $\delta^*(q_0, x) = q$

and

$$\delta^*(q,y) \in F.$$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

To prove that $L(\widehat{M}) = L_1/L_2$, let x be any element of L_1/L_2 . Then there must be a word $y \in L_2$ such that $xy \in L_1$. This implies that

$$\delta^*(q_0, xy) \in F,$$

so that there must be some $q \in Q$ such that $\delta^*(q_0, x) = q$

and

$$\delta^*(q,y) \in F.$$

Therefore, by construction, $q \in \widehat{F}$, and \widehat{M} accepts x because $\delta^*(q_0, x)$ is in \widehat{F} . Conversely, for any x accepted by \widehat{M} , we have $\delta^*(q_0, x) = q \in \widehat{F}$.

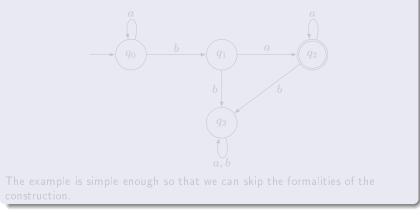
But again by construction, this implies that there exists a word $y \in L_2$ such that $\delta^*(q, y) \in F$. Therefore, xy is in L_1 , and x is in L_1/L_2 . We therefore conclude that

$$L(\widehat{M}) = L_1/L_2,$$

Example 4.5

Find L_1/L_2 for

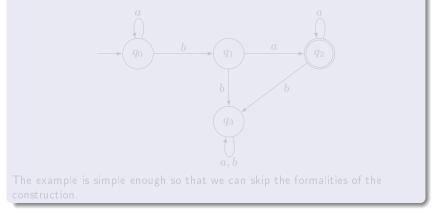
$$L_1 = L(a^*baa^*),$$
$$L_2 = L(ab^*).$$



Example 4.5 Find L_1/L_2 for

 $L_1 = L(a^*baa^*),$ $L_2 = L(ab^*).$

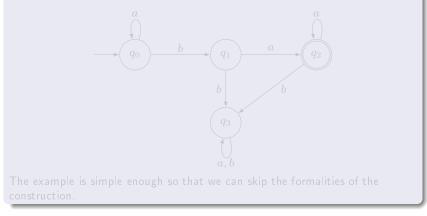
We first find a dfa that accepts L_1 . This is easy, and a solution is given in the following Figure.



Oleg Gutik Formal Languages, Automata and Codes. Lecture 11

Example 4.5 Find L_1/L_2 for

 $L_1 = L(a^*baa^*),$ $L_2 = L(ab^*).$



Example 4.5

Find L_1/L_2 for

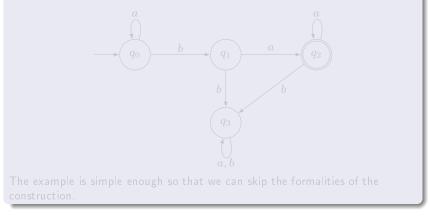
 $L_1 = L(a^*baa^*),$ $L_2 = L(ab^*).$



Example 4.5

Find L_1/L_2 for

$$L_1 = L(a^*baa^*),$$
$$L_2 = L(ab^*).$$

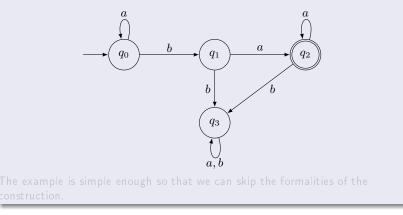


Example 4.5

Find L_1/L_2 for

$$L_1 = L(a^*baa^*),$$

$$L_2 = L(ab^*).$$

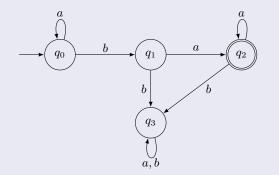


Example 4.5

Find L_1/L_2 for

$$L_1 = L(a^*baa^*),$$
$$L_2 = L(ab^*).$$

We first find a dfa that accepts L_1 . This is easy, and a solution is given in the following Figure.



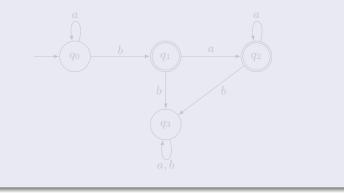
The example is simple enough so that we can skip the formalities of the construction.

Example 4.5 (continuation)

From the graph in the previous Figure it is quite evident that $L(M_0) \cap L_2 = \varnothing$, $L(M_1) \cap L_2 = \{a\} \neq \varnothing$, $L(M_2) \cap L_2 = \{a\} \neq \varnothing$, $L(M_3) \cap L_2 = \emptyset$.

Example 4.5 (continuation)

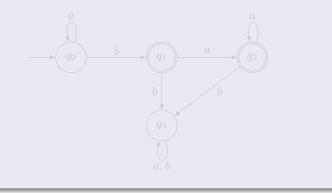
From the graph in the previous Figure it is quite evident that $L(M_0) \cap L_2 = \varnothing,$ $L(M_1) \cap L_2 = \{a\} \neq \varnothing,$ $L(M_2) \cap L_2 = \{a\} \neq \varnothing,$ $L(M_3) \cap L_2 = \varnothing.$



Example 4.5 (continuation)

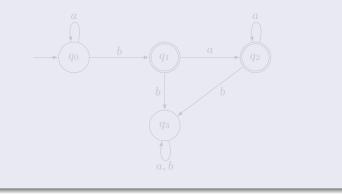
From the graph in the previous Figure it is quite evident that

 $L(M_0) \cap L_2 = \emptyset,$ $L(M_1) \cap L_2 = \{a\} \neq \emptyset,$ $L(M_2) \cap L_2 = \{a\} \neq \emptyset,$ $L(M_2) \cap L_2 = \{a\} \neq \emptyset,$



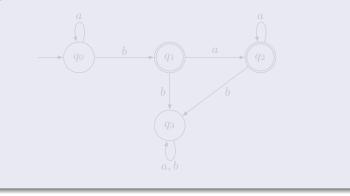
Example 4.5 (continuation)

From the graph in the previous Figure it is quite evident that
$$\begin{split} L(M_0) \cap L_2 &= \varnothing, \\ L(M_1) \cap L_2 &= \{a\} \neq \varnothing, \\ L(M_2) \cap L_2 &= \{a\} \neq \varnothing, \\ L(M_3) \cap L_2 &= \varnothing. \end{split}$$



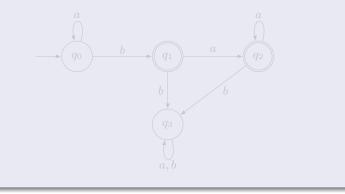
Example 4.5 (continuation)

From the graph in the previous Figure it is quite evident that $L(M_0) \cap L_2 = \emptyset,$ $L(M_1) \cap L_2 = \{a\} \neq \emptyset,$ $L(M_2) \cap L_2 = \{a\} \neq \emptyset,$ $L(M_3) \cap L_2 = \emptyset.$



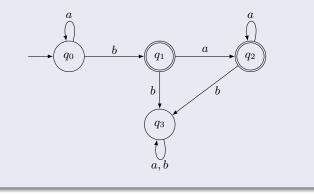
Example 4.5 (continuation)

From the graph in the previous Figure it is quite evident that $L(M_0) \cap L_2 = \emptyset,$ $L(M_1) \cap L_2 = \{a\} \neq \emptyset,$ $L(M_2) \cap L_2 = \{a\} \neq \emptyset,$ $L(M_3) \cap L_2 = \emptyset.$



Example 4.5 (continuation)

From the graph in the previous Figure it is quite evident that $L(M_0) \cap L_2 = \emptyset,$ $L(M_1) \cap L_2 = \{a\} \neq \emptyset,$ $L(M_2) \cap L_2 = \{a\} \neq \emptyset,$ $L(M_3) \cap L_2 = \emptyset.$



Thank You for attention!