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4.1 Closure Properties of Regular Languages

Consider the following question: Given two regular languages L1 and L2, is
their union also regular? In speci�c instances, the answer may be obvious, but
here we want to address the problem in general. Is it true for all regular L1 and
L2? It turns out that the answer is yes, a fact we express by saying that the
family of regular languages is closed under union. We can ask similar questions
about other types of operations on languages; this leads us to the study of the
closure properties of languages in general.

Closure properties of various language families under di�erent operations are of
considerable theoretical interest. At �rst sight, it may not be clear what
practical signi�cance these properties have. Admittedly, some of them have
very little, but many results are useful. By giving us insight into the general
nature of language families, closure properties help us answer other, more
practical questions. We shall see instances of this later in this couse of lectures.

Closure under Simple Set Operations

We begin by looking at the closure of regular languages under the common set
operations, such as union and intersection.
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4.1 Closure Properties of Regular Languages

Theorem 4.1

If L1 and L2 are regular languages, then so are L1 ∪ L2, L1 ∩ L2, L1L2, L1,
and L∗

1. We say that the family of regular languages is closed under union,
intersection, concatenation, complementation, and star-closure.

Proof. If L1 and L2 are regular, then there exist regular expressions r1 and r2
such that L1 = L(r1) and L2 = L(r2). By de�nition, r1 + r2, r1r2, and r∗1 are
regular expressions denoting the languages L1 ∪L2, L1L2, and L∗

1, respectively.
Thus, closure under union, concatenation, and star-closure is immediate.

To show closure under complementation, let M = (Q,Σ, δ, q0, F ) be a dfa that
accepts L1. Then the dfa

M̂ = (Q,Σ, δ, q0, Q− F )

accepts L1. This is rather straightforward. Note that in the de�nition of a dfa,
we assumed δ∗ to be a total function, so that δ∗(q0, w) is de�ned for all
w ∈ Σ∗. Consequently either δ∗(q0, w) is a �nal state, in which case w ∈ L, or
δ∗(q0, w) ∈ Q− F and w ∈ L.
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4.1 Closure Properties of Regular Languages

Demonstrating closure under intersection takes a little more work. Let
L1 = L(M1) and L2 = L(M2), where M1 = (Q,Σ, δ1, q0, F1) and
M2 = (P,Σ, δ2, p0, F2) are dfa's. We construct from M1 and M2 a combined

automaton M̂ = (Q̂,Σ, δ̂, (q0, p0), F̂ ), whose state set Q̂ = Q× P consists of

pairs (qi, pj), and whose transition function δ̂ is such that M̂ is in state (qi, pj)
whenever M1 is in state qi and M2 is in state pj . This is achieved by taking

δ̂((qi, pj), a) = (qk, pl),

whenever
δ1(qi, a) = qk

and
δ2(pj , a) = pl.

F̂ is de�ned as the set of all (qi, pj), such that qi ∈ F1 and pj ∈ F2. Then it is

a simple matter to show that w ∈ L1 ∩ L2 if and only if it is accepted by M̂ .
Consequently, L1 ∩ L2 is regular. ■
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4.1 Closure Properties of Regular Languages

The proof of closure under intersection is a good example of a constructive
proof. Not only does it establish the desired result, but it also shows explicitly
how to construct a �nite accepter for the intersection of two regular languages.
Constructive proofs occur throughout this course of lectures; they are
important because they give us insight into the results and often serve as the
starting point for practical algorithms. Here, as in many cases, there are shorter
but nonconstructive (or at least not so obviously constructive) arguments. For
closure under intersection, we start with DeMorgan's law, taking the
complement of both sides. Then

L1 ∩ L2 = L1 ∪ L2

for any languages L1 and L2. Now, if L1 and L2 are regular, then by closure
under complementation, so are L1 and L2. Using closure under union, we next
get that L1 ∪ L2 is regular. Using closure under complementation once more,
we see that

L1 ∪ L2 = L1 ∩ L2

is regular.
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4.1 Closure Properties of Regular Languages

The following example is a variation on the same idea.

Example 4.1

Show that the family of regular languages is closed under di�erence. In other
words, we want to show that if L1 and L2 are regular, then L1 − L2 is
necessarily regular also.

The needed set identity is immediately obvious from the de�nition of a set
di�erence, namely

L1 − L2 = L1 ∩ L2.

The fact that L2 is regular implies that L2 is also regular. Then, because of the
closure of regular languages under intersection, we know that L1 ∩ L2 is
regular, and the argument is complete.

A variety of other closure properties can be derived directly by elementary
arguments.
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4.1 Closure Properties of Regular Languages

Theorem 4.2

The family of regular languages is closed under reversal.

Proof. Suppose that L is a regular language. We then construct an nfa with a
single �nal state for it. In the previous lectures we show that this is always
possible. In the transition graph for this nfa we make the initial vertex a �nal
vertex, the �nal vertex the initial vertex, and reverse the direction on all the
edges. It is a fairly straightforward matter to show that the modi�ed nfa
accepts wR if and only if the original nfa accepts w. Therefore, the modi�ed
nfa accepts LR, proving closure under reversal. ■

Closure under Other Operations

In addition to the standard operations on languages, one can de�ne other
operations and investigate closure properties for them. There are many such
results; we select only two typical ones.
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4.1 Closure Properties of Regular Languages

De�nition 4.1

Suppose Σ and Γ are alphabets. Then a function
h : Σ → Γ∗

is called a homomorphism. In words, a homomorphism is a substitution in
which a single letter is replaced with a string. The domain of the function h is
extended to strings in an obvious fashion; if

w = a1a2 · · · an,then
h(w) = h(a1)h(a2) · · ·h(an).

If L is a language on Σ, then its homomorphic image is de�ned as
h(L) = {h(w) : w ∈ L}.

Example 4.2

Let Σ = {a, b} and Γ = {a, b, c} and de�ne h by

h(a) = ab,

h(b) = bbc.

Then h(aba) = abbbcab. The homomorphic image of L = {aa, aba} is the
language h(L) = {abab, abbbcab}.
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w = a1a2 · · · an,then
h(w) = h(a1)h(a2) · · ·h(an).

If L is a language on Σ, then its homomorphic image is de�ned as
h(L) = {h(w) : w ∈ L}.

Example 4.2

Let Σ = {a, b} and Γ = {a, b, c} and de�ne h by

h(a) = ab,

h(b) = bbc.

Then h(aba) = abbbcab. The homomorphic image of L = {aa, aba} is the
language h(L) = {abab, abbbcab}.
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4.1 Closure Properties of Regular Languages

If we have a regular expression r for a language L, then a regular expression for
h(L) can be obtained by simply applying the homomorphism to each Σ symbol
of r.

Example 4.3

Take Σ = {a, b} and Γ = {b, c, d}. De�ne h by

h(a) = dbcc,

h(b) = bdc.

If L is the regular language denoted by
r = (a+ b∗)(aa)∗,

then
r1 = (dbcc+ (bdc)∗) (dbccdbcc)∗

denotes the regular language h(L).

The general result on the closure of regular languages under any
homomorphism follows from this example in an obvious manner.
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4.1 Closure Properties of Regular Languages

Theorem 4.3

Let h be a homomorphism. If L is a regular language, then its homomorphic
image h(L) is also regular. The family of regular languages is therefore closed
under arbitrary homomorphisms.

Proof. Let L be a regular language denoted by some regular expression r. We
�nd h(r) by substituting h(a) for each symbol a ∈ Σ of r. It can be shown
directly by an appeal to the de�nition of a regular expression that the result is a
regular expression. It is equally easy to see that the resulting expression denotes
h(L). All we need to do is to show that for every w ∈ L(r), the corresponding
h(w) is in L(h(r)) and conversely that for every v in L(h(r)) there is a word w
in L, such that v = h(w). Leaving the details as an exercise, we claim that
h(L) is regular. ■

De�nition 4.2

Let L1 and L2 be languages on the same alphabet. Then the right quotient of
L1 with L2 is de�ned as

L1/L2 = {x : xy ∈ L1 for some y ∈ L2}. (1)

To form the right quotient of L1 with L2, we take all the strings in L1 that
have a su�x belonging to L2. Every such string, after removal of this su�x,
belongs to L1/L2.
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4.1 Closure Properties of Regular Languages

Example 4.4

If
L1 = {anbm : n ⩾ 1,m ⩾ 0} ∪ {ba}

and
L2 = {bm : m ⩾ 1} ,

then
L1/L2 = {anbm : n ⩾ 1,m ⩾ 0} .

The strings in L2 consist of one or more b's. Therefore, we arrive at the answer
by removing one or more b's from those strings in L1 that terminate with at
least one b.

Note that here L1, L2, and L1/L2 are all regular. This suggests that the right
quotient of any two regular languages is also regular. We shall prove this in the
next theorem by a construction that takes the dfa's for L1 and L2 and
constructs from them a dfa for L1/L2. Before we describe the construction in
full, let us see how it applies to this example. We start with a dfa for L1; say
the automaton M1 = (Q,Σ, δ, q0, F ) in the Figure.
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Note that here L1, L2, and L1/L2 are all regular. This suggests that the right
quotient of any two regular languages is also regular. We shall prove this in the
next theorem by a construction that takes the dfa's for L1 and L2 and
constructs from them a dfa for L1/L2. Before we describe the construction in
full, let us see how it applies to this example. We start with a dfa for L1; say
the automaton M1 = (Q,Σ, δ, q0, F ) in the Figure.
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4.1 Closure Properties of Regular Languages

Example 4.4 (continuation)

q0 q1
a

a

q2b

b

q3

b

q5
b

a

a, b

q4

a a, b

Since an automaton for L1/L2 must accept any pre�x of strings in L1, we shall try to
modify M1 so that it accepts x if there is any y satisfying (1).

L1/L2 = {x : xy ∈ L1 for some y ∈ L2}. (1)
The di�culty comes in �nding whether there is some y such that xy ∈ L1 and

y ∈ L2. To solve it, we determine, for each q ∈ Q, whether there is a walk to a �nal

state labeled v such that v ∈ L2. If this is so, any x such that δ(q0, x) = q will be in

L1/L2. We modify the automaton accordingly to make q a �nal state.
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4.1 Closure Properties of Regular Languages

Example 4.4 (continuation)

To apply this to our present case, we check each state q0, q1, q2, q3, q4, q5 to see

whether there is a walk labeled bb∗ to any of the q1, q2, or q4. We see that only q1
and q2 qualify; q0, q3, q4 do not. The resulting automaton for L1/L2 is shown in the

following Figure.

q0 q1
a

a

q2b

b

q3

b

q5
b

a, b

q4

a a, b

Check it to see that the construction works. The idea is generalized in the next

theorem.
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4.1 Closure Properties of Regular Languages

Theorem 4.4

If L1 and L2 are regular languages, then L1/L2 is also regular. We say that the
family of regular languages is closed under right quotient with a regular
language.

Proof. Let L1 = L(M), where M = (Q,Σ, δ, q0, F ) is a dfa. We construct

another dfa M̂ = (Q,Σ, δ, q0, F̂ ) as follows. For each qi ∈ Q, determine if there
exists a word y ∈ L2 such that

δ∗(qi, y) = qf ∈ F.

This can be done by looking at dfa's Mi = (Q,Σ, δ, qi, F ). The automaton Mi

is M with the initial state q0 replaced by qi. We now determine whether there
exists a word y ∈ L(Mi) that is also in L2. For this, we can use the
construction for the intersection of two regular languages given in Theorem 4.1,
�nding the transition graph for L2 ∩ L(Mi). If there is any path between its
initial vertex and any �nal vertex, then L2 ∩ L(Mi) is not empty. In that case,

add qi to F̂ . Repeating this for every qi ∈ Q, we determine F̂ and thereby
construct M̂ .
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δ∗(qi, y) = qf ∈ F.

This can be done by looking at dfa's Mi = (Q,Σ, δ, qi, F ). The automaton Mi

is M with the initial state q0 replaced by qi. We now determine whether there
exists a word y ∈ L(Mi) that is also in L2. For this, we can use the
construction for the intersection of two regular languages given in Theorem 4.1,
�nding the transition graph for L2 ∩ L(Mi). If there is any path between its
initial vertex and any �nal vertex, then L2 ∩ L(Mi) is not empty. In that case,

add qi to F̂ . Repeating this for every qi ∈ Q, we determine F̂ and thereby
construct M̂ .
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4.1 Closure Properties of Regular Languages

To prove that L(M̂) = L1/L2, let x be any element of L1/L2. Then there
must be a word y ∈ L2 such that xy ∈ L1. This implies that

δ∗(q0, xy) ∈ F,

so that there must be some q ∈ Q such that
δ∗(q0, x) = q

and
δ∗(q, y) ∈ F.

Therefore, by construction, q ∈ F̂ , and M̂ accepts x because δ∗(q0, x) is in F̂ .

Conversely, for any x accepted by M̂ , we have
δ∗(q0, x) = q ∈ F̂ .

But again by construction, this implies that there exists a word y ∈ L2 such
that δ∗(q, y) ∈ F . Therefore, xy is in L1, and x is in L1/L2. We therefore
conclude that

L(M̂) = L1/L2,

and from this that L1/L2 is regular. ■
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4.1 Closure Properties of Regular Languages

Example 4.5

Find L1/L2 for
L1 = L(a∗baa∗),

L2 = L(ab∗).

We �rst �nd a dfa that accepts L1. This is easy, and a solution is given in the
following Figure.

q0

a

q1b q2
a

a

q3

b b

a, b

The example is simple enough so that we can skip the formalities of the
construction.
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4.1 Closure Properties of Regular Languages

Example 4.5 (continuation)

From the graph in the previous Figure it is quite evident that
L(M0) ∩ L2 = ∅,

L(M1) ∩ L2 = {a} ̸= ∅,

L(M2) ∩ L2 = {a} ̸= ∅,

L(M3) ∩ L2 = ∅.
Therefore, the automaton accepting L1/L2 is determined. The result is shown
in the Figure.

q0

a

q1b q2
a

a

q3

b b

a, b
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4.1 Closure Properties of Regular Languages

Example 4.5 (continuation)

It accepts the language denoted by the regular expression of a∗b+ a∗baa∗,
which can be simpli�ed to a∗ba∗. Thus L1/L2 = L(a∗ba∗).
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Thank You

Thank You for attention!

Oleg Gutik Formal Languages, Automata and Codes. Lecture 11


