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3.3 Regular Grammars
A third way of describing regular languages is by means of certain grammars.
Grammars are often an alternative way of specifying languages. Whenever we
de�ne a language family through an automaton or in some other way, we are
interested in knowing what kind of grammar we can associate with the family.
First, we look at grammars that generate regular languages.

Right- and Left-Linear Grammars

De�nition 3.3

A grammar G = (V, T, S, P ) is said to be right-linear if all productions
are of the form

A → xB,

A → x,

where A,B ∈ V , and x ∈ T ∗. A grammar is said to be left-linear if all
productions are of the form

A → Bx,

A → x.

A regular grammar is one that is either right-linear or left-linear.

Note that in a regular grammar, at most one variable appears on the
right side of any production. Furthermore, that variable must consistently
be either the rightmost or leftmost symbol of the right side of any
production.
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3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.13

The grammar G1 = ({S}, {a, b}, S, P1), with P1 given as
S → abS|a

is right-linear. The grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with productions

S → S1ab,

S1 → S1ab|S2,

S2 → a,

is left-linear. Both G1 and G2 are regular grammars.

The sequence
S ⇒ abS ⇒ ababS ⇒ ababa

is a derivation with G1. From this single instance it is easy to conjecture that
L(G1) is the language denoted by the regular expression r = (ab)∗a. In a
similar way, we can see that L(G2) is the regular language L(aab(ab)∗).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Example 3.14

The grammar G = ({S,A,B}, {a, b}, S, P ) with productions

S → A,

A → aB|λ,
B → Ab,

is not regular. Although every production is either in right-linear or left-linear
form, the grammar itself is neither right-linear nor left-linear, and therefore is
not regular. The grammar is an example of a linear grammar. A linear grammar
is a grammar in which at most one variable can occur on the right side of any
production, without restriction on the position of this variable. Clearly, a
regular grammar is always linear, but not all linear grammars are regular.

Our next goal will be to show that regular grammars are associated with regular
languages and that for every regular language there is a regular grammar.
Thus, regular grammars are another way of talking about regular languages.
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3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Right-Linear Grammars Generate Regular Languages

First, we show that a language generated by a right-linear grammar is
always regular. To do so, we construct an NFA that mimics the
derivations of a right-linear grammar. Note that the sentential forms of a
right-linear grammar have the special form in which there is exactly one
variable and it occurs as the rightmost symbol. Suppose now that we
have a step in a derivation

ab · · · cD ⇒ ab · · · cdE,

arrived at by using a production D → dE. The corresponding NFA can
imitate this step by going from state D to state E when a symbol d is
encountered. In this scheme, the state of the automaton corresponds to
the variable in the sentential form, while the part of the string already
processed is identical to the terminal pre�x of the sentential form. This
simple idea is the basis for the following theorem.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Theorem 3.3

Let G = (V, T, S, P ) be a right-linear grammar. Then L(G) is a regular
language.

Proof. We assume that V = V0, V1, . . ., that S = V0, and that we have
productions of the form V0 → v1Vi, Vi → v2Vj , . . . or Vn → vl, . . .. If w is a
string in L(G), then because of the form of the productions

V0 ⇒ v1Vi ⇒

⇒ v1v2Vj
∗⇒

∗⇒ v1v2 · · · vkVn ⇒
⇒ v1v2 · · · vkvl = w.

(1)

The automaton to be constructed will reproduce the derivation by consuming
each of these v's in turn. The initial state of the automaton will be labeled V0,
and for each variable Vi there will be a non�nal state labeled Vi. For each
production

Vi → a1a2 · · · amVj ,

the automaton will have transitions to connect Vi and Vj that is, δ will be
de�ned so that

δ∗(Vi, a1a2 · · · am) = Vj .
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3.3 Regular Grammars

For each production
Vi → a1a2 · · · am,

the corresponding transition of the automaton will be
δ∗(Vi, a1a2 · · · am) = Vf ,

where Vf is a �nal state. The intermediate states that are needed to do this are
of no concern and can be given arbitrary labels. The general scheme is shown
in the following Figure.

Vi
a1 a2 · · · Vj

am

Represents Vi → a1a2 · · · amVj

Vi
a1 a2 · · · Vf

am

Represents Vi → a1a2 · · · am

The complete automaton is assembled from such individual parts.
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3.3 Regular Grammars

Suppose now that w ∈ L(G) so that (1) is satis�ed. In the NFA there is, by
construction, a path from V0 to Vi labeled v1, a path from Vi to Vj labeled v2,
and so on, so that clearly

Vf ∈ δ∗(V0, w),

and w is accepted by M .

Conversely, assume that w is accepted by M . Because of the way in which M
was constructed, to accept w the automaton has to pass through a sequence of
states V0, Vi, . . . to Vf , using paths labeled v1, v2, . . .. Therefore, w must have
the form

w = v1v2 · · · vkvl
and the derivation

V0 ⇒ v1Vi ⇒ v1v2Vj
∗⇒ v1v2 · · · vkVk ⇒ v1v2 · · · vkvl

is possible. Hence w is in L(G), and the theorem is proved. ■
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3.3 Regular Grammars

Example 3.15

Construct a �nite automaton that accepts the language generated by the
grammar

V0 → aV1,

V1 → abV0|b,
where V0 is the start variable. We start the transition graph with vertices V0,
V1, and Vf . The �rst production rule creates an edge labeled a between V0 and
V1. For the second rule, we need to introduce an additional vertex so that there
is a path labeled ab between V1 and V0. Finally, we need to add an edge labeled
b between V1 and Vf , giving the automaton shown in the following Figure.

V0 V1
a

Vf
b

b a

The language generated by the grammar and accepted by the automaton is the
regular language L((aab)∗ab).
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3.3 Regular Grammars

Right-Linear Grammars for Regular Languages

To show that every regular language can be generated by some
right-linear grammar, we start from the DFA for the language and reverse
the construction shown in Theorem 3.3. The states of the DFA now
become the variables of the grammar, and the symbols causing the
transitions become the terminals in the productions.

Theorem 3.4
If L is a regular language on the alphabet Σ, then there exists a
right-linear grammar G = (V,Σ, S, P ) such that L = L(G).

Proof. Let M = (Q,Σ, δ, q0, F ) be a DFA that accepts L. We assume
that Q = {q0, q1, . . . , qn} and Σ = {a1, a2, . . . , am}. Construct the
right-linear grammar G = (V,Σ, S, P ) with

V = {q0, q1, . . . , qn}
and S = q0. For each transition

δ(qi, aj) = qk
of M , we put in P the production

qi → ajqk. (2)

In addition, if qk is in F , we add to P the production
qk → λ. (3)
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3.3 Regular Grammars

We �rst show that G de�ned in this way can generate every string in L.
Consider w ∈ L of the form

w = aiaj · · · akal.

For M to accept this string it must make moves via
δ(q0, ai) = qp,

δ(qp, aj) = qr,

· · ·
δ(qs, ak) = qt,

δ(qt, al) = qf ∈ F.
By construction, the grammar will have one production for each of these δ's.
Therefore, we can make the derivation

q0 ⇒ aiqp ⇒ aiajqr
∗⇒ aiaj · · · akqt ⇒

⇒ aiaj · · · akalqf ⇒ aiaj · · · akal,
(4)

with the grammar G, and w ∈ L(G). Conversely, if w ∈ L(G), then its
derivation must have the form (4). But this implies that

δ∗(q0, aiaj · · · akal) = qf ,

completing the proof. ■
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3.3 Regular Grammars

For the purpose of constructing a grammar, it is useful to note that the
restriction that M be a DFA is not essential to the proof of Theorem 3.4. With
minor modi�cation, the same construction can be used if M is an NFA.

Example 3.16

Construct a right-linear grammar for L(aab∗a). The transition function for an
NFA, together with the corresponding grammar productions, is given in the
following Figure.

δ(q0, a) = {q1} q0 → aq1

δ(q1, a) = {q2} q1 → aq2

δ(q2, b) = {q2} q2 → bq2

δ(q2, a) = {qf} q2 → aqf

qf ∈ F qf → λ

The result was obtained by simply following the construction in Theorem 3.4.
The string aaba can be derived with the constructed grammar by

q0 ⇒ aq1 ⇒ aaq2 ⇒ aabq2 ⇒ aabaqf ⇒ aaba.
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3.3 Regular Grammars

Equivalence of Regular Languages and Regular Grammars

The previous two theorems establish the connection between regular
languages and right-linear grammars. One can make a similar connection
between regular languages and left-linear grammars, thereby showing the
complete equivalence of regular grammars and regular languages.

Theorem 3.5
A language L is regular if and only if there exists a left-linear grammar G
such that L = L(G).

Proof. We only outline the main idea. Given any left-linear grammar with
productions of the form

A → Bv,
or

A → v,
we construct from it a right-linear grammar Ĝ by replacing every such
production of G with

A → vRB,
or

A → vR,
respectively. A few examples will make it clear quickly that
L(G) = (L(Ĝ))R. Next, we use the fact, which tells us that the reverse

of any regular language is also regular. Since Ĝ is right-linear, L(Ĝ) is

regular. But then so are (L(Ĝ))R and L(G). ■
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production of G with

A → vRB,
or

A → vR,
respectively. A few examples will make it clear quickly that
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L(G) = (L(Ĝ))R. Next, we use the fact, which tells us that the reverse

of any regular language is also regular. Since Ĝ is right-linear, L(Ĝ) is
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Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Equivalence of Regular Languages and Regular Grammars

The previous two theorems establish the connection between regular
languages and right-linear grammars. One can make a similar connection
between regular languages and left-linear grammars, thereby showing the
complete equivalence of regular grammars and regular languages.

Theorem 3.5
A language L is regular if and only if there exists a left-linear grammar G
such that L = L(G).

Proof. We only outline the main idea. Given any left-linear grammar with
productions of the form

A → Bv,
or

A → v,
we construct from it a right-linear grammar Ĝ by replacing every such
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regular. But then so are (L(Ĝ))R and L(G). ■
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production of G with

A → vRB,
or

A → vR,
respectively. A few examples will make it clear quickly that
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regular. But then so are (L(Ĝ))R and L(G). ■
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production of G with

A → vRB,
or

A → vR,
respectively. A few examples will make it clear quickly that
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regular. But then so are (L(Ĝ))R and L(G). ■
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Oleg Gutik Formal Languages, Automata and Codes. Lecture 10



3.3 Regular Grammars

Equivalence of Regular Languages and Regular Grammars

The previous two theorems establish the connection between regular
languages and right-linear grammars. One can make a similar connection
between regular languages and left-linear grammars, thereby showing the
complete equivalence of regular grammars and regular languages.

Theorem 3.5
A language L is regular if and only if there exists a left-linear grammar G
such that L = L(G).

Proof. We only outline the main idea. Given any left-linear grammar with
productions of the form

A → Bv,
or

A → v,
we construct from it a right-linear grammar Ĝ by replacing every such
production of G with

A → vRB,
or

A → vR,
respectively. A few examples will make it clear quickly that
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3.3 Regular Grammars
Putting Theorems 3.4 and 3.5 together, we arrive at the equivalence of regular
languages and regular grammars.

Theorem 3.6

A language L is regular if and only if there exists a regular grammar G such
that L = L(G).

We now have several ways of describing regular languages: DFA's, NFA's,
regular expressions, and regular grammars. While in some instances one or the
other of these may be most suitable, they are all equally powerful. Each gives a
complete and unambiguous de�nition of a regular language. The connection
between all these concepts is established by the four theorems in this lecture, as
shown in the following Figure.

Regular grammars

Theorem 3.3 Theorem 3.4

DFA or NFA

Theorem 3.1 Theorem 3.2

Regular expressions
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Thank You

Thank You for attention!
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