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3.2 Connections between Regular Expressions and Regular Languages
As the terminology suggests, the connection between regular languages and regular

expressions is a close one. The two concepts are essentially the same; for every regular

language there is a regular expression, and for every regular expression there is a

regular language. We will show this in two parts.

Regular Expressions Denote Regular Languages
We �rst show that if r is a regular expression, then L(r) is a regular language. Our

de�nition says that a language is regular if it is accepted by some DFA. Because of the

equivalence of NFA's and DFA's, a language is also regular if it is accepted by some

NFA. We now show that if we have any regular expression r, we can construct an NFA

that accepts L(r). The construction for this relies on the recursive de�nition for L(r).

We �rst construct simple automata for parts (1), (2), and (3) of De�nition 3.2, then

show how they can be combined to implement the more complicated parts (4), (5),

and (7).

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the following rules.

1 ∅ is a regular expression denoting the empty set,
2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then
4 L(r1 + r2) = L(r1) ∪ L(r2),
5 L(r1 · r2) = L(r1)L(r2),
6 L((r1)) = L(r1),
7 L(r∗1 ) = (L(r1))

∗.
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3.2 Regular Expressions and Regular Languages

Theorem 3.1

Let r be a regular expression. Then there exists some nondeterministic �nite
accepter that accepts L(r). Consequently, L(r) is a regular language.

Proof. We begin with automata that accept the languages for the simple regular
expressions ∅, λ, and a ∈ Σ. These are shown in Figure (a), (b), and (c), respectively.

q0 q1

(a)

q0 q1
λ

(b)

q0 q1
a

(c)

Assume now that we have automata M(r1) and M(r2) that accept languages
denoted by regular expressions r1 and r2, respectively. We need not explicitly
construct these automata, but may represent them schematically, as in the Figure.

M(r)

In this scheme, the graph vertex at the left represents the initial state, the one on the

right the �nal state.
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3.2 Regular Expressions and Regular Languages

In previous lectutes we claim that for every NFA there is an equivalent one with
a single �nal state, so we lose nothing in assuming that there is only one �nal
state. With M(r1) and M(r2) represented in this way, we then construct
automata for the regular expressions r1 + r2, r1r2, and r∗1 . The constructions
are shown in the following three Figures. As indicated in the drawings, the
initial and �nal states of the constituent machines lose their status and are
replaced by new initial and �nal states. By stringing together several such
steps, we can build automata for arbitrary complex regular expressions.

λ

λ

M(r1)

M(r2)

λ

λ

Automaton for L(r1 + r2).
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3.2 Regular Expressions and Regular Languages

It should be clear from the interpretation of the graphs in above three that this
construction works. To argue more rigorously, we can give a formal method for
constructing the states and transitions of the combined machine from the
states and transitions of the parts, then prove by induction on the number of
operators that the construction yields an automaton that accepts the language
denoted by any particular regular expression. We will not belabor this point, as
it is reasonably obvious that the results are always correct. ■
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3.2 Regular Expressions and Regular Languages

Example 3.7

Find an NFA that accepts L(r), where
r = (a+ bb)∗(ba∗ + λ).

Automata for (a+ bb) and (ba∗ + λ), constructed directly from �rst principles,
are given in the following Figure.

b b

a
M1

(a) M1 accepts L(a+ bb).

b λ

a

λ

M2

(b) M2 accepts L(ba∗ + λ).
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3.2 Regular Expressions and Regular Languages

Example 3.7 (continuation)

Putting these together using the construction in Theorem 3.1, we get the
solution in the Figure.

λ b b

a M1

Automaton accepts L((a+ bb)∗(ba∗ + λ)).

λ

λ

λ

λ b λ

a

λ

M2

λ
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3.2 Regular Expressions and Regular Languages

Regular Expressions for Regular Languages

It is intuitively reasonable that the converse of Theorem 3.1 should hold,
and that for every regular language, there should exist a corresponding
regular expression. Since any regular language has an associated NFA and
hence a transition graph, all we need to do is to �nd a regular expression
capable of generating the labels of all the walks from q0 to any �nal
state. This does not look too di�cult but it is complicated by the
existence of cycles that can often be traversed arbitrarily, in any order.
This creates a bookkeeping problem that must be handled carefully.
There are several ways to do this; one of the more intuitive approaches
requires a side trip into what are called generalized transition graphs

(GTG). Since this idea is used here in a limited way and plays no role in
our further discussion, we shall deal with it informally.
A generalized transition graph is a transition graph whose edges are
labeled with regular expressions; otherwise it is the same as the usual
transition graph. The label of any walk from the initial state to a �nal
state is the concatenation of several regular expressions, and hence itself
a regular expression. The strings denoted by such regular expressions are
a subset of the language accepted by the generalized transition graph,
with the full language being the union of all such generated subsets.
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3.2 Regular Expressions and Regular Languages

Example 3.8

The following Figure represents a generalized transition graph.

q0
a+ b

a

q1

c∗

The language accepted by it is L(a∗ + a∗(a+ b)c∗), as should be clear from an
inspection of the graph. The edge (q0, q0) labeled a is a cycle that can generate
any number of a's, that is, it represents L(a∗). We could have labeled this edge
a∗ without changing the language accepted by the graph.
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3.2 Regular Expressions and Regular Languages

The graph of any nondeterministic �nite accepter can be considered a
generalized transition graph if the edge labels are interpreted properly. An edge
labeled with a single symbol a is interpreted as an edge labeled with the
expression a, while an edge labeled with multiple symbols a, b, . . . is interpreted
as an edge labeled with the expression a+ b+ . . .. From this observation, it
follows that for every regular language, there exists a generalized transition
graph that accepts it. Conversely, every language accepted by a generalized
transition graph is regular. Since the label of every walk in a generalized
transition graph is a regular expression, this appears to be an immediate
consequence of Theorem 3.1.

Equivalence for generalized transition graphs is de�ned in terms of the
language accepted and the purpose of the next bit of discussion is to produce a
sequence of increasingly simple GTGs. In this, we will �nd it convenient to work
with complete GTGs. A complete GTG is a graph in which all edges are
present. If a GTG, after conversion from an NFA, has some edges missing, we
put them in and label them with ∅. A complete GTG with |V | vertices has
exactly |V |2 edges.
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3.2 Regular Expressions and Regular Languages

Example 3.9

The GTG in Figure (a) is not complete. Figure (b) shows how it is completed.
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3.2 Regular Expressions and Regular Languages

Suppose now that we have the simple two-state complete GTG shown in the
following Figure.

r1

r2

r3

r4

By mentally tracing through this GTG you can convince yourself that the
regular expression

r = r∗1r2(r4 + r3r
∗
1r2)

∗ (1)

covers all possible paths and so is the correct regular expression associated
with the graph.

When a GTG has more than two states, we can �nd an equivalent graph by
removing one state at a time. We shall illustrate this with an example before
going to the general method.
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3.2 Regular Expressions and Regular Languages

Example 3.10

Consider the complete GTG in the following Figure.

q1
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h

i

q2

a

b

q3

g

c

d

f

To remove q2, we �rst introduce some new edges. We

create an edge from q1 to q1 and label it e+ af∗b,

create an edge from q1 to q3 and label it h+ af∗c,

create an edge from q3 to q1 and label it i+ df∗b,

create an edge from q3 to q3 and label it g + df∗c.
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create an edge from q3 to q1 and label it i+ df∗b,

create an edge from q3 to q3 and label it g + df∗c.
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3.2 Regular Expressions and Regular Languages

Example 3.10

When this is done, we remove q2 and all associated edges. This gives the GTG
in the following Figure.

q1

e+ af∗b

q3

h+ af∗c

i+ df∗b

g + df∗c

You can explore the equivalence of the two GTGs by seeing how regular
expressions such as af∗c and e∗ab are generated.
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3.2 Regular Expressions and Regular Languages

For arbitrary GTGs we remove one state at a time until only two states are left. Then
we apply Equation (1) to get the �nal regular expression. This tends to be a lengthy
process, but it is straightforward as the following procedure shows.

Procedure: NFA-to-rex

1 Start with an NFA with states q0, q1, . . . , qn, and a single �nal state, distinct
from its initial state.

2 Convert the NFA into a complete generalized transition graph. Let rij stand for
the label of the edge from qi to qj .

3 If the GTG has only two states, with qi as its initial state and qj its �nal state,
its associated regular expression is

r = r∗iirij(rjj + rjir
∗
iirij)

∗. (2)

4 If the GTG has three states, with initial state qi, �nal state qj , and third state
qk, introduce new edges, labeled

rpq + rpkr
∗
kkrkq (3)

for p = i, j, q = i, j. When this is done, remove vertex qk and its associated
edges.

5 If the GTG has four or more states, pick a state qk to be removed. Apply rule 4
for all pairs of states (qi, qj), i ̸= k, j ̸= k. At each step apply the simplifying
rules r + ∅ = r, r∅ = ∅, ∅∗ = λ, wherever possible. When this is done, remove
state qk.

6 Repeat Steps 3 to 5 until the correct regular expression is obtained.
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3.2 Regular Expressions and Regular Languages

Example 3.11

Find a regular expression for the language
L =

{
w ∈ {a, b}∗

: na(w) is even and nb(w) is odd
}
.

An attempt to construct a regular expression directly from this description leads to all kinds of
di�culties. On the other hand, �nding an NFA for it is easy as long as we use vertex labeling
e�ectively. We label the vertices with EE to denote an even number of a's and b's, with OE
to denote an odd number of a's and an even number of b's, and so on. With this we easily get
the solution that, after conversion into a complete generalized transition graph, is in the
following Figure
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3.2 Regular Expressions and Regular Languages

Example 3.11 (continuation)

We now apply the conversion to a regular expression, using procedure NFA-to-rex. To
remove the state OE, we apply Equation (3). The edge between EE and itself will
have the label

rEE = ∅+ a∅∗a =

= aa
We continue in this manner until we get the GTG in the Figure.
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3.2 Regular Expressions and Regular Languages

Example 3.11 (continuation)

We continue in this manner until we get the GTG in the Figure.

EE

aa+ ab(bb)∗ba

EO

b+ ab(bb)∗a

b+ a(bb)∗ba

a(bb)∗a

Finally, we get the correct regular expression from Equation (2).
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3.2 Regular Expressions and Regular Languages

The process of converting an NFA to a regular expression is mechanical but
tedious. It leads to regular expressions that are complicated and of little
practical use. The main reason for presenting this process is that it gives the
idea for the proof of an important result.

Theorem 3.2

Let L be a regular language. Then there exists a regular expression r such that
L = L(r).

Proof. If L is regular, there exists an NFA for it. We can assume without loss of
generality that this NFA has a single �nal state, distinct from its initial state.
We convert this NFA to a complete generalized transition graph and apply the
procedure NFA-to-rex to it. This yields the required regular expression r.
While this can make the result plausible, a rigorous proof requires that we show
that each step in the process generates an equivalent GTG. This is a technical
matter we leave to the reader. ■
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3.2 Regular Expressions and Regular Languages

Regular Expressions for Describing Simple Patterns

In previous lectures we explored the connection between �nite accepters and
some of the simpler constituents of program ming languages, such as
identi�ers, or integers and real numbers. The relation between �nite automata
and regular expressions means that we can also use regular expressions as a way
of describing these features. This is easy to see; for example, in many
programming languages the set of integer constants is de�ned by the regular
expression

sdd∗,

where s stands for the sign, with possible values from {+,−, λ}, and d stands
for the digits 0 to 9. Integer constants are a simple case of what is sometimes
called a �pattern,� a term that refers to a set of objects having some common
properties. Pattern matching refers to assigning a given object to one of several
categories. Often, the key to successful pattern matching is �nding an e�ective
way to describe the patterns. This is a complicated and extensive area of
computer science to which we can only brie�y allude. The following example is
a simpli�ed, but nevertheless instructive, demonstration of how the ideas we
have talked about so far have been found useful in pattern matching.
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3.2 Regular Expressions and Regular Languages

Example 3.12

An application of pattern matching occurs in text editing. All text editors allow
�les to be scanned for the occurrence of a given string; most editors extend this
to permit searching for patterns. For example, the vi editor in the UNIX
operating system recognizes the command /aba∗c/ as an instruction to search
the �le for the �rst occurrence of the string ab, followed by an arbitrary number
of a's, followed by a c. We see from this example the need for pattern-matching
editors to work with regular expressions.

A challenging task in such an application is to write an e�cient program for
recognizing string patterns. Searching a �le for occurrences of a given string is
a very simple programming exercise, but here the situation is more complicated.
We have to deal with an unlimited number of arbitrarily complicated patterns;
furthermore, the patterns are not �xed beforehand, but created at run time.
The pattern description is part of the input, so the recognition process must be
�exible. To solve this problem, ideas from automata theory are often used.
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3.2 Regular Expressions and Regular Languages

Example 3.12 (continuation)

If the pattern is speci�ed by a regular expression, the pattern recognition
program can take this description and convert it into an equivalent NFA using
the construction in Theorem 3.1. Theorem 2.2 may then be used to reduce this
to a DFA. This DFA, in the form of a transition table, is e�ectively the
pattern-matching algorithm. All the programmer has to do is to provide a
driver that gives the general framework for using the table. In this way we can
automatically handle a large number of patterns that are de�ned at run time.

The e�ciency of the program must also be considered. The construction of
�nite automata from regular expressions using Theorems 2.1 and 3.1 tends to
yield automata with many states. If memory space is a problem, the state
reduction method described in Lecture 7 is helpful.
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Thank You

Thank You for attention!
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