Formal Languages, Automata and

 Codes
Oleg Gutik

Lecture 8

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol \cdot for concatenation and $*$ for star-closure in a similar way. The expression $(a+(b \cdot c))^{*}$ stands for the star-closure of $\{a\} \cup\{b c\}$, that is, the language $\{\lambda, a, b c, a a, a b c, b c a, b c b c, a a a, a a b c, \ldots\}$.

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol \cdot for concatenation and $*$ for star-closure in a similar way. The expression $(a+(b \cdot c))^{*}$ stands for the star-closure of $\{a\} \cup\{b c\}$, that is, the language $\{\lambda, a, b c, a a, a b c, b c a, b c b c, a a a, a a b c, \ldots\}$

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA.
the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol for concatenation and $*$ for star-closure in a similar way. The expression $(a+(b-c))^{*}$ stands for the star-closure of $\{a\} \cup\{b c\}$, that is, the language $\{\lambda, a, b c, a a, a b c, b c a, b c b c, a a a, a a b c, \ldots\}$

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful,
the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol \cdot for concatenation and $*$ for star-closure in a similar way. The expression $(a+(b \cdot c))^{*}$ stands for the star-closure of $\{a\} \cup\{b c\}$, that is, the language $\{\lambda, a, b c, a a, a b c, b c a, b c b c, a a a, a a b c$

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language.

```
manyinstamces, we need more concise ways of describing regular languages. in
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises
One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet }\Sigma\mathrm{ , parentheses, and the operators +, ; and *. The simplest
case is the language {a}, which will be denoted by the regular expression a
Slightly more complicated is the language {a,b,c}, for which, using the symbol
+ to denote union, we have the regular expression a+b+c. We use the
symbol for concatenation and * for star-closure in a similar way. The
expression (a+(b\cdotc)\mp@subsup{)}{}{*}\mathrm{ stands for the star-closure of {a}}\cup{bc}, that is, the
language
```


3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages.

> These representations have important practical applications, a matter that is touched on in some of the examples and exercises.

> One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators + , , and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol for concatenation and $*$ for star-closure in a similar way. The expression $(a+(b \cdot c))^{*}$ stands for the star-closure of $\{a\} \cup\{b c\}$, that is, the language

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages.
touched on in some of the examples and exercises
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators + , •, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol for concatenation and $*$ for star-closure in a similar way. The expression $(a+(b \cdot c))^{*}$ stands for the star-closure of $\{a\} \cup\{b c\}$, that is, the language

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications,
touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators + , •, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol for concatenation and $*$ for star-closure in a similar way. The expression $(a+(b \cdot c))^{*}$ stands for the star-closure of $\{a\} \cup\{b c\}$, that is the language

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions.
some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol for concatenation and $*$ for star-closure in a similar way. The expression stands for the star-closure of $\{a\} \cup\{b c\}$, that is, the language

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ,
case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol for concatenation and * for star-closure in a similar way. The expression $(a+(b \cdot c))^{*}$ stands for the star-closure of $\{a\} \cup\{b c\}$, that is, the language

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$.

Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol for concatenation and * for star-closure in a similar way. The
\qquad
language

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$,
> + to denote union, we have the regular expression $a+b+c$. We use the symbol for concatenation and $*$ for star-closure in a similar way. The expression language

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a.

+ to denote union, we have the regular expression $a+b+c$. We use the symbol for concatenation and $*$ for star-closure in a similar way. The expression language

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$,

[^0]\square
\qquad
\qquad

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$.

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol \cdot for concatenation and $*$ for star-closure in a similar way.

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol \cdot for concatenation and $*$ for star-closure in a similar way. The expression $(a+(b \cdot c))^{*}$ stands for the star-closure of $\{a\} \cup\{b c\}$,

3.1 Regular Expressions

According to our definition, a language is regular if there exists a finite accepter for it. Therefore, every regular language can be described by some DFA or some NFA. Such a description can be very useful, for example, if we want to show the logic by which we decide if a given string is in a certain language. But in many instances, we need more concise ways of describing regular languages. In this series of lectures, we look at other ways of representing regular languages. These representations have important practical applications, a matter that is touched on in some of the examples and exercises.
One way of describing regular languages is via the notation of regular expressions. This notation involves a combination of strings of symbols from some alphabet Σ, parentheses, and the operators,$+ \cdot$, and $*$. The simplest case is the language $\{a\}$, which will be denoted by the regular expression a. Slightly more complicated is the language $\{a, b, c\}$, for which, using the symbol + to denote union, we have the regular expression $a+b+c$. We use the symbol \cdot for concatenation and $*$ for star-closure in a similar way. The expression $(a+(b \cdot c))^{*}$ stands for the star-closure of $\{a\} \cup\{b c\}$, that is, the language $\{\lambda, a, b c, a a, a b c, b c a, b c b c, a a a, a a b c, \ldots\}$.

3.1 Regular Expressions

> Formal Defintition of a Regular Expression
> We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

3.1 Regular Expressions

Formal Definition of a Regular Expression

> We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

3.1 Regular Expressions

Formal Definition of a Regular Expression
We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

3.1 Regular Expressions

Formal Definition of a Regular Expression
We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

3.1 Regular Expressions

Formal Definition of a Regular Expression
We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.

3 A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$. (3) Δ string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$
(3) A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.
 primitive regular expressions by a finite number of applications of the rules in item 2.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.
(3) A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.
(3) A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

Example 3.1

\square

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.
(3) A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

Example 3.1

For $\Sigma=\{a, b, c\}$, the string
is a regular expression, since it is constructed by application of the above rules. For example, if we take $r_{1}=c$ and $r_{2}=\varnothing$, we find that $c+\varnothing$ and $(c+\varnothing)$ are also regular expressions. Repeating this, we eventually generate the whole string. On the other hand, $(a+b+)$ is not a regular expression, because there is no way it can be constructed from the primitive regular expressions.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.
(3) A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

Example 3.1

For $\Sigma=\{a, b, c\}$, the string

$$
(a+b \cdot c)^{*} \cdot(c+\varnothing)
$$

is a regular expression, since it is constructed by application of the above rules. For example, if we take $r_{1}=c$ and $r_{2}=\varnothing$, we find that $c+\varnothing$ and $(c+\varnothing)$ are also regular expressions. Repeating this, we eventually generate the whole string. On the other hand, $(a+b+)$ is not a regular expression, because there is no way it can be constructed from the primitive regular expressions.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.
(3) A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

Example 3.1

For $\Sigma=\{a, b, c\}$, the string

$$
(a+b \cdot c)^{*} \cdot(c+\varnothing)
$$

is a regular expression, since it is constructed by application of the above rules.
\qquad
also regular expressions. Repeating this, we eventually generate the whole string. On the other hand, $(a+b+)$ is not a regular expression, because there is no way it can be constructed from the primitive regular expressions.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.
(3) A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

Example 3.1

For $\Sigma=\{a, b, c\}$, the string

$$
(a+b \cdot c)^{*} \cdot(c+\varnothing)
$$

is a regular expression, since it is constructed by application of the above rules. For example, if we take $r_{1}=c$ and $r_{2}=\varnothing$,
also regular expressions. Repeating this, we eventually generate the whole string. On the other hand, $(a+b+)$ is not a regular expression, because there is no way it can be constructed from the primitive regular expressions.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.
(3) A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

Example 3.1

For $\Sigma=\{a, b, c\}$, the string

$$
(a+b \cdot c)^{*} \cdot(c+\varnothing)
$$

is a regular expression, since it is constructed by application of the above rules. For example, if we take $r_{1}=c$ and $r_{2}=\varnothing$, we find that $c+\varnothing$ and $(c+\varnothing)$ are also regular expressions.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.
(3) A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

Example 3.1

For $\Sigma=\{a, b, c\}$, the string

$$
(a+b \cdot c)^{*} \cdot(c+\varnothing)
$$

is a regular expression, since it is constructed by application of the above rules. For example, if we take $r_{1}=c$ and $r_{2}=\varnothing$, we find that $c+\varnothing$ and $(c+\varnothing)$ are also regular expressions. Repeating this, we eventually generate the whole string. no way it can be constructed from the primitive regular expressions.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.
(3) A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

Example 3.1

For $\Sigma=\{a, b, c\}$, the string

$$
(a+b \cdot c)^{*} \cdot(c+\varnothing)
$$

is a regular expression, since it is constructed by application of the above rules. For example, if we take $r_{1}=c$ and $r_{2}=\varnothing$, we find that $c+\varnothing$ and $(c+\varnothing)$ are also regular expressions. Repeating this, we eventually generate the whole string. On the other hand, $(a+b+)$ is not a regular expression, because there is no way it can be constructed from the primitive regular expressions.

3.1 Regular Expressions

Formal Definition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly applying certain recursive rules. This is similar to the way we construct familiar arithmetic expressions.

Definition 3.1

Let Σ be a given alphabet. Then
(1) \varnothing, λ, and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
(2) If r_{1} and r_{2} are regular expressions, so are $r_{1}+r_{2}, r_{1} \cdot r_{2}, r_{1}^{*}$, and $\left(r_{1}\right)$.
(3) A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in item 2.

Example 3.1

For $\Sigma=\{a, b, c\}$, the string

$$
(a+b \cdot c)^{*} \cdot(c+\varnothing)
$$

is a regular expression, since it is constructed by application of the above rules. For example, if we take $r_{1}=c$ and $r_{2}=\varnothing$, we find that $c+\varnothing$ and $(c+\varnothing)$ are also regular expressions. Repeating this, we eventually generate the whole string. On the other hand, $(a+b+)$ is not a regular expression, because there is no way it can be constructed from the primitive regular expressions.

3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3-s

The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages.
regular expression, we shall let $L(r)$ denote the language associated with r.
Definition 3.2

The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

> The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.

The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.

[^1]
3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
a For every $a \in \sum, a$ is a regular expression denoting $\{a\}$ If r_{1} and r_{2} are regular expressions, then

The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(3) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$

If r_{1} and r_{2} are regular expressions, then

(0) $L\left(r_{1}^{*}\right)=\left(L\left(r_{1}\right)\right)^{*}$.

[^2]
3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$

If r_{1} and r_{2} are regular expressions, then
(1) $L\left(r_{1}^{*}\right)=\left(L\left(r_{1}\right)\right)^{*}$.

[^3]
3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$.

If r_{1} and r_{2} are regular expressions, then

(1) $L\left(r_{1}^{*}\right)=\left(L\left(r_{1}\right)\right)^{*}$.

[^4]
3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$.

If r_{1} and r_{2} are regular expressions, then

[^5]
3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$.

If r_{1} and r_{2} are regular expressions, then
(c) $L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$,
(0) $L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) L\left(r_{2}\right)$,
(1) $L\left(r_{1}^{*}\right)=\left(L\left(r_{1}\right)\right)^{*}$.

[^6]
3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$.

If r_{1} and r_{2} are regular expressions, then
(1) $L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$,
(6) $L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) L\left(r_{2}\right)$,

[^7]
3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$.

If r_{1} and r_{2} are regular expressions, then
(1) $L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$,
(6) $L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) L\left(r_{2}\right)$,
(0) $L\left(\left(r_{1}\right)\right)=L\left(r_{1}\right)$,

The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$.

If r_{1} and r_{2} are regular expressions, then
(4) $L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$,
(6) $L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) L\left(r_{2}\right)$,
(0) $L\left(\left(r_{1}\right)\right)=L\left(r_{1}\right)$,
(0) $L\left(r_{1}^{*}\right)=\left(L\left(r_{1}\right)\right)^{*}$.

[^8]
3.1 Regular Expressions

Languages Associated with Regular Expressions
Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$.

If r_{1} and r_{2} are regular expressions, then
(1) $L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$,
(6) $L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) L\left(r_{2}\right)$,
(0) $L\left(\left(r_{1}\right)\right)=L\left(r_{1}\right)$,
(0) $L\left(r_{1}^{*}\right)=\left(L\left(r_{1}\right)\right)^{*}$.

The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$.

If r_{1} and r_{2} are regular expressions, then
(1) $L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$,
(6) $L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) L\left(r_{2}\right)$,
(0) $L\left(\left(r_{1}\right)\right)=L\left(r_{1}\right)$,
(0) $L\left(r_{1}^{*}\right)=\left(L\left(r_{1}\right)\right)^{*}$.

The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion.

3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$.

If r_{1} and r_{2} are regular expressions, then
(1) $L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$,
(6) $L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) L\left(r_{2}\right)$,
(0) $L\left(\left(r_{1}\right)\right)=L\left(r_{1}\right)$,
(0) $L\left(r_{1}^{*}\right)=\left(L\left(r_{1}\right)\right)^{*}$.

The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a regular expression, we shall let $L(r)$ denote the language associated with r.

Definition 3.2

The language $L(r)$ denoted by any regular expression r is defined by the following rules.
(1) \varnothing is a regular expression denoting the empty set,
(2) λ is a regular expression denoting $\{\lambda\}$,
(3) For every $a \in \Sigma, a$ is a regular expression denoting $\{a\}$.

If r_{1} and r_{2} are regular expressions, then
(1) $L\left(r_{1}+r_{2}\right)=L\left(r_{1}\right) \cup L\left(r_{2}\right)$,
(6) $L\left(r_{1} \cdot r_{2}\right)=L\left(r_{1}\right) L\left(r_{2}\right)$,
(0) $L\left(\left(r_{1}\right)\right)=L\left(r_{1}\right)$,
(0) $L\left(r_{1}^{*}\right)=\left(L\left(r_{1}\right)\right)^{*}$.

The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

3.1 Regular Expressions

Example 3.2

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$.

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\}
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$.

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\}
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$.

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$.

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a
language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$.

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts.
expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and
\square Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$.

But there is nothing in
Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$.

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$.

> Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$.

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$.
> different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$.

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$.
different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for r

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result,
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for r_{1}

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$.
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for r_{1}

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for r_{1}

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results.

> Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$.

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for r

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union.

[^9]
3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted,

3.1 Regular Expressions

Example 3.2

Exhibit the language $L\left(a^{*} \cdot(a+b)\right)$ in set notation.

$$
\begin{aligned}
L\left(a^{*} \cdot(a+b)\right) & =L\left(a^{*}\right) L(a+b)= \\
& =(L(a))^{*}(L(a) \cup L(b))= \\
& =\{\lambda, a, a a, a a a, \ldots\}\{a, b\}= \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\} .
\end{aligned}
$$

There is one problem with rules (4) to (7) in Definition 3.2. They define a language precisely if r_{1} and r_{2} are given, but there may be some ambiguity in breaking a complicated expression into parts. Consider, for example, the regular expression $a \cdot b+c$. We can consider this as being made up of $r_{1}=a \cdot b$ and $r_{2}=c$. In this case, we find $L(a \cdot b+c)=\{a b, c\}$. But there is nothing in Definition 3.2 to stop us from taking $r_{1}=a$ and $r_{2}=b+c$. We now get a different result, $L(a \cdot b+c)=\{a b, a c\}$. To overcome this, we could require that all expressions be fully parenthesized, but this gives cumbersome results. Instead, we use a convention familiar from mathematics and programming languages. We establish a set of precedence rules for evaluation in which star-closure precedes concatenation and concatenation precedes union. Also, the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$.

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

```
Example 3.3
```


Example 3.4

Going from an informal description or set notation to a regular expression tends to be a little harder.

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

Example 3.4

Going from an informal description or set notation to a regular expression tends
to be a little harder.

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b,
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

[^10]
3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, n a, a b b, b a, b b b,
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

[^11]
3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b,
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

Going from an informal description or set notation to a regular expression tends to be a little harder

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language
$L(r)=\{a, b b, a a, a b b, b a, b b b$,
We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

Going from an informal description or set notation to a regular expression tends to be a little harder

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

Going from an informal description or set notation to a regular expression tends to be a little harder

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

Going from an informal description or set notation to a regular expression tends to be a little harder

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r.
> stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

Going from an informal description or set notation to a regular expression tends to be a little harder

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's.

Going from an informal description or set notation to a regular expression tends to be a little harder

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b.
terminated by either the symbol a or $b b$.

Going from an informal description or set notation to a regular expression tends to be a little harder

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$,

Going from an informal description or set notation to a regular expression tends to be a little harder.

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Going from an informal description or set notation to a regular expression tends to be a little harder.

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

The expression
denotes the set of all strings with an even number of a 's followed by an odd number of b 's; that is,

Going from an informal description or set notation to a regular expression tends to be a little harder

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

The expression
denotes the set of all strings with an even number of a 's followed by an odd number of b 's; that is,

Going from an informal description or set notation to a regular expression tends to be a little harder

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

The expression

$$
r=(a a)^{*}(b b)^{*} b
$$

denotes the set of all strings with an even number of a 's followed by an odd number of b 's; that is,

Going from an informal description or set notation to a regular expression tends to be a little harder

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

The expression

$$
r=(a a)^{*}(b b)^{*} b
$$

denotes the set of all strings with an even number of a 's followed by an odd number of b 's;

Going from an informal description or set notation to a regular expression tends to be a little harder.

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

The expression

$$
r=(a a)^{*}(b b)^{*} b
$$

denotes the set of all strings with an even number of a 's followed by an odd number of b 's; that is,

Going from an informal description or set notation to a regular expression tends to be a little harder.

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

The expression

$$
r=(a a)^{*}(b b)^{*} b
$$

denotes the set of all strings with an even number of a 's followed by an odd number of b 's; that is,

$$
L(r)=\left\{a^{2 n} b^{2 m+1}: n \geqslant 0, m \geqslant 0\right\} .
$$

Going from an informal description or set notation to a regular expression tends to be a little harder

3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular expression denotes.

Example 3.3

For $\Sigma=\{a, b\}$, the expression

$$
r=(a+b)^{*}(a+b b)
$$

is regular. It denotes the language

$$
L(r)=\{a, b b, a a, a b b, b a, b b b, \ldots\} .
$$

We can see this by considering the various parts of r. The first part, $(a+b)^{*}$, stands for any string of a 's and b 's. The second part, $(a+b b)$ represents either symbol a or the double of b. Consequently, $L(r)$ is the set of all strings on $\{a, b\}$, terminated by either the symbol a or $b b$.

Example 3.4

The expression

$$
r=(a a)^{*}(b b)^{*} b
$$

denotes the set of all strings with an even number of a 's followed by an odd number of b 's; that is,

$$
L(r)=\left\{a^{2 n} b^{2 m+1}: n \geqslant 0, m \geqslant 0\right\} .
$$

Going from an informal description or set notation to a regular expression tends to be a little harder.

3.1 Regular Expressions

Example 3.5

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that
$L(r)=\left\{w \in \Sigma^{*}: w\right.$ has at least one pair of consecutive zeros $\}$.
One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*}
$$

Example 3.6

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that
$L(r)=\left\{w \in \Sigma^{*}: w\right.$ has at least one pair of consecutive zeros $\}$
One can arrive at an answer by reasoning something like this: Every string in
$L(r)$ must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by
$(0+1)^{*}$. Putting these observations together, we arrive at the solution $r=(0+1)^{*} 00(0+1)^{*}$.

Example 3.6

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that $L(r)=\left\{w \in \Sigma^{*}: w\right.$ has at least one pair of consecutive zeros $\}$.
One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution $r=(0+1)^{*} 00(0+1)^{*}$

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that $L(r)=\left\{w \in \Sigma^{*}: w\right.$ has at least one pair of consecutive zeros $\}$.
One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution $r=(0+1)^{*} 00(0+1)^{*}$

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that $L(r)=\left\{w \in \Sigma^{*}: w\right.$ has at least one pair of consecutive zeros $\}$.
One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that $L(r)=\left\{w \in \Sigma^{*}: w\right.$ has at least one pair of consecutive zeros $\}$.
One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary.
$(0+1)^{*}$. Putting these observations together, we arrive at the solution

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that $L(r)=\left\{w \in \Sigma^{*}: w\right.$ has at least one pair of consecutive zeros $\}$.
One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that $L(r)=\left\{w \in \Sigma^{*}: w\right.$ has at least one pair of consecutive zeros $\}$.
One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language
Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1 . Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the
language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1^{\prime} 's are
unaccounted for. After taking care of these special cases we arrive at the answer

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

> Even though this looks similar to Example 3.5, the answer is harder to
> construct. One helpful observation is that whenever the symbol 0 occurs, it
> must be followed immediately by the symbol 1 . Such a substring may be
> preceded and followed by an arbitrary number of 1's. This suggests that the
> answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the
> language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is
> still incomplete, because the strings ending in 0 or consisting of all 1's are
> unaccounted for. After taking care of these special cases we arrive at the answer

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1 . Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the
language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} \text {. }
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5,
> construct. One helpful observation is that whenever the symbol 0 occurs, it
> must be followed immediately by the symbol 1 . Such a substring may be
> preceded and followed by an arbitrary number of 1's. This suggests that the
> answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the
> language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is still incomplete, because the strings ending in 0 or consisting of all 1's are unaccounted for. After taking care of these special cases we arrive at the answer

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5, the answer is harder to construct.
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1 's. This suggests that the
answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the
language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5, the answer is harder to construct. One helpful observation is that whenever the symbol 0 occurs,

$$
\begin{aligned}
& \text { preceded and followed by an arbitrary number of } 1^{\prime} \text { 's. This suggests that the } \\
& \text { answer involves the repetition of strings of the form } 1 \ldots 101 \ldots 1 \text {, that is, the } \\
& \text { language denoted by the regular expression }\left(1^{*} 011^{*}\right)^{*} \text {. However, the answer is } \\
& \text { still incomplete, because the strings ending in } 0 \text { or consisting of all } 1^{\prime} \text { 's are } \\
& \text { unaccounted for. After taking care of these special cases we arrive at the answer }
\end{aligned}
$$

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5, the answer is harder to construct. One helpful observation is that whenever the symbol 0 occurs, it must be followed immediately by the symbol 1 .
> preceded and followed by an arbitrary number of 1's. This suggests that the answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is still incomplete, because the strings ending in 0 or consisting of all 1's are unaccounted for. After taking care of these special cases we arrive at the answer

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5, the answer is harder to construct. One helpful observation is that whenever the symbol 0 occurs, it must be followed immediately by the symbol 1 . Such a substring may be preceded and followed by an arbitrary number of 1's.
answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is still incomplete, because the strings ending in 0 or consisting of all 1's are unaccounted for. After taking care of these special cases we arrive at the answer

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5, the answer is harder to construct. One helpful observation is that whenever the symbol 0 occurs, it must be followed immediately by the symbol 1 . Such a substring may be preceded and followed by an arbitrary number of 1's. This suggests that the answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$,
language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is still incomplete, because the strings ending in 0 or consisting of all 1's are unaccounted for. After taking care of these special cases we arrive at the answer

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5, the answer is harder to construct. One helpful observation is that whenever the symbol 0 occurs, it must be followed immediately by the symbol 1 . Such a substring may be preceded and followed by an arbitrary number of 1's. This suggests that the answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is still incomplete, because the strings ending in 0 or consisting of all 1 's are unaccounted for. After taking care of these special cases we arrive at the answer

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5, the answer is harder to construct. One helpful observation is that whenever the symbol 0 occurs, it must be followed immediately by the symbol 1 . Such a substring may be preceded and followed by an arbitrary number of 1's. This suggests that the answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is still incomplete, unaccounted for. After taking care of these special cases we arrive at the answer

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5, the answer is harder to construct. One helpful observation is that whenever the symbol 0 occurs, it must be followed immediately by the symbol 1 . Such a substring may be preceded and followed by an arbitrary number of 1's. This suggests that the answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is still incomplete, because the strings ending in 0 or consisting of all 1's are unaccounted for.

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5, the answer is harder to construct. One helpful observation is that whenever the symbol 0 occurs, it must be followed immediately by the symbol 1 . Such a substring may be preceded and followed by an arbitrary number of 1's. This suggests that the answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is still incomplete, because the strings ending in 0 or consisting of all 1's are unaccounted for. After taking care of these special cases we arrive at the answer

3.1 Regular Expressions

Example 3.5

For $\Sigma=\{0,1\}$, give a regular expression r such that

$$
L(r)=\left\{w \in \Sigma^{*}: w \text { has at least one pair of consecutive zeros }\right\} .
$$

One can arrive at an answer by reasoning something like this: Every string in $L(r)$ must contain 00 somewhere, but what comes before and what goes after is completely arbitrary. An arbitrary string on $\{0,1\}$ can be denoted by $(0+1)^{*}$. Putting these observations together, we arrive at the solution

$$
r=(0+1)^{*} 00(0+1)^{*} .
$$

Example 3.6

Find a regular expression for the language

$$
L=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\} .
$$

Even though this looks similar to Example 3.5, the answer is harder to construct. One helpful observation is that whenever the symbol 0 occurs, it must be followed immediately by the symbol 1 . Such a substring may be preceded and followed by an arbitrary number of 1's. This suggests that the answer involves the repetition of strings of the form $1 \ldots 101 \ldots 1$, that is, the language denoted by the regular expression $\left(1^{*} 011^{*}\right)^{*}$. However, the answer is still incomplete, because the strings ending in 0 or consisting of all 1's are unaccounted for. After taking care of these special cases we arrive at the answer

$$
r=\left(1^{*} 011^{*}\right)^{*}(0+\lambda)+1^{*}(0+\lambda)
$$

3.1 Regular Expressions

Example 3.6 (continuation)

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions, but since we have little need for such manipulations we shall not pursue this.

3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions, but since we have little need for such manipulations we shall not pursue this.

3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01, the shorter expression $r=(1+01)^{*}(0+\lambda)$
might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions, but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression
might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions, but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression
might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions, but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5 . However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions, but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5 . However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions, but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions, but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.

> Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5.
the close relationship between the languages.
The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions but since we have little need for such manipulations we shall not pursue this.

3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions, but since we have little need for such manipulations we shall not pursue this.

Example 3.6 (continuation)

If we reason slightly differently, we might come up with another answer. If we see L as the repetition of the strings 1 and 01 , the shorter expression

$$
r=(1+01)^{*}(0+\lambda)
$$

might be reached. Although the two expressions look different, both answers are correct, as they denote the same language. Generally, there are an unlimited number of regular expressions for any given language.
Note that this language is the complement of the language in Example 3.5. However, the regular expressions are not very similar and do not suggest clearly the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions. We say the two regular expressions are equivalent if they denote the same language. One can derive a variety of rules for simplifying regular expressions, but since we have little need for such manipulations we shall not pursue this.

Thank You for attention!

[^0]: \leftarrow to denote union, we have the regular expression $a+b+c$. We use the

[^1]: The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

[^2]: The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

[^3]: The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

[^4]: The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

[^5]: The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

[^6]: The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

[^7]: The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

[^8]: The last four rules of this definition are used to reduce $L(r)$ to simpler components recursively; the first three are the termination conditions for this recursion. To see what language a given expression denotes, we apply these rules repeatedly.

[^9]: the symbol for concatenation may be omitted, so we can write $r_{1} r_{2}$ for $r_{1} \cdot r_{2}$.

[^10]: Going from an informal description or set notation to a regular expression tends to be a little harder

[^11]: Going from an informal description or set notation to a regular expression tends to be a little harder

