
Formal Languages, Automata and

Codes

Oleg Gutik

Lecture 7
Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Any DFA de�nes a unique language, but the converse is not true. For a given

language, there are many DFA's that accept it. There may be a considerable di�erence

in the number of states of such equivalent automata. In terms of the questions we

have considered so far, all solutions are equally satisfactory, but if the results are to be

applied in a practical setting, there may be reasons for preferring one over another.

Example 2.14

The two DFA's depicted in (a) and (b) are equivalent, as a few test strings will quickly
reveal.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Any DFA de�nes a unique language, but the converse is not true. For a given

language, there are many DFA's that accept it. There may be a considerable di�erence

in the number of states of such equivalent automata. In terms of the questions we

have considered so far, all solutions are equally satisfactory, but if the results are to be

applied in a practical setting, there may be reasons for preferring one over another.

Example 2.14

The two DFA's depicted in (a) and (b) are equivalent, as a few test strings will quickly
reveal.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Any DFA de�nes a unique language, but the converse is not true. For a given

language, there are many DFA's that accept it. There may be a considerable di�erence

in the number of states of such equivalent automata. In terms of the questions we

have considered so far, all solutions are equally satisfactory, but if the results are to be

applied in a practical setting, there may be reasons for preferring one over another.

Example 2.14

The two DFA's depicted in (a) and (b) are equivalent, as a few test strings will quickly
reveal.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Any DFA de�nes a unique language, but the converse is not true. For a given

language, there are many DFA's that accept it. There may be a considerable di�erence

in the number of states of such equivalent automata. In terms of the questions we

have considered so far, all solutions are equally satisfactory, but if the results are to be

applied in a practical setting, there may be reasons for preferring one over another.

Example 2.14

The two DFA's depicted in (a) and (b) are equivalent, as a few test strings will quickly
reveal.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Any DFA de�nes a unique language, but the converse is not true. For a given

language, there are many DFA's that accept it. There may be a considerable di�erence

in the number of states of such equivalent automata. In terms of the questions we

have considered so far, all solutions are equally satisfactory, but if the results are to be

applied in a practical setting, there may be reasons for preferring one over another.

Example 2.14

The two DFA's depicted in (a) and (b) are equivalent, as a few test strings will quickly
reveal.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Any DFA de�nes a unique language, but the converse is not true. For a given

language, there are many DFA's that accept it. There may be a considerable di�erence

in the number of states of such equivalent automata. In terms of the questions we

have considered so far, all solutions are equally satisfactory, but if the results are to be

applied in a practical setting, there may be reasons for preferring one over another.

Example 2.14

The two DFA's depicted in (a) and (b) are equivalent, as a few test strings will quickly
reveal.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Any DFA de�nes a unique language, but the converse is not true. For a given

language, there are many DFA's that accept it. There may be a considerable di�erence

in the number of states of such equivalent automata. In terms of the questions we

have considered so far, all solutions are equally satisfactory, but if the results are to be

applied in a practical setting, there may be reasons for preferring one over another.

Example 2.14

The two DFA's depicted in (a) and (b) are equivalent, as a few test strings will quickly
reveal.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Any DFA de�nes a unique language, but the converse is not true. For a given

language, there are many DFA's that accept it. There may be a considerable di�erence

in the number of states of such equivalent automata. In terms of the questions we

have considered so far, all solutions are equally satisfactory, but if the results are to be

applied in a practical setting, there may be reasons for preferring one over another.

Example 2.14

The two DFA's depicted in (a) and (b) are equivalent, as a few test strings will quickly
reveal.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Any DFA de�nes a unique language, but the converse is not true. For a given

language, there are many DFA's that accept it. There may be a considerable di�erence

in the number of states of such equivalent automata. In terms of the questions we

have considered so far, all solutions are equally satisfactory, but if the results are to be

applied in a practical setting, there may be reasons for preferring one over another.

Example 2.14

The two DFA's depicted in (a) and (b) are equivalent, as a few test strings will quickly
reveal.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Any DFA de�nes a unique language, but the converse is not true. For a given

language, there are many DFA's that accept it. There may be a considerable di�erence

in the number of states of such equivalent automata. In terms of the questions we

have considered so far, all solutions are equally satisfactory, but if the results are to be

applied in a practical setting, there may be reasons for preferring one over another.

Example 2.14

The two DFA's depicted in (a) and (b) are equivalent, as a few test strings will quickly
reveal.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.14 (continuation)

We notice some obviously unnecessary features of Figure (a). The state q5 plays
absolutely no role in the automaton since it can never be reached from the initial state
q0. Such a state is inaccessible, and it can be removed (along with all transitions
relating to it) without a�ecting the language accepted by the automaton. But even
after the removal of q5, the �rst automaton has some redundant parts. The states
reachable subsequent to the �rst move δ(q0, 0) mirror those reachable from a �rst
move δ(q0, 1). The second automaton combines these two options.

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

From a strictly theoretical point of view, there is little reason for preferring the
automaton in Figure (b) over that in Figure (a).

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

However, in terms of simplicity, the second alternative is clearly preferable.
Representation of an automaton for the purpose of computation requires space
proportional to the number of states. For storage e�ciency, it is desirable to
reduce the number of states as far as possible. We now describe an algorithm
that accomplishes this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

From a strictly theoretical point of view, there is little reason for preferring the
automaton in Figure (b) over that in Figure (a).

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

However, in terms of simplicity, the second alternative is clearly preferable.
Representation of an automaton for the purpose of computation requires space
proportional to the number of states. For storage e�ciency, it is desirable to
reduce the number of states as far as possible. We now describe an algorithm
that accomplishes this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

From a strictly theoretical point of view, there is little reason for preferring the
automaton in Figure (b) over that in Figure (a).

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

However, in terms of simplicity, the second alternative is clearly preferable.
Representation of an automaton for the purpose of computation requires space
proportional to the number of states. For storage e�ciency, it is desirable to
reduce the number of states as far as possible. We now describe an algorithm
that accomplishes this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

From a strictly theoretical point of view, there is little reason for preferring the
automaton in Figure (b) over that in Figure (a).

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

However, in terms of simplicity, the second alternative is clearly preferable.
Representation of an automaton for the purpose of computation requires space
proportional to the number of states. For storage e�ciency, it is desirable to
reduce the number of states as far as possible. We now describe an algorithm
that accomplishes this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

From a strictly theoretical point of view, there is little reason for preferring the
automaton in Figure (b) over that in Figure (a).

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

However, in terms of simplicity, the second alternative is clearly preferable.
Representation of an automaton for the purpose of computation requires space
proportional to the number of states. For storage e�ciency, it is desirable to
reduce the number of states as far as possible. We now describe an algorithm
that accomplishes this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

From a strictly theoretical point of view, there is little reason for preferring the
automaton in Figure (b) over that in Figure (a).

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

However, in terms of simplicity, the second alternative is clearly preferable.
Representation of an automaton for the purpose of computation requires space
proportional to the number of states. For storage e�ciency, it is desirable to
reduce the number of states as far as possible. We now describe an algorithm
that accomplishes this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

From a strictly theoretical point of view, there is little reason for preferring the
automaton in Figure (b) over that in Figure (a).

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

However, in terms of simplicity, the second alternative is clearly preferable.
Representation of an automaton for the purpose of computation requires space
proportional to the number of states. For storage e�ciency, it is desirable to
reduce the number of states as far as possible. We now describe an algorithm
that accomplishes this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

From a strictly theoretical point of view, there is little reason for preferring the
automaton in Figure (b) over that in Figure (a).

q0

q1
0

q2
1

0

0

q3
1

0, 1

q4
1

0, 1

q5

0

1

(a)

q0 q1

0

0, 1
q2

0, 1

1

(b)

However, in terms of simplicity, the second alternative is clearly preferable.
Representation of an automaton for the purpose of computation requires space
proportional to the number of states. For storage e�ciency, it is desirable to
reduce the number of states as far as possible. We now describe an algorithm
that accomplishes this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

De�nition 2.8

Two states p and q of a DFA are called indistinguishable if

δ∗(p, w) ∈ F implies δ∗(q, w) ∈ F,

and
δ∗(p, w) /∈ F implies δ∗(q, w) /∈ F,

for all w ∈ Σ∗. If, on the other hand, there exists some string w ∈ Σ∗ such
that

δ∗(p, w) ∈ F implies δ∗(q, w) /∈ F,

or vice versa, then the states p and q are said to be distinguishable by a string
w.

Clearly, two states are either indistinguishable or distinguishable.
Indistinguishability has the properties of an equivalence relation: If p and q are
indistinguishable and if q and r are also indistinguishable, then so are p and r,
and all three states are indistinguishable.

One method for reducing the states of a DFA is based on �nding and
combining indistinguishable states. We �rst describe a method for �nding pairs
of distinguishable states.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Procedure: mark

1 Remove all inaccessible states. This can be done by enumerating all simple
paths of the graph of the DFA starting at the initial state. Any state not
part of some path is inaccessible.

2 Consider all pairs of states (p, q). If p ∈ F and q /∈ F or vice versa, mark
the pair (p, q) as distinguishable.

3 Repeat the following step until no previously unmarked pairs are marked.
For all pairs (p, q) and all a ∈ Σ, compute δ(p, a) = pa and δ(q, a) = qa.
If the pair (pa, qa) is marked as distinguishable, mark (p, q) as
distinguishable.

We claim that this procedure constitutes an algorithm for marking all
distinguishable pairs.

Theorem 2.3

The procedure mark, applied to any DFA M = (Q,Σ, δ, q0, F ), terminates and
determines all pairs of distinguishable states.

Proof. Obviously, the procedure terminates, because there are only a �nite
number of pairs that can be marked. It is also easy to see that the states of any
pair so marked are distinguishable. The only claim that requires elaboration is
that the procedure �nds all distinguishable pairs.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Note �rst that states qi and qj are distinguishable with a string of length n if and only
if there are transitions

δ(qi, a) = qk (1)

and
δ(qj , a) = ql, (2)

for some a ∈ Σ, with qk and ql distinguishable by a string of length n− 1. We use this
�rst to show that at the completion of the nth pass through the loop in step 3, all
states distinguishable by strings of length n or less have been marked. In step 2, we
mark all pairs indistinguishable by λ, so we have a basis with n = 0 for induction. We
now assume that the claim is true for all i = 0, 1, . . . , n− 1. By this inductive
assumption, at the beginning of the nth pass through the loop, all states
distinguishable by strings of length up to n− 1 have been marked. Because of (1) and
(2) above, at the end of this pass, all states distinguishable by strings of length up to n
will be marked. By induction then, we can claim that, for any n, at the completion of
the nth pass, all pairs distinguishable by strings of length n or less have been marked.

To show that this procedure marks all distinguishable states, assume that the loop
terminates after n passes. This means that during the nth pass no new states were
marked. From (1) and (2), it then follows that there cannot be any states
distinguishable by a string of length n, but not distinguishable by any shorter string.
But if there are no states distinguishable only by strings of length n, there cannot be
any states distinguishable only by strings of length n+ 1, and so on. As a
consequence, when the loop terminates, all distinguishable pairs have been marked. ■

The procedure mark can be implemented by partitioning the states into equivalence

classes. Whenever two states are found to be distinguishable, they are immediately put

into separate equivalence classes.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.15
Consider the automaton in the following Figure.

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

In the second step of procedure mark we partition the state set into �nal and non�nal
states to get two equivalence classes {q0, q1, q3} and {q2, q4}. In the next step, when
we compute

δ(q0, 0) = q1
and

δ(q1, 0) = q2,
we recognize that q0 and q1 are distinguishable, so we put them into di�erent sets. So

{q0, q1, q3} is split into {q0} and {q1, q3}. Also, since δ(q2, 0) = q3 and δ(q4, 0) = q4,

the class {q2, q4} is split into {q2} and {q4}. The rest of the computations show that

no further splitting is needed.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Once the indistinguishability classes are found, the construction of the minimal
DFA is straightforward.

Procedure: reduce

Given a DFA M = (Q,Σ, δ, q0, F ), we construct a reduced DFA

M̂ = (Q̂,Σ, δ̂, q̂0, F̂ ) as follows.

1 Use procedure mark to generate the equivalence classes, say
{qi, qj , . . . , qk}, as described.

2 For each set {qi, qj , . . . , qk} of such indistinguishable states, create a state

labeled by ij · · · k for M̂ .

3 For each transition rule of M of the form

δ(qr, a) = qp,

�nd the sets to which qr and qp belong. If qr ∈ {qi, qj , . . . , qk} and

qp ∈ {ql, qm, . . . , qn}, add to δ̂ a rule

δ̂(ij · · · k, a) = lm · · ·n.

4 The initial state q̂0 is that state of M̂ whose label includes the symbol 0.

5 F̂ is the set of all the states whose label contains i such that qi ∈ F .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.16

Continuing with Example 2.15,

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

we create the states in the following Figure.

0 13
0, 1

2

00

4

0, 1
1

1

Since, for example, δ(q1, 0) = q2, there is an edge labeled 0 from state 13 to state 2.
The rest of the transitions are easily found, giving the minimal DFA in the Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.16

Continuing with Example 2.15,

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

we create the states in the following Figure.

0 13
0, 1

2

00

4

0, 1
1

1

Since, for example, δ(q1, 0) = q2, there is an edge labeled 0 from state 13 to state 2.
The rest of the transitions are easily found, giving the minimal DFA in the Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.16

Continuing with Example 2.15,

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

we create the states in the following Figure.

0 13
0, 1

2

00

4

0, 1
1

1

Since, for example, δ(q1, 0) = q2, there is an edge labeled 0 from state 13 to state 2.
The rest of the transitions are easily found, giving the minimal DFA in the Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.16

Continuing with Example 2.15,

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

we create the states in the following Figure.

0 13
0, 1

2

00

4

0, 1
1

1

Since, for example, δ(q1, 0) = q2, there is an edge labeled 0 from state 13 to state 2.
The rest of the transitions are easily found, giving the minimal DFA in the Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.16

Continuing with Example 2.15,

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

we create the states in the following Figure.

0 13
0, 1

2

00

4

0, 1
1

1

Since, for example, δ(q1, 0) = q2, there is an edge labeled 0 from state 13 to state 2.
The rest of the transitions are easily found, giving the minimal DFA in the Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.16

Continuing with Example 2.15,

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

we create the states in the following Figure.

0 13
0, 1

2

00

4

0, 1
1

1

Since, for example, δ(q1, 0) = q2, there is an edge labeled 0 from state 13 to state 2.
The rest of the transitions are easily found, giving the minimal DFA in the Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.16

Continuing with Example 2.15,

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

we create the states in the following Figure.

0 13
0, 1

2

00

4

0, 1
1

1

Since, for example, δ(q1, 0) = q2, there is an edge labeled 0 from state 13 to state 2.
The rest of the transitions are easily found, giving the minimal DFA in the Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.16

Continuing with Example 2.15,

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

we create the states in the following Figure.

0 13
0, 1

2

00

4

0, 1
1

1

Since, for example, δ(q1, 0) = q2, there is an edge labeled 0 from state 13 to state 2.
The rest of the transitions are easily found, giving the minimal DFA in the Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Example 2.16

Continuing with Example 2.15,

q0

q1

0

q2

00

q3

1 0

q4

1

0, 1
1

1

we create the states in the following Figure.

0 13
0, 1

2

00

4

0, 1
1

1

Since, for example, δ(q1, 0) = q2, there is an edge labeled 0 from state 13 to state 2.
The rest of the transitions are easily found, giving the minimal DFA in the Figure.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Theorem 2.4

Given any DFA M , application of the procedure reduce yields another DFA M̂
such that

L(M) = L(M̂).

Furthermore, M̂ is minimal in the sense that there is no other DFA with a
smaller number of states that also accepts L(M).

Proof. There are two parts. The �rst is to show that the DFA created by
reduce is equivalent to the original DFA. This is relatively easy and we can use
inductive arguments similar to those used in establishing the equivalence of
DFA's and NFA's. All we have to do is to show that δ∗(qi, w) = qj if and only if

the label of δ̂∗(qi, w) is of the form . . . j . . .. We shall leave this as an exercise.

The second part, to show that M̂ is minimal, is harder. Suppose M̂ has states
{p0, p1, p2, . . . , pm}, with p0 the initial state. Assume that there is an
equivalent DFA M1, with transition function δ1 and initial state q0, which is
equivalent to M̂ , but with fewer states. Since there are no inaccessible states in
M̂ , there must be distinct strings w1, w2, . . . , wm such that

δ̂∗(p0, wi) = pi, i = 1, 2, . . . ,m.

But since M1 has fewer states than M̂ , there must be at least two of these
strings, say wk and wl, such that

δ∗1(q0, wk) = δ∗1(q0, wl).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Since pk and pl are distinguishable, there must be some string x such that
δ̂∗(p0, wkx) = δ̂∗(pk, x) is a �nal state, and δ̂∗(q0, wlx) = δ̂∗(pl, x) is a

non�nal state (or vice versa). In other words, wkx is accepted by M̂ and wlx is
not. But note that

δ̂∗1(q0, wkx) = δ̂∗1(δ̂
∗
l (q0, wk), x) =

= δ̂∗1(δ̂
∗
l (q0, wl), x) =

= δ̂∗1(q0, wlx).

Thus, M1 either accepts both wkx and wlx or rejects both, contradicting the
assumption that M̂ and M1 are equivalent. This contradiction proves that M1

cannot exist. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Since pk and pl are distinguishable, there must be some string x such that
δ̂∗(p0, wkx) = δ̂∗(pk, x) is a �nal state, and δ̂∗(q0, wlx) = δ̂∗(pl, x) is a

non�nal state (or vice versa). In other words, wkx is accepted by M̂ and wlx is
not. But note that

δ̂∗1(q0, wkx) = δ̂∗1(δ̂
∗
l (q0, wk), x) =

= δ̂∗1(δ̂
∗
l (q0, wl), x) =

= δ̂∗1(q0, wlx).

Thus, M1 either accepts both wkx and wlx or rejects both, contradicting the
assumption that M̂ and M1 are equivalent. This contradiction proves that M1

cannot exist. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Since pk and pl are distinguishable, there must be some string x such that
δ̂∗(p0, wkx) = δ̂∗(pk, x) is a �nal state, and δ̂∗(q0, wlx) = δ̂∗(pl, x) is a

non�nal state (or vice versa). In other words, wkx is accepted by M̂ and wlx is
not. But note that

δ̂∗1(q0, wkx) = δ̂∗1(δ̂
∗
l (q0, wk), x) =

= δ̂∗1(δ̂
∗
l (q0, wl), x) =

= δ̂∗1(q0, wlx).

Thus, M1 either accepts both wkx and wlx or rejects both, contradicting the
assumption that M̂ and M1 are equivalent. This contradiction proves that M1

cannot exist. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Since pk and pl are distinguishable, there must be some string x such that
δ̂∗(p0, wkx) = δ̂∗(pk, x) is a �nal state, and δ̂∗(q0, wlx) = δ̂∗(pl, x) is a

non�nal state (or vice versa). In other words, wkx is accepted by M̂ and wlx is
not. But note that

δ̂∗1(q0, wkx) = δ̂∗1(δ̂
∗
l (q0, wk), x) =

= δ̂∗1(δ̂
∗
l (q0, wl), x) =

= δ̂∗1(q0, wlx).

Thus, M1 either accepts both wkx and wlx or rejects both, contradicting the
assumption that M̂ and M1 are equivalent. This contradiction proves that M1

cannot exist. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Since pk and pl are distinguishable, there must be some string x such that
δ̂∗(p0, wkx) = δ̂∗(pk, x) is a �nal state, and δ̂∗(q0, wlx) = δ̂∗(pl, x) is a

non�nal state (or vice versa). In other words, wkx is accepted by M̂ and wlx is
not. But note that

δ̂∗1(q0, wkx) = δ̂∗1(δ̂
∗
l (q0, wk), x) =

= δ̂∗1(δ̂
∗
l (q0, wl), x) =

= δ̂∗1(q0, wlx).

Thus, M1 either accepts both wkx and wlx or rejects both, contradicting the
assumption that M̂ and M1 are equivalent. This contradiction proves that M1

cannot exist. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Since pk and pl are distinguishable, there must be some string x such that
δ̂∗(p0, wkx) = δ̂∗(pk, x) is a �nal state, and δ̂∗(q0, wlx) = δ̂∗(pl, x) is a

non�nal state (or vice versa). In other words, wkx is accepted by M̂ and wlx is
not. But note that

δ̂∗1(q0, wkx) = δ̂∗1(δ̂
∗
l (q0, wk), x) =

= δ̂∗1(δ̂
∗
l (q0, wl), x) =

= δ̂∗1(q0, wlx).

Thus, M1 either accepts both wkx and wlx or rejects both, contradicting the
assumption that M̂ and M1 are equivalent. This contradiction proves that M1

cannot exist. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Since pk and pl are distinguishable, there must be some string x such that
δ̂∗(p0, wkx) = δ̂∗(pk, x) is a �nal state, and δ̂∗(q0, wlx) = δ̂∗(pl, x) is a

non�nal state (or vice versa). In other words, wkx is accepted by M̂ and wlx is
not. But note that

δ̂∗1(q0, wkx) = δ̂∗1(δ̂
∗
l (q0, wk), x) =

= δ̂∗1(δ̂
∗
l (q0, wl), x) =

= δ̂∗1(q0, wlx).

Thus, M1 either accepts both wkx and wlx or rejects both, contradicting the
assumption that M̂ and M1 are equivalent. This contradiction proves that M1

cannot exist. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Since pk and pl are distinguishable, there must be some string x such that
δ̂∗(p0, wkx) = δ̂∗(pk, x) is a �nal state, and δ̂∗(q0, wlx) = δ̂∗(pl, x) is a

non�nal state (or vice versa). In other words, wkx is accepted by M̂ and wlx is
not. But note that

δ̂∗1(q0, wkx) = δ̂∗1(δ̂
∗
l (q0, wk), x) =

= δ̂∗1(δ̂
∗
l (q0, wl), x) =

= δ̂∗1(q0, wlx).

Thus, M1 either accepts both wkx and wlx or rejects both, contradicting the
assumption that M̂ and M1 are equivalent. This contradiction proves that M1

cannot exist. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Since pk and pl are distinguishable, there must be some string x such that
δ̂∗(p0, wkx) = δ̂∗(pk, x) is a �nal state, and δ̂∗(q0, wlx) = δ̂∗(pl, x) is a

non�nal state (or vice versa). In other words, wkx is accepted by M̂ and wlx is
not. But note that

δ̂∗1(q0, wkx) = δ̂∗1(δ̂
∗
l (q0, wk), x) =

= δ̂∗1(δ̂
∗
l (q0, wl), x) =

= δ̂∗1(q0, wlx).

Thus, M1 either accepts both wkx and wlx or rejects both, contradicting the
assumption that M̂ and M1 are equivalent. This contradiction proves that M1

cannot exist. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



2.4 Reduction of the Number of States in Finite Automata

Since pk and pl are distinguishable, there must be some string x such that
δ̂∗(p0, wkx) = δ̂∗(pk, x) is a �nal state, and δ̂∗(q0, wlx) = δ̂∗(pl, x) is a

non�nal state (or vice versa). In other words, wkx is accepted by M̂ and wlx is
not. But note that

δ̂∗1(q0, wkx) = δ̂∗1(δ̂
∗
l (q0, wk), x) =

= δ̂∗1(δ̂
∗
l (q0, wl), x) =

= δ̂∗1(q0, wlx).

Thus, M1 either accepts both wkx and wlx or rejects both, contradicting the
assumption that M̂ and M1 are equivalent. This contradiction proves that M1

cannot exist. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7



Thank You

Thank You for attention!

Oleg Gutik Formal Languages, Automata and Codes. Lecture 7


