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2.3 Equivalence of deterministic and nondeterministic �nite accepters

We now come to a fundamental question. In what sense are DFA's and NFA's
di�erent? Obviously, there is a di�erence in their de�nition, but this does not
imply that there is any essential distinction between them. To explore this
question, we introduce the concept of equivalence between automata.

De�nition 2.7

Two �nite accepters, M1 and M2, are said to be equivalent if

L(M1) = L(M2),

that is, if they both accept the same language.

As mentioned, there are generally many accepters for a given language, so any
DFA or NFA has many equivalent accepters.
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

Example 2.11

The DFA shown in the following Figure

q0

0

q1 q2

0, 1

1

0

1

is equivalent to the NFA in the Figure

q0

λ

q1 q2

1

0

0, 1

because they both accept the language {(10)n : n ⩾ 0}.
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

When we compare di�erent classes of automata, the question invariably arises
whether one class is more powerful than the other. By �more powerful� we
mean that an automaton of one kind can achieve something that cannot be
done by any automaton of the other kind. Let us look at this question for �nite
accepters. Since a DFA is in essence a restricted kind of NFA, it is clear that
any language that is accepted by a DFA is also accepted by some NFA. But the
converse is not so obvious. We have added nondeterminism, so it is at least
conceivable that there is a language accepted by some NFA for which, in
principle, we cannot �nd a DFA. But it turns out that this is not so. The
classes of DFA's and NFA's are equally powerful: For every language accepted
by some NFA there is a DFA that accepts the same language.
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

This result is not obvious and certainly has to be demonstrated. The argument,
like most arguments in this book, will be constructive. This means that we can
actually give a way of converting any NFA into an equivalent DFA. The
construction is not hard to understand; once the idea is clear it becomes the
starting point for a rigorous argument. The rationale for the construction is the
following. After an NFA has read a string w, we may not know exactly what
state it will be in, but we can say that it must be in one state of a set of
possible states, say {qi, qj , . . . , qk}. An equivalent DFA after reading the same
string must be in some de�nite state. How can we make these two situations
correspond? The answer is a nice trick: Label the states of the DFA with a set
of states in such a way that, after reading w, the equivalent DFA will be in a
single state labeled {qi, qj , . . . , qk}. Since for a set of |Q| states there are
exactly 2|Q| subsets, the corresponding DFA will have a �nite number of states.

Most of the work in this suggested construction lies in the analysis of the NFA
to get the correspondence between possible states and inputs. Before getting to
the formal description of this, let us illustrate it with a simple example.
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

Example 2.12

Convert the NFA in the following Figure to an equivalent DFA.

q0 q1

a

q2

b

a λ

The NFA starts in state q0, so the initial state of the DFA will be labeled {q0}.
After reading a symbol a, the NFA can be in state q1 or, by making a
λ-transition, in state q2. Therefore, the corresponding DFA must have a state
labeled {q1, q2} and a transition

δ({q0}, a) = {q1, q2}.
In state q0, the NFA has no speci�ed transition when the input is b; therefore,

δ({q0}, b) = ∅.

A state labeled ∅ represents an impossible move for the NFA and, therefore,
means nonacceptance of the string. Consequently, this state in the DFA must
be a non�nal trap state.
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

Example 2.12 (continuation)

We have now introduced into the DFA the state {q1, q2}, so we need to �nd
the transitions out of this state. Remember that this state of the DFA
corresponds to two possible states of the NFA, so we must refer back to the
NFA. If the NFA is in state q1 and reads a symbol a, it can go to q1.
Furthermore, from q1 the NFA can make a λ-transition to q2. If, for the same
input, the NFA is in state q2, then there is no speci�ed transition. Therefore,

δ({q1, q2}, a) = {q1, q2}.

Similarly,
δ({q1, q2}, b) = {q0}.
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

Example 2.12 (continuation)

At this point, every state has all transitions de�ned. The result, shown in the
following Figure, is a DFA, equivalent to the NFA with which we started. The
NFA in the Figure accepts any string for which δ∗(q0, w) contains q1. For the
corresponding DFA to accept every such w, any state whose label includes q1
must be made a �nal state.
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

Theorem 2.2

Let L be the language accepted by a nondeterministic �nite accepter
MN = (QN ,Σ, δN , q0, FN ). Then there exists a deterministic �nite accepter
MD = (QD,Σ, δD, {q0}, FD) such that

L(MN ) = L(MD).

Proof. Given MN , we use the procedure NFA-to-DFA below to construct the
transition graph GD for MD. To understand the construction, remember that
GD has to have certain properties. Every vertex must have exactly |Σ| outgoing
edges, each labeled with a di�erent element of Σ. During the construction,
some of the edges may be missing, but the procedure continues until they are
all there.
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

Procedure NFA-to-DFA

1 Create a graph GD with vertex {q0}. Identify this vertex as the initial
vertex.

2 Repeat the following steps until no more edges are missing.

Take any vertex {qi, qj , . . . , qk} of GD that has no outgoing edge for some
a ∈ Σ. Compute δ∗N (qi, a), δ

∗
N (qj , a), . . ., δ

∗
N (qk, a). If

δ∗N (qi, a) ∪ δ∗N (qj , a) ∪ · · · ∪ δ∗N (qk, a) = {ql, qm, . . . , qn},

create a vertex for GD labeled {ql, qm, . . . , qn} if it does not already exist.

Add to GD an edge from {qi, qj , . . . , qk} to {ql, qm, . . . , qn} and label it
with a.

3 Every state of GD whose label contains any qf ∈ FN is identi�ed as a
�nal vertex.

4 If MN accepts λ, the vertex q0 in GD is also made a �nal vertex.
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

It is clear that this procedure always terminates. Each pass through the loop in
Step 2 adds an edge to GD. But GD has at most 2|QN ||Σ| edges, so that the
loop eventually stops. To show that the construction also gives the correct
answer, we argue by induction on the length of the input string.

Assume that for every v of length less than or equal to n, the presence in GN

of a walk labeled by v from q0 to qi implies that in GD there is a walk labeled
by v from {q0} to a state Qi = {. . . , qi, . . .}. Consider now any w = va and
look at a walk in GN labeled by w from q0 to ql. There must then be a walk
labeled by v from q0 to qi and an edge (or a sequence of edges) labeled by a
from qi to ql. By the inductive assumption, in GD there will be a walk labeled
v from {q0} to Qi. But by construction, there will be an edge from Qi to some
state whose label contains ql. Thus, the inductive assumption holds for all
strings of length n+ 1. As it is obviously true for n = 1, it is true for all n. The
result then is that whenever δ∗N (q0, w) contains a �nal state qf , so does the
label of δ∗D(q0, w). To complete the proof, we reverse the argument to show
that if the label of δ∗D(q0, w) contains qf , so must δ∗N (q0, w). ■

The arguments in this proof, although correct, are admittedly somewhat terse,
showing only the major steps. We shall follow this practice in the rest of the
course of lectures, emphasizing the basic ideas in a proof and omitting minor
details, which you may want to �ll in yourself.
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of a walk labeled by v from q0 to qi implies that in GD there is a walk labeled
by v from {q0} to a state Qi = {. . . , qi, . . .}. Consider now any w = va and
look at a walk in GN labeled by w from q0 to ql. There must then be a walk
labeled by v from q0 to qi and an edge (or a sequence of edges) labeled by a
from qi to ql. By the inductive assumption, in GD there will be a walk labeled
v from {q0} to Qi. But by construction, there will be an edge from Qi to some
state whose label contains ql. Thus, the inductive assumption holds for all
strings of length n+ 1. As it is obviously true for n = 1, it is true for all n. The
result then is that whenever δ∗N (q0, w) contains a �nal state qf , so does the
label of δ∗D(q0, w). To complete the proof, we reverse the argument to show
that if the label of δ∗D(q0, w) contains qf , so must δ∗N (q0, w). ■

The arguments in this proof, although correct, are admittedly somewhat terse,
showing only the major steps. We shall follow this practice in the rest of the
course of lectures, emphasizing the basic ideas in a proof and omitting minor
details, which you may want to �ll in yourself.
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Assume that for every v of length less than or equal to n, the presence in GN

of a walk labeled by v from q0 to qi implies that in GD there is a walk labeled
by v from {q0} to a state Qi = {. . . , qi, . . .}. Consider now any w = va and
look at a walk in GN labeled by w from q0 to ql. There must then be a walk
labeled by v from q0 to qi and an edge (or a sequence of edges) labeled by a
from qi to ql. By the inductive assumption, in GD there will be a walk labeled
v from {q0} to Qi. But by construction, there will be an edge from Qi to some
state whose label contains ql. Thus, the inductive assumption holds for all
strings of length n+ 1. As it is obviously true for n = 1, it is true for all n. The
result then is that whenever δ∗N (q0, w) contains a �nal state qf , so does the
label of δ∗D(q0, w). To complete the proof, we reverse the argument to show
that if the label of δ∗D(q0, w) contains qf , so must δ∗N (q0, w). ■

The arguments in this proof, although correct, are admittedly somewhat terse,
showing only the major steps. We shall follow this practice in the rest of the
course of lectures, emphasizing the basic ideas in a proof and omitting minor
details, which you may want to �ll in yourself.
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

The construction in the previous proof is tedious but important. Let us do
another example to make sure we understand all the steps.

Example 2.13

Convert the NFA in the following Figure to an equivalent DFA.

q0

0

q1 q2

1

0, 1 0, 1

Since δN (q0, 0) = {q0, q1}, we introduce the state {q0, q1} in GD and add an
edge labeled by 0 between {q0} and {q0, q1}. In the same way, considering
δN (q0, 1) = {q1} gives us the new state {q1} and an edge labeled by 1 between
it and {q0}.
There are now a number of missing edges, so we continue, using the
construction of Theorem 2.2. Looking at the state {q0, q1}, we see that there is
no outgoing edge labeled by 0, so we compute

δ∗N (q0, 0) ∪ δ∗N (q1, 0) = {q0, q1, q2}.
This gives us the new state {q0, q1, q2} and the transition

δ∗N ({q0, q1}, 0) = {q0, q1, q2}.
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q0

0

q1 q2

1

0, 1 0, 1

Since δN (q0, 0) = {q0, q1}, we introduce the state {q0, q1} in GD and add an
edge labeled by 0 between {q0} and {q0, q1}. In the same way, considering
δN (q0, 1) = {q1} gives us the new state {q1} and an edge labeled by 1 between
it and {q0}.
There are now a number of missing edges, so we continue, using the
construction of Theorem 2.2. Looking at the state {q0, q1}, we see that there is
no outgoing edge labeled by 0, so we compute

δ∗N (q0, 0) ∪ δ∗N (q1, 0) = {q0, q1, q2}.
This gives us the new state {q0, q1, q2} and the transition

δ∗N ({q0, q1}, 0) = {q0, q1, q2}.
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

Example 2.13 (continuation)

Then, using a = 1, i = 0, j = 1, k = 2,

δ∗N (q0, 1) ∪ δ∗N (q1, 1) ∪ δ∗N (q2, 1) = {q1, q2}
makes it necessary to introduce yet another state {q1, q2}. At this point, we
have the partially constructed automaton shown in the following Figure.

{q0}

{q0,q1}

0

{q1}

1

{q0,q1,q2}

0

{q1,q2}1

Oleg Gutik Formal Languages, Automata and Codes. Lecture 6



2.3 Equivalence of deterministic and nondeterministic �nite accepters

Example 2.13 (continuation)

Then, using a = 1, i = 0, j = 1, k = 2,

δ∗N (q0, 1) ∪ δ∗N (q1, 1) ∪ δ∗N (q2, 1) = {q1, q2}
makes it necessary to introduce yet another state {q1, q2}. At this point, we
have the partially constructed automaton shown in the following Figure.

{q0}

{q0,q1}

0

{q1}

1

{q0,q1,q2}

0

{q1,q2}1

Oleg Gutik Formal Languages, Automata and Codes. Lecture 6



2.3 Equivalence of deterministic and nondeterministic �nite accepters

Example 2.13 (continuation)

Then, using a = 1, i = 0, j = 1, k = 2,

δ∗N (q0, 1) ∪ δ∗N (q1, 1) ∪ δ∗N (q2, 1) = {q1, q2}
makes it necessary to introduce yet another state {q1, q2}. At this point, we
have the partially constructed automaton shown in the following Figure.

{q0}

{q0,q1}

0

{q1}

1

{q0,q1,q2}

0

{q1,q2}1

Oleg Gutik Formal Languages, Automata and Codes. Lecture 6



2.3 Equivalence of deterministic and nondeterministic �nite accepters

Example 2.13 (continuation)

Then, using a = 1, i = 0, j = 1, k = 2,

δ∗N (q0, 1) ∪ δ∗N (q1, 1) ∪ δ∗N (q2, 1) = {q1, q2}
makes it necessary to introduce yet another state {q1, q2}. At this point, we
have the partially constructed automaton shown in the following Figure.

{q0}

{q0,q1}

0

{q1}

1

{q0,q1,q2}

0

{q1,q2}1

Oleg Gutik Formal Languages, Automata and Codes. Lecture 6



2.3 Equivalence of deterministic and nondeterministic �nite accepters

Example 2.13 (continuation)

Then, using a = 1, i = 0, j = 1, k = 2,

δ∗N (q0, 1) ∪ δ∗N (q1, 1) ∪ δ∗N (q2, 1) = {q1, q2}
makes it necessary to introduce yet another state {q1, q2}. At this point, we
have the partially constructed automaton shown in the following Figure.

{q0}

{q0,q1}

0

{q1}

1

{q0,q1,q2}

0

{q1,q2}1

Oleg Gutik Formal Languages, Automata and Codes. Lecture 6



2.3 Equivalence of deterministic and nondeterministic �nite accepters

Example 2.13 (continuation)

Then, using a = 1, i = 0, j = 1, k = 2,

δ∗N (q0, 1) ∪ δ∗N (q1, 1) ∪ δ∗N (q2, 1) = {q1, q2}
makes it necessary to introduce yet another state {q1, q2}. At this point, we
have the partially constructed automaton shown in the following Figure.

{q0}

{q0,q1}

0

{q1}

1

{q0,q1,q2}

0

{q1,q2}1

Oleg Gutik Formal Languages, Automata and Codes. Lecture 6



2.3 Equivalence of deterministic and nondeterministic �nite accepters

Example 2.13 (continuation)

Since there are still some missing edges, we continue until we obtain the
complete solution in the following Figure.

{q0}

{q0,q1}

0

{q1}

1

{q0,q1,q2}

0

0

{q1,q2}1

1

{q2}
0, 1

0, 1

1

∅

1

0, 1
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2.3 Equivalence of deterministic and nondeterministic �nite accepters

One important conclusion we can draw from Theorem 2.2 is that every

language accepted by an NFA is regular.
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Thank You

Thank You for attention!
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