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2.2 Nondeterministic Finite Accepters

If you examine the automata we have seen so far, you will notice a common
feature: a unique transition is de�ned for each state and each input symbol. In
the formal de�nition, this is expressed by saying that δ is a total function. This
is the reason we call these automata deterministic. We now complicate matters
by giving some automata choices in some situations where more than one
transition is possible. We shall call such automata nondeterministic.

Nondeterminism is, at �rst sight, an unusual idea. Computers are deterministic
machines, and the element of choice seems out of place. Nevertheless,
nondeterminism is a useful concept, as we will see.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters

If you examine the automata we have seen so far, you will notice a common
feature: a unique transition is de�ned for each state and each input symbol. In
the formal de�nition, this is expressed by saying that δ is a total function. This
is the reason we call these automata deterministic. We now complicate matters
by giving some automata choices in some situations where more than one
transition is possible. We shall call such automata nondeterministic.

Nondeterminism is, at �rst sight, an unusual idea. Computers are deterministic
machines, and the element of choice seems out of place. Nevertheless,
nondeterminism is a useful concept, as we will see.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters

If you examine the automata we have seen so far, you will notice a common
feature: a unique transition is de�ned for each state and each input symbol. In
the formal de�nition, this is expressed by saying that δ is a total function. This
is the reason we call these automata deterministic. We now complicate matters
by giving some automata choices in some situations where more than one
transition is possible. We shall call such automata nondeterministic.

Nondeterminism is, at �rst sight, an unusual idea. Computers are deterministic
machines, and the element of choice seems out of place. Nevertheless,
nondeterminism is a useful concept, as we will see.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters

If you examine the automata we have seen so far, you will notice a common
feature: a unique transition is de�ned for each state and each input symbol. In
the formal de�nition, this is expressed by saying that δ is a total function. This
is the reason we call these automata deterministic. We now complicate matters
by giving some automata choices in some situations where more than one
transition is possible. We shall call such automata nondeterministic.

Nondeterminism is, at �rst sight, an unusual idea. Computers are deterministic
machines, and the element of choice seems out of place. Nevertheless,
nondeterminism is a useful concept, as we will see.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters

If you examine the automata we have seen so far, you will notice a common
feature: a unique transition is de�ned for each state and each input symbol. In
the formal de�nition, this is expressed by saying that δ is a total function. This
is the reason we call these automata deterministic. We now complicate matters
by giving some automata choices in some situations where more than one
transition is possible. We shall call such automata nondeterministic.

Nondeterminism is, at �rst sight, an unusual idea. Computers are deterministic
machines, and the element of choice seems out of place. Nevertheless,
nondeterminism is a useful concept, as we will see.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters

If you examine the automata we have seen so far, you will notice a common
feature: a unique transition is de�ned for each state and each input symbol. In
the formal de�nition, this is expressed by saying that δ is a total function. This
is the reason we call these automata deterministic. We now complicate matters
by giving some automata choices in some situations where more than one
transition is possible. We shall call such automata nondeterministic.

Nondeterminism is, at �rst sight, an unusual idea. Computers are deterministic
machines, and the element of choice seems out of place. Nevertheless,
nondeterminism is a useful concept, as we will see.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters

If you examine the automata we have seen so far, you will notice a common
feature: a unique transition is de�ned for each state and each input symbol. In
the formal de�nition, this is expressed by saying that δ is a total function. This
is the reason we call these automata deterministic. We now complicate matters
by giving some automata choices in some situations where more than one
transition is possible. We shall call such automata nondeterministic.

Nondeterminism is, at �rst sight, an unusual idea. Computers are deterministic
machines, and the element of choice seems out of place. Nevertheless,
nondeterminism is a useful concept, as we will see.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters

If you examine the automata we have seen so far, you will notice a common
feature: a unique transition is de�ned for each state and each input symbol. In
the formal de�nition, this is expressed by saying that δ is a total function. This
is the reason we call these automata deterministic. We now complicate matters
by giving some automata choices in some situations where more than one
transition is possible. We shall call such automata nondeterministic.

Nondeterminism is, at �rst sight, an unusual idea. Computers are deterministic
machines, and the element of choice seems out of place. Nevertheless,
nondeterminism is a useful concept, as we will see.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters

If you examine the automata we have seen so far, you will notice a common
feature: a unique transition is de�ned for each state and each input symbol. In
the formal de�nition, this is expressed by saying that δ is a total function. This
is the reason we call these automata deterministic. We now complicate matters
by giving some automata choices in some situations where more than one
transition is possible. We shall call such automata nondeterministic.

Nondeterminism is, at �rst sight, an unusual idea. Computers are deterministic
machines, and the element of choice seems out of place. Nevertheless,
nondeterminism is a useful concept, as we will see.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters

If you examine the automata we have seen so far, you will notice a common
feature: a unique transition is de�ned for each state and each input symbol. In
the formal de�nition, this is expressed by saying that δ is a total function. This
is the reason we call these automata deterministic. We now complicate matters
by giving some automata choices in some situations where more than one
transition is possible. We shall call such automata nondeterministic.

Nondeterminism is, at �rst sight, an unusual idea. Computers are deterministic
machines, and the element of choice seems out of place. Nevertheless,
nondeterminism is a useful concept, as we will see.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters

If you examine the automata we have seen so far, you will notice a common
feature: a unique transition is de�ned for each state and each input symbol. In
the formal de�nition, this is expressed by saying that δ is a total function. This
is the reason we call these automata deterministic. We now complicate matters
by giving some automata choices in some situations where more than one
transition is possible. We shall call such automata nondeterministic.

Nondeterminism is, at �rst sight, an unusual idea. Computers are deterministic
machines, and the element of choice seems out of place. Nevertheless,
nondeterminism is a useful concept, as we will see.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

Nondeterminism means a choice of moves for an automaton. Rather than
prescribing a unique move in each situation, we allow a set of possible moves.
Formally, we achieve this by de�ning the transition function so that its range is
a set of possible states.

De�nition 2.4

A nondeterministic �nite accepter or NFA is de�ned by the quintuple
M = (Q,Σ, δ, q0, F ).

where Q,Σ, q0, F are de�ned as for deterministic �nite accepters, but
δ : Q× (Σ ∪ {λ}) → 2Q.

Note that there are three major di�erences between this de�nition and the
de�nition of a DFA. In a nondeterministic accepter, the range of δ is in the
powerset 2Q, so that its value is not a single element of Q, but a subset of it.
This subset de�nes the set of all possible states that can be reached by the
transition. If, for instance, the current state is q1, the symbol a is read, and

δ(q1, a) = {q0, q2} ,
then either q0 or q2 could be the next state of the NFA. Also, we allow λ as the
second argument of δ. This means that the NFA can make a transition without
consuming an input symbol. Although we still assume that the input
mechanism can only travel to the right, it is possible that it is stationary on
some moves. Finally, in an NFA, the set δ(qi, a) may be empty, meaning that
there is no transition de�ned for this speci�c situation.
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2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

Like NFA's, nondeterministic accepters can be represented by transition graphs.
The vertices are determined by Q, while an edge (qi, qj) with label a is in the
graph if and only if δ(qi, a) contains qj . Note that since a may be the empty
string, there can be some edges labeled λ.

A string is accepted by an NFA if there is some sequence of possible moves
that will put the machine in a �nal state at the end of the string. A string is
rejected (that is, not accepted) only if there is no possible sequence of moves
by which a �nal state can be reached. Nondeterminism can therefore be viewed
as involving �intuitive� insight by which the best move can be chosen at every
state (assuming that the NFA wants to accept every string).
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2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

Example 2.7

Consider the transition graph in the Figure. It describes a nondeterministic
accepter since there are two transitions labeled a out of q0.

q0
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q2
a

q3
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q4
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2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

Example 2.8

A nondeterministic automaton is shown in the Figure. It is nondeterministic not
only because several edges with the same label originate from one vertex, but
also because it has a λ-transition. Some transitions, such as δ(q2, 0), are
unspeci�ed in the graph. This is to be interpreted as a transition to the empty
set, that is, δ(q2, 0) = ∅. The automaton accepts strings λ, 1010, and 101010,
but not 110 and 10100. Note that for 10 there are two alternative walks, one
leading to q0, the other to q2. Even though q2 is not a �nal state, the string is
accepted because one walk leads to a �nal state.
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2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

Again, the transition function can be extended so its second argument is a
string. We require of the extended transition function δ∗ that if

δ∗(qi, w) = Qj ,

then Qj is the set of all possible states the automaton may be in, having
started in state qi and having read w. A recursive de�nition of δ∗, analogous to
(1) and (2),

δ∗(q, λ) = q, (1)

δ∗(q, wa) = δ(δ∗(q, w), a), (2)

is possible, but not particularly enlightening. A more easily appreciated
de�nition can be made through transition graphs.

De�nition 2.5

For an NDA, the extended transition function is de�ned so that δ∗(qi, w)
contains qj if and only if there is a walk in the transition graph from qi to qj
labeled w. This holds for all qi, qj ∈ Q, and w ∈ Σ∗.
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2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

Example 2.9

The following Figure represents an NFA.

q0
a

q1 q2
λ

λ

It has several λ-transitions and some unde�ned transitions such as δ(q2, a).

Suppose we want to �nd δ∗(q1, a) and δ∗(q2, λ). There is a walk labeled a
involving two λ-transitions from q1 to itself. By using some of the λ-edges
twice, we see that there are also walks involving λ-transitions to q0 and q2.
Thus,

δ∗(q1, a) = {q0, q1, q2} .
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2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.
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immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

The de�nition of δ∗ through labeled walks is somewhat informal, so it is useful to look
at it a little more closely. De�nition 2.5 is proper, because between any vertices vi and
vj there is either a walk labeled w or there is not, indicating that δ∗ is completely
de�ned. What is perhaps a little harder to see is that this de�nition can always be
used to �nd δ∗(qi, w).

In the �rst lecture, we described an algorithm for �nding all simple paths between two
vertices. We cannot use this algorithm directly because, as Example 2.9 shows, a
labeled walk is not always a simple path. We can modify the simple path algorithm,
removing the restriction that no vertex or edge can be repeated. The new algorithm
will now generate successively all walks of length one, length two, length three, and so
on.

There is still a di�culty. Given a w, how long can a walk labeled w be? This is not

immediately obvious. In Example 2.9, the walk labeled a between q1 and q2 has length

four. The problem is caused by the λ-transitions, which lengthen the walk but do not

contribute to the label. The situation is saved by this observation: If between two

vertices vi and vj there is any walk labeled w, then there must be some walk labeled

w of length no more than Λ + (1 + Λ)|w|, where Λ is the number of λ-edges in the

graph. The argument for this is: While λ-edges may be repeated, there is always a

walk in which every repeated λ-edge is separated by an edge labeled with a nonempty

symbol. Otherwise, the walk contains a cycle labeled λ, which can be replaced by a

simple path without changing the label of the walk. We leave a formal proof of this

claim as an exercise.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

With this observation, we have a method for computing δ∗(qi, w). We evaluate
all walks of length at most Λ + (1 + Λ)|w| originating at qi. We select from
them those that are labeled w. The terminating vertices of the selected walks
are the elements of the set δ∗(qi, w).
As we have remarked, it is possible to de�ne δ∗ in a recursive fashion as was
done for the deterministic case. The result is unfortunately not very
transparent, and arguments with the extended transition function de�ned this
way are hard to follow. We prefer to use the more intuitive and more
manageable alternative in De�nition 2.5.
As for DFA's, the language accepted by an NFA is de�ned formally by the
extended transition function.

De�nition 2.6

The language L accepted by an NFA M = (Q,Σ, δ, q0, F ) is de�ned as the set
of all strings accepted in the above sense. Formally,

L(M) = {w ∈ Σ∗ : δ∗(q0, w) ∩ F ̸= ∅} .

In words, the language consists of all strings w for which there is a walk
labeled w from the initial vertex of the transition graph to some �nal vertex.
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2.2 Nondeterministic Finite Accepters: De�nition of a Nondeterministic Accepter

Example 2.10

What is the language accepted by the automaton in the Figure?

q0

λ

q1 q2

1

0

0, 1

It is easy to see from the graph that the only way the NFA can stop in a �nal
state is if the input is either a repetition of the string 10 or the empty string.
Therefore, the automaton accepts the language L = {(10)n : n ⩾ 0}.
What happens when this automaton is presented with the string w = 110?
After reading the pre�x 11, the automaton �nds itself in state q2, with the
transition δ(q2, 0) unde�ned. We call such a situation a dead con�guration, and
we can visualize it as the automaton simply stopping without further action.
But we must always keep in mind that such visualizations are imprecise and
carry with them some danger of misinterpretation. What we can say precisely is
that δ∗(q0, 110) = ∅.

Thus, no �nal state can be reached by processing w = 110, and hence the
string is not accepted.
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2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In reasoning about nondeterministic machines, we should be quite cautious in
using intuitive notions. Intuition can easily lead us astray, and we must be able
to give precise arguments to substantiate our conclusions. Nondeterminism is a
di�cult concept. Digital computers are completely deterministic; their state at
any time is uniquely predictable from the input and the initial state. Thus it is
natural to ask why we study nondeterministic machines at all. We are trying to
model real systems, so why include such nonmechanical features as choice? We
can answer this question in various ways.

Many deterministic algorithms require that one make a choice at some stage. A
typical example is a game-playing program. Frequently, the best move is not
known, but can be found using an exhaustive search with backtracking. When
several alternatives are possible, we choose one and follow it until it becomes
clear whether or not it was best. If not, we retreat to the last decision point
and explore the other choices. A nondeterministic algorithm that can make the
best choice would be able to solve the problem without backtracking, but a
deterministic one can simulate nondeterminism with some extra work. For this
reason, nondeterministic machines can serve as models of search-and-backtrack
algorithms.
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2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

Nondeterminism is sometimes helpful in solving problems easily. Look at the
NFA in the Figure.

q0

q1
a

q2
a

q3
a

q4
a

q5

a

a
It is clear that there is a choice to be made. The �rst alternative leads to the
acceptance of the string a3, while the second accepts all strings with an even
number of a's. The language accepted by the NFA is

{
a3

}
∪
{
a2n : n ⩾ 1

}
.

While it is possible to �nd a DFA for this language, the nondeterminism is
quite natural. The language is the union of two quite di�erent sets, and the
nondeterminism lets us decide at the outset which case we want. The
deterministic solution is not as obviously related to the de�nition, and so is a
little harder to �nd. As we go on, we will see other and more convincing
examples of the usefulness of nondeterminism.
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2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In the same vein, nondeterminism is an e�ective mechanism for describing
some complicated languages concisely. Notice that the de�nition of a grammar
involves a nondeterministic element. In

S → aSb|λ

we can at any point choose either the �rst or the second production. This lets
us specify many di�erent strings using only two rules.

Finally, there is a technical reason for introducing nondeterminism. As we will
see, certain theoretical results are more easily established for NFA's than for
DFA's. Our next major result indicates that there is no essential di�erence
between these two types of automata. Consequently, allowing nondeterminism
often simpli�es formal arguments without a�ecting the generality of the
conclusion.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In the same vein, nondeterminism is an e�ective mechanism for describing
some complicated languages concisely. Notice that the de�nition of a grammar
involves a nondeterministic element. In

S → aSb|λ

we can at any point choose either the �rst or the second production. This lets
us specify many di�erent strings using only two rules.

Finally, there is a technical reason for introducing nondeterminism. As we will
see, certain theoretical results are more easily established for NFA's than for
DFA's. Our next major result indicates that there is no essential di�erence
between these two types of automata. Consequently, allowing nondeterminism
often simpli�es formal arguments without a�ecting the generality of the
conclusion.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In the same vein, nondeterminism is an e�ective mechanism for describing
some complicated languages concisely. Notice that the de�nition of a grammar
involves a nondeterministic element. In

S → aSb|λ

we can at any point choose either the �rst or the second production. This lets
us specify many di�erent strings using only two rules.

Finally, there is a technical reason for introducing nondeterminism. As we will
see, certain theoretical results are more easily established for NFA's than for
DFA's. Our next major result indicates that there is no essential di�erence
between these two types of automata. Consequently, allowing nondeterminism
often simpli�es formal arguments without a�ecting the generality of the
conclusion.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In the same vein, nondeterminism is an e�ective mechanism for describing
some complicated languages concisely. Notice that the de�nition of a grammar
involves a nondeterministic element. In

S → aSb|λ

we can at any point choose either the �rst or the second production. This lets
us specify many di�erent strings using only two rules.

Finally, there is a technical reason for introducing nondeterminism. As we will
see, certain theoretical results are more easily established for NFA's than for
DFA's. Our next major result indicates that there is no essential di�erence
between these two types of automata. Consequently, allowing nondeterminism
often simpli�es formal arguments without a�ecting the generality of the
conclusion.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In the same vein, nondeterminism is an e�ective mechanism for describing
some complicated languages concisely. Notice that the de�nition of a grammar
involves a nondeterministic element. In

S → aSb|λ

we can at any point choose either the �rst or the second production. This lets
us specify many di�erent strings using only two rules.

Finally, there is a technical reason for introducing nondeterminism. As we will
see, certain theoretical results are more easily established for NFA's than for
DFA's. Our next major result indicates that there is no essential di�erence
between these two types of automata. Consequently, allowing nondeterminism
often simpli�es formal arguments without a�ecting the generality of the
conclusion.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In the same vein, nondeterminism is an e�ective mechanism for describing
some complicated languages concisely. Notice that the de�nition of a grammar
involves a nondeterministic element. In

S → aSb|λ

we can at any point choose either the �rst or the second production. This lets
us specify many di�erent strings using only two rules.

Finally, there is a technical reason for introducing nondeterminism. As we will
see, certain theoretical results are more easily established for NFA's than for
DFA's. Our next major result indicates that there is no essential di�erence
between these two types of automata. Consequently, allowing nondeterminism
often simpli�es formal arguments without a�ecting the generality of the
conclusion.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In the same vein, nondeterminism is an e�ective mechanism for describing
some complicated languages concisely. Notice that the de�nition of a grammar
involves a nondeterministic element. In

S → aSb|λ

we can at any point choose either the �rst or the second production. This lets
us specify many di�erent strings using only two rules.

Finally, there is a technical reason for introducing nondeterminism. As we will
see, certain theoretical results are more easily established for NFA's than for
DFA's. Our next major result indicates that there is no essential di�erence
between these two types of automata. Consequently, allowing nondeterminism
often simpli�es formal arguments without a�ecting the generality of the
conclusion.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In the same vein, nondeterminism is an e�ective mechanism for describing
some complicated languages concisely. Notice that the de�nition of a grammar
involves a nondeterministic element. In

S → aSb|λ

we can at any point choose either the �rst or the second production. This lets
us specify many di�erent strings using only two rules.

Finally, there is a technical reason for introducing nondeterminism. As we will
see, certain theoretical results are more easily established for NFA's than for
DFA's. Our next major result indicates that there is no essential di�erence
between these two types of automata. Consequently, allowing nondeterminism
often simpli�es formal arguments without a�ecting the generality of the
conclusion.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In the same vein, nondeterminism is an e�ective mechanism for describing
some complicated languages concisely. Notice that the de�nition of a grammar
involves a nondeterministic element. In

S → aSb|λ

we can at any point choose either the �rst or the second production. This lets
us specify many di�erent strings using only two rules.

Finally, there is a technical reason for introducing nondeterminism. As we will
see, certain theoretical results are more easily established for NFA's than for
DFA's. Our next major result indicates that there is no essential di�erence
between these two types of automata. Consequently, allowing nondeterminism
often simpli�es formal arguments without a�ecting the generality of the
conclusion.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In the same vein, nondeterminism is an e�ective mechanism for describing
some complicated languages concisely. Notice that the de�nition of a grammar
involves a nondeterministic element. In

S → aSb|λ

we can at any point choose either the �rst or the second production. This lets
us specify many di�erent strings using only two rules.

Finally, there is a technical reason for introducing nondeterminism. As we will
see, certain theoretical results are more easily established for NFA's than for
DFA's. Our next major result indicates that there is no essential di�erence
between these two types of automata. Consequently, allowing nondeterminism
often simpli�es formal arguments without a�ecting the generality of the
conclusion.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



2.2 Nondeterministic Finite Accepters: Why Nondeterminism?

In the same vein, nondeterminism is an e�ective mechanism for describing
some complicated languages concisely. Notice that the de�nition of a grammar
involves a nondeterministic element. In

S → aSb|λ

we can at any point choose either the �rst or the second production. This lets
us specify many di�erent strings using only two rules.

Finally, there is a technical reason for introducing nondeterminism. As we will
see, certain theoretical results are more easily established for NFA's than for
DFA's. Our next major result indicates that there is no essential di�erence
between these two types of automata. Consequently, allowing nondeterminism
often simpli�es formal arguments without a�ecting the generality of the
conclusion.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 5



Thank You

Thank You for attention!
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