
Formal Languages, Automata and

Codes

Oleg Gutik

Lecture 4
Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Deterministic Accepters and Transition Graphs

The �rst type of automaton we study in detail are �nite accepters that are
deterministic in their operation. We start with a precise formal de�nition of
deterministic accepters.
The following Figures represent two simple automata, with some common
features:
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Both have a �nite number of internal states.

Both process an input string, consisting of a sequence of symbols.

Both make transitions from one state to another, depending on the
current state and the current input symbol.
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Both produce some output, but in a slightly di�erent form. The
automaton in the �rst Figure only accepts or rejects the input; the
automaton in the second Figure generates an output string.
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2.1 Deterministic Finite Accepters: Deterministic Accepters and Transition Graphs

Notice also that both automata have a single well-de�ned transition at each
step. All of these features are incorporated in the following de�nition.

De�nition 2.1

A deterministic �nite accepter or DFA is de�ned by the quintuple

M = (Q,Σ, δ, q0, F ),

where

Q is a �nite set of internal states,

Σ is a �nite set of symbols called the input alphabet,

δ : Q× Σ → Q is a total function called the transition function,

q0 ∈ Q is the initial state,

F ⊆ Q is a set of �nal states.
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2.1 Deterministic Finite Accepters: Deterministic Accepters and Transition Graphs

A deterministic �nite accepter operates in the following manner. At the initial
time, it is assumed to be in the initial state q0, with its input mechanism on the
leftmost symbol of the input string. During each move of the automaton, the
input mechanism advances one position to the right, so each move consumes
one input symbol. When the end of the string is reached, the string is accepted
if the automaton is in one of its �nal states. Otherwise the string is rejected.
The input mechanism can move only from left to right and reads exactly one
symbol on each step. The transitions from one internal state to another are
governed by the transition function δ. For example, if

δ(q0, a) = q1,

then if the DFA is in state q0 and the current input symbol is a, the DFA will
go into state q1.
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2.1 Deterministic Finite Accepters: Deterministic Accepters and Transition Graphs

In discussing automata, it is essential to have a clear and intuitive picture to
work with. To visualize and represent �nite automata, we use transition graphs,
in which the vertices represent states and the edges represent transitions. The
labels on the vertices are the names of the states, while the labels on the edges
are the current values of the input symbol. For example, if q0 and q1 are
internal states of some DFA M , then the graph associated with M will have
one vertex labeled q0 and another labeled q1. An edge (q0, q1) labeled by the
letter a represents the transition δ(q0, a) = q1. The initial state will be
identi�ed by an incoming unlabeled arrow not originating at any vertex. Final
states are drawn with a double circle.

More formally, if M = (Q,Σ, δ, q0, F ) is a deterministic �nite accepter, then its
associated transition graph GM has exactly |Q| vertices, each one labeled with
a di�erent qi ∈ Q. For every transition rule δ(qi, a) = qj , the graph has an
edge (qi, qj) labeled by a. The vertex associated with q0 is called the initial

vertex, while those labeled with qf ∈ F are the �nal vertices. It is a trivial
matter to convert from the (Q,Σ, δ, q0, F ) de�nition of a DFA to its transition
graph representation and vice versa.
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2.1 Deterministic Finite Accepters: Deterministic Accepters and Transition Graphs

Example 2.1

The graph in the following Figure
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0
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0

1

1

represents the DFA
M = ({q0, q1, q2}, {0, 1}, δ, q0, {q1}),

where δ is given by

δ(q0, 0) = q0, δ(q0, 1) = q1,

δ(q1, 0) = q0, δ(q1, 1) = q2,

δ(q2, 0) = q2, δ(q2, 1) = q1.

This DFA accepts the string 01. Starting in state q0, the symbol 0 is read �rst.
Looking at the edges of the graph, we see that the automaton remains in state
q0. Next, the 1 is read and the automaton goes into state q1. We are now at the
end of the string and, at the same time, in a �nal state q1. Therefore, the string
01 is accepted. The DFA does not accept the string 00, because after reading
two consecutive 0's, it will be in state q0. By similar reasoning, we see that the
automaton will accept the strings 101, 0111, and 11001, but not 100 or 1100.
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2.1 Deterministic Finite Accepters: Deterministic Accepters and Transition Graphs

It is convenient to introduce the extended transition function δ∗ : Q×Σ∗ → Q.
The second argument of δ∗ is a string, rather than a single symbol, and its
value gives the state the automaton will be in after reading that string. For
example, if

δ(q0, a) = q1
and

δ(q1, b) = q2,
then

δ∗(q0, ab) = q2.
Formally, we can de�ne δ∗ recursively by

δ∗(q, λ) = q, (1)

δ∗(q, wa) = δ(δ∗(q, w), a), (2)

for all q ∈ Q, w ∈ Σ∗, a ∈ Σ. To see why this is appropriate, let us apply these
de�nitions to the simple case above. First, we use (2) to get

δ∗(q0, ab) = δ(δ∗(q0, a), b). (3)
But

δ∗(q0, a) = δ(δ∗(q0, λ), a) =

= δ(q0, a) =

= q1

Substituting this into (3), we get

δ∗(q0, ab) = δ(q1, b) = q2,
as expected.
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δ∗(q0, ab) = δ(q1, b) = q2,
as expected.
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2.1 Deterministic Finite Accepters: Languages and DFA's

Having made a precise de�nition of an accepter, we are now ready to de�ne
formally what we mean by an associated language. The association is obvious:
The language is the set of all the strings accepted by the automaton.

De�nition 2.2

The language accepted by a DFA M = (Q,Σ, δ, q0, F ) is the set of all strings
on Σ accepted by M . In formal notation,

L(M) = {w ∈ Σ∗ : δ∗(q0, w) ∈ F} .

Note that we require that δ, and consequently δ∗, be total functions. At each
step, a unique move is de�ned, so that we are justi�ed in calling such an
automaton deterministic. A DFA will process every string in Σ∗ and either
accept it or not accept it. Nonacceptance means that the DFA stops in a
non�nal state, so that

L(M) = {w ∈ Σ∗ : δ∗(q0, w) /∈ F} .
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2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.2

Consider the DFA in the following Figure.

q0

a

q1 q2

a, b

b a, b

In the drawing we allowed the use of two labels on a single edge. Such multiply
labeled edges are shorthand for two or more distinct transitions: The transition
is taken whenever the input symbol matches any of the edge labels.

The automaton in the Figure remains in its initial state q0 until the �rst b is
encountered. If this is also the last symbol of the input, then the string is
accepted. If not, the DFA goes into state q2, from which it can never escape.
The state q2 is a trap state. We see clearly from the graph that the automaton
accepts all strings consisting of an arbitrary number of a's, followed by a single
b. All other input strings are rejected. In set notation, the language accepted by
the automaton is

L = {anb : n ⩾ 0}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 4



2.1 Deterministic Finite Accepters: Languages and DFA's

These examples show how convenient transition graphs are for working with
�nite automata. While it is possible to base all arguments strictly on the
properties of the transition function and its extension through (1) and (2),

δ∗(q, λ) = q, (1)

δ∗(q, wa) = δ(δ∗(q, w), a), (2)

the results are hard to follow. In our discussion, we use graphs, which are more
intuitive, as far as possible. To do so, we must, of course, have some assurance
that we are not misled by the representation and that arguments based on
graphs are as valid as those that use the formal properties of δ. The following
preliminary result gives us this assurance.
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2.1 Deterministic Finite Accepters: Languages and DFA's

Theorem 2.1

Let M = (Q,Σ, δ, q0, F ) be a deterministic �nite accepter, and let GM be its
associated transition graph. Then for every qi, qj ∈ Q, and w ∈ Σ+,
δ∗(qi, w) = qj if and only if there is in GM a walk with label w from qi to qj .

Proof. This claim is fairly obvious from an examination of such simple cases as
Example 2.1. It can be proved rigorously using an induction on the length of w.
Assume that the claim is true for all strings v with |v| ⩽ n. Consider then any
w of length n+ 1 and write it as

w = va.

Suppose now that δ∗(qi, v) = qk. Since |v| = n, there must be a walk in GM

labeled v from qi to qk. But if δ
∗(qi, w) = qj , then M must have a transition

δ(qk, a) = qj , so that by construction GM has an edge (qk, qj) with label a.
Thus, there is a walk in GM labeled va = w between qi and qj . Since the result
is obviously true for n = 1, we can claim by induction that, for every w ∈ Σ+,

δ∗(qi, w) = qj (4)

implies that there is a walk in GM from qi to qj labeled w.

The argument can be turned around in a straightforward way to show that the
existence of such a path implies (4), thus completing the proof. ■
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2.1 Deterministic Finite Accepters: Languages and DFA's

Again, the result of the theorem is so intuitively obvious that a formal proof
seems unnecessary. We went through the details for two reasons. The �rst is
that it is a simple, yet typical example of an inductive proof in connection with
automata. The second is that the result will be used over and over, so stating
and proving it as a theorem lets us argue quite con�dently using graphs. This
makes our examples and proofs more transparent than they would be if we used
the properties of δ∗.
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2.1 Deterministic Finite Accepters: Languages and DFA's

While graphs are convenient for visualizing automata, other representations are
also useful. For example, we can represent the function δ as a table. The table
in the Figure

q2

q1

q0

q2

q2

q0

a

q2

q2

q1

b

is equivalent to the following Figure

q0

a

q1 q2

a, b

b a, b

Here the row label is the current state, while the column label represents the
current input symbol. The entry in the table de�nes the next state.
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2.1 Deterministic Finite Accepters: Languages and DFA's

It is apparent from this example that a DFA can easily be implemented as a
computer program; for example, as a simple table-lookup or as a sequence of if
statements. The best implementation or representation depends on the speci�c
application. Transition graphs are very convenient for the kinds of arguments
we want to make here, so we use them in most of our discussions.

In constructing automata for languages de�ned informally, we employ reasoning
similar to that for programming in higher-level languages. But the programming
of a DFA is tedious and sometimes conceptually complicated by the fact that
such an automaton has few powerful features.
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2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.3
Find a deterministic �nite accepter that recognizes the set of all strings on
Σ = {a, b} starting with the pre�x ab. The only issue here is the �rst two
symbols in the string; after they have been read, no further decisions are
needed. Still, the automaton has to process the whole string before its decision
is made. We can therefore solve the problem with an automaton that has four
states: an initial state, two states for recognizing ab ending in a �nal trap state,
and one non�nal trap state. If the �rst symbol is the letter a and the second is
the letter b, the automaton goes to the �nal trap state, where it will stay since
the rest of the input does not matter. On the other hand, if the �rst symbol is
not the letter a or the second one is not the letter b, the automaton enters the
non�nal trap state. The simple solution is shown in the following Figure.

q0 q1 q2
a, ba

b

b

a

q3

a, b
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2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.4

Find a DFA that accepts all the strings on {0, 1}, except those containing the
substring 001.

In deciding whether the substring 001 has occurred, we need to know not only
the current input symbol, but we also need to remember whether or not it has
been preceded by one or two 0's. We can keep track of this by putting the
automaton into speci�c states and labeling them accordingly. Like variable
names in a programming language, state names are arbitrary and can be chosen
for mnemonic reasons. For example, the state in which two 0's were the
immediately preceding symbols can be labeled simply 00.

If the string starts with 001, then it must be rejected. This implies that there
must be a path labeled 001 from the initial state to a non�nal state. For
convenience, this non�nal state is labeled 001. This state must be a trap state,
because later symbols do not matter. All other states are accepting states.

This gives us the basic structure of the solution, but we still must add
provisions for the substring 001 occurring in the middle of the input. We must
de�ne Q and δ so that whatever we need to make the correct decision is
remembered by the automaton. In this case, when a symbol is read, we need to
know some part of the string to the left, for example, whether or not the two
previous symbols were 00.
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2.1 Deterministic Finite Accepters: Languages and DFA's

Example 2.4 (continuation)

If we label the states with the relevant symbols, it is very easy to see what the
transitions must be. For example,

δ(00, 0) = 00

because this situation arises only if there are three consecutive 0's. We are only
interested in the last two, a fact we remember by keeping the DFA in the state
00. A complete solution is shown in the following Figure.

λ

1

0

0

1

00

0

0
001

1

0, 1

We see from this example how useful mnemonic labels on the states are for
keeping track of things. Trace a few strings, such as 100100 and 1010100, to
see that the solution is indeed correct.
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2.1 Deterministic Finite Accepters: Regular Languages

Every �nite automaton accepts some language. If we consider all possible �nite
automata, we get a set of languages associated with them. We shall call such a
set of languages a family. The family of languages that is accepted by
deterministic �nite accepters is quite limited. The structure and properties of
the languages in this family will become clearer as our study proceeds; for the
moment we will simply attach a name to this family.

De�nition 2.2

A language L is called regular if and only if there exists some deterministic
�nite accepter M such that

L = L(M).

Example 2.5

Show that the language
L = {awa : w ∈ {a, b}∗}

is regular.

To show that this or any other language is regular, all we have to do is �nd a
DFA for it. The construction of a DFA for this language is similar to Example
2.3, but a little more complicated. What this DFA must do is check whether a
string begins and ends with the letter a; what is between is immaterial. The
solution is complicated by the fact that there is no explicit way of testing the
end of the string.
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De�nition 2.2

A language L is called regular if and only if there exists some deterministic
�nite accepter M such that

L = L(M).

Example 2.5

Show that the language
L = {awa : w ∈ {a, b}∗}

is regular.

To show that this or any other language is regular, all we have to do is �nd a
DFA for it. The construction of a DFA for this language is similar to Example
2.3, but a little more complicated. What this DFA must do is check whether a
string begins and ends with the letter a; what is between is immaterial. The
solution is complicated by the fact that there is no explicit way of testing the
end of the string.
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2.1 Deterministic Finite Accepters: Regular Languages

Example 2.5 (continuation)

This di�culty is overcome by simply putting the DFA into a �nal state
whenever the second a is encountered. If this is not the end of the string, and
another b is found, it will take the DFA out of the �nal state. Scanning
continues in this way, each a taking the automaton back to its �nal state. The
complete solution is shown in the Figure below.

q0 q2
a

b

q3

a

a

b

q1

b

a, b

Again, trace a few examples to see why this works. After one or two tests, it
will be obvious that the DFA accepts a string if and only if it begins and ends
with the letter a. Since we have constructed a DFA for the language, we can
claim that, by de�nition, the language is regular.
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2.1 Deterministic Finite Accepters: Regular Languages

Example 2.6

Let L be the language in Example 2.5:
L = {awa : w ∈ {a, b}∗} .

Show that L2 is regular. Again we show that the language is regular by
constructing a DFA for it. We can write an explicit expression for L2, namely,

L2 = {aw1aaw2a : w1, w2 ∈ {a, b}∗} .

q0 q2
a

b

q3

a

b

q1

b

a, b

q4

b

a
q5

a

a

b
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2.1 Deterministic Finite Accepters: Regular Languages

Example 2.6 (continuation)

Therefore, we need a DFA that recognizes two consecutive strings of essentially
the same form (but not necessarily identical in value). The diagram in the
Figure of Example 2.5 can be used as a starting point, but the vertex q3 has to
be modi�ed.

q0 q2
a

b

q3

a

a

b

q1

b

a, b

This state can no longer be �nal because, at this point, we must start to look
for a second substring of the form awa. To recognize the second substring, we
replicate the states of the �rst part (with new names), with q3 as the beginning
of the second part. Since the complete string can be broken into its constituent
parts wherever aa occurs, we let the �rst occurrence of two consecutive a's be
the trigger that gets the automaton into its second part.
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2.1 Deterministic Finite Accepters: Regular Languages

Example 2.6 (continuation)

We can do this by making δ(q3, a) = q4. The complete solution is in the
Figure below.

q0 q2
a

b

q3

a

b

q1

b

a, b

q4

b

a
q5

a

a

b

This DFA accepts L2, which is therefore regular.

The last example suggests the conjecture that if a language L is regular, so are
L2, L3, . . .. We shall see later that this is indeed correct.
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Thank You

Thank You for attention!
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