
Formal Languages, Automata and

Codes

Oleg Gutik

Lecture 3
Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Although we stress the abstract and mathematical nature of formal languages
and automata, it turns out that these concepts have widespread applications in
computer science and are, in fact, a common theme that connects many
specialty areas. In this lecture, we present some simple examples to give the
student some assurance that what we study here is not just a collection of
abstractions, but is something that helps us understand many important, real
problems.

Formal languages and grammars are used widely in connection with
programming languages. In most of our programming, we work with a more or
less intuitive understanding of the language in which we write. Occasionally
though, when using an unfamiliar feature, we may need to refer to precise
descriptions such as the syntax diagrams found in most programming texts. If
we write a compiler, or if we wish to reason about the correctness of a
program, a precise description of the language is needed at almost every step.
Among the ways in which programming languages can be de�ned precisely,
grammars are perhaps the most widely used.

The grammars that describe a typical language like Pascal or C are very
extensive. For an example, let us take a smaller language that is part of a larger
one.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15

The rules for variable identi�ers in C are

1 An identi�er is a sequence of letters, digits, and underscores.

2 An identi�er must start with a letter or an underscore.

3 Identi�ers allow upper- and lower-case letters.

Formally, these rules can be described by a grammar.

⟨id⟩ → ⟨letter⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩
⟨rest⟩ → ⟨letter⟩⟨rest⟩|⟨digit⟩⟨rest⟩|⟨undrscr⟩⟨rest⟩|λ
⟨letter⟩ → a|b| . . . |z|A|B| . . . |Z
⟨undrscr⟩ → −

In this grammar, the variables are ⟨id⟩, ⟨letter⟩, ⟨digit⟩, ⟨undrscr⟩, and ⟨rest⟩.
The letters, digits, and the underscore are terminals. A derivation of a0 is

⟨id⟩ ⇒ ⟨letter⟩⟨rest⟩
⇒ a⟨rest⟩
⇒ a⟨digit⟩⟨rest⟩
⇒ a0⟨rest⟩
⇒ a0.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.15 (continuation)

The de�nition of programming languages through grammars is common and
very useful. But there are alternatives that are often convenient. For example,
we can describe a language by an accepter, taking every string that is accepted
as part of the language. To talk about this in a precise way, we will need to
give a more formal de�nition of an automaton. We shall do this shortly; for the
moment, let us proceed in a more intuitive way.

An automaton can be represented by a graph in which the vertices give the
internal states and the edges transitions. The labels on the edges show what
happens (in terms of input and output) during the transition. For example, the
following Figure represents a transition from State 1 to State 2, which is taken
when the input symbol is a.

1 2
a

With this intuitive picture in mind, let us look at another way of describing C
identi�ers. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.16

The following Figure is an automaton that accepts all legal C identi�ers.

1start 2

3

letter or undrscr

digit

letter, digit, or undrscr

We assume that initially the automaton is in State 1; we indicate this by
drawing an arrow (not originating in any vertex) to this state. As always, the
string to be examined is read left to right, one character at each step. When the
�rst symbol is a letter or an underscore, the automaton goes into State 2, after
which the rest of the string is immaterial. State 2 therefore represents the �yes�
state of the accepter. Conversely, if the �rst symbol is a digit, the automaton
will go into State 3, the �no� state, and remain there. In our solution, we
assume that no input other than letters, digits, or underscores is possible. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =

n∑
i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =

n∑
i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =

n∑
i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =

n∑
i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =

n∑
i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =

n∑
i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =

n∑
i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =

n∑
i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =
n∑

i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =
n∑

i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =
n∑

i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =
n∑

i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =
n∑

i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =
n∑

i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Compilers and other translators that convert a program from one language to
another make extensive use of the ideas touched on in these examples.
Programming languages can be de�ned precisely through grammars, as in
Example 1.15, and both grammars and automata play a fundamental role in the
decision processes by which a speci�c piece of code is accepted as satisfying
the conditions of a programming language. The above example gives a �rst
hint of how this is done; subsequent examples will expand on this observation.

The following example previews transducers.

Example 1.17

A binary adder is an integral part of any general-purpose computer. Such an
adder takes two bit strings representing numbers and produces their sum as
output. For simplicity, let us assume that we are dealing only with positive
integers and that we use a representation in which

x = a0a1 · · · an

stands for the integer

v(x) =
n∑

i=0

ai2
i.

This is the usual binary representation in reverse.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A serial adder processes two such numbers x = a0a1 · · · an, and
y = b0b1 · · · bn, bit by bit, starting at the left end. Each bit addition creates a
digit for the sum as well as a carry digit for the next higher position. A binary
addition table (see Figure below) summarizes the process.

1

0

0 1

0

No carry

1

No carry

1

No carry

0

Carry

bi

ai

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A serial adder processes two such numbers x = a0a1 · · · an, and
y = b0b1 · · · bn, bit by bit, starting at the left end. Each bit addition creates a
digit for the sum as well as a carry digit for the next higher position. A binary
addition table (see Figure below) summarizes the process.

1

0

0 1

0

No carry

1

No carry

1

No carry

0

Carry

bi

ai

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A serial adder processes two such numbers x = a0a1 · · · an, and
y = b0b1 · · · bn, bit by bit, starting at the left end. Each bit addition creates a
digit for the sum as well as a carry digit for the next higher position. A binary
addition table (see Figure below) summarizes the process.

1

0

0 1

0

No carry

1

No carry

1

No carry

0

Carry

bi

ai

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A serial adder processes two such numbers x = a0a1 · · · an, and
y = b0b1 · · · bn, bit by bit, starting at the left end. Each bit addition creates a
digit for the sum as well as a carry digit for the next higher position. A binary
addition table (see Figure below) summarizes the process.

1

0

0 1

0

No carry

1

No carry

1

No carry

0

Carry

bi

ai

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A serial adder processes two such numbers x = a0a1 · · · an, and
y = b0b1 · · · bn, bit by bit, starting at the left end. Each bit addition creates a
digit for the sum as well as a carry digit for the next higher position. A binary
addition table (see Figure below) summarizes the process.

1

0

0 1

0

No carry

1

No carry

1

No carry

0

Carry

bi

ai

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A serial adder processes two such numbers x = a0a1 · · · an, and
y = b0b1 · · · bn, bit by bit, starting at the left end. Each bit addition creates a
digit for the sum as well as a carry digit for the next higher position. A binary
addition table (see Figure below) summarizes the process.

1

0

0 1

0

No carry

1

No carry

1

No carry

0

Carry

bi

ai

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A block diagram of the kind we saw when we �rst studied computers is given in
the following Figure.

Serial adder

Carry

Sum bit di

bi

ai

It tells us that an adder is a box that accepts two bits and produces their sum
bit and a possible carry. It describes what an adder does, but explains little
about its internal workings. An automaton (now a transducer) can make this
much more explicit.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A block diagram of the kind we saw when we �rst studied computers is given in
the following Figure.

Serial adder

Carry

Sum bit di

bi

ai

It tells us that an adder is a box that accepts two bits and produces their sum
bit and a possible carry. It describes what an adder does, but explains little
about its internal workings. An automaton (now a transducer) can make this
much more explicit.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A block diagram of the kind we saw when we �rst studied computers is given in
the following Figure.

Serial adder

Carry

Sum bit di

bi

ai

It tells us that an adder is a box that accepts two bits and produces their sum
bit and a possible carry. It describes what an adder does, but explains little
about its internal workings. An automaton (now a transducer) can make this
much more explicit.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A block diagram of the kind we saw when we �rst studied computers is given in
the following Figure.

Serial adder

Carry

Sum bit di

bi

ai

It tells us that an adder is a box that accepts two bits and produces their sum
bit and a possible carry. It describes what an adder does, but explains little
about its internal workings. An automaton (now a transducer) can make this
much more explicit.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A block diagram of the kind we saw when we �rst studied computers is given in
the following Figure.

Serial adder

Carry

Sum bit di

bi

ai

It tells us that an adder is a box that accepts two bits and produces their sum
bit and a possible carry. It describes what an adder does, but explains little
about its internal workings. An automaton (now a transducer) can make this
much more explicit.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A block diagram of the kind we saw when we �rst studied computers is given in
the following Figure.

Serial adder

Carry

Sum bit di

bi

ai

It tells us that an adder is a box that accepts two bits and produces their sum
bit and a possible carry. It describes what an adder does, but explains little
about its internal workings. An automaton (now a transducer) can make this
much more explicit.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A block diagram of the kind we saw when we �rst studied computers is given in
the following Figure.

Serial adder

Carry

Sum bit di

bi

ai

It tells us that an adder is a box that accepts two bits and produces their sum
bit and a possible carry. It describes what an adder does, but explains little
about its internal workings. An automaton (now a transducer) can make this
much more explicit.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

A block diagram of the kind we saw when we �rst studied computers is given in
the following Figure.

Serial adder

Carry

Sum bit di

bi

ai

It tells us that an adder is a box that accepts two bits and produces their sum
bit and a possible carry. It describes what an adder does, but explains little
about its internal workings. An automaton (now a transducer) can make this
much more explicit.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

The input to the transducer are the bit pairs (ai, bi); the output will be the
sum bit di. Again, we represent the automaton by a graph now labeling the
edges (ai, bi)/di. The carry from one step to the next is remembered by the
automaton via two internal states labeled �carry� and �no carry�. Initially, the
transducer will be in state �no carry�. It will remain in this state until a bit pair
(1, 1) is encountered; this will generate a carry that takes the automaton into
the �carry� state. The presence of a carry is then taken into account when the
next bit pair is read. A complete picture of a serial adder is given in the Figure.

No carry

(0, 0)/0
(0, 1)/1

(1, 0)/1

Carry

(0, 1)/0
(1, 0)/0

(1, 1)/1

(1, 1)/0

(0, 0)/1

Follow this through with a few examples to convince yourself that it works
correctly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

As this example indicates, the automaton serves as a bridge between the very
high-level, functional description of a circuit and its logical implementation
through transistors, gates, and �ip-�ops. The automaton clearly shows the
decision logic, yet it is formal enough to lend itself to precise mathematical
manipulation. For this reason, digital design methods rely heavily on concepts
from automata theory.

■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

As this example indicates, the automaton serves as a bridge between the very
high-level, functional description of a circuit and its logical implementation
through transistors, gates, and �ip-�ops. The automaton clearly shows the
decision logic, yet it is formal enough to lend itself to precise mathematical
manipulation. For this reason, digital design methods rely heavily on concepts
from automata theory.

■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

As this example indicates, the automaton serves as a bridge between the very
high-level, functional description of a circuit and its logical implementation
through transistors, gates, and �ip-�ops. The automaton clearly shows the
decision logic, yet it is formal enough to lend itself to precise mathematical
manipulation. For this reason, digital design methods rely heavily on concepts
from automata theory.

■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

As this example indicates, the automaton serves as a bridge between the very
high-level, functional description of a circuit and its logical implementation
through transistors, gates, and �ip-�ops. The automaton clearly shows the
decision logic, yet it is formal enough to lend itself to precise mathematical
manipulation. For this reason, digital design methods rely heavily on concepts
from automata theory.

■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

As this example indicates, the automaton serves as a bridge between the very
high-level, functional description of a circuit and its logical implementation
through transistors, gates, and �ip-�ops. The automaton clearly shows the
decision logic, yet it is formal enough to lend itself to precise mathematical
manipulation. For this reason, digital design methods rely heavily on concepts
from automata theory.

■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

As this example indicates, the automaton serves as a bridge between the very
high-level, functional description of a circuit and its logical implementation
through transistors, gates, and �ip-�ops. The automaton clearly shows the
decision logic, yet it is formal enough to lend itself to precise mathematical
manipulation. For this reason, digital design methods rely heavily on concepts
from automata theory.

■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

As this example indicates, the automaton serves as a bridge between the very
high-level, functional description of a circuit and its logical implementation
through transistors, gates, and �ip-�ops. The automaton clearly shows the
decision logic, yet it is formal enough to lend itself to precise mathematical
manipulation. For this reason, digital design methods rely heavily on concepts
from automata theory.

■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

As this example indicates, the automaton serves as a bridge between the very
high-level, functional description of a circuit and its logical implementation
through transistors, gates, and �ip-�ops. The automaton clearly shows the
decision logic, yet it is formal enough to lend itself to precise mathematical
manipulation. For this reason, digital design methods rely heavily on concepts
from automata theory.

■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

1.3 SOME APPLICATIONS

Example 1.17 (continuation)

As this example indicates, the automaton serves as a bridge between the very
high-level, functional description of a circuit and its logical implementation
through transistors, gates, and �ip-�ops. The automaton clearly shows the
decision logic, yet it is formal enough to lend itself to precise mathematical
manipulation. For this reason, digital design methods rely heavily on concepts
from automata theory.

■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

Thank You

Thank You for attention!

Oleg Gutik Formal Languages, Automata and Codes. Lecture 3

