
Formal Languages, Automata and

Codes

Oleg Gutik

Lecture 2
Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS

Three fundamental ideas are the major themes of this course: languages,
grammars, and automata. In the course we shall explore many results about
these concepts and about their relationship to each other. First, we must
understand the meaning of the terms.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS

Three fundamental ideas are the major themes of this course: languages,
grammars, and automata. In the course we shall explore many results about
these concepts and about their relationship to each other. First, we must
understand the meaning of the terms.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS

Three fundamental ideas are the major themes of this course: languages,
grammars, and automata. In the course we shall explore many results about
these concepts and about their relationship to each other. First, we must
understand the meaning of the terms.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS

Three fundamental ideas are the major themes of this course: languages,
grammars, and automata. In the course we shall explore many results about
these concepts and about their relationship to each other. First, we must
understand the meaning of the terms.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS

Three fundamental ideas are the major themes of this course: languages,
grammars, and automata. In the course we shall explore many results about
these concepts and about their relationship to each other. First, we must
understand the meaning of the terms.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS

Three fundamental ideas are the major themes of this course: languages,
grammars, and automata. In the course we shall explore many results about
these concepts and about their relationship to each other. First, we must
understand the meaning of the terms.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

We are all familiar with the notion of natural languages, such as English,
Ukrainian, Polish, German, and French. Still, most of us would probably �nd it
di�cult to say exactly what the word �language� means. Dictionaries de�ne the
term informally as a system suitable for the expression of certain ideas, facts, or
concepts, including a set of symbols and rules for their manipulation. While this
gives us an intuitive idea of what a language is, it is not su�cient as a de�nition
for the study of formal languages. We need a precise de�nition for the term.

We start with a �nite, nonempty set Σ of symbols, called an alphabet. From
the individual symbols we construct strings (or words), which are �nite
sequences of symbols from the alphabet. For example, if the alphabet
Σ = {a, b}, then abab and aaabbba are strings on Σ. With few exceptions, we
will use lowercase letters a, b, c, . . . for elements of Σ and u, v, w, . . . for string
names. We shall write, for example,

w = abaaa

to indicate that the string named w has the speci�c value abaaa.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

The concatenation of two strings w and v is the string obtained by appending
the symbols of v to the right end of w, that is, if

w = a1a2 · · · an

and
v = b1b2 · · · bm,

then the concatenation of w and v, denoted by wv, is

wv = a1a2 · · · anb1b2 · · · bm.

The reverse of a string is obtained by writing the symbols in reverse order; if w
is a string as shown above, then its reverse wR is

wR = an · · · a2a1.

The length of a string w, denoted by |w|, is the number of symbols in the
string. We shall frequently need to refer to the empty string, which is a string
with no symbols at all. It will be denoted by λ. The following simple relations

|λ| = 0,

λw = wλ = w

hold for all string w.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Any string of consecutive symbols in some string w is said to be a substring of
w. If

w = vu,

then the substrings v and u are said to be a pre�x and a su�x of w,
respectively. For example, if w = abbab, then

{λ, a, ab, abb, abba, abbab}

is the set of all pre�xes of w, while bab, ab, b are some of its su�xes. Simple
properties of strings, such as their length, are very intuitive and probably need
little elaboration. For example, if u and v are strings, then the length of their
concatenation is the sum of the individual lengths, that is,

|uv| = |u|+ |v|. (1)

But although this relationship is obvious, it is useful to be able to make it
precise and prove it. The techniques for doing so are important in more
complicated situations.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8

Show that formula
|uv| = |u|+ |v|. (1)

holds for any strings u and v. To prove this, we �rst need a de�nition of the
length of a string. We make such a de�nition in a recursive fashion by

|a| = 1,

|wa| = |w|+ 1,

for all a ∈ Σ and w any string on Σ. This de�nition is a formal statement of
our intuitive understanding of the length of a string: The length of a single
symbol is one, and the length of any string is increased by one if we add
another symbol to it. With this formal de�nition, we are ready to prove equality
(1) by induction characters.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.8 (continuation)

By de�nition, the equality
|uv| = |u|+ |v|. (1)

holds for all strings u of any length and all strings v of length 1, so we have a
basis. As an inductive assumption, we take that equality (1) holds for all strings
u of any length and all strings v of length 1, 2, . . . , n. Now take any string v of
length n+ 1 and write it as v = wa. Then,

|v| = |w|+ 1,

|uv| = |uwa| = |uw|+ 1.

By the inductive hypothesis (which is applicable since w is of length n),

|uw| = |u|+ |w|

so that
|uv| = |u|+ |w|+ 1 = |u|+ |v|.

Therefore, equality (1) holds for all u and all v of length up to n+ 1,
completing the inductive step and the argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

If w is a string, then wn stands for the string obtained by repeating w n times.
As a special case, we de�ne

w0 = λ,

for all strings w.
If Σ is an alphabet, then we use Σ∗ to denote the set of strings obtained by
concatenating zero or more symbols from Σ. The set Σ∗ always contains the
empty string λ. To exclude the empty string, we de�ne

Σ+ = Σ∗ − {λ}.

While Σ is �nite by assumption, Σ∗ and Σ+ are always in�nite because there
is no limit on the length of the strings in these sets. A language is de�ned very
generally as a subset of Σ∗. A string in a language L will be called a sentence

of L. This de�nition is quite broad; any set of strings on an alphabet Σ can be
considered as a language. Later we will study methods by which speci�c
languages can be de�ned and described; this will enable us to give some
structure to this rather broad concept. For the moment, though, we shall just
look at a few speci�c examples.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Example 1.9

Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The set
{a, aa, aab}

is a language on Σ. Since it has a �nite number of sentences, we call it a �nite

language. The set
L = {anbn : n ≥ 0}

is also a language on Σ. The strings aabb and aaaabbbb are in the language L,
but the string abb is not in L. This language is in�nite. Most interesting
languages are in�nite. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Since languages are sets, the union, intersection, and di�erence of two
languages are immediately de�ned. The complement of a language is de�ned
with respect to Σ∗; that is, the complement of L is

L = Σ∗ − L.

The reverse of a language is the set of all string reversals, that is,

LR =
{
wR : w ∈ L

}
.

The concatenation of two languages L1 and L2 is the set of all strings obtained
by concatenating any element of L1 with any element of L2; speci�cally,

L1L2 = {xy : x ∈ L1, y ∈ L2} .

We de�ne Ln as L concatenated with itself n times, with the special cases

L0 = {λ}

and
L1 = L

or every language L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Languages

Finally, we de�ne the star-closure of a language L as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·

and the positive closure of L as

L+ = L1 ∪ L2 ∪ L3 ∪ · · · .

Example 1.10

If
L = {anbn : n ≥ 0} ,

then
L2 = {anbnambm : n ≥ 0,m ≥ 0} .

Note that n and m in the above are unrelated; the string aabbaaabbb is in L2.

The reverse of L is easily described in set notation as

LR = {bnan : n ≥ 0} ,

but it is considerably harder to describe L or L∗ this way. A few tries will
quickly convince you of the limitation of set notation for the speci�cation of
complicated languages. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

To study languages mathematically, we need a mechanism to describe them.
Everyday language is imprecise and ambiguous, so informal descriptions in
English are often inadequate. The set notation used in Examples 1.9 and 1.10
is more suitable, but limited. As we proceed we will learn about several
language-de�nition mechanisms that are useful in di�erent circumstances. Here
we introduce a common and powerful one, the notion of a grammar.

A grammar for the English language tells us whether a particular sentence is
well formed or not. A typical rule of English grammar is �a sentence can consist
of a noun phrase followed by a predicate�. More concisely we write this as

⟨sentence⟩ → ⟨noun_phrase⟩⟨predicate⟩,

with the obvious interpretation. This is, of course, not enough to deal with
actual sentences. We must now provide de�nitions for the newly introduced
constructs ⟨noun_phrase⟩ and ⟨predicate⟩. If we do so by

⟨noun_phrase⟩ → ⟨article⟩⟨noun⟩,
⟨predicate⟩ → ⟨verb⟩,

and if we associate the actual words �a� and �the� with ⟨article⟩, �boy� and
�dog� with ⟨noun⟩, and �runs� and �walks� with ⟨verb⟩, then the grammar tells
us that the sentences �a boy runs� and �the dog walks� are properly formed. If
we were to give a complete grammar, then in theory, every proper sentence
could be explained this way.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

This example illustrates the de�nition of a general concept in terms of simple
ones. We start with the top-level concept, here ⟨sentence⟩, and successively
reduce it to the irreducible building blocks of the language. The generalization
of these ideas leads us to formal grammars.

De�nition 1.1

A grammar G is de�ned as a quadruple

G = (V, T, S, P),

where

V is a �nite set of objects called variables;

T is a �nite set of objects called terminal symbols;

S ∈ V is a special symbol called the start variable;

P is a �nite set of productions.

It will be assumed without further mention that the sets V and T are
nonempty and disjoint.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
The production rules are the heart of a grammar; they specify how the
grammar transforms one string into another, and through this they de�ne a
language associated with the grammar. In our discussion we will assume that
all production rules are of the form

x → y,

where x is an element of (V ∪ T)+ and y is in (V ∪ T)∗. The productions are
applied in the following manner: Given a string w of the form

w = uxv,

we say the production x → y is applicable to this string, and we may use it to
replace x with y, thereby obtaining a new string

z = uyv.

This is written as
w ⇒ z.

We say that w derives z or that z is derived from w. Successive strings are
derived by applying the productions of the grammar in arbitrary order. A
production can be used whenever it is applicable, and it can be applied as often
as desired. If

w1 ⇒ w2 ⇒ · · · ⇒ wn,

we say that w1 derives wn and write
w1

∗⇒ wn.

The star ∗ indicates that an unspeci�ed number of steps (including zero) can
be taken to derive wn from w1.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

By applying the production rules in a di�erent order, a given grammar can
normally generate many strings. The set of all such terminal strings is the
language de�ned or generated by the grammar.

De�nition 1.2

Let G = (V, T, S, P) be a grammar. Then the set

L(G) =
{
w ∈ T ∗ : S

∗⇒ w
}

is the language generated by G.

If w ∈ L(G) then the sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

is a derivation of the sentence w. The strings S,w1, w2, . . . , wn, which contain
variables as well as terminals, are called sentential forms of the derivation.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11

Consider the grammar
G = ({S}, {a, b}, S, P),

with P given by

S → aSb,

S → λ.

Then
S ⇒ aSb ⇒ aaSbb ⇒ aabb,

so we can write
S

∗⇒ aabb.

The string aabb is a sentence in the language generated by G, while the string
aaSbb is a sentential form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.11 (continuation)

A grammar G completely de�nes L(G), but it may not be easy to get a very
explicit description of the language from the grammar. Here, however, the
answer is fairly clear. It is not hard to conjecture that

L(G) = {anbn : n ≥ 0} ,
and it is easy to prove it. If we notice that the rule S → aSb is recursive, a
proof by induction readily suggests itself. We �rst show that all sentential forms
must have the form

wi = aiSbi. (2)
Suppose that condition (2) holds for all sentential forms wi of length 2i+ 1 or
less. To get another sentential form (which is not a sentence), we can only
apply the production S → aSb. This gets us

aiSbi ⇒ ai+1Sbi+1,
so that every sentential form of length 2i+ 3 is also of the form (2). Since (2)
is obviously true for i = 1, it holds by induction for all i. Finally, to get a
sentence, we must apply the production S → λ, and we see that

S
∗⇒ anSbn ⇒ anbn

represents all possible derivations. Thus, G can derive only strings of the form
anbn.
We also have to show that all strings of this form can be derived. This is easy;
we simply apply S → aSb as many times as needed, followed by S → λ. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.12

Find a grammar that generates
L =

{
anbn+1 : n ≥ 0

}
.

The idea behind the previous example can be extended to this case. All we
need to do is generate an extra b. This can be done with a production S → Ab,
with other productions chosen so that A can derive the language in the
previous example. Reasoning in this fashion, we get the grammar
G = ({S,A}, {a, b}, S, P), with productions

S → Ab,

A → aAb,

A → λ.

Derive a few speci�c sentences to convince yourself that this works. ■

The previous examples are fairly easy ones, so rigorous arguments may seem
super�uous. But often it is not so easy to �nd a grammar for a language
described in an informal way or to give an intuitive characterization of the
language de�ned by a grammar. To show that a given language is indeed
generated by a certain grammar G, we must be able to show (a) that every
w ∈ L can be derived from S using G and (b) that every string so derived is in
L.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13

Take Σ = {a, b}, and let na(w) and nb(w) denote the number of a's and b's in
the string w, respectively. Then the grammar G with productions

S → SS,

S → λ,

S → aSb,

S → bSa

generates the language

L = {w : na(w) = nb(w)}.

This claim is not so obvious, and we need to provide convincing arguments.

First, it is clear that every sentential form of G has an equal number of a's and
b's, because the only productions that generate the string a, namely S → aSb
and S → bSa, simultaneously generate the string b. Therefore, every element
of L(G) is in L. It is a little harder to see that every string in L can be derived
with G.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Let us begin by looking at the problem in outline, considering the various forms
w ∈ L can have. Suppose w starts with a and ends with b. Then it has the form

w = aw1b,

where w1 is also in L. We can think of this case as being derived starting with
S ⇒ aSb

if S does indeed derive any string in L. A similar argument can be made if w
starts with b and ends with a. But this does not take care of all cases, because
a string in L can begin and end with the same symbol. If we write down a
string of this type, say aabbba, we see that it can be considered as the
concatenation of two shorter strings aabb and ba, both of which are in L. Is
this true in general? To show that this is indeed so, we can use the following
argument: Suppose that, starting at the left end of the string, we count +1 for
the string a and −1 for the string b. If a string w starts and ends with a, then
the count will be +1 after the leftmost symbol and −1 immediately before the
rightmost one. Therefore, the count has to go through zero somewhere in the
middle of the string, indicating that such a string must have the form

w = w1w2,

where both w1 and w2 are in L. This case can be taken care of by the
production S → SS.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars

Example 1.13 (continuation)

Once we see the argument intuitively, we are ready to proceed more rigorously.
Again we use induction. Assume that all w ∈ L with |w| ≤ 2n can be derived
with G. Take any w ∈ L of length 2n+ 2. If w = aw1b, then w1 is in L, and
|w1| = 2n. Therefore, by assumption we have that

S
∗⇒ w1.

Then
S ⇒ aSb

∗⇒ aw1b = w

is possible, and w can be derived with G. Obviously, similar arguments can be
made if w = bw1a.
If w is not of this form, that is, if it starts and ends with the same symbol, then
the counting argument tells us that it must have the form w = w1w2, with w1

and w2 both in L and of length less than or equal to 2n. Hence again we see
that

S ⇒ SS
∗⇒ w1S

∗⇒ w1w2 = w

is possible.
Since the inductive assumption is clearly satis�ed for n = 1, we have a basis,
and the claim is true for all n, completing our argument. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Grammars
Normally, a given language has many grammars that generate it. Even though these
grammars are di�erent, they are equivalent in some sense. We say that two grammars
G1 and G2 are equivalent if they generate the same language, that is, if

L(G1) = L(G2).

As we will see later, it is not always easy to see if two grammars are equivalent.

Example 1.14

Consider the grammar G1 = ({A,S}, {a, b}, S, P1), with P1 consisting of the
productions

S → aAb|λ,
A → aAb|λ.

Here we introduce a convenient shorthand notation in which several production rules
with the same left-hand sides are written on the same line, with alternative right-hand
sides separated by the symbol |. In this notation S → aAb|λ stands for the two
productions S → aAb and S → λ. This grammar is equivalent to the grammar G in
Example 1.11:

G = ({S}, {a, b}, S, P),
with P given by

S → aSb,

S → λ.

The equivalence is easy to prove by showing that

L(G1) = {anbn : n ≥ 0} .

We leave this as an exercise. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is an abstract model of a digital computer. As such, every
automaton includes some essential features. It has a mechanism for reading
input. It will be assumed that the input is a string over a given alphabet,
written on an input �le, which the automaton can read but not change. The
input �le is divided into cells, each of which can hold one symbol. The input
mechanism can read the input �le from left to right, one symbol at a time.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is an abstract model of a digital computer. As such, every
automaton includes some essential features. It has a mechanism for reading
input. It will be assumed that the input is a string over a given alphabet,
written on an input �le, which the automaton can read but not change. The
input �le is divided into cells, each of which can hold one symbol. The input
mechanism can read the input �le from left to right, one symbol at a time.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is an abstract model of a digital computer. As such, every
automaton includes some essential features. It has a mechanism for reading
input. It will be assumed that the input is a string over a given alphabet,
written on an input �le, which the automaton can read but not change. The
input �le is divided into cells, each of which can hold one symbol. The input
mechanism can read the input �le from left to right, one symbol at a time.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is an abstract model of a digital computer. As such, every
automaton includes some essential features. It has a mechanism for reading
input. It will be assumed that the input is a string over a given alphabet,
written on an input �le, which the automaton can read but not change. The
input �le is divided into cells, each of which can hold one symbol. The input
mechanism can read the input �le from left to right, one symbol at a time.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is an abstract model of a digital computer. As such, every
automaton includes some essential features. It has a mechanism for reading
input. It will be assumed that the input is a string over a given alphabet,
written on an input �le, which the automaton can read but not change. The
input �le is divided into cells, each of which can hold one symbol. The input
mechanism can read the input �le from left to right, one symbol at a time.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is an abstract model of a digital computer. As such, every
automaton includes some essential features. It has a mechanism for reading
input. It will be assumed that the input is a string over a given alphabet,
written on an input �le, which the automaton can read but not change. The
input �le is divided into cells, each of which can hold one symbol. The input
mechanism can read the input �le from left to right, one symbol at a time.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is an abstract model of a digital computer. As such, every
automaton includes some essential features. It has a mechanism for reading
input. It will be assumed that the input is a string over a given alphabet,
written on an input �le, which the automaton can read but not change. The
input �le is divided into cells, each of which can hold one symbol. The input
mechanism can read the input �le from left to right, one symbol at a time.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is an abstract model of a digital computer. As such, every
automaton includes some essential features. It has a mechanism for reading
input. It will be assumed that the input is a string over a given alphabet,
written on an input �le, which the automaton can read but not change. The
input �le is divided into cells, each of which can hold one symbol. The input
mechanism can read the input �le from left to right, one symbol at a time.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The input mechanism can also detect the end of the input string (by sensing an
end-of-�le condition). The automaton can produce output of some form. It
may have a temporary storage device, consisting of an unlimited number of
cells, each capable of holding a single symbol from an alphabet (not necessarily
the same one as the input alphabet).

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The input mechanism can also detect the end of the input string (by sensing an
end-of-�le condition). The automaton can produce output of some form. It
may have a temporary storage device, consisting of an unlimited number of
cells, each capable of holding a single symbol from an alphabet (not necessarily
the same one as the input alphabet).

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The input mechanism can also detect the end of the input string (by sensing an
end-of-�le condition). The automaton can produce output of some form. It
may have a temporary storage device, consisting of an unlimited number of
cells, each capable of holding a single symbol from an alphabet (not necessarily
the same one as the input alphabet).

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The input mechanism can also detect the end of the input string (by sensing an
end-of-�le condition). The automaton can produce output of some form. It
may have a temporary storage device, consisting of an unlimited number of
cells, each capable of holding a single symbol from an alphabet (not necessarily
the same one as the input alphabet).

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The input mechanism can also detect the end of the input string (by sensing an
end-of-�le condition). The automaton can produce output of some form. It
may have a temporary storage device, consisting of an unlimited number of
cells, each capable of holding a single symbol from an alphabet (not necessarily
the same one as the input alphabet).

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The input mechanism can also detect the end of the input string (by sensing an
end-of-�le condition). The automaton can produce output of some form. It
may have a temporary storage device, consisting of an unlimited number of
cells, each capable of holding a single symbol from an alphabet (not necessarily
the same one as the input alphabet).

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The input mechanism can also detect the end of the input string (by sensing an
end-of-�le condition). The automaton can produce output of some form. It
may have a temporary storage device, consisting of an unlimited number of
cells, each capable of holding a single symbol from an alphabet (not necessarily
the same one as the input alphabet).

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The input mechanism can also detect the end of the input string (by sensing an
end-of-�le condition). The automaton can produce output of some form. It
may have a temporary storage device, consisting of an unlimited number of
cells, each capable of holding a single symbol from an alphabet (not necessarily
the same one as the input alphabet).

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The automaton can read and change the contents of the storage cells. Finally,
the automaton has a control unit, which can be in any one of a �nite number
of internal states, and which can change state in some de�ned manner. The
following Figure shows a schematic representation of a general automaton.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The automaton can read and change the contents of the storage cells. Finally,
the automaton has a control unit, which can be in any one of a �nite number
of internal states, and which can change state in some de�ned manner. The
following Figure shows a schematic representation of a general automaton.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The automaton can read and change the contents of the storage cells. Finally,
the automaton has a control unit, which can be in any one of a �nite number
of internal states, and which can change state in some de�ned manner. The
following Figure shows a schematic representation of a general automaton.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The automaton can read and change the contents of the storage cells. Finally,
the automaton has a control unit, which can be in any one of a �nite number
of internal states, and which can change state in some de�ned manner. The
following Figure shows a schematic representation of a general automaton.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The automaton can read and change the contents of the storage cells. Finally,
the automaton has a control unit, which can be in any one of a �nite number
of internal states, and which can change state in some de�ned manner. The
following Figure shows a schematic representation of a general automaton.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

The automaton can read and change the contents of the storage cells. Finally,
the automaton has a control unit, which can be in any one of a �nite number
of internal states, and which can change state in some de�ned manner. The
following Figure shows a schematic representation of a general automaton.

Control unit

Input �le

Output

Storage

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

An automaton is assumed to operate in a discrete timeframe. At any given
time, the control unit is in some internal state, and the input mechanism is
scanning a particular symbol on the input �le. The internal state of the control
unit at the next time step is determined by the next-state or transition
function. This transition function gives the next state in terms of the current
state, the current input symbol, and the information currently in the temporary
storage. During the transition from one time interval to the next, output may
be produced or the information in the temporary storage changed. The term
con�guration will be used to refer to a particular state of the control unit, input
�le, and temporary storage. The transition of the automaton from one
con�guration to the next will be called a move.

This general model covers all the automata we will discuss in this lectures. A
�nite-state control will be common to all speci�c cases, but di�erences will
arise from the way in which the output can be produced and the nature of the
temporary storage. As we will see, the nature of the temporary storage governs
the power of di�erent types of automata.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

2 THREE BASIC CONCEPTS: Automata

For subsequent discussions, it will be necessary to distinguish between
deterministic automata and nondeterministic automata. A deterministic
automaton is one in which each move is uniquely determined by the current
con�guration. If we know the internal state, the input, and the contents of the
temporary storage, we can predict the future behavior of the automaton
exactly. In a nondeterministic automaton, this is not so. At each point, a
nondeterministic automaton may have several possible moves, so we can only
predict a set of possible actions. The relation between deterministic and
nondeterministic automata of various types will play a signi�cant role in our
study.

An automaton whose output response is limited to a simple �yes� or �no� is
called an accepter. Presented with an input string, an accepter either accepts
the string or rejects it. A more general automaton, capable of producing strings
of symbols as output, is called a transducer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

Thank You

Thank You for attention!

Oleg Gutik Formal Languages, Automata and Codes. Lecture 2

