## Formal Languages, Automata and

 Codes
## Oleg Gutik



## Lecture 1

In this part of preliminary lectures, we give an account of some basic notions which will be used throughout our course "Formal Languages, Automata and Codes".

A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$. The statement that $x$ is not in $S$ is written $x \notin S$. A set can be specified by enclosing some description of its elements in curly braces; for example, the set of integers $0,1,2$ is shown as

$$
S=\{0,1,2\}
$$

Ellipses are used whenever the meaning is clear. Thus, $\{a, b, \ldots, z\}$ stands for all the lowercase letters of the English alphabet, while $\{2,4,6, \ldots\}$ denotes the set of all positive even integers. When the need arises, we use more explicit notation, in which we write

$$
\begin{equation*}
S=\{i: i>0, i \text { is even }\} \tag{1}
\end{equation*}
$$

for the last example. We read this as " $S$ is the set of all $i$, such that $i$ is greater than zero, and $i$ is even," implying, of course, that $i$ is an integer.

A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$.
that $x$ is not in $S$ is written $x \notin S$. A set can be specified by enclosing some
description of its elements in curly braces; for example, the set of integers
$0,1,2$ is shown as


$$
\begin{equation*}
S=\{i: i>0, i \text { is even }\} \tag{1}
\end{equation*}
$$

for the last example. We read this as " $S$ is the set of all $i$, such that $i$ is greater than zero, and $i$ is even," implying, of course, that $i$ is an integer.

A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$. The statement that $x$ is not in $S$ is written $x \notin S$.
description of its elements in curly braces; for example, the set of integers
$0,1,2$ is shown as

```
Ellipses are used whenever the meaning is clear. Thus, {a,b,\ldots,,z} stands for
all the lowercase letters of the English alphabet, while {2,4,6,\ldots} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write
```

$$
S=\{i: i>0, i \text { is even }\}
$$

for the last example. We read this as " $S$ is the set of all $i$, such that $i$ is greater than zero, and $i$ is even," implying, of course, that $i$ is an integer.

A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$. The statement that $x$ is not in $S$ is written $x \notin S$. A set can be specified by enclosing some description of its elements in curly braces;
$0,1,2$ is shown as



A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$. The statement that $x$ is not in $S$ is written $x \notin S$. A set can be specified by enclosing some description of its elements in curly braces; for example, the set of integers $0,1,2$ is shown as



A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$. The statement that $x$ is not in $S$ is written $x \notin S$. A set can be specified by enclosing some description of its elements in curly braces; for example, the set of integers $0,1,2$ is shown as

$$
S=\{0,1,2\}
$$

Ellipses are used whenever the meaning is clear. Thus, $\{a, b, \ldots, z\}$ stands for all the lowercase letters of the English alphabet, while $\{2,4,6, \ldots\}$ denotes the set of all positive even integers. When the need arises, we use more explicit notation, in which we write


A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$. The statement that $x$ is not in $S$ is written $x \notin S$. A set can be specified by enclosing some description of its elements in curly braces; for example, the set of integers $0,1,2$ is shown as

$$
S=\{0,1,2\}
$$

Ellipses are used whenever the meaning is clear.


A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$. The statement that $x$ is not in $S$ is written $x \notin S$. A set can be specified by enclosing some description of its elements in curly braces; for example, the set of integers $0,1,2$ is shown as

$$
S=\{0,1,2\}
$$

Ellipses are used whenever the meaning is clear. Thus, $\{a, b, \ldots, z\}$ stands for all the lowercase letters of the English alphabet,


A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$. The statement that $x$ is not in $S$ is written $x \notin S$. A set can be specified by enclosing some description of its elements in curly braces; for example, the set of integers $0,1,2$ is shown as

$$
S=\{0,1,2\}
$$

Ellipses are used whenever the meaning is clear. Thus, $\{a, b, \ldots, z\}$ stands for all the lowercase letters of the English alphabet, while $\{2,4,6, \ldots\}$ denotes the set of all positive even integers.
notation, in which we write

$$
S=\{i: i>0, i \text { is even }\}
$$

for the last example. We read this as " $S$ is the set of all $i$, such that $i$ is greater
than zero, and $i$ is even," implying, of course, that $i$ is an integer.

A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$. The statement that $x$ is not in $S$ is written $x \notin S$. A set can be specified by enclosing some description of its elements in curly braces; for example, the set of integers $0,1,2$ is shown as

$$
S=\{0,1,2\}
$$

Ellipses are used whenever the meaning is clear. Thus, $\{a, b, \ldots, z\}$ stands for all the lowercase letters of the English alphabet, while $\{2,4,6, \ldots\}$ denotes the set of all positive even integers. When the need arises, we use more explicit notation, in which we write

$$
S=\{i: i>0, i \text { is even }\}
$$

for the last example. We read this as " $S$ is the set of all $i$, such that $i$ is greater
than zero, and $i$ is even," implying, of course, that $i$ is an integer.

A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$. The statement that $x$ is not in $S$ is written $x \notin S$. A set can be specified by enclosing some description of its elements in curly braces; for example, the set of integers $0,1,2$ is shown as

$$
S=\{0,1,2\}
$$

Ellipses are used whenever the meaning is clear. Thus, $\{a, b, \ldots, z\}$ stands for all the lowercase letters of the English alphabet, while $\{2,4,6, \ldots\}$ denotes the set of all positive even integers. When the need arises, we use more explicit notation, in which we write

$$
\begin{equation*}
S=\{i: i>0, i \text { is even }\} \tag{1}
\end{equation*}
$$

for the last example. than zero, and $i$ is even," implying, of course, that $i$ is an integer.

A set is a collection of elements, without any structure other than membership. To indicate that $x$ is an element of the set $S$, we write $x \in S$. The statement that $x$ is not in $S$ is written $x \notin S$. A set can be specified by enclosing some description of its elements in curly braces; for example, the set of integers $0,1,2$ is shown as

$$
S=\{0,1,2\}
$$

Ellipses are used whenever the meaning is clear. Thus, $\{a, b, \ldots, z\}$ stands for all the lowercase letters of the English alphabet, while $\{2,4,6, \ldots\}$ denotes the set of all positive even integers. When the need arises, we use more explicit notation, in which we write

$$
\begin{equation*}
S=\{i: i>0, i \text { is even }\} \tag{1}
\end{equation*}
$$

for the last example. We read this as " $S$ is the set of all $i$, such that $i$ is greater than zero, and $i$ is even," implying, of course, that $i$ is an integer.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ),
) defined as


Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then


The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ),
and difference (- or ) defined as


Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then


The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ), and difference ( - or $\backslash$ ) defined as


Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then

The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ), and difference ( - or $\backslash$ ) defined as


Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then

The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ), and difference ( - or $\backslash$ ) defined as

$$
\begin{aligned}
& S_{1} \cup S_{2}=\left\{x: x \in S_{1} \text { or } x \in S_{2}\right\}, \\
& S_{1} \cap S_{2}=\left\{x: x \in S_{1} \text { and } x \in S_{2}\right\}, \\
& S_{1}-S_{2}=\left\{x: x \in S_{1} \text { and } x \notin S_{2}\right\} .
\end{aligned}
$$

Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then

The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ), and difference ( - or $\backslash)$ defined as

$$
\begin{aligned}
& S_{1} \cup S_{2}=\left\{x: x \in S_{1} \text { or } x \in S_{2}\right\} \\
& S_{1} \cap S_{2}=\left\{x: x \in S_{1} \text { and } x \in S_{2}\right\} \\
& S_{1}-S_{2}=\left\{x: x \in S_{1} \text { and } x \notin S_{2}\right\}
\end{aligned}
$$

Another basic operation is complementation.
denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then

The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ), and difference ( - or $\backslash)$ defined as

$$
\begin{aligned}
& S_{1} \cup S_{2}=\left\{x: x \in S_{1} \text { or } x \in S_{2}\right\} \\
& S_{1} \cap S_{2}=\left\{x: x \in S_{1} \text { and } x \in S_{2}\right\} \\
& S_{1}-S_{2}=\left\{x: x \in S_{1} \text { and } x \notin S_{2}\right\}
\end{aligned}
$$

Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this
meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then

The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ), and difference ( - or $\backslash)$ defined as

$$
\begin{aligned}
& S_{1} \cup S_{2}=\left\{x: x \in S_{1} \text { or } x \in S_{2}\right\} \\
& S_{1} \cap S_{2}=\left\{x: x \in S_{1} \text { and } x \in S_{2}\right\} \\
& S_{1}-S_{2}=\left\{x: x \in S_{1} \text { and } x \notin S_{2}\right\}
\end{aligned}
$$

Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is.

The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ), and difference ( - or $\backslash)$ defined as

$$
\begin{aligned}
& S_{1} \cup S_{2}=\left\{x: x \in S_{1} \text { or } x \in S_{2}\right\} \\
& S_{1} \cap S_{2}=\left\{x: x \in S_{1} \text { and } x \in S_{2}\right\} \\
& S_{1}-S_{2}=\left\{x: x \in S_{1} \text { and } x \notin S_{2}\right\}
\end{aligned}
$$

Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then

The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ), and difference ( - or $\backslash)$ defined as

$$
\begin{aligned}
& S_{1} \cup S_{2}=\left\{x: x \in S_{1} \text { or } x \in S_{2}\right\} \\
& S_{1} \cap S_{2}=\left\{x: x \in S_{1} \text { and } x \in S_{2}\right\} \\
& S_{1}-S_{2}=\left\{x: x \in S_{1} \text { and } x \notin S_{2}\right\}
\end{aligned}
$$

Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then

$$
\bar{S}=\{x: x \in U, x \notin S\}
$$

The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ), and difference ( - or $\backslash$ ) defined as

$$
\begin{aligned}
& S_{1} \cup S_{2}=\left\{x: x \in S_{1} \text { or } x \in S_{2}\right\} \\
& S_{1} \cap S_{2}=\left\{x: x \in S_{1} \text { and } x \in S_{2}\right\} \\
& S_{1}-S_{2}=\left\{x: x \in S_{1} \text { and } x \notin S_{2}\right\}
\end{aligned}
$$

Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then

$$
\bar{S}=\{x: x \in U, x \notin S\}
$$

The set with no elements, called the empty set or the null set, is denoted by $\varnothing$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ), and difference ( - or $\backslash$ ) defined as

$$
\begin{aligned}
& S_{1} \cup S_{2}=\left\{x: x \in S_{1} \text { or } x \in S_{2}\right\} \\
& S_{1} \cap S_{2}=\left\{x: x \in S_{1} \text { and } x \in S_{2}\right\} \\
& S_{1}-S_{2}=\left\{x: x \in S_{1} \text { and } x \notin S_{2}\right\}
\end{aligned}
$$

Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then

$$
\bar{S}=\{x: x \in U, x \notin S\}
$$

The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union ( $\cup$ ), intersection ( $\cap$ ), and difference ( - or $\backslash$ ) defined as

$$
\begin{aligned}
& S_{1} \cup S_{2}=\left\{x: x \in S_{1} \text { or } x \in S_{2}\right\} \\
& S_{1} \cap S_{2}=\left\{x: x \in S_{1} \text { and } x \in S_{2}\right\} \\
& S_{1}-S_{2}=\left\{x: x \in S_{1} \text { and } x \notin S_{2}\right\}
\end{aligned}
$$

Another basic operation is complementation. The complement of a set $S$, denoted by $\bar{S}$, consists of all elements which are not in $S$. To make this meaningful, we need to know what the universal set $U$ of all possible elements is. If $U$ is specified, then

$$
\bar{S}=\{x: x \in U, x \notin S\}
$$

The set with no elements, called the empty set or the null set, is denoted by $\varnothing$. From the definition of a set, it is obvious that

$$
\begin{aligned}
S \cup \varnothing & =S-\varnothing=S \\
S \cap \varnothing & =\varnothing \\
\bar{\varnothing} & =U \\
\overline{\bar{S}} & =S
\end{aligned}
$$

The following useful identities, known as DeMorgan's laws,


```
are needed on several occasions.
A set S}\mp@subsup{S}{1}{}\mathrm{ is said to be a subset of }S\mathrm{ if every element of S}\mp@subsup{S}{1}{}\mathrm{ is also an element of
S. We write this as
```

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper
subset of $S$; we write this as
If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the
sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; otherwise it
is infinite. The size of a finite set is the number of elements in it; this is
denoted by $|S|$.

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite. The size of a finite set is the number of elements in it; this is denoted by $|S|$.

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite. The size of a finite set is the number of elements in it; this is denoted by $|S|$

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as


The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

$$
S_{1} \subseteq S .
$$

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper
subset of $S$; we write this as

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite. The size of a finite set is the number of elements in it; this is denoted by $|S|$.

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

$$
S_{1} \subseteq S .
$$

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite. The size of a finite set is the number of elements in it; this is denoted by $|S|$

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

$$
S_{1} \subseteq S .
$$

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite. The size of a finite set is the number of elements in it; this is denoted by $|S|$

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

$$
S_{1} \subseteq S .
$$

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

$$
S_{1} \subset S
$$

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite. The size of a finite set is the number of elements in it; this is denoted by $|S|$

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

$$
S_{1} \subseteq S .
$$

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

$$
S_{1} \subset S .
$$

If the sets $S_{1}$ and $S_{2}$ have no common element,
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite. The size of a finite set is the number of elements in it; this is denoted by $|S|$

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

$$
S_{1} \subseteq S .
$$

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

$$
S_{1} \subset S .
$$

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite. The size of a finite set is the number of elements in it; this is denoted by $|S|$.

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

$$
S_{1} \subseteq S .
$$

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

$$
S_{1} \subset S
$$

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite. The size of a finite set is the number of elements in it; this is denoted by $|S|$

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

$$
S_{1} \subseteq S
$$

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

$$
S_{1} \subset S
$$

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; $\qquad$

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

$$
S_{1} \subseteq S
$$

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

$$
S_{1} \subset S
$$

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite.

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

$$
S_{1} \subseteq S
$$

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

$$
S_{1} \subset S
$$

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite. The size of a finite set is the number of elements in it;

The following useful identities, known as DeMorgan's laws,

$$
\begin{align*}
& \overline{S_{1} \cup S_{2}}=\bar{S}_{1} \cap \bar{S}_{2},  \tag{2}\\
& \overline{S_{1} \cap S_{2}}=\bar{S}_{1} \cup \bar{S}_{2} . \tag{3}
\end{align*}
$$

are needed on several occasions.
A set $S_{1}$ is said to be a subset of $S$ if every element of $S_{1}$ is also an element of $S$. We write this as

$$
S_{1} \subseteq S
$$

If $S_{1} \subseteq S$, but $S$ contains an element not in $S_{1}$, we say that $S_{1}$ is a proper subset of $S$; we write this as

$$
S_{1} \subset S
$$

If the sets $S_{1}$ and $S_{2}$ have no common element, that is, $S_{1} \cap S_{2}=\varnothing$, then the sets $S_{1}$ and $S_{2}$ are said to be disjoint.
A set is said to be finite if it contains a finite number of elements; otherwise it is infinite. The size of a finite set is the number of elements in it; this is denoted by $|S|$.

A given set normally has many subsets. called the powerset of $S$ and is denoted by $2^{S}$. Observe that $2^{S}$ is a set of sets.

Example 1.1

A given set normally has many subsets. The set of all subsets of a set $S$ is called the powerset of $S$
$\qquad$
Example 1.1

A given set normally has many subsets. The set of all subsets of a set $S$ is called the powerset of $S$ and is denoted by $2^{S}$.

Example 1.1

A given set normally has many subsets. The set of all subsets of a set $S$ is called the powerset of $S$ and is denoted by $2^{S}$. Observe that $2^{S}$ is a set of sets.

Example 1.1

A given set normally has many subsets. The set of all subsets of a set $S$ is called the powerset of $S$ and is denoted by $2^{S}$. Observe that $2^{S}$ is a set of sets.

## Example 1.1



A given set normally has many subsets. The set of all subsets of a set $S$ is called the powerset of $S$ and is denoted by $2^{S}$. Observe that $2^{S}$ is a set of sets.

## Example 1.1

If $S=\{a, b, c\}$, then its powerset is


A given set normally has many subsets. The set of all subsets of a set $S$ is called the powerset of $S$ and is denoted by $2^{S}$. Observe that $2^{S}$ is a set of sets.

## Example 1.1

If $S=\{a, b, c\}$, then its powerset is

$$
2^{S}=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

Here $|S|=3$ and $\left|2^{S}\right|=8$. This is an instance of a general result; if $S$ is finite, then

A given set normally has many subsets. The set of all subsets of a set $S$ is called the powerset of $S$ and is denoted by $2^{S}$. Observe that $2^{S}$ is a set of sets.

## Example 1.1

If $S=\{a, b, c\}$, then its powerset is

$$
2^{S}=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} .
$$

Here $|S|=3$ and $\left|2^{S}\right|=8$.

A given set normally has many subsets. The set of all subsets of a set $S$ is called the powerset of $S$ and is denoted by $2^{S}$. Observe that $2^{S}$ is a set of sets.

## Example 1.1

If $S=\{a, b, c\}$, then its powerset is

$$
2^{S}=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} .
$$

Here $|S|=3$ and $\left|2^{S}\right|=8$. This is an instance of a general result;

A given set normally has many subsets. The set of all subsets of a set $S$ is called the powerset of $S$ and is denoted by $2^{S}$. Observe that $2^{S}$ is a set of sets.

## Example 1.1

If $S=\{a, b, c\}$, then its powerset is

$$
2^{S}=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} .
$$

Here $|S|=3$ and $\left|2^{S}\right|=8$. This is an instance of a general result; if $S$ is finite, then

A given set normally has many subsets. The set of all subsets of a set $S$ is called the powerset of $S$ and is denoted by $2^{S}$. Observe that $2^{S}$ is a set of sets.

## Example 1.1

If $S=\{a, b, c\}$, then its powerset is

$$
2^{S}=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} .
$$

Here $|S|=3$ and $\left|2^{S}\right|=8$. This is an instance of a general result; if $S$ is finite, then

$$
\left|2^{S}\right|=2^{|S|}
$$

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

## Example 1.2

This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

## Example 1.2

This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

## Example 1.2

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

$$
S=S_{1} \times S_{2}=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\}
$$

## Example 1.2

This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

$$
S=S_{1} \times S_{2}=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\} .
$$

## Example 1.2



This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

$$
S=S_{1} \times S_{2}=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\} .
$$

## Example 1.2

Let $S_{1}=\{2,4\}$ and $S_{2}=\{2,3,5,6\}$.

Note that the order in which the elements of a pair are written matters. The pair $(4,2)$ is in $S_{1} \times S_{2}$, but $(2,4)$ is not.

This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

$$
S=S_{1} \times S_{2}=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\} .
$$

## Example 1.2

Let $S_{1}=\{2,4\}$ and $S_{2}=\{2,3,5,6\}$. Then

Note that the order in which the elements of a pair are written matters. The pair $(4,2)$ is in $S_{1} \times S_{2}$, but $(2,4)$ is not.

This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

$$
S=S_{1} \times S_{2}=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\}
$$

## Example 1.2

Let $S_{1}=\{2,4\}$ and $S_{2}=\{2,3,5,6\}$. Then

$$
S_{1} \times S_{2}=\{(2,2),(2,3),(2,5),(2,6),(4,2),(4,3),(4,5),(4,6)\}
$$

Note that the order in which the elements of a pair are written matters. The pair $(4,2)$ is in $S_{1} \times S_{2}$, but $(2,4)$ is not.

This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

$$
S=S_{1} \times S_{2}=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\}
$$

## Example 1.2

Let $S_{1}=\{2,4\}$ and $S_{2}=\{2,3,5,6\}$. Then

$$
S_{1} \times S_{2}=\{(2,2),(2,3),(2,5),(2,6),(4,2),(4,3),(4,5),(4,6)\}
$$

Note that the order in which the elements of a pair are written matters.

This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

$$
S=S_{1} \times S_{2}=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\}
$$

## Example 1.2

Let $S_{1}=\{2,4\}$ and $S_{2}=\{2,3,5,6\}$. Then

$$
S_{1} \times S_{2}=\{(2,2),(2,3),(2,5),(2,6),(4,2),(4,3),(4,5),(4,6)\}
$$

Note that the order in which the elements of a pair are written matters. The pair $(4,2)$ is in $S_{1} \times S_{2}$,

[^0]In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

$$
S=S_{1} \times S_{2}=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\}
$$

## Example 1.2

Let $S_{1}=\{2,4\}$ and $S_{2}=\{2,3,5,6\}$. Then

$$
S_{1} \times S_{2}=\{(2,2),(2,3),(2,5),(2,6),(4,2),(4,3),(4,5),(4,6)\}
$$

Note that the order in which the elements of a pair are written matters. The pair $(4,2)$ is in $S_{1} \times S_{2}$, but $(2,4)$ is not.

[^1]In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

$$
S=S_{1} \times S_{2}=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\}
$$

## Example 1.2

Let $S_{1}=\{2,4\}$ and $S_{2}=\{2,3,5,6\}$. Then

$$
S_{1} \times S_{2}=\{(2,2),(2,3),(2,5),(2,6),(4,2),(4,3),(4,5),(4,6)\}
$$

Note that the order in which the elements of a pair are written matters. The pair $(4,2)$ is in $S_{1} \times S_{2}$, but $(2,4)$ is not.

This notation is extended in an obvious fashion to the Cartesian product of more than two sets;

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

$$
S=S_{1} \times S_{2}=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\}
$$

## Example 1.2

Let $S_{1}=\{2,4\}$ and $S_{2}=\{2,3,5,6\}$. Then

$$
S_{1} \times S_{2}=\{(2,2),(2,3),(2,5),(2,6),(4,2),(4,3),(4,5),(4,6)\}
$$

Note that the order in which the elements of a pair are written matters. The pair $(4,2)$ is in $S_{1} \times S_{2}$, but $(2,4)$ is not.

This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

In many of our examples, the elements of a set are ordered sequences of elements from other sets. Such sets are said to be the Cartesian product of other sets. For the Cartesian product of two sets, which itself is a set of ordered pairs, we write

$$
S=S_{1} \times S_{2}=\left\{(x, y): x \in S_{1}, y \in S_{2}\right\}
$$

## Example 1.2

Let $S_{1}=\{2,4\}$ and $S_{2}=\{2,3,5,6\}$. Then

$$
S_{1} \times S_{2}=\{(2,2),(2,3),(2,5),(2,6),(4,2),(4,3),(4,5),(4,6)\}
$$

Note that the order in which the elements of a pair are written matters. The pair $(4,2)$ is in $S_{1} \times S_{2}$, but $(2,4)$ is not.

This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

$$
S_{1} \times S_{2} \times \cdots \times S_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in S_{i}\right\}
$$

A set can be divided by separating it into a number of subsets. Suppose that

Then $S_{1}, S_{2}, \ldots, S_{n}$ is called a partition of $S$.

A set can be divided by separating it into a number of subsets. Suppose that $S_{1}, S_{2}, \ldots, S_{n}$ are subsets of a given set $S$ and that the following holds:

A set can be divided by separating it into a number of subsets. Suppose that $S_{1}, S_{2}, \ldots, S_{n}$ are subsets of a given set $S$ and that the following holds:

1) the subsets $S_{1}, S_{2}, \ldots, S_{n}$ are mutually disjoint;
2) every of $S_{i}$ is nonempty.

A set can be divided by separating it into a number of subsets. Suppose that $S_{1}, S_{2}, \ldots, S_{n}$ are subsets of a given set $S$ and that the following holds:

1) the subsets $S_{1}, S_{2}, \ldots, S_{n}$ are mutually disjoint;
2) $S_{1} \cup S_{2} \cup \cdots \cup S_{n}=S$;

A set can be divided by separating it into a number of subsets. Suppose that $S_{1}, S_{2}, \ldots, S_{n}$ are subsets of a given set $S$ and that the following holds:

1) the subsets $S_{1}, S_{2}, \ldots, S_{n}$ are mutually disjoint;
2) $S_{1} \cup S_{2} \cup \cdots \cup S_{n}=S$;
3) every of $S_{i}$ is nonempty.

A set can be divided by separating it into a number of subsets. Suppose that $S_{1}, S_{2}, \ldots, S_{n}$ are subsets of a given set $S$ and that the following holds:

1) the subsets $S_{1}, S_{2}, \ldots, S_{n}$ are mutually disjoint;
2) $S_{1} \cup S_{2} \cup \cdots \cup S_{n}=S$;
3) every of $S_{i}$ is nonempty.

Then $S_{1}, S_{2}, \ldots, S_{n}$ is called a partition of $S$.

A function is a rule that assigns to elements of one set a unique element of another set. If $f$ denotes a function, then the first set is called the domain of $f$, and the second set is its range. We write
to indicate that the domain of $f$ is a subset of $S_{1}$ and that the range of $f$ is a subset of $S_{2}$. If the domain of $f$ is all of $S_{1}$, we say that $f$ is a total function on $S_{1}$; otherwise $f$ is said to be a partial function.

A function is a rule that assigns to elements of one set a unique element of another set. If $f$ denotes a function, then the first set is called the domain of f , and the second set is its range. We write

[^2]A function is a rule that assigns to elements of one set a unique element of another set. If $f$ denotes a function, then the first set is called the domain of f , and the second set is its range. We write

[^3]A function is a rule that assigns to elements of one set a unique element of another set. If $f$ denotes a function, then the first set is called the domain of f , and the second set is its range. We write

[^4]A function is a rule that assigns to elements of one set a unique element of another set. If $f$ denotes a function, then the first set is called the domain of f , and the second set is its range. We write

$$
f: S_{1} \rightarrow S_{2}
$$

to indicate that the domain of $f$ is a subset of $S_{1}$ and that the range of $f$ is a subset of $S_{2}$. If the domain of $f$ is all of $S_{1}$, we say that $f$ is a total function on $S_{1}$; otherwise $f$ is said to be a partial function.

A function is a rule that assigns to elements of one set a unique element of another set. If $f$ denotes a function, then the first set is called the domain of f , and the second set is its range. We write

$$
f: S_{1} \rightarrow S_{2}
$$

to indicate that the domain of $f$ is a subset of $S_{1}$
on $S_{1}$; otherwise $f$ is said to be a partial function.

A function is a rule that assigns to elements of one set a unique element of another set. If $f$ denotes a function, then the first set is called the domain of f , and the second set is its range. We write

$$
f: S_{1} \rightarrow S_{2}
$$

to indicate that the domain of $f$ is a subset of $S_{1}$ and that the range of $f$ is a subset of $S_{2}$.
on $S_{1}$; otherwise $f$ is said to be a partial function.

A function is a rule that assigns to elements of one set a unique element of another set. If $f$ denotes a function, then the first set is called the domain of f , and the second set is its range. We write

$$
f: S_{1} \rightarrow S_{2}
$$

to indicate that the domain of $f$ is a subset of $S_{1}$ and that the range of $f$ is a subset of $S_{2}$. If the domain of $f$ is all of $S_{1}$, we say that $f$ is a total function on $S_{1}$;

A function is a rule that assigns to elements of one set a unique element of another set. If $f$ denotes a function, then the first set is called the domain of f , and the second set is its range. We write

$$
f: S_{1} \rightarrow S_{2}
$$

to indicate that the domain of $f$ is a subset of $S_{1}$ and that the range of $f$ is a subset of $S_{2}$. If the domain of $f$ is all of $S_{1}$, we say that $f$ is a total function on $S_{1}$; otherwise $f$ is said to be a partial function.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$
we say that $f$ has order at most $g$. We write this as $f(n)=O(g(n))$. If
then $f$ has order at least $g$, for which we use
$f(n)=\Omega(g(n))$
Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
$f$ and $g$ have the same order of magnitude, expressed as

$$
f(n)=\Theta(g(n)) .
$$

In this order-of-magnitude notation, we ignore multiplicative constants and lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large.

```
an understanding of the growth rates may suffice and a common order of
magnitude notation can be used. Let }f(n)\mathrm{ and }g(n)\mathrm{ be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all sufficiently large n
```

we say that $f$ has order at most $g$. We write this as
$f(n)=O(g(n))$
If
then $f$ has order at least $g$, for which we use
Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
$f$ and $g$ have the same order of magnitude, expressed as
$f(n)=\Theta(g(n))$
In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used.
domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$
$\square$
we say that $f$ has order at most $g$. We write this as
then $f$ has order at least $g$, for which we use

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
$f$ and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers.
we say that $f$ has order at most $g$. We write this as If
then $f$ has order at least $g$, for which we use

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$
we say that $f$ has order at most $g$. We write this as If
then $f$ has order at least $g$, for which we use

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

> we say that $f$ has order at most $g$. We write this as

$\square$
then $f$ has order at least $g$, for which we use

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. If
then $f$ has order at least $g$, for which we use

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as
$\square$
then $f$ has order at least $g$, for which we use

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as

$$
\begin{equation*}
f(n)=O(g(n)) \tag{If}
\end{equation*}
$$

then $f$ has order at least $g$, for which we use

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as

$$
f(n)=O(g(n))
$$

If
then $f$ has order at least $g$, for which we use

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as

$$
f(n)=O(g(n))
$$

If

$$
|f(n)| \geq c|g(n)|
$$

then $f$ has order at least $g$, for which we use

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as

$$
f(n)=O(g(n))
$$

If

$$
|f(n)| \geq c|g(n)|
$$

then $f$ has order at least $g$, for which we use

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
$f$ and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as

$$
f(n)=O(g(n))
$$

If

$$
|f(n)| \geq c|g(n)|
$$

then $f$ has order at least $g$, for which we use

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
$f$ and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as

$$
f(n)=O(g(n))
$$

If

$$
|f(n)| \geq c|g(n)|
$$

then $f$ has order at least $g$, for which we use

$$
f(n)=\Omega(g(n))
$$

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that
$f$ and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as

$$
f(n)=O(g(n))
$$

If

$$
|f(n)| \geq c|g(n)|
$$

then $f$ has order at least $g$, for which we use

$$
f(n)=\Omega(g(n))
$$

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that

[^5]In this order-of-magnitude notation, we ignore multiplicative constants and lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as

$$
f(n)=O(g(n))
$$

If

$$
|f(n)| \geq c|g(n)|
$$

then $f$ has order at least $g$, for which we use

$$
f(n)=\Omega(g(n))
$$

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that

$$
c_{1}|g(n)| \leq|f(n)| \leq c_{2}|g(n)|,
$$

$f$ and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as

$$
f(n)=O(g(n))
$$

If

$$
|f(n)| \geq c|g(n)|
$$

then $f$ has order at least $g$, for which we use

$$
f(n)=\Omega(g(n))
$$

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that

$$
c_{1}|g(n)| \leq|f(n)| \leq c_{2}|g(n)|,
$$

$f$ and $g$ have the same order of magnitude, expressed as

In this order-of-magnitude notation, we ignore multiplicative constants and lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as

$$
f(n)=O(g(n))
$$

If

$$
|f(n)| \geq c|g(n)|
$$

then $f$ has order at least $g$, for which we use

$$
f(n)=\Omega(g(n))
$$

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that

$$
c_{1}|g(n)| \leq|f(n)| \leq c_{2}|g(n)|,
$$

$f$ and $g$ have the same order of magnitude, expressed as

$$
f(n)=\Theta(g(n))
$$

In this order-of-magnitude notation, we ignore multiplicative constants and lower-order terms that become negligible as $n$ increases.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the set of positive integers. Furthermore, we are often interested only in the behavior of these functions as their arguments become very large. In such cases an understanding of the growth rates may suffice and a common order of magnitude notation can be used. Let $f(n)$ and $g(n)$ be functions whose domain is a subset of the positive integers. If there exists a positive constant $c$ such that for all sufficiently large $n$

$$
f(n) \leq c|g(n)|
$$

we say that $f$ has order at most $g$. We write this as

$$
f(n)=O(g(n))
$$

If

$$
|f(n)| \geq c|g(n)|
$$

then $f$ has order at least $g$, for which we use

$$
f(n)=\Omega(g(n))
$$

Finally, if there exist constants $c_{1}$ and $c_{2}$ such that

$$
c_{1}|g(n)| \leq|f(n)| \leq c_{2}|g(n)|,
$$

$f$ and $g$ have the same order of magnitude, expressed as

$$
f(n)=\Theta(g(n))
$$

In this order-of-magnitude notation, we ignore multiplicative constants and lower-order terms that become negligible as $n$ increases.

## Example 1.3

Let


$$
g(n)=n^{3}
$$

$$
h(n)=10 n^{2}+100
$$

Then

$$
\begin{aligned}
& f(n)=O(g(n)), \\
& g(n)=\Omega(h(n)), \\
& f(n)=\Theta(h(n)) .
\end{aligned}
$$

In order-of-magnitude notation, the symbol = should not be interpreted as equality and order-of-magnitude expressions cannot be treated like ordinary expressions. Manipulations such as
$O(n)+O(n)=2 O(n)$
are not sensible and can lead to incorrect conclusions. Still, if used properly, the order-of-magnitude arguments can be effective, as we will see in later lectures.

```
Example 1.3
    Let
        f(n)=2\mp@subsup{n}{}{2}+3n,
        g ( n ) = n ^ { 3 }
        h(n)=10\mp@subsup{n}{}{2}+100.
    Then
\[
\begin{aligned}
& f(n)=O(g(n)) \\
& g(n)=\Omega(h(n)) \\
& f(n)=\Theta(h(n))
\end{aligned}
\]
In order-of-magnitude notation, the symbol = should not be interpreted as equality and order-of-magnitude expressions cannot be treated like ordinary expressions. Manipulations such as
\(O(n)+O(n)=2 O(n)\)
are not sensible and can lead to incorrect conclusions. Still, if used properly, the order-of-magnitude arguments can be effective, as we will see in later lectures.
```


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

## Example 1.3

Let

$$
\begin{aligned}
& f(n)=2 n^{2}+3 n \\
& g(n)=n^{3} \\
& h(n)=10 n^{2}+100
\end{aligned}
$$

## Then

$$
\begin{aligned}
& f(n)=O(g(n)), \\
& g(n)=\Omega(h(n)), \\
& f(n)=\Theta(h(n)) .
\end{aligned}
$$

In order-of-magnitude notation, the symbol = should not be interpreted as equality and order-of-magnitude expressions cannot be treated like ordinary expressions. Manipulations such as
$O(n)+O(n)=2 O(n)$
are not sensible and can lead to incorrect conclusions. Still, if used properly, the order-of-magnitude arguments can be effective, as we will see in later lectures.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

## Example 1.3

Let

$$
\begin{aligned}
& f(n)=2 n^{2}+3 n \\
& g(n)=n^{3} \\
& h(n)=10 n^{2}+100
\end{aligned}
$$

Then

$$
\begin{aligned}
& f(n)=O(g(n)), \\
& g(n)=\Omega(h(n)), \\
& f(n)=\Theta(h(n)) .
\end{aligned}
$$

In order-of-magnitude notation, the symbol = should not be interpreted as equality and order-of-magnitude expressions cannot be treated like ordinary expressions. Manipulations such as
$O(n)+O(n)=2 O(n)$
are not sensible and can lead to incorrect conclusions. Still, if used properly, the order-of-magnitude arguments can be effective, as we will see in later lectures.

## Example 1.3

Let

$$
\begin{aligned}
& f(n)=2 n^{2}+3 n \\
& g(n)=n^{3} \\
& h(n)=10 n^{2}+100
\end{aligned}
$$

Then

$$
\begin{aligned}
f(n) & =O(g(n)), \\
g(n) & =\Omega(h(n)), \\
f(n) & =\Theta(h(n)) .
\end{aligned}
$$

In order-of-magnitude notation, the symbol $=$ should not be interpreted as equality and order-of-magnitude expressions cannot be treated like ordinary expressions. Manipulations such as
$O(n)+O(n)=2 O(n)$
are not sensible and can lead to incorrect conclusions. Still, if used properly, the order-of-magnitude arguments can be effective, as we will see in later lectures.

## Example 1.3

Let

$$
\begin{aligned}
& f(n)=2 n^{2}+3 n \\
& g(n)=n^{3} \\
& h(n)=10 n^{2}+100
\end{aligned}
$$

Then

$$
\begin{aligned}
f(n) & =O(g(n)), \\
g(n) & =\Omega(h(n)), \\
f(n) & =\Theta(h(n)) .
\end{aligned}
$$

In order-of-magnitude notation, the symbol = should not be interpreted as equality and order-of-magnitude expressions cannot be treated like ordinary expressions.
$O(n)+O(n)=2 O(n)$
are not sensible and can lead to incorrect conclusions. Still, if used properly, the order-of-magnitude arguments can be effective, as we will see in later lectures.

## Example 1.3

Let

$$
\begin{aligned}
& f(n)=2 n^{2}+3 n \\
& g(n)=n^{3} \\
& h(n)=10 n^{2}+100
\end{aligned}
$$

Then

$$
\begin{aligned}
f(n) & =O(g(n)), \\
g(n) & =\Omega(h(n)), \\
f(n) & =\Theta(h(n)) .
\end{aligned}
$$

In order-of-magnitude notation, the symbol = should not be interpreted as equality and order-of-magnitude expressions cannot be treated like ordinary expressions. Manipulations such as
are not sensible and can lead to incorrect conclusions. Still, if used properly, the order-of-magnitude arguments can be effective, as we will see in later lectures.

## Example 1.3

Let

$$
\begin{aligned}
& f(n)=2 n^{2}+3 n \\
& g(n)=n^{3} \\
& h(n)=10 n^{2}+100
\end{aligned}
$$

Then

$$
\begin{aligned}
f(n) & =O(g(n)), \\
g(n) & =\Omega(h(n)), \\
f(n) & =\Theta(h(n)) .
\end{aligned}
$$

In order-of-magnitude notation, the symbol = should not be interpreted as equality and order-of-magnitude expressions cannot be treated like ordinary expressions. Manipulations such as

$$
O(n)+O(n)=2 O(n)
$$

are not sensible and can lead to incorrect conclusions. Still, if used properly, the order-of-magnitude arguments can be effective, as we will see in later lectures.

## Example 1.3

Let

$$
\begin{aligned}
& f(n)=2 n^{2}+3 n \\
& g(n)=n^{3} \\
& h(n)=10 n^{2}+100
\end{aligned}
$$

Then

$$
\begin{aligned}
f(n) & =O(g(n)), \\
g(n) & =\Omega(h(n)), \\
f(n) & =\Theta(h(n)) .
\end{aligned}
$$

In order-of-magnitude notation, the symbol = should not be interpreted as equality and order-of-magnitude expressions cannot be treated like ordinary expressions. Manipulations such as

$$
O(n)+O(n)=2 O(n)
$$

are not sensible and can lead to incorrect conclusions. Still, if used properly, the order-of-magnitude arguments can be effective, as we will see in later lectures.

## Example 1.3

Let

$$
\begin{aligned}
& f(n)=2 n^{2}+3 n \\
& g(n)=n^{3} \\
& h(n)=10 n^{2}+100
\end{aligned}
$$

Then

$$
\begin{aligned}
f(n) & =O(g(n)), \\
g(n) & =\Omega(h(n)), \\
f(n) & =\Theta(h(n)) .
\end{aligned}
$$

In order-of-magnitude notation, the symbol = should not be interpreted as equality and order-of-magnitude expressions cannot be treated like ordinary expressions. Manipulations such as

$$
O(n)+O(n)=2 O(n)
$$

are not sensible and can lead to incorrect conclusions. Still, if used properly, the order-of-magnitude arguments can be effective, as we will see in later lectures.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

## Some functions can be represented by a set of pairs

$$
\begin{aligned}
& \qquad\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}, \\
& \text { where } x_{i} \text { is an element in the domain of the function, and } y_{i} \text { is the } \\
& \text { corresponding value in its range. For such a set to define a function, each } x_{i} \\
& \text { can occur at most once as the first element of a pair. If this is not satisfied, the } \\
& \text { set is called a relation. Relations are more general than functions: In a function } \\
& \text { each element of the domain has exactly one associated element in the range; in } \\
& \text { a relation there may be several such elements in the range. } \\
& \text { One kind of relation is that of equivalence, a generalization of the concept of } \\
& \text { equality (identity). To indicate that a pair }(x, y) \text { is in an equivalence relation, } \\
& \text { we write } \\
& \qquad x \equiv y \text {. } \\
& \text { A relation denoted by } \equiv \text { is considered an equivalence if it satisfies three rules: } \\
& \text { the reflexivity rule } \\
& \qquad x \equiv x \text { for all } x ; \\
& \text { the symmetry rule } \\
& \text { and the transitivity rule } \\
& \text { if } x \equiv y, \text { then } y \equiv x ;
\end{aligned}
$$

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

$$
x \equiv y .
$$

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule

$$
x \equiv x \text { for all } x
$$

the symmetry rule

$$
\text { if } x \equiv y \text {, then } y \equiv x
$$

and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

$$
x \equiv y .
$$

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule

$$
x \equiv x \text { for all } x
$$

the symmetry rule

$$
\text { if } x \equiv y \text {, then } y \equiv x
$$

and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range.
can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range. One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

$$
x \equiv y .
$$

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule

$$
x \equiv x \text { for all } x ;
$$

the symmetry rule
if $x \equiv y$, then $y \equiv x ;$
and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair.
each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range. One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule
the symmetry rule
if $x \equiv y$, then $y \equiv x$;
and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation.

```
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x,y) is in an equivalence relation,
we write
```

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule
the symmetry rule
if $x \equiv y$, then $y \equiv x ;$
and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions:
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule
the symmetry rule
if $x \equiv y$, then $y \equiv x$;
and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range;

```
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x,y) is in an equivalence relation,
we write
```

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule
the symmetry rule
if $x \equiv y$, then $y \equiv x$;
and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.

```
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x,y) is in an equivalence relation,
```

we write

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule
the symmetry rule
if $x \equiv y$, then $y \equiv x$;
and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity).

[^6]A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules:
the symmetry rule
if $x \equiv y$, then $y \equiv x$;
and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules:
the symmetry rule
if $x \equiv y$, then $y \equiv x$;
and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

$$
x \equiv y
$$

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules:
the symmetry rule
if $x \equiv y$, then $y \equiv x$;
and the transitivity rule

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

$$
x \equiv y
$$

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules:
the symmetry rule
$\qquad$
and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

$$
x \equiv y
$$

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule
the symmetry rule
if $x \equiv y$, then $y \equiv x$;
and the transitivity rule
of $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

$$
x \equiv y
$$

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule

$$
x \equiv x \text { for all } x
$$

the symmetry rule

and the transitivity rule
$\cdot \boldsymbol{r} x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

$$
x \equiv y
$$

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule

$$
x \equiv x \text { for all } x
$$

the symmetry rule

$$
\text { if } x \equiv y \text {, then } y \equiv x \text {; }
$$

and the transitivity rule
$\cdot \boldsymbol{f} x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

$$
x \equiv y
$$

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule

$$
x \equiv x \text { for all } x
$$

the symmetry rule

$$
\text { if } x \equiv y, \text { then } y \equiv x
$$

and the transitivity rule
if $x \equiv y$ and $y \equiv z$, then $x \equiv z$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

$$
x \equiv y
$$

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule

$$
x \equiv x \text { for all } x
$$

the symmetry rule

$$
\text { if } x \equiv y, \text { then } y \equiv x
$$

and the transitivity rule

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}
$$

where $x_{i}$ is an element in the domain of the function, and $y_{i}$ is the corresponding value in its range. For such a set to define a function, each $x_{i}$ can occur at most once as the first element of a pair. If this is not satisfied, the set is called a relation. Relations are more general than functions: In a function each element of the domain has exactly one associated element in the range; in a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of equality (identity). To indicate that a pair $(x, y)$ is in an equivalence relation, we write

$$
x \equiv y
$$

A relation denoted by $\equiv$ is considered an equivalence if it satisfies three rules: the reflexivity rule

$$
x \equiv x \text { for all } x
$$

the symmetry rule

$$
\text { if } x \equiv y, \text { then } y \equiv x
$$

and the transitivity rule

$$
\text { if } x \equiv y \text { and } y \equiv z, \text { then } x \equiv z
$$

## Example 1.4

On the set of nonnegative integers, we can define a relation

$$
x \equiv y
$$

```
if and only if
```

    \(x \quad \bmod 3=y \quad \bmod 3\).
    ```
Then \(2 \equiv 5,12 \equiv 0\), and \(0=36\) Clearly this is an eat ivalence relation, as it
satisfies reflexivity, symmetry, and transitivity.
```

If $S$ is a set on which we have a defined equivalence relation, then we can use this equivalence to partition the set into equivalence classes. Each equivalence class contains all and only equivalent elements.

## Example 1.4

On the set of nonnegative integers, we can define a relation

$$
x \equiv y
$$

if and only if

Then $2 \equiv 5,12 \equiv 0$, and $0 \equiv 36$. Clearly this is an equivalence relation, as it satisfies reflexivity, symmetry, and transitivity.

If $S$ is a set on which we have a defined equivalence relation, then we can use this equivalence to partition the set into equivalence classes. Each equivalence class contains all and only equivalent elements.

## Example 1.4

On the set of nonnegative integers, we can define a relation

$$
x \equiv y
$$

if and only if

Then $2 \equiv 5,12 \equiv 0$, and $0 \equiv 36$. Clearly this is an equivalence relation, as it satisfies reflexivity, symmetry, and transitivity.

If $S$ is a set on which we have a defined equivalence relation, then we can use this equivalence to partition the set into equivalence classes. Each equivalence class contains all and only equivalent elements.

## Example 1.4

On the set of nonnegative integers, we can define a relation

$$
x \equiv y
$$

if and only if

Then $2 \equiv 5,12 \equiv 0$, and $0 \equiv 36$. Clearly this is an equivalence relation, as it satisfies reflexivity, symmetry, and transitivity.

If $S$ is a set on which we have a defined equivalence relation, then we can use this equivalence to partition the set into equivalence classes. Each equivalence class contains all and only equivalent elements.

## Example 1.4

On the set of nonnegative integers, we can define a relation

$$
x \equiv y
$$

if and only if

$$
x \quad \bmod 3=y \quad \bmod 3 .
$$

Then $2 \equiv 5,12 \equiv 0$, and $0 \equiv 36$. Clearly this is an equivalence relation, as it satisfies reflexivity, symmetry, and transitivity.

If $S$ is a set on which we have a defined equivalence relation, then we can use this equivalence to partition the set into equivalence classes. Each equivalence class contains all and only equivalent elements.

## Example 1.4

On the set of nonnegative integers, we can define a relation

$$
x \equiv y
$$

if and only if

$$
x \quad \bmod 3=y \quad \bmod 3
$$

Then $2 \equiv 5,12 \equiv 0$, and $0 \equiv 36$. Clearly this is an equivalence relation, as it satisfies reflexivity, symmetry, and transitivity.

If $S$ is a set on which we have a defined equivalence relation, then we can use this equivalence to partition the set into equivalence classes. Each equivalence class contains all and only equivalent elements.

## Example 1.4

On the set of nonnegative integers, we can define a relation

$$
x \equiv y
$$

if and only if

$$
x \quad \bmod 3=y \quad \bmod 3
$$

Then $2 \equiv 5,12 \equiv 0$, and $0 \equiv 36$. Clearly this is an equivalence relation, as it satisfies reflexivity, symmetry, and transitivity.

If $S$ is a set on which we have a defined equivalence relation, then we can use this equivalence to partition the set into equivalence classes. Each equivalence class contains all and only equivalent elements.

## Example 1.4

On the set of nonnegative integers, we can define a relation

$$
x \equiv y
$$

if and only if

$$
x \quad \bmod 3=y \quad \bmod 3
$$

Then $2 \equiv 5,12 \equiv 0$, and $0 \equiv 36$. Clearly this is an equivalence relation, as it satisfies reflexivity, symmetry, and transitivity.

If $S$ is a set on which we have a defined equivalence relation, then we can use this equivalence to partition the set into equivalence classes. Each equivalence class contains all and only equivalent elements.

## Example 1.4

On the set of nonnegative integers, we can define a relation

$$
x \equiv y
$$

if and only if

$$
x \quad \bmod 3=y \quad \bmod 3
$$

Then $2 \equiv 5,12 \equiv 0$, and $0 \equiv 36$. Clearly this is an equivalence relation, as it satisfies reflexivity, symmetry, and transitivity.

If $S$ is a set on which we have a defined equivalence relation, this equivalence to partition the set into equivalence classes. Each equivalence class contains all and only equivalent elements.

## Example 1.4

On the set of nonnegative integers, we can define a relation

$$
x \equiv y
$$

if and only if

$$
x \quad \bmod 3=y \quad \bmod 3
$$

Then $2 \equiv 5,12 \equiv 0$, and $0 \equiv 36$. Clearly this is an equivalence relation, as it satisfies reflexivity, symmetry, and transitivity.

If $S$ is a set on which we have a defined equivalence relation, then we can use this equivalence to partition the set into equivalence classes. class contains all and only equivalent elements.

## Example 1.4

On the set of nonnegative integers, we can define a relation

$$
x \equiv y
$$

if and only if

$$
x \quad \bmod 3=y \quad \bmod 3
$$

Then $2 \equiv 5,12 \equiv 0$, and $0 \equiv 36$. Clearly this is an equivalence relation, as it satisfies reflexivity, symmetry, and transitivity.

If $S$ is a set on which we have a defined equivalence relation, then we can use this equivalence to partition the set into equivalence classes. Each equivalence class contains all and only equivalent elements.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set

Each edge is a pair of vertices from $V$, for instance,
is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices
Each edge is a pair of vertices from $V$, for instance,
is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges. Each edge is a pair of vertices from $V$, for instance,
is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges. Each edge is a pair of vertices from $V$, for instance,
is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges. Each edge is a pair of vertices from $V$, for instance,
is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges. Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges. Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$
and an incoming edge for $v_{k}$. Such a construct is actually a directed graph
(digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge.
Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges. Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$
(digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges. Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$.
(digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges. Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges.
Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is
depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges.
Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges. Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph.
conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges.
Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled.
conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two finite sets, the set
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges.
Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices.
depicted in the following Figure.


A graph is a construct consisting of two finite sets, the set
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges.
Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


A graph is a construct consisting of two finite sets, the set
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of vertices and the set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges.
Each edge is a pair of vertices from $V$, for instance,

$$
e_{i}=\left(v_{j}, v_{k}\right)
$$

is an edge from $v_{j}$ to $v_{k}$. We say that the edge $e_{i}$ is an outgoing edge for $v_{j}$ and an incoming edge for $v_{k}$. Such a construct is actually a directed graph (digraph), since we associate a direction (from $v_{j}$ to $v_{k}$ ) with each edge. Graphs may be labeled, a label being a name or other information associated with parts of the graph. Both vertices and edges may be labeled. Graphs are conveniently visualized by diagrams in which the vertices are represented as circles and the edges as lines with arrows connecting the vertices. The graph with vertices $\left\{v_{1}, v_{2}, v_{3}\right\}$ and edges $\left\{\left(v_{1}, v_{3}\right),\left(v_{3}, v_{1}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{3}\right)\right\}$ is depicted in the following Figure.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk. This label is the sequence of edge labels encountered when the path is traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk. This label is the sequence of edge labels encountered when the path is traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path;
itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left.v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk This label is the sequence of edge labels encountered when the path is traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated.
itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left.v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk. This label is the sequence of edge labels encountered when the path is traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk. This label is the sequence of edge labels encountered when the path is traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk This label is the sequence of edge labels encountered when the path is traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk This label is the sequence of edge labels encountered when the path is traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk This label is the sequence of edge labels encountered when the path is traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, $\qquad$ This label is the sequence of edge labels encountered when the path is traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk.
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk. This label is the sequence of edge labels encountered when the path is traversed.

```
there is a loop on vertex }\mp@subsup{v}{3}{}\mathrm{ .
```

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk. This label is the sequence of edge labels encountered when the path is traversed. Finally, an edge from a vertex to itself is called a loop.

A sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots,\left(v_{m}, v_{n}\right)$ is said to be a walk from $v_{i}$ to $v_{n}$. The length of a walk is the total number of edges traversed in going from the initial vertex to the final one. A walk in which no edge is repeated is said to be a path; a path is simple if no vertex is repeated. A walk from $v_{i}$ to itself with no repeated edges is called a cycle with base $v_{i}$. If no vertices other than the base are repeated in a cycle, then it is said to be simple. In the Figure, $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{2}\right)$ is a simple path from $v_{1}$ to $v_{2}$.


The sequence of edges $\left(v_{1}, v_{3}\right),\left(v_{3}, v_{3}\right),\left(v_{3}, v_{1}\right)$ is a cycle, but not a simple one. If the edges of a graph are labeled, we can talk about the label of a walk. This label is the sequence of edge labels encountered when the path is traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure, there is a loop on vertex $v_{3}$.

On several occasions, we will refer to an algorithm for finding all simple paths between two given vertices (or all simple cycles based on a vertex). If we do not concern ourselves with efficiency, we can use the following obvious method. Starting from the given vertex, say $v_{i}$, list all outgoing edges $\left(v_{i}, v_{k}\right),\left(v_{i}, v_{l}\right)$, At this point, we have all paths of length one starting at $v_{i}$. For all vertices $v_{k}, v_{l}, \ldots$ so reached, we list all outgoing edges as long as they do not lead to any vertex already used in the path we are constructing. After we do this, we will have all simple paths of length two originating at $v_{i}$. We continue this until all possibilities are accounted for. Since there are only a finite number of vertices, we will eventually list all simple paths beginning at $v_{i}$. From these we select those ending at the desired vertex.

On several occasions, we will refer to an algorithm for finding all simple paths between two given vertices (or all simple cycles based on a vertex).
concern ourselves with efficiency, we can use the following obvious method. Starting from the given vertex, say $v_{i}$, list all outgoing edges (

At this point, we have all paths of length one starting at $v_{i}$. For all vertices $v_{k}, v_{l}, \ldots$ so reached, we list all outgoing edges as long as they do not lead to any vertex already used in the path we are constructing. After we do this, we will have all simple paths of length two originating at $v_{i}$. We continue this until all possibilities are accounted for. Since there are only a finite number of vertices, we will eventually list all simple paths beginning at $v_{i}$. From these we select those ending at the desired vertex.

On several occasions, we will refer to an algorithm for finding all simple paths between two given vertices (or all simple cycles based on a vertex). If we do not concern ourselves with efficiency, we can use the following obvious method.


On several occasions, we will refer to an algorithm for finding all simple paths between two given vertices (or all simple cycles based on a vertex). If we do not concern ourselves with efficiency, we can use the following obvious method. Starting from the given vertex, say $v_{i}$,


On several occasions, we will refer to an algorithm for finding all simple paths between two given vertices (or all simple cycles based on a vertex). If we do not concern ourselves with efficiency, we can use the following obvious method. Starting from the given vertex, say $v_{i}$, list all outgoing edges $\left(v_{i}, v_{k}\right),\left(v_{i}, v_{l}\right)$, $\ldots .$. At this point, we have all paths of length one starting at $v_{i}$. For all vertices
$v_{k}, v_{l}, \ldots$ so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at $v_{i}$. We continue this until
all possibilities are accounted for. Since there are only a finite number of
vertices, we will eventually list all simple paths beginning at $v_{i}$. From these we
select those ending at the desired vertex.

On several occasions, we will refer to an algorithm for finding all simple paths between two given vertices (or all simple cycles based on a vertex). If we do not concern ourselves with efficiency, we can use the following obvious method. Starting from the given vertex, say $v_{i}$, list all outgoing edges $\left(v_{i}, v_{k}\right),\left(v_{i}, v_{l}\right)$, .... At this point, we have all paths of length one starting at $v_{i}$.
$v_{k}, v_{l}, \ldots$ so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at $v_{i}$. We continue this until
all possibilities are accounted for. Since there are only a finite number of
vertices, we will eventually list all simple paths beginning at $v_{i}$. From these we
select those ending at the desired vertex.

On several occasions, we will refer to an algorithm for finding all simple paths between two given vertices (or all simple cycles based on a vertex). If we do not concern ourselves with efficiency, we can use the following obvious method. Starting from the given vertex, say $v_{i}$, list all outgoing edges $\left(v_{i}, v_{k}\right),\left(v_{i}, v_{l}\right)$, .... At this point, we have all paths of length one starting at $v_{i}$. For all vertices $v_{k}, v_{l}, \ldots$ so reached, we list all outgoing edges as long as they do not lead to any vertex already used in the path we are constructing.
will have all simple paths of length two originating at $v_{i}$. We continue this until all possibilities are accounted for. Since there are only a finite number of vertices, we will eventually list all simple paths beginning at $v_{i}$. From these we select those ending at the desired vertex.

On several occasions, we will refer to an algorithm for finding all simple paths between two given vertices (or all simple cycles based on a vertex). If we do not concern ourselves with efficiency, we can use the following obvious method. Starting from the given vertex, say $v_{i}$, list all outgoing edges $\left(v_{i}, v_{k}\right),\left(v_{i}, v_{l}\right)$, .... At this point, we have all paths of length one starting at $v_{i}$. For all vertices $v_{k}, v_{l}, \ldots$ so reached, we list all outgoing edges as long as they do not lead to any vertex already used in the path we are constructing. After we do this, we will have all simple paths of length two originating at $v_{i}$.
all possibilities are accounted for. Since there are only a finite number of
vertices, we will eventually list all simple paths beginning at $v_{i}$. From these we select those ending at the desired vertex.

On several occasions, we will refer to an algorithm for finding all simple paths between two given vertices (or all simple cycles based on a vertex). If we do not concern ourselves with efficiency, we can use the following obvious method. Starting from the given vertex, say $v_{i}$, list all outgoing edges $\left(v_{i}, v_{k}\right),\left(v_{i}, v_{l}\right)$, .... At this point, we have all paths of length one starting at $v_{i}$. For all vertices $v_{k}, v_{l}, \ldots$ so reached, we list all outgoing edges as long as they do not lead to any vertex already used in the path we are constructing. After we do this, we will have all simple paths of length two originating at $v_{i}$. We continue this until all possibilities are accounted for.
vertices, we will eventually list all simple paths beginning at $v_{i}$. From these we select those ending at the desired vertex.

On several occasions, we will refer to an algorithm for finding all simple paths between two given vertices (or all simple cycles based on a vertex). If we do not concern ourselves with efficiency, we can use the following obvious method. Starting from the given vertex, say $v_{i}$, list all outgoing edges $\left(v_{i}, v_{k}\right),\left(v_{i}, v_{l}\right)$, .... At this point, we have all paths of length one starting at $v_{i}$. For all vertices $v_{k}, v_{l}, \ldots$ so reached, we list all outgoing edges as long as they do not lead to any vertex already used in the path we are constructing. After we do this, we will have all simple paths of length two originating at $v_{i}$. We continue this until all possibilities are accounted for. Since there are only a finite number of vertices, we will eventually list all simple paths beginning at $v_{i}$. From these we

On several occasions, we will refer to an algorithm for finding all simple paths between two given vertices (or all simple cycles based on a vertex). If we do not concern ourselves with efficiency, we can use the following obvious method. Starting from the given vertex, say $v_{i}$, list all outgoing edges $\left(v_{i}, v_{k}\right),\left(v_{i}, v_{l}\right)$, .... At this point, we have all paths of length one starting at $v_{i}$. For all vertices $v_{k}, v_{l}, \ldots$ so reached, we list all outgoing edges as long as they do not lead to any vertex already used in the path we are constructing. After we do this, we will have all simple paths of length two originating at $v_{i}$. We continue this until all possibilities are accounted for. Since there are only a finite number of vertices, we will eventually list all simple paths beginning at $v_{i}$. From these we select those ending at the desired vertex.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs.
cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies that the root has no incoming edges and that there are some vertices without outgoing edges. These are called the leaves of the tree. If there is an edge from $v_{i}$ to $v_{j}$, then $v_{i}$ is said to be the parent of $v_{j}$, and $v_{j}$ the child of $v_{i}$. The level associated with each vertex is the number of edges in the path from the root to the vertex. The height of the tree is the largest level number of any vertex. These terms are illustrated in the Figure.


At times, we want to associate an ordering with the nodes at each level; in such cases we talk about ordered trees.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies
that the root has no incoming edges and that there are some vertices without outgoing edges. These are called the leaves of the tree. If there is an edge from $v_{i}$ to $v_{j}$, then $v_{i}$ is said to be the parent of $v_{j}$, and $v_{j}$ the child of $v_{i}$. The level associated with each vertex is the number of edges in the path from the root to the vertex. The height of the tree is the largest level number of any vertex. These terms are illustrated in the Figure.


At times, we want to associate an ordering with the nodes at each level; in such cases we talk about ordered trees.

Trees are a particular type of graphs. A tree is a directed graph that has no cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies that the root has no incoming edges and that there are some vertices without outgoing edges.
associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.


At times, we want to associate an ordering with the nodes at each level; in such cases we talk about ordered trees.

Trees are a particular type of graphs. A tree is a directed graph that has no cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies that the root has no incoming edges and that there are some vertices without outgoing edges. These are called the leaves of the tree.
associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.


At times, we want to associate an ordering with the nodes at each level; in such cases we talk about ordered trees.

Trees are a particular type of graphs. A tree is a directed graph that has no cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies that the root has no incoming edges and that there are some vertices without outgoing edges. These are called the leaves of the tree. If there is an edge from $v_{i}$ to $v_{j}$, then $v_{i}$ is said to be the parent of $v_{j}$,
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.


At times, we want to associate an ordering with the nodes at each level; in such cases we talk about ordered trees.

Trees are a particular type of graphs. A tree is a directed graph that has no cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies that the root has no incoming edges and that there are some vertices without outgoing edges. These are called the leaves of the tree. If there is an edge from $v_{i}$ to $v_{j}$, then $v_{i}$ is said to be the parent of $v_{j}$, and $v_{j}$ the child of $v_{i}$.
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.


At times, we want to associate an ordering with the nodes at each level; in such cases we talk about ordered trees.

Trees are a particular type of graphs. A tree is a directed graph that has no cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies that the root has no incoming edges and that there are some vertices without outgoing edges. These are called the leaves of the tree. If there is an edge from $v_{i}$ to $v_{j}$, then $v_{i}$ is said to be the parent of $v_{j}$, and $v_{j}$ the child of $v_{i}$. The level associated with each vertex is the number of edges in the path from the root to the vertex.
These terms are illustrated in the Figure.


At times, we want to associate an ordering with the nodes at each level; in such cases we talk about ordered trees.

Trees are a particular type of graphs. A tree is a directed graph that has no cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies that the root has no incoming edges and that there are some vertices without outgoing edges. These are called the leaves of the tree. If there is an edge from $v_{i}$ to $v_{j}$, then $v_{i}$ is said to be the parent of $v_{j}$, and $v_{j}$ the child of $v_{i}$. The level associated with each vertex is the number of edges in the path from the root to the vertex. The height of the tree is the largest level number of any vertex.


At times, we want to associate an ordering with the nodes at each level; in such cases we talk about ordered trees.

Trees are a particular type of graphs. A tree is a directed graph that has no cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies that the root has no incoming edges and that there are some vertices without outgoing edges. These are called the leaves of the tree. If there is an edge from $v_{i}$ to $v_{j}$, then $v_{i}$ is said to be the parent of $v_{j}$, and $v_{j}$ the child of $v_{i}$. The level associated with each vertex is the number of edges in the path from the root to the vertex. The height of the tree is the largest level number of any vertex. These terms are illustrated in the Figure.


At times, we want to associate an ordering with the nodes at each level; in such cases we talk about ordered trees.

Trees are a particular type of graphs. A tree is a directed graph that has no cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies that the root has no incoming edges and that there are some vertices without outgoing edges. These are called the leaves of the tree. If there is an edge from $v_{i}$ to $v_{j}$, then $v_{i}$ is said to be the parent of $v_{j}$, and $v_{j}$ the child of $v_{i}$. The level associated with each vertex is the number of edges in the path from the root to the vertex. The height of the tree is the largest level number of any vertex. These terms are illustrated in the Figure.


At times, we want to associate an ordering with the nodes at each level; in such cases we talk about ordered trees.

Trees are a particular type of graphs. A tree is a directed graph that has no cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies that the root has no incoming edges and that there are some vertices without outgoing edges. These are called the leaves of the tree. If there is an edge from $v_{i}$ to $v_{j}$, then $v_{i}$ is said to be the parent of $v_{j}$, and $v_{j}$ the child of $v_{i}$. The level associated with each vertex is the number of edges in the path from the root to the vertex. The height of the tree is the largest level number of any vertex. These terms are illustrated in the Figure.


At times, we want to associate an ordering with the nodes at each level;

Trees are a particular type of graphs. A tree is a directed graph that has no cycles and that has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertex. This definition implies that the root has no incoming edges and that there are some vertices without outgoing edges. These are called the leaves of the tree. If there is an edge from $v_{i}$ to $v_{j}$, then $v_{i}$ is said to be the parent of $v_{j}$, and $v_{j}$ the child of $v_{i}$. The level associated with each vertex is the number of edges in the path from the root to the vertex. The height of the tree is the largest level number of any vertex. These terms are illustrated in the Figure.


At times, we want to associate an ordering with the nodes at each level; in such cases we talk about ordered trees.

An important requirement for reading this text is the ability to follow proofs. mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps. Two special proof techniques are used so frequently that it is appropriate to review them briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements $P_{1}, P_{2}, \ldots$ we want to prove to be true. Furthermore, suppose also that the following holds:

We can then use induction to show that every statement in this sequence is true.

An important requirement for reading this text is the ability to follow proofs. In mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps. Two special proof techniques are used so frequently that it is appropriate to review them briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements $P_{1}, P_{2}, \ldots$ we want to prove to be true. Furthermore, suppose also that the following holds:

We can then use induction to show that every statement in this sequence is true.

An important requirement for reading this text is the ability to follow proofs. In mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps.
techniques are used so frequently that it is appropriate to review them briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements $P_{1}, P_{2}, \ldots$ we want to prove to be true. Furthermore, suppose also that the following holds:

We can then use induction to show that every statement in this sequence is true.

An important requirement for reading this text is the ability to follow proofs. In mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps. Two special proof techniques are used so frequently that it is appropriate to review them briefly.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements $P_{1}, P_{2}, \ldots$ we want to prove to be true. Furthermore, suppose also that the following holds:

We can then use induction to show that every statement in this sequence is true.

An important requirement for reading this text is the ability to follow proofs. In mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps. Two special proof techniques are used so frequently that it is appropriate to review them briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements $P_{1}, P_{2}, \ldots$ we want to prove to be true. Furthermore, suppose also that the following holds:

We can then use induction to show that every statement in this sequence is true.

An important requirement for reading this text is the ability to follow proofs. In mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps. Two special proof techniques are used so frequently that it is appropriate to review them briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances.
of statements
also that the following holds:

We can then use induction to show that every statement in this sequence is true.

An important requirement for reading this text is the ability to follow proofs. In mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps. Two special proof techniques are used so frequently that it is appropriate to review them briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements $P_{1}, P_{2}, \ldots$ we want to prove to be true.

We can then use induction to show that every statement in this sequence is true.

An important requirement for reading this text is the ability to follow proofs. In mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps. Two special proof techniques are used so frequently that it is appropriate to review them briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements $P_{1}, P_{2}, \ldots$ we want to prove to be true. Furthermore, suppose also that the following holds:

We can then use induction to show that every statement in this sequence is true.

An important requirement for reading this text is the ability to follow proofs. In mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps. Two special proof techniques are used so frequently that it is appropriate to review them briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements $P_{1}, P_{2}, \ldots$ we want to prove to be true. Furthermore, suppose also that the following holds:

We can then use induction to show that every statement in this sequence is true.

An important requirement for reading this text is the ability to follow proofs. In mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps. Two special proof techniques are used so frequently that it is appropriate to review them briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements $P_{1}, P_{2}, \ldots$ we want to prove to be true. Furthermore, suppose also that the following holds:

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.

We can then use induction to show that every statement in this sequence is

An important requirement for reading this text is the ability to follow proofs. In mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps. Two special proof techniques are used so frequently that it is appropriate to review them briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements $P_{1}, P_{2}, \ldots$ we want to prove to be true. Furthermore, suppose also that the following holds:

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.

We can then use induction to show that every statement in this sequence is true.

An important requirement for reading this text is the ability to follow proofs. In mathematical arguments, we employ the accepted rules of deductive reasoning, and many proofs are simply a sequence of such steps. Two special proof techniques are used so frequently that it is appropriate to review them briefly. These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be inferred from the truth of a few specific instances. Suppose we have a sequence of statements $P_{1}, P_{2}, \ldots$ we want to prove to be true. Furthermore, suppose also that the following holds:

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
We can then use induction to show that every statement in this sequence is true.
3. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
4. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction.
The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}, \ldots, P_{n}$ are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows:
the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must
be true. But now that we know that the first $k+1$ statements are true, we can
apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction.
The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive
step is generally made easier by the inductive assumption that $P_{1}, P_{2}$
are true, then argue that the truth of these statements guarantees the truth of
$P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true.
be true. But now that we know that the first $k+1$ statements are true, we can
apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction.
The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}$ are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true.
apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction.
The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive
step is generally made easier by the inductive assumption that $P_{1}, P_{2}, \ldots, P_{n}$
are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction. The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}, \ldots, P_{n}$ are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true,
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction.
The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}, \ldots, P_{n}$ are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on.
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction. The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}, \ldots, P_{n}$ are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument,
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction. The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}$, are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction. The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}, \ldots, P_{n}$ are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement.

The starting statements The sten connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}$, are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive aroument, we show all three narts exnlicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement. Therefore, every statement is true.

> The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction. The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}$, are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction. step is generally made easier by the inductive assumption that $P_{1}, P_{2}$, are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction. The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step.
are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction. The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}, \ldots, P_{n}$ are true,

In a formal inductive argument, we show all three parts explicitly.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction. The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}, \ldots, P_{n}$ are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$.

1. For some $k \geq 1$, we know that $P_{1}, P_{2}, \ldots, P_{k}$ are true.
2. The problem is such that for any $n \geq k$, the truths of $P_{1}, P_{2}, \ldots, P_{n}$ imply the truth of $P_{n+1}$.
In a proof by induction, we argue as follows: From Condition 1 we know that the first k statements are true. Then Condition 2 tells us that $P_{k+1}$ also must be true. But now that we know that the first $k+1$ statements are true, we can apply Condition 2 again to claim that $P_{k+2}$ must be true, and so on. We need not explicitly continue this argument, because the pattern is clear. The chain of reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements $P_{1}, P_{2}, \ldots, P_{k}$ are called the basis of the induction. The step connecting $P_{n}$ with $P_{n+1}$ is called the inductive step. The inductive step is generally made easier by the inductive assumption that $P_{1}, P_{2}, \ldots, P_{n}$ are true, then argue that the truth of these statements guarantees the truth of $P_{n+1}$. In a formal inductive argument, we show all three parts explicitly.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \text {. }
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

$$
l(n+1)=2 l(n) .
$$

Now, using the inductive assumption, we get that

$$
l(n+1) \leq 2 \cdot 2^{n}=2^{n+1}
$$

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol $\square$ that is used in our course of lectures to denote the end of a proof.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves. Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
l(i) \leq 2^{i}, \text { for } i=0,1, \ldots, n \text {. }
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

$$
l(n+1)=2 l(n)
$$

Now, using the inductive assumption, we get that

$$
l(n+1) \leq 2 \cdot 2^{n}=2^{n+1}
$$

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol - that is used in our course of lectures to denote the end of a proof.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.

```
Proof: If we denote the maximum number of leaves of a binary tree of height \(n\)
by \(l(n)\), then we want to show that \(l(n) \leq 2^{n}\)
Basis: Clearly \(l(0)=1=2^{0}\), because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:
```

Hi) $\leq 2^{i}$, for $i=0,1$.
Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we
can create, at most, two leaves in place of each previous one. Therefore,
$l(n+1)=2 l(n)$
Now, using the inductive assumption, we get that
Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be
any number, the statement must be true for all $n$.

Here we introduce the symbol $\quad$ that is used in our course of lectures to denote the end of a proof.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:
$l(i) \leq 2^{i}, \quad$ for $i=0,1, \ldots, n$.
Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,
$l(n+1)=2 l(n)$
Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol $\square$ that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$,
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf
Inductive Assumption:


Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol $\square$ that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:
$l(i) \leq 2^{i}, \quad$ for $i=0,1, \ldots, n$.
Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol - that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.

## Basis:

 other than the root, that is, it has at most one leaf.
Inductive Assumption:

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$,
other than the root, that is, it has at most one leaf.
Inductive Assumption:

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol - that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol - that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol - that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol $\square$ that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To o get a binary tree of height $n+1$ 1 from

$$
t
$$

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$,
can create, at most, two leaves in place of each previous one. Therefore,

Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one.

Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

$$
l(n+1)=2 l(n)
$$

## Now, using the inductive assumption, we get that

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

$$
l(n+1)=2 l(n)
$$

Now, using the inductive assumption, we get that

Here we introduce the symbol that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

$$
l(n+1)=2 l(n)
$$

Now, using the inductive assumption, we get that

$$
l(n+1) \leq 2 \cdot 2^{n}=2^{n+1}
$$

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

$$
l(n+1)=2 l(n)
$$

Now, using the inductive assumption, we get that

$$
l(n+1) \leq 2 \cdot 2^{n}=2^{n+1}
$$

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be

Here we introduce the symbol that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

$$
l(n+1)=2 l(n)
$$

Now, using the inductive assumption, we get that

$$
l(n+1) \leq 2 \cdot 2^{n}=2^{n+1}
$$

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol $\quad$ that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

$$
l(n+1)=2 l(n)
$$

Now, using the inductive assumption, we get that

$$
l(n+1) \leq 2 \cdot 2^{n}=2^{n+1}
$$

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol $\quad$ that is used in our course of lectures to denote the end of a proof.

## Example 1.5

A binary tree is a tree in which no parent can have more than two children. Prove that a binary tree of height $n$ has at most $2^{n}$ leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height $n$ by $l(n)$, then we want to show that $l(n) \leq 2^{n}$.
Basis: Clearly $l(0)=1=2^{0}$, because a tree of height 0 can have no nodes other than the root, that is, it has at most one leaf.
Inductive Assumption:

$$
\begin{equation*}
l(i) \leq 2^{i}, \quad \text { for } i=0,1, \ldots, n \tag{4}
\end{equation*}
$$

Inductive Step: To get a binary tree of height $n+1$ from one of height $n$, we can create, at most, two leaves in place of each previous one. Therefore,

$$
l(n+1)=2 l(n)
$$

Now, using the inductive assumption, we get that

$$
l(n+1) \leq 2 \cdot 2^{n}=2^{n+1}
$$

Thus, if our claim is true for $n$, it must also be true for $n+1$. Since $n$ can be any number, the statement must be true for all $n$.

Here we introduce the symbol $\square$ that is used in our course of lectures to denote the end of a proof.

Inductive reasoning can be difficult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the recursive definition of a function $f(n)$, where $n$ is any positive integer, often has two parts. One involves the definition of $f(n+1)$ in terms of $f(n), f(n-1)$, $\ldots f(1)$. This corresponds to the inductive step. The second part is the "escape" from the recursion, which is accomplished by defining $f(1), f(2)$, $f(k)$ nonrecursively. This corresponds to the basis of induction. As in induction, recursion allows us to draw conclusions about all instances of the problem, given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks difficult until we look at it in just the right way. Often looking at it recursively simplifies matters greatly.

Inductive reasoning can be difficult to grasp. It helps to notice the close connection between induction and recursion in programming.
recursive definition of a function $f(n)$, where $n$ is any positive integer, often has
two parts. One involves the definition of $f(n+1)$ in terms of $f(n), f(n-1)$, $\ldots, f(1)$. This corresponds to the inductive step. The second part is the "escape" from the recursion, which is accomplished by defining $f(1), f(2)$, $f(k)$ nonrecursively. This corresponds to the basis of induction. As in induction, recursion allows us to draw conclusions about all instances of the problem, given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks difficult until we look at it in just the right way. Often looking at it recursively simplifies matters greatly.

Inductive reasoning can be difficult to grasp. It helps to notice the close connection between induction and recursion in programming. For example, the recursive definition of a function $f(n)$, where $n$ is any positive integer, often has two parts.


Sometimes, a problem looks difficult until we look at it in just the right way. Often looking at it recursively simplifies matters greatly.

Inductive reasoning can be difficult to grasp. It helps to notice the close connection between induction and recursion in programming. For example, the recursive definition of a function $f(n)$, where $n$ is any positive integer, often has two parts. One involves the definition of $f(n+1)$ in terms of $f(n), f(n-1)$, ..., $f(1)$.
"escape" from the recursion, which is accomplished by defining $f(1), f(2)$, $f(k)$ nonrecursively. This corresponds to the basis of induction. As in induction, recursion allows us to draw conclusions about all instances of the problem, given only a few starting values and using the recursive nature of the problem

Sometimes, a problem looks difficult until we look at it in just the right way. Often looking at it recursively simplifies matters greatly.

Inductive reasoning can be difficult to grasp. It helps to notice the close connection between induction and recursion in programming. For example, the recursive definition of a function $f(n)$, where $n$ is any positive integer, often has two parts. One involves the definition of $f(n+1)$ in terms of $f(n), f(n-1)$, $\ldots, f(1)$. This corresponds to the inductive step. "escape" from the recursion, which is accomplished by defining $f(1), f(2), \ldots$,
$f(k)$ nonrecursively. This corresponds to the basis of induction. As in induction
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks difficult until we look at it in just the right way. Often looking at it recursively simplifies matters greatly.

Inductive reasoning can be difficult to grasp. It helps to notice the close connection between induction and recursion in programming. For example, the recursive definition of a function $f(n)$, where $n$ is any positive integer, often has two parts. One involves the definition of $f(n+1)$ in terms of $f(n), f(n-1)$, $\ldots, f(1)$. This corresponds to the inductive step. The second part is the "escape" from the recursion,
$f(k)$ nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem, given only a few starting values and using the recursive nature of the problem

Sometimes, a problem looks difficult until we look at it in just the right way. Often looking at it recursively simplifies matters greatly.

Inductive reasoning can be difficult to grasp. It helps to notice the close connection between induction and recursion in programming. For example, the recursive definition of a function $f(n)$, where $n$ is any positive integer, often has two parts. One involves the definition of $f(n+1)$ in terms of $f(n), f(n-1)$, $\ldots, f(1)$. This corresponds to the inductive step. The second part is the "escape" from the recursion, which is accomplished by defining $f(1), f(2), \ldots$, $f(k)$ nonrecursively.
recursion allows us to draw conclusions about all instances of the problem given only a few starting values and using the recursive nature of the problem

Sometimes, a problem looks difficult until we look at it in just the right way. Often looking at it recursively simplifies matters greatly.

Inductive reasoning can be difficult to grasp. It helps to notice the close connection between induction and recursion in programming. For example, the recursive definition of a function $f(n)$, where $n$ is any positive integer, often has two parts. One involves the definition of $f(n+1)$ in terms of $f(n), f(n-1)$, $\ldots, f(1)$. This corresponds to the inductive step. The second part is the "escape" from the recursion, which is accomplished by defining $f(1), f(2), \ldots$, $f(k)$ nonrecursively. This corresponds to the basis of induction.
recursion allows us to draw conclusions about all instances of the problem given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks difficult until we look at it in just the right way. Often looking at it recursively simplifies matters greatly.

Inductive reasoning can be difficult to grasp. It helps to notice the close connection between induction and recursion in programming. For example, the recursive definition of a function $f(n)$, where $n$ is any positive integer, often has two parts. One involves the definition of $f(n+1)$ in terms of $f(n), f(n-1)$, $\ldots, f(1)$. This corresponds to the inductive step. The second part is the "escape" from the recursion, which is accomplished by defining $f(1), f(2), \ldots$, $f(k)$ nonrecursively. This corresponds to the basis of induction. As in induction, recursion allows us to draw conclusions about all instances of the problem,

Sometimes, a problem looks difficult until we look at it in just the right way. Often looking at it recursively simplifies matters greatly.

Inductive reasoning can be difficult to grasp. It helps to notice the close connection between induction and recursion in programming. For example, the recursive definition of a function $f(n)$, where $n$ is any positive integer, often has two parts. One involves the definition of $f(n+1)$ in terms of $f(n), f(n-1)$, $\ldots, f(1)$. This corresponds to the inductive step. The second part is the "escape" from the recursion, which is accomplished by defining $f(1), f(2), \ldots$, $f(k)$ nonrecursively. This corresponds to the basis of induction. As in induction, recursion allows us to draw conclusions about all instances of the problem, given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks difficult until we look at it in just the right way. Often looking at it recursively simplifies matters greatly.

Inductive reasoning can be difficult to grasp. It helps to notice the close connection between induction and recursion in programming. For example, the recursive definition of a function $f(n)$, where $n$ is any positive integer, often has two parts. One involves the definition of $f(n+1)$ in terms of $f(n), f(n-1)$, $\ldots, f(1)$. This corresponds to the inductive step. The second part is the "escape" from the recursion, which is accomplished by defining $f(1), f(2), \ldots$, $f(k)$ nonrecursively. This corresponds to the basis of induction. As in induction, recursion allows us to draw conclusions about all instances of the problem, given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks difficult until we look at it in just the right way.

Inductive reasoning can be difficult to grasp. It helps to notice the close connection between induction and recursion in programming. For example, the recursive definition of a function $f(n)$, where $n$ is any positive integer, often has two parts. One involves the definition of $f(n+1)$ in terms of $f(n), f(n-1)$, $\ldots, f(1)$. This corresponds to the inductive step. The second part is the "escape" from the recursion, which is accomplished by defining $f(1), f(2), \ldots$, $f(k)$ nonrecursively. This corresponds to the basis of induction. As in induction, recursion allows us to draw conclusions about all instances of the problem, given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks difficult until we look at it in just the right way. Often looking at it recursively simplifies matters greatly.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

A set $l_{1}, l_{2}, \ldots, l_{n}$ of mutually intersecting straight lines divides the plane into a number of separated regions. A single line divides the plane into two parts, two lines generate four regions, three lines make seven regions, and so on. This is easily checked visually for up to three lines, but as the number of lines increases it becomes difficult to spot a pattern. Let us try to solve this problem recursively.
Look at the Figure to see what happens if we add a new line $l_{n+1}$ to existing $n$ lines.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

A set $l_{1}, l_{2}, \ldots, l_{n}$ of mutually intersecting straight lines divides the plane into a number of separated regions.
two lines generate four regions, three lines make seven regions, and so on. This is easily checked visually for up to three lines, but as the number of lines
increases it becomes difficult to spot a pattern. Let us try to solve this proklem recursively.
Look at the Figure to see what happens if we add a new line $l_{n+1}$ to existing $n$ lines.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

A set $l_{1}, l_{2}, \ldots, l_{n}$ of mutually intersecting straight lines divides the plane into a number of separated regions. A single line divides the plane into two parts, two lines generate four regions, three lines make seven regions, and so on. This is easily checked visually for up to three lines, but as the number of lines increases it becomes difficult to spot a pattern. Let us try to solve this problem recursively.
Look at the Figure to see what happens if we add a new line $l_{n+1}$ to existing $n$ lines.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

A set $l_{1}, l_{2}, \ldots, l_{n}$ of mutually intersecting straight lines divides the plane into a number of separated regions. A single line divides the plane into two parts, two lines generate four regions,
is easily checked visually for up to three lines, but as the number of lines
increases it becomes difficult to spot a pattern. Let us try to solve this problem recursively.
Look at the Figure to see what happens if we add a new line $l_{n+1}$ to existing $n$ lines.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

A set $l_{1}, l_{2}, \ldots, l_{n}$ of mutually intersecting straight lines divides the plane into a number of separated regions. A single line divides the plane into two parts, two lines generate four regions, three lines make seven regions,
is easily checked visually for up to three lines, but as the number of lines
increases it becomes difficult to spot a pattern. Let us try to solve this problem recursively.
Look at the Figure to see what happens if we add a new line $l_{n+1}$ to existing $n$ lines.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

A set $l_{1}, l_{2}, \ldots, l_{n}$ of mutually intersecting straight lines divides the plane into a number of separated regions. A single line divides the plane into two parts, two lines generate four regions, three lines make seven regions, and so on.
is easily checked visually for up to three lines, but as the number of lines
increases it becomes difficult to spot a pattern. Let us try to solve this problem recursively.
Look at the Figure to see what happens if we add a new line $l_{n+1}$ to existing $n$ lines.

## Example 1.6

A set $l_{1}, l_{2}, \ldots, l_{n}$ of mutually intersecting straight lines divides the plane into a number of separated regions. A single line divides the plane into two parts, two lines generate four regions, three lines make seven regions, and so on. This is easily checked visually for up to three lines,
increases it becomes difficult to spot a pattern. Let us try to solve this problem recursively.
Look at the Figure to see what happens if we add a new line $l_{n+1}$ to existing $n$ lines.

## Example 1.6

A set $l_{1}, l_{2}, \ldots, l_{n}$ of mutually intersecting straight lines divides the plane into a number of separated regions. A single line divides the plane into two parts, two lines generate four regions, three lines make seven regions, and so on. This is easily checked visually for up to three lines, but as the number of lines increases it becomes difficult to spot a pattern.
recursively.
Look at the Figure to see what happens if we add a new line $l_{n+1}$ to existing $n$ lines.

## Example 1.6

A set $l_{1}, l_{2}, \ldots, l_{n}$ of mutually intersecting straight lines divides the plane into a number of separated regions. A single line divides the plane into two parts, two lines generate four regions, three lines make seven regions, and so on. This is easily checked visually for up to three lines, but as the number of lines increases it becomes difficult to spot a pattern. Let us try to solve this problem recursively.
Look at the Figure to see what happens if we add a new line $l_{n+1}$ to existing $n$ lines.

## Example 1.6

A set $l_{1}, l_{2}, \ldots, l_{n}$ of mutually intersecting straight lines divides the plane into a number of separated regions. A single line divides the plane into two parts, two lines generate four regions, three lines make seven regions, and so on. This is easily checked visually for up to three lines, but as the number of lines increases it becomes difficult to spot a pattern. Let us try to solve this problem recursively.
Look at the Figure to see what happens if we add a new line $l_{n+1}$ to existing $n$ lines.

## Example 1.6

A set $l_{1}, l_{2}, \ldots, l_{n}$ of mutually intersecting straight lines divides the plane into a number of separated regions. A single line divides the plane into two parts, two lines generate four regions, three lines make seven regions, and so on. This is easily checked visually for up to three lines, but as the number of lines increases it becomes difficult to spot a pattern. Let us try to solve this problem recursively.
Look at the Figure to see what happens if we add a new line $l_{n+1}$ to existing $n$ lines.


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6



The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that

$$
A(n+1)=A(n)+n+1, \quad n=1,2,
$$

with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$, $A(3)=7, A(4)=11$, and so on.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that

$$
A(n+1)=A(n)+n+1, \quad n=1,2,
$$

with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$, $A(3)=7, A(4)=11$, and so on.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that

$$
A(n+1)=A(n)+n+1, \quad n=1,2,
$$

with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$, $A(3)=7, A(4)=11$, and so on.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that
$A(n+1)=A(n)+n+1, \quad n=1,2$,
with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$, $A(3)=7, A(4)=11$, and so on.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that
$A(n+1)=A(n)+n+1, \quad n=1,2$
with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$, $A(3)=7, A(4)=11$, and so on.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that
with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$, $A(3)=7, A(4)=11$, and so on.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end.
regions generated by $n$ lines, we see that
with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$, $A(3)=7, A(4)=11$, and so on.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that
with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$, $A(3)=7, A(4)=11$, and so on.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that

$$
A(n+1)=A(n)+n+1, \quad n=1,2, \ldots,
$$

with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$,

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that

$$
A(n+1)=A(n)+n+1, \quad n=1,2, \ldots,
$$

with $A(1)=2$.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that

$$
A(n+1)=A(n)+n+1, \quad n=1,2, \ldots,
$$

with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$,

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that

$$
A(n+1)=A(n)+n+1, \quad n=1,2, \ldots,
$$

with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$, $A(3)=7$,

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that

$$
A(n+1)=A(n)+n+1, \quad n=1,2, \ldots,
$$

with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$, $A(3)=7, A(4)=11$, and so on

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6


The region to the left of $l_{1}$ is divided into two new regions, so is the region to the left of $l_{2}$, and so on until we get to the last line. At the last line, the region to the right of $l_{n}$ is also divided. Each of the $n$ intersections then generates one new region, with one extra at the end. So, if we let $A(n)$ denote the number of regions generated by $n$ lines, we see that

$$
A(n+1)=A(n)+n+1, \quad n=1,2, \ldots,
$$

with $A(1)=2$. From this simple recursion we then calculate $A(2)=4$, $A(3)=7, A(4)=11$, and so on.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. If we conjecture that

$$
A(n)=\frac{n(n+1)}{2}+1
$$

then

$$
\begin{aligned}
A(n+1) & =\frac{n(n+1)}{2}+1+n+1= \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2}+1= \\
& =\frac{(n+1)(n+2)}{2}+1
\end{aligned}
$$

justifies the inductive step. The basis is easily checked, completing the argument.
In this example we have been a little less formal in identifying the basis, inductive assumption, and inductive step, but they are there and are essential. To keep our subsequent discussions from becoming too formal, we shall generally prefer the style of this second example. However, if you have difficulty in following or constructing a proof, go back to the more explicit form of Example 1.5.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. we conjecture that


## then



```
justifies the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have difficulty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.
```


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. If we conjecture that


```
then
```



```
justifies the inductive step. The basis is easily checked, completing the
```

justifies the inductive step. The basis is easily checked, completing the
argument.
argument.
In this example we have been a little less formal in identifying the basis,
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have difficulty
generally prefer the style of this second example. However, if you have difficulty
in following or constructing a proof, go back to the more explicit form of
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

```
Example 1.5.
```


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. If we conjecture that

$$
A(n)=\frac{n(n+1)}{2}+1
$$

## then



```
justifies the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have difficulty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.
```


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. If we conjecture that

$$
A(n)=\frac{n(n+1)}{2}+1
$$

then


```
justifies the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have difficulty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.
```


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. If we conjecture that

$$
A(n)=\frac{n(n+1)}{2}+1
$$

then

$$
\begin{aligned}
A(n+1) & =\frac{n(n+1)}{2}+1+n+1= \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2}+1= \\
& =\frac{(n+1)(n+2)}{2}+1
\end{aligned}
$$

justifies the inductive step. The basis is easily checked, completing the argument.
In this example we have been a little less formal in identifying the basis, inductive assumption, and inductive step, but they are there and are essential. To keep our subsequent discussions from becoming too formal, we shall generally prefer the style of this second example. However, if you have difficulty in following or constructing a proof, go back to the more explicit form of Example 1.5.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. If we conjecture that

$$
A(n)=\frac{n(n+1)}{2}+1
$$

then

$$
\begin{aligned}
A(n+1) & =\frac{n(n+1)}{2}+1+n+1= \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2}+1= \\
& =\frac{(n+1)(n+2)}{2}+1
\end{aligned}
$$

justifies the inductive step. The basis is easily checked, completing the

```
argument
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have difficulty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.
```


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. If we conjecture that

$$
A(n)=\frac{n(n+1)}{2}+1
$$

then

$$
\begin{aligned}
A(n+1) & =\frac{n(n+1)}{2}+1+n+1= \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2}+1= \\
& =\frac{(n+1)(n+2)}{2}+1
\end{aligned}
$$

justifies the inductive step. The basis is easily checked, completing the argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have difficulty in following or constructing a proof, go back to the more explicit form of Example 1.5.

## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. If we conjecture that

$$
A(n)=\frac{n(n+1)}{2}+1
$$

then

$$
\begin{aligned}
A(n+1) & =\frac{n(n+1)}{2}+1+n+1= \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2}+1= \\
& =\frac{(n+1)(n+2)}{2}+1
\end{aligned}
$$

justifies the inductive step. The basis is easily checked, completing the argument.
In this example we have been a little less formal in identifying the basis, inductive assumption, and inductive step, but they are there and are essential.

## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. If we conjecture that

$$
A(n)=\frac{n(n+1)}{2}+1
$$

then

$$
\begin{aligned}
A(n+1) & =\frac{n(n+1)}{2}+1+n+1= \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2}+1= \\
& =\frac{(n+1)(n+2)}{2}+1
\end{aligned}
$$

justifies the inductive step. The basis is easily checked, completing the argument.
In this example we have been a little less formal in identifying the basis, inductive assumption, and inductive step, but they are there and are essential. To keep our subsequent discussions from becoming too formal, we shall generally prefer the style of this second example.

[^7]
## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. If we conjecture that

$$
A(n)=\frac{n(n+1)}{2}+1
$$

then

$$
\begin{aligned}
A(n+1) & =\frac{n(n+1)}{2}+1+n+1= \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2}+1= \\
& =\frac{(n+1)(n+2)}{2}+1
\end{aligned}
$$

justifies the inductive step. The basis is easily checked, completing the argument.
In this example we have been a little less formal in identifying the basis, inductive assumption, and inductive step, but they are there and are essential. To keep our subsequent discussions from becoming too formal, we shall generally prefer the style of this second example. However, if you have difficulty in following or constructing a proof,

## Example 1.6

To get a formula for $A(n)$ and to show that it is correct, we use induction. If we conjecture that

$$
A(n)=\frac{n(n+1)}{2}+1
$$

then

$$
\begin{aligned}
A(n+1) & =\frac{n(n+1)}{2}+1+n+1= \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2}+1= \\
& =\frac{(n+1)(n+2)}{2}+1
\end{aligned}
$$

justifies the inductive step. The basis is easily checked, completing the argument.
In this example we have been a little less formal in identifying the basis, inductive assumption, and inductive step, but they are there and are essential. To keep our subsequent discussions from becoming too formal, we shall generally prefer the style of this second example. However, if you have difficulty in following or constructing a proof, go back to the more explicit form of Example 1.5.

Proof by contradiction is another powerful technique that often works when everything else fails. Suppose we want to prove that some statement $P$ is true. We then assume, for the moment, that $P$ is false and see where that assumption leads us. If we arrive at a conclusion that we know is incorrect, we can lay the blame on the starting assumption and conclude that $P$ must be true. The following is a classic and elegant example.

Proof by contradiction is another powerful technique that often works when everything else fails. Suppose we want to prove that some statement $P$ is true. We then assume, for the moment, that $P$ is false and see where that
assumption leads us. If we arrive at a conclusion that we know is incorrect, we
can lay the blame on the starting assumption and conclude that $P$ must be
true. The following is a classic and elegant example.

Proof by contradiction is another powerful technique that often works when everything else fails. Suppose we want to prove that some statement $P$ is true. We then assume, for the moment, that $P$ is false and see where that assumption leads us. can lay the blame on the starting assumption and conclude that $P$ must be true. The following is a classic and elegant example.

Proof by contradiction is another powerful technique that often works when everything else fails. Suppose we want to prove that some statement $P$ is true. We then assume, for the moment, that $P$ is false and see where that assumption leads us. If we arrive at a conclusion that we know is incorrect, true. The following is a classic and elegant example.

Proof by contradiction is another powerful technique that often works when everything else fails. Suppose we want to prove that some statement $P$ is true. We then assume, for the moment, that $P$ is false and see where that assumption leads us. If we arrive at a conclusion that we know is incorrect, we can lay the blame on the starting assumption and conclude that $P$ must be true.

Proof by contradiction is another powerful technique that often works when everything else fails. Suppose we want to prove that some statement $P$ is true. We then assume, for the moment, that $P$ is false and see where that assumption leads us. If we arrive at a conclusion that we know is incorrect, we can lay the blame on the starting assumption and conclude that $P$ must be true. The following is a classic and elegant example.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

## Example 1.7

A rational number is a number that can be expressed as the ratio of two integers $n$ and $m$ so that $n$ and $m$ have no a common factor. A real number that is not rational is said to be irrational. Show that $\sqrt{2}$ is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that $\sqrt{2}$ is a rational number so that it can be written as

$$
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
$$

where $n$ and $m$ are integers without a common factor. Rearranging (5), we have that

$$
2 m^{2}=n^{2}
$$

Therefore, $n^{2}$ must be even. This implies that $n$ is even, so that we can write $n=2 k$ or

$$
2 m^{2}=4 k^{2}
$$

and

$$
m^{2}=2 k^{2}
$$

Therefore, $m$ is even. But this contradicts our assumption that $n$ and $m$ have no common factors. Thus, $m$ and $n$ in (5) cannot exist and $\sqrt{2}$ is not a rational number.

### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

```
Example 1.7
A rational number is a number that can be expressed as the ratio of two
integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor.
that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational.
As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written
as
\(\sqrt{2}=\frac{n}{m}\)
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we
have that
\(2 m^{2}=n^{2}\)
Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write
\(n=2 k\) or
\(2 m^{2}=4 k^{2}\)
and
Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have
no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a
rational number
```


### 1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

```
Example 1.7
A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational.
As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written
as
```


where $n$ and $m$ are integers without a common factor. Rearranging (5), we
have that
$2 m^{2}=n^{2}$
Therefore, $n^{2}$ must be even. This implies that $n$ is even, so that we can write
$n=2 k$ or
$2 m^{2}=4 k^{2}$
and
Therefore, $m$ is even. But this contradicts our assumption that $n$ and $m$ have
no common factors. Thus, $m$ and $n$ in (5) cannot exist and $\sqrt{2}$ is not a
rational number.

```

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational.
 where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that


Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
and

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number.

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as

where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that


Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
and

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number.
```

Example 1.7
A rational number is a number that can be expressed as the ratio of two integers $n$ and $m$ so that $n$ and $m$ have no a common factor. A real number that is not rational is said to be irrational. Show that $\sqrt{2}$ is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. as
where $n$ and $m$ are integers without a common factor. Rearranging (5), we have that
Therefore, $n^{2}$ must be even. This implies that $n$ is even, so that we can write $n=2 k$ or
and
Therefore, $m$ is even. But this contradicts our assumption that $n$ and $m$ have no common factors. Thus, $m$ and $n$ in (5) cannot exist and $\sqrt{2}$ is not a rational number.

```

Example 1.7
A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that
Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
and
Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we
have that

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
and

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number.

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
and

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number.

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that
\[
2 m^{2}=n^{2}
\]

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
and

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that
\[
2 m^{2}=n^{2}
\]

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write
\(\qquad\)

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number.

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that
\[
2 m^{2}=n^{2}
\]

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write
\(\qquad\)

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number.

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that
\[
2 m^{2}=n^{2}
\]

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that
\[
2 m^{2}=n^{2}
\]

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
\[
2 m^{2}=4 k^{2}
\]
and

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number.

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that
\[
2 m^{2}=n^{2}
\]

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
\[
2 m^{2}=4 k^{2}
\]
and

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number.

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that
\[
2 m^{2}=n^{2}
\]

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
\[
2 m^{2}=4 k^{2}
\]
and
\[
m^{2}=2 k^{2}
\]

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number.

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that
\[
2 m^{2}=n^{2}
\]

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
\[
2 m^{2}=4 k^{2}
\]
and
\[
m^{2}=2 k^{2}
\]

Therefore, \(m\) is even.
\[
\text { But this contradicts our assumption that } n \text { and } m \text { have }
\]

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that
\[
2 m^{2}=n^{2}
\]

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
\[
2 m^{2}=4 k^{2}
\]
and
\[
m^{2}=2 k^{2}
\]

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors.

\footnotetext{
rational number.
}

\section*{Example 1.7}

A rational number is a number that can be expressed as the ratio of two integers \(n\) and \(m\) so that \(n\) and \(m\) have no a common factor. A real number that is not rational is said to be irrational. Show that \(\sqrt{2}\) is irrational. As in all proofs by contradiction, we assume the contrary of what we want to show. Here we assume that \(\sqrt{2}\) is a rational number so that it can be written as
\[
\begin{equation*}
\sqrt{2}=\frac{n}{m} \tag{5}
\end{equation*}
\]
where \(n\) and \(m\) are integers without a common factor. Rearranging (5), we have that
\[
2 m^{2}=n^{2}
\]

Therefore, \(n^{2}\) must be even. This implies that \(n\) is even, so that we can write \(n=2 k\) or
\[
2 m^{2}=4 k^{2}
\]
and
\[
m^{2}=2 k^{2}
\]

Therefore, \(m\) is even. But this contradicts our assumption that \(n\) and \(m\) have no common factors. Thus, \(m\) and \(n\) in (5) cannot exist and \(\sqrt{2}\) is not a rational number.

This example exhibits the essence of a proof by contradiction. By making a certain assumption we are led to a contradiction of the assumption or some known fact. If all steps in our argument are logically sound, we must conclude that our initial assumption was false.

This example exhibits the essence of a proof by contradiction. By making a certain assumption we are led to a contradiction of the assumption or some known fact. If all steps in our argument are logically sound, we must conclude that our initial assumption was false.

This example exhibits the essence of a proof by contradiction. By making a certain assumption we are led to a contradiction of the assumption or some known fact. If all steps in our argument are logically sound, we must conclude that our initial assumption was false.

\section*{Thank You for attention!}```


[^0]:    This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

[^1]:    This notation is extended in an obvious fashion to the Cartesian product of more than two sets; generally

[^2]:    to indicate that the domain of $f$ is a subset of $S_{1}$ and that the range of $f$ is a subset of $S_{2}$. If the domain of $f$ is all of $S_{1}$, we say that $f$ is a total function on $S_{1}$; otherwise $f$ is said to be a partial function.

[^3]:    to indicate that the domain of $f$ is a subset of $S_{1}$ and that the range of $f$ is a subset of $S_{2}$. If the domain of $f$ is all of $S_{1}$, we say that $f$ is a total function on $S_{1}$; otherwise $f$ is said to be a partial function.

[^4]:    to indicate that the domain of $f$ is a subset of $S_{1}$ and that the range of $f$ is a subset of $S_{2}$. If the domain of $f$ is all of $S_{1}$, we say that $f$ is a total function on $S_{1}$; otherwise $f$ is said to be a partial function.

[^5]:    $f$ and $g$ have the same order of magnitude, expressed as

[^6]:    we write

[^7]:    in following or constructing a proof, go back to the more explicit form of Example 1.5.

