
Formal Languages, Automata and

Codes

Oleg Gutik

Lecture 1
Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1 INTRODUCTION TO THE THEORY OF COMPUTATION

In this part of preliminary lectures, we give an account of some basic notions
which will be used throughout our course �Formal Languages, Automata and

Codes�.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set is a collection of elements, without any structure other than membership.
To indicate that x is an element of the set S, we write x ∈ S. The statement
that x is not in S is written x /∈ S. A set can be speci�ed by enclosing some
description of its elements in curly braces; for example, the set of integers
0, 1, 2 is shown as

S = {0, 1, 2}.

Ellipses are used whenever the meaning is clear. Thus, {a, b, . . . , z} stands for
all the lowercase letters of the English alphabet, while {2, 4, 6, . . .} denotes the
set of all positive even integers. When the need arises, we use more explicit
notation, in which we write

S = {i : i > 0, i is even} (1)

for the last example. We read this as �S is the set of all i, such that i is greater
than zero, and i is even,� implying, of course, that i is an integer.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The usual set operations are union (∪), intersection (∩), and di�erence (− or
\) de�ned as

S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},
S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},
S1 − S2 = {x : x ∈ S1 and x /∈ S2}.

Another basic operation is complementation. The complement of a set S,
denoted by S, consists of all elements which are not in S. To make this
meaningful, we need to know what the universal set U of all possible elements
is. If U is speci�ed, then

S = {x : x ∈ U, x /∈ S}.

The set with no elements, called the empty set or the null set, is denoted by ∅.
From the de�nition of a set, it is obvious that

S ∪∅ = S −∅ = S,

S ∩∅ = ∅,

∅ = U,

S = S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

The following useful identities, known as DeMorgan's laws,

S1 ∪ S2 = S1 ∩ S2, (2)

S1 ∩ S2 = S1 ∪ S2. (3)

are needed on several occasions.
A set S1 is said to be a subset of S if every element of S1 is also an element of
S. We write this as

S1 ⊆ S.

If S1 ⊆ S, but S contains an element not in S1, we say that S1 is a proper

subset of S; we write this as
S1 ⊂ S.

If the sets S1 and S2 have no common element, that is, S1 ∩ S2 = ∅, then the
sets S1 and S2 are said to be disjoint.
A set is said to be �nite if it contains a �nite number of elements; otherwise it
is in�nite. The size of a �nite set is the number of elements in it; this is
denoted by |S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A given set normally has many subsets. The set of all subsets of a set S is
called the powerset of S and is denoted by 2S . Observe that 2S is a set of sets.

Example 1.1

If S = {a, b, c}, then its powerset is

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Here |S| = 3 and
∣∣2S∣∣ = 8. This is an instance of a general result; if S is

�nite, then ∣∣∣2S∣∣∣ = 2|S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A given set normally has many subsets. The set of all subsets of a set S is
called the powerset of S and is denoted by 2S . Observe that 2S is a set of sets.

Example 1.1

If S = {a, b, c}, then its powerset is

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Here |S| = 3 and
∣∣2S∣∣ = 8. This is an instance of a general result; if S is

�nite, then ∣∣∣2S∣∣∣ = 2|S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A given set normally has many subsets. The set of all subsets of a set S is
called the powerset of S and is denoted by 2S . Observe that 2S is a set of sets.

Example 1.1

If S = {a, b, c}, then its powerset is

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Here |S| = 3 and
∣∣2S∣∣ = 8. This is an instance of a general result; if S is

�nite, then ∣∣∣2S∣∣∣ = 2|S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A given set normally has many subsets. The set of all subsets of a set S is
called the powerset of S and is denoted by 2S . Observe that 2S is a set of sets.

Example 1.1

If S = {a, b, c}, then its powerset is

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Here |S| = 3 and
∣∣2S∣∣ = 8. This is an instance of a general result; if S is

�nite, then ∣∣∣2S∣∣∣ = 2|S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A given set normally has many subsets. The set of all subsets of a set S is
called the powerset of S and is denoted by 2S . Observe that 2S is a set of sets.

Example 1.1

If S = {a, b, c}, then its powerset is

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Here |S| = 3 and
∣∣2S∣∣ = 8. This is an instance of a general result; if S is

�nite, then ∣∣∣2S∣∣∣ = 2|S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A given set normally has many subsets. The set of all subsets of a set S is
called the powerset of S and is denoted by 2S . Observe that 2S is a set of sets.

Example 1.1

If S = {a, b, c}, then its powerset is

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Here |S| = 3 and
∣∣2S∣∣ = 8. This is an instance of a general result; if S is

�nite, then ∣∣∣2S∣∣∣ = 2|S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A given set normally has many subsets. The set of all subsets of a set S is
called the powerset of S and is denoted by 2S . Observe that 2S is a set of sets.

Example 1.1

If S = {a, b, c}, then its powerset is

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Here |S| = 3 and
∣∣2S∣∣ = 8. This is an instance of a general result; if S is

�nite, then ∣∣∣2S∣∣∣ = 2|S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A given set normally has many subsets. The set of all subsets of a set S is
called the powerset of S and is denoted by 2S . Observe that 2S is a set of sets.

Example 1.1

If S = {a, b, c}, then its powerset is

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Here |S| = 3 and
∣∣2S∣∣ = 8. This is an instance of a general result; if S is

�nite, then ∣∣∣2S∣∣∣ = 2|S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A given set normally has many subsets. The set of all subsets of a set S is
called the powerset of S and is denoted by 2S . Observe that 2S is a set of sets.

Example 1.1

If S = {a, b, c}, then its powerset is

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Here |S| = 3 and
∣∣2S∣∣ = 8. This is an instance of a general result; if S is

�nite, then ∣∣∣2S∣∣∣ = 2|S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A given set normally has many subsets. The set of all subsets of a set S is
called the powerset of S and is denoted by 2S . Observe that 2S is a set of sets.

Example 1.1

If S = {a, b, c}, then its powerset is

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Here |S| = 3 and
∣∣2S∣∣ = 8. This is an instance of a general result; if S is

�nite, then ∣∣∣2S∣∣∣ = 2|S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A given set normally has many subsets. The set of all subsets of a set S is
called the powerset of S and is denoted by 2S . Observe that 2S is a set of sets.

Example 1.1

If S = {a, b, c}, then its powerset is

2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} .

Here |S| = 3 and
∣∣2S∣∣ = 8. This is an instance of a general result; if S is

�nite, then ∣∣∣2S∣∣∣ = 2|S|.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

In many of our examples, the elements of a set are ordered sequences of
elements from other sets. Such sets are said to be the Cartesian product of
other sets. For the Cartesian product of two sets, which itself is a set of ordered
pairs, we write

S = S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2} .

Example 1.2

Let S1 = {2, 4} and S2 = {2, 3, 5, 6}. Then

S1 × S2 = {(2, 2), (2, 3), (2, 5), (2, 6), (4, 2), (4, 3), (4, 5), (4, 6)} .

Note that the order in which the elements of a pair are written matters. The
pair (4, 2) is in S1 × S2, but (2, 4) is not.

This notation is extended in an obvious fashion to the Cartesian product of
more than two sets; generally

S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) : xi ∈ Si} .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set can be divided by separating it into a number of subsets. Suppose that
S1, S2, . . . , Sn are subsets of a given set S and that the following holds:

1) the subsets S1, S2, . . . , Sn are mutually disjoint;

2) S1 ∪ S2 ∪ · · · ∪ Sn = S;

3) every of Si is nonempty.

Then S1, S2, . . . , Sn is called a partition of S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set can be divided by separating it into a number of subsets. Suppose that
S1, S2, . . . , Sn are subsets of a given set S and that the following holds:

1) the subsets S1, S2, . . . , Sn are mutually disjoint;

2) S1 ∪ S2 ∪ · · · ∪ Sn = S;

3) every of Si is nonempty.

Then S1, S2, . . . , Sn is called a partition of S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set can be divided by separating it into a number of subsets. Suppose that
S1, S2, . . . , Sn are subsets of a given set S and that the following holds:

1) the subsets S1, S2, . . . , Sn are mutually disjoint;

2) S1 ∪ S2 ∪ · · · ∪ Sn = S;

3) every of Si is nonempty.

Then S1, S2, . . . , Sn is called a partition of S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set can be divided by separating it into a number of subsets. Suppose that
S1, S2, . . . , Sn are subsets of a given set S and that the following holds:

1) the subsets S1, S2, . . . , Sn are mutually disjoint;

2) S1 ∪ S2 ∪ · · · ∪ Sn = S;

3) every of Si is nonempty.

Then S1, S2, . . . , Sn is called a partition of S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set can be divided by separating it into a number of subsets. Suppose that
S1, S2, . . . , Sn are subsets of a given set S and that the following holds:

1) the subsets S1, S2, . . . , Sn are mutually disjoint;

2) S1 ∪ S2 ∪ · · · ∪ Sn = S;

3) every of Si is nonempty.

Then S1, S2, . . . , Sn is called a partition of S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Sets

A set can be divided by separating it into a number of subsets. Suppose that
S1, S2, . . . , Sn are subsets of a given set S and that the following holds:

1) the subsets S1, S2, . . . , Sn are mutually disjoint;

2) S1 ∪ S2 ∪ · · · ∪ Sn = S;

3) every of Si is nonempty.

Then S1, S2, . . . , Sn is called a partition of S.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

A function is a rule that assigns to elements of one set a unique element of
another set. If f denotes a function, then the �rst set is called the domain of f,
and the second set is its range. We write

f : S1 → S2

to indicate that the domain of f is a subset of S1 and that the range of f is a
subset of S2. If the domain of f is all of S1, we say that f is a total function

on S1; otherwise f is said to be a partial function.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

A function is a rule that assigns to elements of one set a unique element of
another set. If f denotes a function, then the �rst set is called the domain of f,
and the second set is its range. We write

f : S1 → S2

to indicate that the domain of f is a subset of S1 and that the range of f is a
subset of S2. If the domain of f is all of S1, we say that f is a total function

on S1; otherwise f is said to be a partial function.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

A function is a rule that assigns to elements of one set a unique element of
another set. If f denotes a function, then the �rst set is called the domain of f,
and the second set is its range. We write

f : S1 → S2

to indicate that the domain of f is a subset of S1 and that the range of f is a
subset of S2. If the domain of f is all of S1, we say that f is a total function

on S1; otherwise f is said to be a partial function.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

A function is a rule that assigns to elements of one set a unique element of
another set. If f denotes a function, then the �rst set is called the domain of f,
and the second set is its range. We write

f : S1 → S2

to indicate that the domain of f is a subset of S1 and that the range of f is a
subset of S2. If the domain of f is all of S1, we say that f is a total function

on S1; otherwise f is said to be a partial function.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

A function is a rule that assigns to elements of one set a unique element of
another set. If f denotes a function, then the �rst set is called the domain of f,
and the second set is its range. We write

f : S1 → S2

to indicate that the domain of f is a subset of S1 and that the range of f is a
subset of S2. If the domain of f is all of S1, we say that f is a total function

on S1; otherwise f is said to be a partial function.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

A function is a rule that assigns to elements of one set a unique element of
another set. If f denotes a function, then the �rst set is called the domain of f,
and the second set is its range. We write

f : S1 → S2

to indicate that the domain of f is a subset of S1 and that the range of f is a
subset of S2. If the domain of f is all of S1, we say that f is a total function

on S1; otherwise f is said to be a partial function.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

A function is a rule that assigns to elements of one set a unique element of
another set. If f denotes a function, then the �rst set is called the domain of f,
and the second set is its range. We write

f : S1 → S2

to indicate that the domain of f is a subset of S1 and that the range of f is a
subset of S2. If the domain of f is all of S1, we say that f is a total function

on S1; otherwise f is said to be a partial function.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

A function is a rule that assigns to elements of one set a unique element of
another set. If f denotes a function, then the �rst set is called the domain of f,
and the second set is its range. We write

f : S1 → S2

to indicate that the domain of f is a subset of S1 and that the range of f is a
subset of S2. If the domain of f is all of S1, we say that f is a total function

on S1; otherwise f is said to be a partial function.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

A function is a rule that assigns to elements of one set a unique element of
another set. If f denotes a function, then the �rst set is called the domain of f,
and the second set is its range. We write

f : S1 → S2

to indicate that the domain of f is a subset of S1 and that the range of f is a
subset of S2. If the domain of f is all of S1, we say that f is a total function

on S1; otherwise f is said to be a partial function.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

In many applications, the domain and range of the functions involved are in the
set of positive integers. Furthermore, we are often interested only in the
behavior of these functions as their arguments become very large. In such cases
an understanding of the growth rates may su�ce and a common order of
magnitude notation can be used. Let f(n) and g(n) be functions whose
domain is a subset of the positive integers. If there exists a positive constant c
such that for all su�ciently large n

f(n) ≤ c|g(n)|,

we say that f has order at most g. We write this as
f(n) = O(g(n)).

If
|f(n)| ≥ c|g(n)|,

then f has order at least g, for which we use
f(n) = Ω(g(n)).

Finally, if there exist constants c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|,

f and g have the same order of magnitude, expressed as
f(n) = Θ(g(n)).

In this order-of-magnitude notation, we ignore multiplicative constants and
lower-order terms that become negligible as n increases.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.3

Let

f(n) = 2n2 + 3n,

g(n) = n3,

h(n) = 10n2 + 100.

Then

f(n) = O(g(n)),

g(n) = Ω(h(n)),

f(n) = Θ(h(n)).

In order-of-magnitude notation, the symbol = should not be interpreted as
equality and order-of-magnitude expressions cannot be treated like ordinary
expressions. Manipulations such as

O(n) +O(n) = 2O(n)

are not sensible and can lead to incorrect conclusions. Still, if used properly, the
order-of-magnitude arguments can be e�ective, as we will see in later lectures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.3

Let

f(n) = 2n2 + 3n,

g(n) = n3,

h(n) = 10n2 + 100.

Then

f(n) = O(g(n)),

g(n) = Ω(h(n)),

f(n) = Θ(h(n)).

In order-of-magnitude notation, the symbol = should not be interpreted as
equality and order-of-magnitude expressions cannot be treated like ordinary
expressions. Manipulations such as

O(n) +O(n) = 2O(n)

are not sensible and can lead to incorrect conclusions. Still, if used properly, the
order-of-magnitude arguments can be e�ective, as we will see in later lectures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.3

Let

f(n) = 2n2 + 3n,

g(n) = n3,

h(n) = 10n2 + 100.

Then

f(n) = O(g(n)),

g(n) = Ω(h(n)),

f(n) = Θ(h(n)).

In order-of-magnitude notation, the symbol = should not be interpreted as
equality and order-of-magnitude expressions cannot be treated like ordinary
expressions. Manipulations such as

O(n) +O(n) = 2O(n)

are not sensible and can lead to incorrect conclusions. Still, if used properly, the
order-of-magnitude arguments can be e�ective, as we will see in later lectures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.3

Let

f(n) = 2n2 + 3n,

g(n) = n3,

h(n) = 10n2 + 100.

Then

f(n) = O(g(n)),

g(n) = Ω(h(n)),

f(n) = Θ(h(n)).

In order-of-magnitude notation, the symbol = should not be interpreted as
equality and order-of-magnitude expressions cannot be treated like ordinary
expressions. Manipulations such as

O(n) +O(n) = 2O(n)

are not sensible and can lead to incorrect conclusions. Still, if used properly, the
order-of-magnitude arguments can be e�ective, as we will see in later lectures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.3

Let

f(n) = 2n2 + 3n,

g(n) = n3,

h(n) = 10n2 + 100.

Then

f(n) = O(g(n)),

g(n) = Ω(h(n)),

f(n) = Θ(h(n)).

In order-of-magnitude notation, the symbol = should not be interpreted as
equality and order-of-magnitude expressions cannot be treated like ordinary
expressions. Manipulations such as

O(n) +O(n) = 2O(n)

are not sensible and can lead to incorrect conclusions. Still, if used properly, the
order-of-magnitude arguments can be e�ective, as we will see in later lectures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.3

Let

f(n) = 2n2 + 3n,

g(n) = n3,

h(n) = 10n2 + 100.

Then

f(n) = O(g(n)),

g(n) = Ω(h(n)),

f(n) = Θ(h(n)).

In order-of-magnitude notation, the symbol = should not be interpreted as
equality and order-of-magnitude expressions cannot be treated like ordinary
expressions. Manipulations such as

O(n) +O(n) = 2O(n)

are not sensible and can lead to incorrect conclusions. Still, if used properly, the
order-of-magnitude arguments can be e�ective, as we will see in later lectures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.3

Let

f(n) = 2n2 + 3n,

g(n) = n3,

h(n) = 10n2 + 100.

Then

f(n) = O(g(n)),

g(n) = Ω(h(n)),

f(n) = Θ(h(n)).

In order-of-magnitude notation, the symbol = should not be interpreted as
equality and order-of-magnitude expressions cannot be treated like ordinary
expressions. Manipulations such as

O(n) +O(n) = 2O(n)

are not sensible and can lead to incorrect conclusions. Still, if used properly, the
order-of-magnitude arguments can be e�ective, as we will see in later lectures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.3

Let

f(n) = 2n2 + 3n,

g(n) = n3,

h(n) = 10n2 + 100.

Then

f(n) = O(g(n)),

g(n) = Ω(h(n)),

f(n) = Θ(h(n)).

In order-of-magnitude notation, the symbol = should not be interpreted as
equality and order-of-magnitude expressions cannot be treated like ordinary
expressions. Manipulations such as

O(n) +O(n) = 2O(n)

are not sensible and can lead to incorrect conclusions. Still, if used properly, the
order-of-magnitude arguments can be e�ective, as we will see in later lectures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.3

Let

f(n) = 2n2 + 3n,

g(n) = n3,

h(n) = 10n2 + 100.

Then

f(n) = O(g(n)),

g(n) = Ω(h(n)),

f(n) = Θ(h(n)).

In order-of-magnitude notation, the symbol = should not be interpreted as
equality and order-of-magnitude expressions cannot be treated like ordinary
expressions. Manipulations such as

O(n) +O(n) = 2O(n)

are not sensible and can lead to incorrect conclusions. Still, if used properly, the
order-of-magnitude arguments can be e�ective, as we will see in later lectures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.3

Let

f(n) = 2n2 + 3n,

g(n) = n3,

h(n) = 10n2 + 100.

Then

f(n) = O(g(n)),

g(n) = Ω(h(n)),

f(n) = Θ(h(n)).

In order-of-magnitude notation, the symbol = should not be interpreted as
equality and order-of-magnitude expressions cannot be treated like ordinary
expressions. Manipulations such as

O(n) +O(n) = 2O(n)

are not sensible and can lead to incorrect conclusions. Still, if used properly, the
order-of-magnitude arguments can be e�ective, as we will see in later lectures.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Some functions can be represented by a set of pairs

{(x1, y1), (x2, y2), . . .} ,

where xi is an element in the domain of the function, and yi is the
corresponding value in its range. For such a set to de�ne a function, each xi

can occur at most once as the �rst element of a pair. If this is not satis�ed, the
set is called a relation. Relations are more general than functions: In a function
each element of the domain has exactly one associated element in the range; in
a relation there may be several such elements in the range.
One kind of relation is that of equivalence, a generalization of the concept of
equality (identity). To indicate that a pair (x, y) is in an equivalence relation,
we write

x ≡ y.

A relation denoted by ≡ is considered an equivalence if it satis�es three rules:
the re�exivity rule

x ≡ x for all x;

the symmetry rule
if x ≡ y, then y ≡ x;

and the transitivity rule

if x ≡ y and y ≡ z, then x ≡ z.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.4

On the set of nonnegative integers, we can de�ne a relation

x ≡ y

if and only if
x mod 3 = y mod 3.

Then 2 ≡ 5, 12 ≡ 0, and 0 ≡ 36. Clearly this is an equivalence relation, as it
satis�es re�exivity, symmetry, and transitivity.

If S is a set on which we have a de�ned equivalence relation, then we can use
this equivalence to partition the set into equivalence classes. Each equivalence
class contains all and only equivalent elements.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.4

On the set of nonnegative integers, we can de�ne a relation

x ≡ y

if and only if
x mod 3 = y mod 3.

Then 2 ≡ 5, 12 ≡ 0, and 0 ≡ 36. Clearly this is an equivalence relation, as it
satis�es re�exivity, symmetry, and transitivity.

If S is a set on which we have a de�ned equivalence relation, then we can use
this equivalence to partition the set into equivalence classes. Each equivalence
class contains all and only equivalent elements.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.4

On the set of nonnegative integers, we can de�ne a relation

x ≡ y

if and only if
x mod 3 = y mod 3.

Then 2 ≡ 5, 12 ≡ 0, and 0 ≡ 36. Clearly this is an equivalence relation, as it
satis�es re�exivity, symmetry, and transitivity.

If S is a set on which we have a de�ned equivalence relation, then we can use
this equivalence to partition the set into equivalence classes. Each equivalence
class contains all and only equivalent elements.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.4

On the set of nonnegative integers, we can de�ne a relation

x ≡ y

if and only if
x mod 3 = y mod 3.

Then 2 ≡ 5, 12 ≡ 0, and 0 ≡ 36. Clearly this is an equivalence relation, as it
satis�es re�exivity, symmetry, and transitivity.

If S is a set on which we have a de�ned equivalence relation, then we can use
this equivalence to partition the set into equivalence classes. Each equivalence
class contains all and only equivalent elements.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.4

On the set of nonnegative integers, we can de�ne a relation

x ≡ y

if and only if
x mod 3 = y mod 3.

Then 2 ≡ 5, 12 ≡ 0, and 0 ≡ 36. Clearly this is an equivalence relation, as it
satis�es re�exivity, symmetry, and transitivity.

If S is a set on which we have a de�ned equivalence relation, then we can use
this equivalence to partition the set into equivalence classes. Each equivalence
class contains all and only equivalent elements.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.4

On the set of nonnegative integers, we can de�ne a relation

x ≡ y

if and only if
x mod 3 = y mod 3.

Then 2 ≡ 5, 12 ≡ 0, and 0 ≡ 36. Clearly this is an equivalence relation, as it
satis�es re�exivity, symmetry, and transitivity.

If S is a set on which we have a de�ned equivalence relation, then we can use
this equivalence to partition the set into equivalence classes. Each equivalence
class contains all and only equivalent elements.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.4

On the set of nonnegative integers, we can de�ne a relation

x ≡ y

if and only if
x mod 3 = y mod 3.

Then 2 ≡ 5, 12 ≡ 0, and 0 ≡ 36. Clearly this is an equivalence relation, as it
satis�es re�exivity, symmetry, and transitivity.

If S is a set on which we have a de�ned equivalence relation, then we can use
this equivalence to partition the set into equivalence classes. Each equivalence
class contains all and only equivalent elements.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.4

On the set of nonnegative integers, we can de�ne a relation

x ≡ y

if and only if
x mod 3 = y mod 3.

Then 2 ≡ 5, 12 ≡ 0, and 0 ≡ 36. Clearly this is an equivalence relation, as it
satis�es re�exivity, symmetry, and transitivity.

If S is a set on which we have a de�ned equivalence relation, then we can use
this equivalence to partition the set into equivalence classes. Each equivalence
class contains all and only equivalent elements.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.4

On the set of nonnegative integers, we can de�ne a relation

x ≡ y

if and only if
x mod 3 = y mod 3.

Then 2 ≡ 5, 12 ≡ 0, and 0 ≡ 36. Clearly this is an equivalence relation, as it
satis�es re�exivity, symmetry, and transitivity.

If S is a set on which we have a de�ned equivalence relation, then we can use
this equivalence to partition the set into equivalence classes. Each equivalence
class contains all and only equivalent elements.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.4

On the set of nonnegative integers, we can de�ne a relation

x ≡ y

if and only if
x mod 3 = y mod 3.

Then 2 ≡ 5, 12 ≡ 0, and 0 ≡ 36. Clearly this is an equivalence relation, as it
satis�es re�exivity, symmetry, and transitivity.

If S is a set on which we have a de�ned equivalence relation, then we can use
this equivalence to partition the set into equivalence classes. Each equivalence
class contains all and only equivalent elements.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Functions and Relations

Example 1.4

On the set of nonnegative integers, we can de�ne a relation

x ≡ y

if and only if
x mod 3 = y mod 3.

Then 2 ≡ 5, 12 ≡ 0, and 0 ≡ 36. Clearly this is an equivalence relation, as it
satis�es re�exivity, symmetry, and transitivity.

If S is a set on which we have a de�ned equivalence relation, then we can use
this equivalence to partition the set into equivalence classes. Each equivalence
class contains all and only equivalent elements.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A graph is a construct consisting of two �nite sets, the set
V = {v1, v2, . . . , vn} of vertices and the set E = {e1, e2, . . . , em} of edges.
Each edge is a pair of vertices from V , for instance,

ei = (vj , vk)

is an edge from vj to vk. We say that the edge ei is an outgoing edge for vj
and an incoming edge for vk. Such a construct is actually a directed graph
(digraph), since we associate a direction (from vj to vk) with each edge.
Graphs may be labeled, a label being a name or other information associated
with parts of the graph. Both vertices and edges may be labeled. Graphs are
conveniently visualized by diagrams in which the vertices are represented as
circles and the edges as lines with arrows connecting the vertices. The graph
with vertices {v1, v2, v3} and edges {(v1, v3), (v3, v1), (v3, v2), (v3, v3)} is
depicted in the following Figure.

v1 v2 v3

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

A sequence of edges (vi, vj), (vj , vk), . . . , (vm, vn) is said to be a walk from vi
to vn. The length of a walk is the total number of edges traversed in going
from the initial vertex to the �nal one. A walk in which no edge is repeated is
said to be a path; a path is simple if no vertex is repeated. A walk from vi to
itself with no repeated edges is called a cycle with base vi. If no vertices other
than the base are repeated in a cycle, then it is said to be simple. In the Figure,
(v1, v3), (v3, v2) is a simple path from v1 to v2.

v1 v2 v3

The sequence of edges (v1, v3), (v3, v3), (v3, v1) is a cycle, but not a simple
one. If the edges of a graph are labeled, we can talk about the label of a walk.
This label is the sequence of edge labels encountered when the path is
traversed. Finally, an edge from a vertex to itself is called a loop. In the Figure,
there is a loop on vertex v3.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

On several occasions, we will refer to an algorithm for �nding all simple paths
between two given vertices (or all simple cycles based on a vertex). If we do not
concern ourselves with e�ciency, we can use the following obvious method.
Starting from the given vertex, say vi, list all outgoing edges (vi, vk), (vi, vl),
. . .. At this point, we have all paths of length one starting at vi. For all vertices
vk, vl, . . . so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at vi. We continue this until
all possibilities are accounted for. Since there are only a �nite number of
vertices, we will eventually list all simple paths beginning at vi. From these we
select those ending at the desired vertex.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

On several occasions, we will refer to an algorithm for �nding all simple paths
between two given vertices (or all simple cycles based on a vertex). If we do not
concern ourselves with e�ciency, we can use the following obvious method.
Starting from the given vertex, say vi, list all outgoing edges (vi, vk), (vi, vl),
. . .. At this point, we have all paths of length one starting at vi. For all vertices
vk, vl, . . . so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at vi. We continue this until
all possibilities are accounted for. Since there are only a �nite number of
vertices, we will eventually list all simple paths beginning at vi. From these we
select those ending at the desired vertex.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

On several occasions, we will refer to an algorithm for �nding all simple paths
between two given vertices (or all simple cycles based on a vertex). If we do not
concern ourselves with e�ciency, we can use the following obvious method.
Starting from the given vertex, say vi, list all outgoing edges (vi, vk), (vi, vl),
. . .. At this point, we have all paths of length one starting at vi. For all vertices
vk, vl, . . . so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at vi. We continue this until
all possibilities are accounted for. Since there are only a �nite number of
vertices, we will eventually list all simple paths beginning at vi. From these we
select those ending at the desired vertex.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

On several occasions, we will refer to an algorithm for �nding all simple paths
between two given vertices (or all simple cycles based on a vertex). If we do not
concern ourselves with e�ciency, we can use the following obvious method.
Starting from the given vertex, say vi, list all outgoing edges (vi, vk), (vi, vl),
. . .. At this point, we have all paths of length one starting at vi. For all vertices
vk, vl, . . . so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at vi. We continue this until
all possibilities are accounted for. Since there are only a �nite number of
vertices, we will eventually list all simple paths beginning at vi. From these we
select those ending at the desired vertex.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

On several occasions, we will refer to an algorithm for �nding all simple paths
between two given vertices (or all simple cycles based on a vertex). If we do not
concern ourselves with e�ciency, we can use the following obvious method.
Starting from the given vertex, say vi, list all outgoing edges (vi, vk), (vi, vl),
. . .. At this point, we have all paths of length one starting at vi. For all vertices
vk, vl, . . . so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at vi. We continue this until
all possibilities are accounted for. Since there are only a �nite number of
vertices, we will eventually list all simple paths beginning at vi. From these we
select those ending at the desired vertex.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

On several occasions, we will refer to an algorithm for �nding all simple paths
between two given vertices (or all simple cycles based on a vertex). If we do not
concern ourselves with e�ciency, we can use the following obvious method.
Starting from the given vertex, say vi, list all outgoing edges (vi, vk), (vi, vl),
. . .. At this point, we have all paths of length one starting at vi. For all vertices
vk, vl, . . . so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at vi. We continue this until
all possibilities are accounted for. Since there are only a �nite number of
vertices, we will eventually list all simple paths beginning at vi. From these we
select those ending at the desired vertex.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

On several occasions, we will refer to an algorithm for �nding all simple paths
between two given vertices (or all simple cycles based on a vertex). If we do not
concern ourselves with e�ciency, we can use the following obvious method.
Starting from the given vertex, say vi, list all outgoing edges (vi, vk), (vi, vl),
. . .. At this point, we have all paths of length one starting at vi. For all vertices
vk, vl, . . . so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at vi. We continue this until
all possibilities are accounted for. Since there are only a �nite number of
vertices, we will eventually list all simple paths beginning at vi. From these we
select those ending at the desired vertex.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

On several occasions, we will refer to an algorithm for �nding all simple paths
between two given vertices (or all simple cycles based on a vertex). If we do not
concern ourselves with e�ciency, we can use the following obvious method.
Starting from the given vertex, say vi, list all outgoing edges (vi, vk), (vi, vl),
. . .. At this point, we have all paths of length one starting at vi. For all vertices
vk, vl, . . . so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at vi. We continue this until
all possibilities are accounted for. Since there are only a �nite number of
vertices, we will eventually list all simple paths beginning at vi. From these we
select those ending at the desired vertex.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

On several occasions, we will refer to an algorithm for �nding all simple paths
between two given vertices (or all simple cycles based on a vertex). If we do not
concern ourselves with e�ciency, we can use the following obvious method.
Starting from the given vertex, say vi, list all outgoing edges (vi, vk), (vi, vl),
. . .. At this point, we have all paths of length one starting at vi. For all vertices
vk, vl, . . . so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at vi. We continue this until
all possibilities are accounted for. Since there are only a �nite number of
vertices, we will eventually list all simple paths beginning at vi. From these we
select those ending at the desired vertex.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

On several occasions, we will refer to an algorithm for �nding all simple paths
between two given vertices (or all simple cycles based on a vertex). If we do not
concern ourselves with e�ciency, we can use the following obvious method.
Starting from the given vertex, say vi, list all outgoing edges (vi, vk), (vi, vl),
. . .. At this point, we have all paths of length one starting at vi. For all vertices
vk, vl, . . . so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at vi. We continue this until
all possibilities are accounted for. Since there are only a �nite number of
vertices, we will eventually list all simple paths beginning at vi. From these we
select those ending at the desired vertex.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

On several occasions, we will refer to an algorithm for �nding all simple paths
between two given vertices (or all simple cycles based on a vertex). If we do not
concern ourselves with e�ciency, we can use the following obvious method.
Starting from the given vertex, say vi, list all outgoing edges (vi, vk), (vi, vl),
. . .. At this point, we have all paths of length one starting at vi. For all vertices
vk, vl, . . . so reached, we list all outgoing edges as long as they do not lead to
any vertex already used in the path we are constructing. After we do this, we
will have all simple paths of length two originating at vi. We continue this until
all possibilities are accounted for. Since there are only a �nite number of
vertices, we will eventually list all simple paths beginning at vi. From these we
select those ending at the desired vertex.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Graphs and Trees

Trees are a particular type of graphs. A tree is a directed graph that has no
cycles and that has one distinct vertex, called the root, such that there is
exactly one path from the root to every other vertex. This de�nition implies
that the root has no incoming edges and that there are some vertices without
outgoing edges. These are called the leaves of the tree. If there is an edge from
vi to vj , then vi is said to be the parent of vj , and vj the child of vi. The level

associated with each vertex is the number of edges in the path from the root to
the vertex. The height of the tree is the largest level number of any vertex.
These terms are illustrated in the Figure.

Root

Leaf

Level 0

Level 3

Height 3

At times, we want to associate an ordering with the nodes at each level; in
such cases we talk about ordered trees.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

An important requirement for reading this text is the ability to follow proofs. In
mathematical arguments, we employ the accepted rules of deductive reasoning,
and many proofs are simply a sequence of such steps. Two special proof
techniques are used so frequently that it is appropriate to review them brie�y.
These are proof by induction and proof by contradiction.

Induction is a technique by which the truth of a number of statements can be
inferred from the truth of a few speci�c instances. Suppose we have a sequence
of statements P1, P2, . . . we want to prove to be true. Furthermore, suppose
also that the following holds:

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

We can then use induction to show that every statement in this sequence is
true.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

1. For some k ≥ 1, we know that P1, P2, . . . , Pk are true.

2. The problem is such that for any n ≥ k, the truths of P1, P2, . . . , Pn imply
the truth of Pn+1.

In a proof by induction, we argue as follows: From Condition 1 we know that
the �rst k statements are true. Then Condition 2 tells us that Pk+1 also must
be true. But now that we know that the �rst k + 1 statements are true, we can
apply Condition 2 again to claim that Pk+2 must be true, and so on. We need
not explicitly continue this argument, because the pattern is clear. The chain of
reasoning can be extended to any statement. Therefore, every statement is true.

The starting statements P1, P2, . . . , Pk are called the basis of the induction.
The step connecting Pn with Pn+1 is called the inductive step. The inductive
step is generally made easier by the inductive assumption that P1, P2, . . . , Pn

are true, then argue that the truth of these statements guarantees the truth of
Pn+1. In a formal inductive argument, we show all three parts explicitly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.5

A binary tree is a tree in which no parent can have more than two children.
Prove that a binary tree of height n has at most 2n leaves.
Proof: If we denote the maximum number of leaves of a binary tree of height n
by l(n), then we want to show that l(n) ≤ 2n.
Basis: Clearly l(0) = 1 = 20, because a tree of height 0 can have no nodes
other than the root, that is, it has at most one leaf.
Inductive Assumption:

l(i) ≤ 2i, for i = 0, 1, . . . , n. (4)

Inductive Step: To get a binary tree of height n+ 1 from one of height n, we
can create, at most, two leaves in place of each previous one. Therefore,

l(n+ 1) = 2l(n).

Now, using the inductive assumption, we get that

l(n+ 1) ≤ 2 · 2n = 2n+1.

Thus, if our claim is true for n, it must also be true for n+ 1. Since n can be
any number, the statement must be true for all n. ■

Here we introduce the symbol ■ that is used in our course of lectures to
denote the end of a proof.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Inductive reasoning can be di�cult to grasp. It helps to notice the close
connection between induction and recursion in programming. For example, the
recursive de�nition of a function f(n), where n is any positive integer, often has
two parts. One involves the de�nition of f(n+ 1) in terms of f(n), f(n− 1),
. . ., f(1). This corresponds to the inductive step. The second part is the
�escape� from the recursion, which is accomplished by de�ning f(1), f(2), . . .,
f(k) nonrecursively. This corresponds to the basis of induction. As in induction,
recursion allows us to draw conclusions about all instances of the problem,
given only a few starting values and using the recursive nature of the problem.

Sometimes, a problem looks di�cult until we look at it in just the right way.
Often looking at it recursively simpli�es matters greatly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

A set l1, l2, . . . , ln of mutually intersecting straight lines divides the plane into
a number of separated regions. A single line divides the plane into two parts,
two lines generate four regions, three lines make seven regions, and so on. This
is easily checked visually for up to three lines, but as the number of lines
increases it becomes di�cult to spot a pattern. Let us try to solve this problem
recursively.
Look at the Figure to see what happens if we add a new line ln+1 to existing n
lines.

ln+1

l1 l2 l3 ln

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

A set l1, l2, . . . , ln of mutually intersecting straight lines divides the plane into
a number of separated regions. A single line divides the plane into two parts,
two lines generate four regions, three lines make seven regions, and so on. This
is easily checked visually for up to three lines, but as the number of lines
increases it becomes di�cult to spot a pattern. Let us try to solve this problem
recursively.
Look at the Figure to see what happens if we add a new line ln+1 to existing n
lines.

ln+1

l1 l2 l3 ln

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

A set l1, l2, . . . , ln of mutually intersecting straight lines divides the plane into
a number of separated regions. A single line divides the plane into two parts,
two lines generate four regions, three lines make seven regions, and so on. This
is easily checked visually for up to three lines, but as the number of lines
increases it becomes di�cult to spot a pattern. Let us try to solve this problem
recursively.
Look at the Figure to see what happens if we add a new line ln+1 to existing n
lines.

ln+1

l1 l2 l3 ln

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

A set l1, l2, . . . , ln of mutually intersecting straight lines divides the plane into
a number of separated regions. A single line divides the plane into two parts,
two lines generate four regions, three lines make seven regions, and so on. This
is easily checked visually for up to three lines, but as the number of lines
increases it becomes di�cult to spot a pattern. Let us try to solve this problem
recursively.
Look at the Figure to see what happens if we add a new line ln+1 to existing n
lines.

ln+1

l1 l2 l3 ln

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

A set l1, l2, . . . , ln of mutually intersecting straight lines divides the plane into
a number of separated regions. A single line divides the plane into two parts,
two lines generate four regions, three lines make seven regions, and so on. This
is easily checked visually for up to three lines, but as the number of lines
increases it becomes di�cult to spot a pattern. Let us try to solve this problem
recursively.
Look at the Figure to see what happens if we add a new line ln+1 to existing n
lines.

ln+1

l1 l2 l3 ln

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

A set l1, l2, . . . , ln of mutually intersecting straight lines divides the plane into
a number of separated regions. A single line divides the plane into two parts,
two lines generate four regions, three lines make seven regions, and so on. This
is easily checked visually for up to three lines, but as the number of lines
increases it becomes di�cult to spot a pattern. Let us try to solve this problem
recursively.
Look at the Figure to see what happens if we add a new line ln+1 to existing n
lines.

ln+1

l1 l2 l3 ln

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

A set l1, l2, . . . , ln of mutually intersecting straight lines divides the plane into
a number of separated regions. A single line divides the plane into two parts,
two lines generate four regions, three lines make seven regions, and so on. This
is easily checked visually for up to three lines, but as the number of lines
increases it becomes di�cult to spot a pattern. Let us try to solve this problem
recursively.
Look at the Figure to see what happens if we add a new line ln+1 to existing n
lines.

ln+1

l1 l2 l3 ln

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

A set l1, l2, . . . , ln of mutually intersecting straight lines divides the plane into
a number of separated regions. A single line divides the plane into two parts,
two lines generate four regions, three lines make seven regions, and so on. This
is easily checked visually for up to three lines, but as the number of lines
increases it becomes di�cult to spot a pattern. Let us try to solve this problem
recursively.
Look at the Figure to see what happens if we add a new line ln+1 to existing n
lines.

ln+1

l1 l2 l3 ln

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

A set l1, l2, . . . , ln of mutually intersecting straight lines divides the plane into
a number of separated regions. A single line divides the plane into two parts,
two lines generate four regions, three lines make seven regions, and so on. This
is easily checked visually for up to three lines, but as the number of lines
increases it becomes di�cult to spot a pattern. Let us try to solve this problem
recursively.
Look at the Figure to see what happens if we add a new line ln+1 to existing n
lines.

ln+1

l1 l2 l3 ln

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

A set l1, l2, . . . , ln of mutually intersecting straight lines divides the plane into
a number of separated regions. A single line divides the plane into two parts,
two lines generate four regions, three lines make seven regions, and so on. This
is easily checked visually for up to three lines, but as the number of lines
increases it becomes di�cult to spot a pattern. Let us try to solve this problem
recursively.
Look at the Figure to see what happens if we add a new line ln+1 to existing n
lines.

ln+1

l1 l2 l3 ln

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

A set l1, l2, . . . , ln of mutually intersecting straight lines divides the plane into
a number of separated regions. A single line divides the plane into two parts,
two lines generate four regions, three lines make seven regions, and so on. This
is easily checked visually for up to three lines, but as the number of lines
increases it becomes di�cult to spot a pattern. Let us try to solve this problem
recursively.
Look at the Figure to see what happens if we add a new line ln+1 to existing n
lines.

ln+1

l1 l2 l3 ln

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

ln+1

l1 l2 l3 ln

The region to the left of l1 is divided into two new regions, so is the region to
the left of l2, and so on until we get to the last line. At the last line, the region
to the right of ln is also divided. Each of the n intersections then generates one
new region, with one extra at the end. So, if we let A(n) denote the number of
regions generated by n lines, we see that

A(n+ 1) = A(n) + n+ 1, n = 1, 2, . . . ,

with A(1) = 2. From this simple recursion we then calculate A(2) = 4,
A(3) = 7, A(4) = 11, and so on.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.6

To get a formula for A(n) and to show that it is correct, we use induction. If
we conjecture that

A(n) =
n(n+ 1)

2
+ 1,

then

A(n+ 1) =
n(n+ 1)

2
+ 1 + n+ 1 =

=
n(n+ 1)

2
+

2(n+ 1)

2
+ 1 =

=
(n+ 1)(n+ 2)

2
+ 1

justi�es the inductive step. The basis is easily checked, completing the
argument.
In this example we have been a little less formal in identifying the basis,
inductive assumption, and inductive step, but they are there and are essential.
To keep our subsequent discussions from becoming too formal, we shall
generally prefer the style of this second example. However, if you have di�culty
in following or constructing a proof, go back to the more explicit form of
Example 1.5.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Proof by contradiction is another powerful technique that often works when
everything else fails. Suppose we want to prove that some statement P is true.
We then assume, for the moment, that P is false and see where that
assumption leads us. If we arrive at a conclusion that we know is incorrect, we
can lay the blame on the starting assumption and conclude that P must be
true. The following is a classic and elegant example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Proof by contradiction is another powerful technique that often works when
everything else fails. Suppose we want to prove that some statement P is true.
We then assume, for the moment, that P is false and see where that
assumption leads us. If we arrive at a conclusion that we know is incorrect, we
can lay the blame on the starting assumption and conclude that P must be
true. The following is a classic and elegant example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Proof by contradiction is another powerful technique that often works when
everything else fails. Suppose we want to prove that some statement P is true.
We then assume, for the moment, that P is false and see where that
assumption leads us. If we arrive at a conclusion that we know is incorrect, we
can lay the blame on the starting assumption and conclude that P must be
true. The following is a classic and elegant example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Proof by contradiction is another powerful technique that often works when
everything else fails. Suppose we want to prove that some statement P is true.
We then assume, for the moment, that P is false and see where that
assumption leads us. If we arrive at a conclusion that we know is incorrect, we
can lay the blame on the starting assumption and conclude that P must be
true. The following is a classic and elegant example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Proof by contradiction is another powerful technique that often works when
everything else fails. Suppose we want to prove that some statement P is true.
We then assume, for the moment, that P is false and see where that
assumption leads us. If we arrive at a conclusion that we know is incorrect, we
can lay the blame on the starting assumption and conclude that P must be
true. The following is a classic and elegant example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Proof by contradiction is another powerful technique that often works when
everything else fails. Suppose we want to prove that some statement P is true.
We then assume, for the moment, that P is false and see where that
assumption leads us. If we arrive at a conclusion that we know is incorrect, we
can lay the blame on the starting assumption and conclude that P must be
true. The following is a classic and elegant example.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

Example 1.7

A rational number is a number that can be expressed as the ratio of two
integers n and m so that n and m have no a common factor. A real number
that is not rational is said to be irrational. Show that

√
2 is irrational.

As in all proofs by contradiction, we assume the contrary of what we want to
show. Here we assume that

√
2 is a rational number so that it can be written

as √
2 =

n

m
, (5)

where n and m are integers without a common factor. Rearranging (5), we
have that

2m2 = n2.

Therefore, n2 must be even. This implies that n is even, so that we can write
n = 2k or

2m2 = 4k2,

and
m2 = 2k2.

Therefore, m is even. But this contradicts our assumption that n and m have
no common factors. Thus, m and n in (5) cannot exist and

√
2 is not a

rational number.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

This example exhibits the essence of a proof by contradiction. By making a
certain assumption we are led to a contradiction of the assumption or some
known fact. If all steps in our argument are logically sound, we must conclude
that our initial assumption was false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

This example exhibits the essence of a proof by contradiction. By making a
certain assumption we are led to a contradiction of the assumption or some
known fact. If all steps in our argument are logically sound, we must conclude
that our initial assumption was false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

1.1 MATHEMATICAL PRELIMINARIES AND NOTATION: Proof Techniques

This example exhibits the essence of a proof by contradiction. By making a
certain assumption we are led to a contradiction of the assumption or some
known fact. If all steps in our argument are logically sound, we must conclude
that our initial assumption was false.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

Thank You

Thank You for attention!

Oleg Gutik Formal Languages, Automata and Codes. Lecture 1

