
Formal Languages, Automata and

Codes

Oleg Gutik

Lecture 18
Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

There are many kinds of normal forms we can establish for context-free
grammars. Some of these, because of their wide usefulness, have been studied
extensively. We consider two of them brie�y.

Chomsky Normal Form

One kind of normal form we can look for is one in which the number of
symbols on the right of a production is strictly limited. In particular, we can ask
that the string on the right of a production consist of no more than two
symbols. One instance of this is the Chomsky normal form.

De�nition 6.4

A context-free grammar is in Chomsky normal form if all productions are of the
form

A → BC
or

A → a,
where A,B,C are in V , and a is in T .

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.7

The grammar

S → AS|a,
A → SA|b

is in Chomsky normal form. The grammar

S → AS|AAS,

A → SA|aa
is not; both productions S → AAS and A → aa violate the conditions of
De�nition 6.4.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.7

The grammar

S → AS|a,
A → SA|b

is in Chomsky normal form. The grammar

S → AS|AAS,

A → SA|aa
is not; both productions S → AAS and A → aa violate the conditions of
De�nition 6.4.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.7

The grammar

S → AS|a,
A → SA|b

is in Chomsky normal form. The grammar

S → AS|AAS,

A → SA|aa
is not; both productions S → AAS and A → aa violate the conditions of
De�nition 6.4.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.7

The grammar

S → AS|a,
A → SA|b

is in Chomsky normal form. The grammar

S → AS|AAS,

A → SA|aa
is not; both productions S → AAS and A → aa violate the conditions of
De�nition 6.4.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.7

The grammar

S → AS|a,
A → SA|b

is in Chomsky normal form. The grammar

S → AS|AAS,

A → SA|aa
is not; both productions S → AAS and A → aa violate the conditions of
De�nition 6.4.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.7

The grammar

S → AS|a,
A → SA|b

is in Chomsky normal form. The grammar

S → AS|AAS,

A → SA|aa
is not; both productions S → AAS and A → aa violate the conditions of
De�nition 6.4.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.7

The grammar

S → AS|a,
A → SA|b

is in Chomsky normal form. The grammar

S → AS|AAS,

A → SA|aa
is not; both productions S → AAS and A → aa violate the conditions of
De�nition 6.4.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.7

The grammar

S → AS|a,
A → SA|b

is in Chomsky normal form. The grammar

S → AS|AAS,

A → SA|aa
is not; both productions S → AAS and A → aa violate the conditions of
De�nition 6.4.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.7

The grammar

S → AS|a,
A → SA|b

is in Chomsky normal form. The grammar

S → AS|AAS,

A → SA|aa
is not; both productions S → AAS and A → aa violate the conditions of
De�nition 6.4.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Theorem 6.6

Any context-free grammar G = (V, T, S, P) with λ /∈ L(G) has an equivalent

grammar Ĝ = (V̂ , T̂ , S, P̂) in Chomsky normal form.

Proof. Because of Theorem 6.5, we can assume without loss of generality that
G has no λ-productions and no unit-productions. The construction of Ĝ will be
done in two steps.

Step 1. Construct a grammar G1 = (V1, T, S, P1) from G by considering all
productions in P in the form

A → x1x2 · · ·xn, (1)
where each xi is a symbol either in V or in T . If n = 1 then x1 must be a
terminal since we have no unit-productions. In this case, put the production
into P1. If n ⩾ 2 the introduce new variables Ba for each a ∈ T . For each
production of P in the form (1) we put into P1 the production

A → C1C2 · · ·Cn,
where

Ci = xi if xi is in V,
and

Ci = Ba if xi = a.
For every Ba we also put into P1 the production

Ba → a.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

This part of the algorithm removes all terminals from productions whose right
side has length greater than one, replacing them with newly introduced
variables. At the end of this step we have a grammar G1 all of whose
productions have the form

A → a, (2)
or A → C1C2 · · ·Cn, (3)
where Ci ∈ V1.
It is an easy consequence of Theorem 6.1 that L(G1) = L(G).

Step 2. In the second step, we introduce additional variables to reduce the
length of the right sides of the productions where necessary. First we put all
productions of the form (2) as well as all the productions of the form (3) with

n = 2 into P̂ . For n > 2 we introduce new variables D1, D2, . . . and put into P̂
the productions

A → C1D1,

D1 → C2D2,

· · · · · ·
Dn−2 → Cn−1Cn.

Obviously, the resulting grammar Ĝ is in Chomsky normal form. Repeated
applications of Theorem 6.1 will show that L(G1) = L(Ĝ), so L(Ĝ) = L(G).

This somewhat informal argument can easily be made more precise. We shall
leave this to the reader. ■

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8

Convert the grammar with productions
S → ABa,

A → aab,

B → Ac
to Chomsky normal form.
As required by the construction of Theorem 6.6, the grammar does not have
any λ-productions or any unit-productions.

In Step 1, we introduce new variables Ba, Bb, Bc and use the algorithm to get
S → ABBa,

A → BaBaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8

Convert the grammar with productions
S → ABa,

A → aab,

B → Ac
to Chomsky normal form.
As required by the construction of Theorem 6.6, the grammar does not have
any λ-productions or any unit-productions.

In Step 1, we introduce new variables Ba, Bb, Bc and use the algorithm to get
S → ABBa,

A → BaBaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8

Convert the grammar with productions
S → ABa,

A → aab,

B → Ac
to Chomsky normal form.
As required by the construction of Theorem 6.6, the grammar does not have
any λ-productions or any unit-productions.

In Step 1, we introduce new variables Ba, Bb, Bc and use the algorithm to get
S → ABBa,

A → BaBaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8

Convert the grammar with productions
S → ABa,

A → aab,

B → Ac
to Chomsky normal form.
As required by the construction of Theorem 6.6, the grammar does not have
any λ-productions or any unit-productions.

In Step 1, we introduce new variables Ba, Bb, Bc and use the algorithm to get
S → ABBa,

A → BaBaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8

Convert the grammar with productions
S → ABa,

A → aab,

B → Ac
to Chomsky normal form.
As required by the construction of Theorem 6.6, the grammar does not have
any λ-productions or any unit-productions.

In Step 1, we introduce new variables Ba, Bb, Bc and use the algorithm to get
S → ABBa,

A → BaBaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8

Convert the grammar with productions
S → ABa,

A → aab,

B → Ac
to Chomsky normal form.
As required by the construction of Theorem 6.6, the grammar does not have
any λ-productions or any unit-productions.

In Step 1, we introduce new variables Ba, Bb, Bc and use the algorithm to get
S → ABBa,

A → BaBaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8

Convert the grammar with productions
S → ABa,

A → aab,

B → Ac
to Chomsky normal form.
As required by the construction of Theorem 6.6, the grammar does not have
any λ-productions or any unit-productions.

In Step 1, we introduce new variables Ba, Bb, Bc and use the algorithm to get
S → ABBa,

A → BaBaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8

Convert the grammar with productions
S → ABa,

A → aab,

B → Ac
to Chomsky normal form.
As required by the construction of Theorem 6.6, the grammar does not have
any λ-productions or any unit-productions.

In Step 1, we introduce new variables Ba, Bb, Bc and use the algorithm to get
S → ABBa,

A → BaBaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8

Convert the grammar with productions
S → ABa,

A → aab,

B → Ac
to Chomsky normal form.
As required by the construction of Theorem 6.6, the grammar does not have
any λ-productions or any unit-productions.

In Step 1, we introduce new variables Ba, Bb, Bc and use the algorithm to get
S → ABBa,

A → BaBaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8 (continuation)

In the second step, we introduce additional variables to get the �rst two
productions into normal form and we get the �nal result

S → AD1,

D1 → BBa,

A → BaD2,

D2 → BaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8 (continuation)

In the second step, we introduce additional variables to get the �rst two
productions into normal form and we get the �nal result

S → AD1,

D1 → BBa,

A → BaD2,

D2 → BaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8 (continuation)

In the second step, we introduce additional variables to get the �rst two
productions into normal form and we get the �nal result

S → AD1,

D1 → BBa,

A → BaD2,

D2 → BaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8 (continuation)

In the second step, we introduce additional variables to get the �rst two
productions into normal form and we get the �nal result

S → AD1,

D1 → BBa,

A → BaD2,

D2 → BaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.8 (continuation)

In the second step, we introduce additional variables to get the �rst two
productions into normal form and we get the �nal result

S → AD1,

D1 → BBa,

A → BaD2,

D2 → BaBb,

B → ABc,

Ba → a,

Bb → b,

Bc → c.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Greibach Normal Form

Another useful grammatical form is Greibach normal form. Here we put
restrictions not on the length of the right sides of a production, but on the
positions in which terminals and variables can appear. Arguments justifying
Greibach normal form are a little complicated and not very transparent.
Similarly, constructing a grammar in Greibach normal form equivalent to a
given context-free grammar is tedious. We therefore deal with this matter very
brie�y. Nevertheless, Greibach normal form has many theoretical and practical
consequences.

De�nition 6.5

A context-free grammar is said to be in Greibach normal form if all productions
have the form

A → ax,
where a ∈ T and x ∈ V ∗.

If we compare this with De�nition 5.4, the we see that the form A → ax is
common to both Greibach normal form and s-grammars, but Greibach normal
form does not carry the restriction that the pair (A, a) occur at most once.
This additional freedom gives the Greibach normal form a generality not
possessed by s-grammars.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

If a grammar is not in Greibach normal form, we may be able to rewrite it in
this form with some of the techniques encountered above. Here are two simple
examples.

Example 6.9

The grammar
S → AB,

A → aA|bB|b,
B → b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S → aAB|bBB|bB,

A → aA|bB|b,
B → b,

which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

If a grammar is not in Greibach normal form, we may be able to rewrite it in
this form with some of the techniques encountered above. Here are two simple
examples.

Example 6.9

The grammar
S → AB,

A → aA|bB|b,
B → b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S → aAB|bBB|bB,

A → aA|bB|b,
B → b,

which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

If a grammar is not in Greibach normal form, we may be able to rewrite it in
this form with some of the techniques encountered above. Here are two simple
examples.

Example 6.9

The grammar
S → AB,

A → aA|bB|b,
B → b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S → aAB|bBB|bB,

A → aA|bB|b,
B → b,

which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

If a grammar is not in Greibach normal form, we may be able to rewrite it in
this form with some of the techniques encountered above. Here are two simple
examples.

Example 6.9

The grammar
S → AB,

A → aA|bB|b,
B → b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S → aAB|bBB|bB,

A → aA|bB|b,
B → b,

which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

If a grammar is not in Greibach normal form, we may be able to rewrite it in
this form with some of the techniques encountered above. Here are two simple
examples.

Example 6.9

The grammar
S → AB,

A → aA|bB|b,
B → b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S → aAB|bBB|bB,

A → aA|bB|b,
B → b,

which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

If a grammar is not in Greibach normal form, we may be able to rewrite it in
this form with some of the techniques encountered above. Here are two simple
examples.

Example 6.9

The grammar
S → AB,

A → aA|bB|b,
B → b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S → aAB|bBB|bB,

A → aA|bB|b,
B → b,

which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

If a grammar is not in Greibach normal form, we may be able to rewrite it in
this form with some of the techniques encountered above. Here are two simple
examples.

Example 6.9

The grammar
S → AB,

A → aA|bB|b,
B → b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S → aAB|bBB|bB,

A → aA|bB|b,
B → b,

which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

If a grammar is not in Greibach normal form, we may be able to rewrite it in
this form with some of the techniques encountered above. Here are two simple
examples.

Example 6.9

The grammar
S → AB,

A → aA|bB|b,
B → b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S → aAB|bBB|bB,

A → aA|bB|b,
B → b,

which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

If a grammar is not in Greibach normal form, we may be able to rewrite it in
this form with some of the techniques encountered above. Here are two simple
examples.

Example 6.9

The grammar
S → AB,

A → aA|bB|b,
B → b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S → aAB|bBB|bB,

A → aA|bB|b,
B → b,

which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

If a grammar is not in Greibach normal form, we may be able to rewrite it in
this form with some of the techniques encountered above. Here are two simple
examples.

Example 6.9

The grammar
S → AB,

A → aA|bB|b,
B → b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S → aAB|bBB|bB,

A → aA|bB|b,
B → b,

which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

If a grammar is not in Greibach normal form, we may be able to rewrite it in
this form with some of the techniques encountered above. Here are two simple
examples.

Example 6.9

The grammar
S → AB,

A → aA|bB|b,
B → b

is not in Greibach normal form. However, using the substitution given by
Theorem 6.1, we immediately get the equivalent grammar

S → aAB|bBB|bB,

A → aA|bB|b,
B → b,

which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.10

Convert the grammar
S → abSb|aa

into Greibach normal form.

Here we can use a device similar to the one introduced in the construction of
Chomsky normal form. We introduce new variables A and B that are
essentially synonyms for a and b, respectively. Substituting for the terminals
with their associated variables leads to the equivalent grammar

S → aBSB|aA,

A → a,

B → b,
which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.10

Convert the grammar
S → abSb|aa

into Greibach normal form.

Here we can use a device similar to the one introduced in the construction of
Chomsky normal form. We introduce new variables A and B that are
essentially synonyms for a and b, respectively. Substituting for the terminals
with their associated variables leads to the equivalent grammar

S → aBSB|aA,

A → a,

B → b,
which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.10

Convert the grammar
S → abSb|aa

into Greibach normal form.

Here we can use a device similar to the one introduced in the construction of
Chomsky normal form. We introduce new variables A and B that are
essentially synonyms for a and b, respectively. Substituting for the terminals
with their associated variables leads to the equivalent grammar

S → aBSB|aA,

A → a,

B → b,
which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.10

Convert the grammar
S → abSb|aa

into Greibach normal form.

Here we can use a device similar to the one introduced in the construction of
Chomsky normal form. We introduce new variables A and B that are
essentially synonyms for a and b, respectively. Substituting for the terminals
with their associated variables leads to the equivalent grammar

S → aBSB|aA,

A → a,

B → b,
which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.10

Convert the grammar
S → abSb|aa

into Greibach normal form.

Here we can use a device similar to the one introduced in the construction of
Chomsky normal form. We introduce new variables A and B that are
essentially synonyms for a and b, respectively. Substituting for the terminals
with their associated variables leads to the equivalent grammar

S → aBSB|aA,

A → a,

B → b,
which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.10

Convert the grammar
S → abSb|aa

into Greibach normal form.

Here we can use a device similar to the one introduced in the construction of
Chomsky normal form. We introduce new variables A and B that are
essentially synonyms for a and b, respectively. Substituting for the terminals
with their associated variables leads to the equivalent grammar

S → aBSB|aA,

A → a,

B → b,
which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.10

Convert the grammar
S → abSb|aa

into Greibach normal form.

Here we can use a device similar to the one introduced in the construction of
Chomsky normal form. We introduce new variables A and B that are
essentially synonyms for a and b, respectively. Substituting for the terminals
with their associated variables leads to the equivalent grammar

S → aBSB|aA,

A → a,

B → b,
which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.10

Convert the grammar
S → abSb|aa

into Greibach normal form.

Here we can use a device similar to the one introduced in the construction of
Chomsky normal form. We introduce new variables A and B that are
essentially synonyms for a and b, respectively. Substituting for the terminals
with their associated variables leads to the equivalent grammar

S → aBSB|aA,

A → a,

B → b,
which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.10

Convert the grammar
S → abSb|aa

into Greibach normal form.

Here we can use a device similar to the one introduced in the construction of
Chomsky normal form. We introduce new variables A and B that are
essentially synonyms for a and b, respectively. Substituting for the terminals
with their associated variables leads to the equivalent grammar

S → aBSB|aA,

A → a,

B → b,
which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

Example 6.10

Convert the grammar
S → abSb|aa

into Greibach normal form.

Here we can use a device similar to the one introduced in the construction of
Chomsky normal form. We introduce new variables A and B that are
essentially synonyms for a and b, respectively. Substituting for the terminals
with their associated variables leads to the equivalent grammar

S → aBSB|aA,

A → a,

B → b,
which is in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done is a simple matter. We
introduce Greibach normal form here because it will simplify the technical
discussion of an important result in the next lectures. However, from a
conceptual viewpoint, Greibach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

Theorem 6.7

For every context-free grammar G with λ /∈ L(G), there exists an equivalent

grammar Ĝ in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done is a simple matter. We
introduce Greibach normal form here because it will simplify the technical
discussion of an important result in the next lectures. However, from a
conceptual viewpoint, Greibach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

Theorem 6.7

For every context-free grammar G with λ /∈ L(G), there exists an equivalent

grammar Ĝ in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done is a simple matter. We
introduce Greibach normal form here because it will simplify the technical
discussion of an important result in the next lectures. However, from a
conceptual viewpoint, Greibach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

Theorem 6.7

For every context-free grammar G with λ /∈ L(G), there exists an equivalent

grammar Ĝ in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done is a simple matter. We
introduce Greibach normal form here because it will simplify the technical
discussion of an important result in the next lectures. However, from a
conceptual viewpoint, Greibach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

Theorem 6.7

For every context-free grammar G with λ /∈ L(G), there exists an equivalent

grammar Ĝ in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done is a simple matter. We
introduce Greibach normal form here because it will simplify the technical
discussion of an important result in the next lectures. However, from a
conceptual viewpoint, Greibach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

Theorem 6.7

For every context-free grammar G with λ /∈ L(G), there exists an equivalent

grammar Ĝ in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done is a simple matter. We
introduce Greibach normal form here because it will simplify the technical
discussion of an important result in the next lectures. However, from a
conceptual viewpoint, Greibach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

Theorem 6.7

For every context-free grammar G with λ /∈ L(G), there exists an equivalent

grammar Ĝ in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done is a simple matter. We
introduce Greibach normal form here because it will simplify the technical
discussion of an important result in the next lectures. However, from a
conceptual viewpoint, Greibach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

Theorem 6.7

For every context-free grammar G with λ /∈ L(G), there exists an equivalent

grammar Ĝ in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done is a simple matter. We
introduce Greibach normal form here because it will simplify the technical
discussion of an important result in the next lectures. However, from a
conceptual viewpoint, Greibach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

Theorem 6.7

For every context-free grammar G with λ /∈ L(G), there exists an equivalent

grammar Ĝ in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done is a simple matter. We
introduce Greibach normal form here because it will simplify the technical
discussion of an important result in the next lectures. However, from a
conceptual viewpoint, Greibach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

Theorem 6.7

For every context-free grammar G with λ /∈ L(G), there exists an equivalent

grammar Ĝ in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

6.2 Two Important Normal Forms

In general, though, neither the conversion of a given grammar to Greibach
normal form nor the proof that this can always be done is a simple matter. We
introduce Greibach normal form here because it will simplify the technical
discussion of an important result in the next lectures. However, from a
conceptual viewpoint, Greibach normal form plays no further role in our
discussion, so we only quote the following general result without proof.

Theorem 6.7

For every context-free grammar G with λ /∈ L(G), there exists an equivalent

grammar Ĝ in Greibach normal form.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

Thank You

Thank You for attention!

Oleg Gutik Formal Languages, Automata and Codes. Lecture 18

