
Formal Languages, Automata and

Codes

Oleg Gutik

Lecture 8
Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

According to our de�nition, a language is regular if there exists a �nite accepter
for it. Therefore, every regular language can be described by some DFA or some
NFA. Such a description can be very useful, for example, if we want to show
the logic by which we decide if a given string is in a certain language. But in
many instances, we need more concise ways of describing regular languages. In
this series of lectures, we look at other ways of representing regular languages.
These representations have important practical applications, a matter that is
touched on in some of the examples and exercises.

One way of describing regular languages is via the notation of regular
expressions. This notation involves a combination of strings of symbols from
some alphabet Σ, parentheses, and the operators +, ·, and ∗. The simplest
case is the language {a}, which will be denoted by the regular expression a.
Slightly more complicated is the language {a, b, c}, for which, using the symbol
+ to denote union, we have the regular expression a+ b+ c. We use the
symbol · for concatenation and ∗ for star-closure in a similar way. The
expression (a+ (b · c))∗ stands for the star-closure of {a} ∪ {bc}, that is, the
language {λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . .}.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions
Formal De�nition of a Regular Expression

We construct regular expressions from primitive constituents by repeatedly
applying certain recursive rules. This is similar to the way we construct familiar
arithmetic expressions.

De�nition 3.1

Let Σ be a given alphabet. Then

1 ∅, λ, and a ∈ Σ are all regular expressions. These are called primitive

regular expressions.

2 If r1 and r2 are regular expressions, so are r1 + r2, r1 · r2, r∗1 , and (r1).

3 A string is a regular expression if and only if it can be derived from the
primitive regular expressions by a �nite number of applications of the rules
in item 2.

Example 3.1

For Σ = {a, b, c}, the string
(a+ b · c)∗ · (c+∅)

is a regular expression, since it is constructed by application of the above rules.
For example, if we take r1 = c and r2 = ∅, we �nd that c+∅ and (c+∅) are
also regular expressions. Repeating this, we eventually generate the whole
string. On the other hand, (a+ b+) is not a regular expression, because there is
no way it can be constructed from the primitive regular expressions.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Languages Associated with Regular Expressions

Regular expressions can be used to describe some simple languages. If r is a
regular expression, we shall let L(r) denote the language associated with r.

De�nition 3.2

The language L(r) denoted by any regular expression r is de�ned by the
following rules.

1 ∅ is a regular expression denoting the empty set,

2 λ is a regular expression denoting {λ},
3 For every a ∈ Σ, a is a regular expression denoting {a}.

If r1 and r2 are regular expressions, then

4 L(r1 + r2) = L(r1) ∪ L(r2),

5 L(r1 · r2) = L(r1)L(r2),

6 L((r1)) = L(r1),

7 L(r∗1) = (L(r1))
∗.

The last four rules of this de�nition are used to reduce L(r) to simpler
components recursively; the �rst three are the termination conditions for this
recursion. To see what language a given expression denotes, we apply these
rules repeatedly.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.2

Exhibit the language L(a∗ · (a+ b)) in set notation.

L(a∗ · (a+ b)) = L(a∗)L(a+ b) =

= (L(a))∗(L(a) ∪ L(b)) =

= {λ, a, aa, aaa, . . .}{a, b} =

= {a, aa, aaa, . . . , b, ab, aab, . . .}.

There is one problem with rules (4) to (7) in De�nition 3.2. They de�ne a
language precisely if r1 and r2 are given, but there may be some ambiguity in
breaking a complicated expression into parts. Consider, for example, the regular
expression a · b+ c. We can consider this as being made up of r1 = a · b and
r2 = c. In this case, we �nd L(a · b+ c) = {ab, c}. But there is nothing in
De�nition 3.2 to stop us from taking r1 = a and r2 = b+ c. We now get a
di�erent result, L(a · b+ c) = {ab, ac}. To overcome this, we could require that
all expressions be fully parenthesized, but this gives cumbersome results.
Instead, we use a convention familiar from mathematics and programming
languages. We establish a set of precedence rules for evaluation in which
star-closure precedes concatenation and concatenation precedes union. Also,
the symbol for concatenation may be omitted, so we can write r1r2 for r1 · r2.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

With a little practice, we can see quickly what language a particular regular
expression denotes.

Example 3.3

For Σ = {a, b}, the expression
r = (a+ b)∗(a+ bb)

is regular. It denotes the language
L(r) = {a, bb, aa, abb, ba, bbb, . . .}.

We can see this by considering the various parts of r. The �rst part, (a+ b)∗,
stands for any string of a's and b's. The second part, (a+ bb) represents either
symbol a or the double of b. Consequently, L(r) is the set of all strings on
{a, b}, terminated by either the symbol a or bb.

Example 3.4

The expression
r = (aa)∗(bb)∗b

denotes the set of all strings with an even number of a's followed by an odd
number of b's; that is,

L(r) =
{
a2nb2m+1 : n ⩾ 0,m ⩾ 0

}
.

Going from an informal description or set notation to a regular expression tends
to be a little harder.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.5

For Σ = {0, 1}, give a regular expression r such that
L(r) = {w ∈ Σ∗ : w has at least one pair of consecutive zeros}.

One can arrive at an answer by reasoning something like this: Every string in
L(r) must contain 00 somewhere, but what comes before and what goes after
is completely arbitrary. An arbitrary string on {0, 1} can be denoted by
(0 + 1)∗. Putting these observations together, we arrive at the solution

r = (0 + 1)∗00(0 + 1)∗.

Example 3.6

Find a regular expression for the language
L = {w ∈ {0, 1}∗ : w has no pair of consecutive zeros} .

Even though this looks similar to Example 3.5, the answer is harder to
construct. One helpful observation is that whenever the symbol 0 occurs, it
must be followed immediately by the symbol 1. Such a substring may be
preceded and followed by an arbitrary number of 1's. This suggests that the
answer involves the repetition of strings of the form 1 . . . 101 . . . 1, that is, the
language denoted by the regular expression (1∗011∗)∗. However, the answer is
still incomplete, because the strings ending in 0 or consisting of all 1's are
unaccounted for. After taking care of these special cases we arrive at the answer

r = (1∗011∗)∗(0 + λ) + 1∗(0 + λ).

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



3.1 Regular Expressions

Example 3.6 (continuation)

If we reason slightly di�erently, we might come up with another answer. If we
see L as the repetition of the strings 1 and 01, the shorter expression

r = (1 + 01)∗(0 + λ)

might be reached. Although the two expressions look di�erent, both answers
are correct, as they denote the same language. Generally, there are an unlimited
number of regular expressions for any given language.

Note that this language is the complement of the language in Example 3.5.
However, the regular expressions are not very similar and do not suggest clearly
the close relationship between the languages.

The last example introduces the notion of equivalence of regular expressions.
We say the two regular expressions are equivalent if they denote the same
language. One can derive a variety of rules for simplifying regular expressions,
but since we have little need for such manipulations we shall not pursue this.

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8



Thank You

Thank You for attention!

Oleg Gutik Formal Languages, Automata and Codes. Lecture 8


