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PREFACE

This book was borne out of frustration. After returning from an enjoyable and pro-

ductive sabbatical at the University of California at San Diego, I began expanding

" the empirical content of my graduate-level classes in macroeconomics and interna-
; tional finance. Students’ interest surged as they began to understand the concurrent

development of macroeconomic theory and time-series econometrics. The differ-

" ence between Keynesians, monetarists, the rational expectations school, and the

real business cycle approach could best be understood by their ability to explain the
empirical regularities in the economy. Old-style macroeconomic models were dis-
carded because of their empirical inadequacies, not because of any logical inconsis-
tencies. . ,

Iowa State University has a world-class Statistics Department, and most of our
economics students take three of four statistics classes. Nevertheless, students’
backgrounds were inadequate for the empirical portion of my courses. I needed to
present a reasonable number of lectures on the topics covered in this book. My
frustration was that the journal articles were written for those already technically
proficient in time-series’ econometrics. The existing time-series texts were inade-
quate to the task. Some focused on forecasting, others on theoretical econometric
issues, and still others on techniques that are infrequently used in the economics lit-
erature. The idea for this text began as my class notes and use of handouts grew in-
ordinately. Finally, I began teaching a new course in applied time-series economet-
rics.

My original intent was to write a text on time-series macroeconometrics. Fortu-
nately, my colleagues at lowa State convinced me to broaden the focus; applied mi-
croeconomists were also embracing time-series methods. I decided to include ex-
amples drawn from agricultural economics, international finance, and some of my
work with Todd Sandler on the study of transnational terrorism. You should find- - -
the examples in the text to provide a reasonable balance between macroeconomic
and microeconomic applications.

The text is intended for those with some background in multiple regression:.
analysis. 1 presume the reader understands the assumptions underlying the use of "
ordinary least squares. All of my students are familiar with the concepts of correla-
tion and covariation; they also know how to use t-tests and F-tests within a regres-
sion framework. I use terms such as mean square error, significance level, and un-
biased estimate without explaining their meaning. The last two chapters of the text
examine multiple time-series techniques. To work through these chapters, it is nec-
essary to know how to solve a systern of equations using matrix algebra, Chapter 1,
entitled “Difference Equations,” is the comerstone of the text. In my experience, >
this material and a knowledge of regression are sufficient to bring students to the’
point where they are able to read the professional journals and to embark on a seri-
ous applied study. : ;




I believe in teaching by induction. The method is to take a simple example and

build towards more general and more complicated models and econometric proce- -

dures. Detailed examples of each procedure are provided. Each concludes with a
step-by-step summary of the stages typically employed in using that procedure. The
approach is one of learning by doing. A large number of solved problems are in-

cluded in the body of each chapter. The Questions and Exercises at the end of each

chapter are especially important. They have been designed to complement the ma-
terial in the text. In order to work through the exercises, it is necessary to have ac-
cess 1o a software package such as RATS, SAS, SHAZAM, or TSP. Matrix pack-
ages such as MATLAB and GAUSS are not as convenient for univariate models.
Packages such as MINITAB, SPSSX, and MICROFIT can perform many of the
procedures covered in the exercises. You are encouraged to work through as many
of the examples and exercises as possible. The answers to all questions are con-
tained in the Instructor’s Manual. Most of the questions are answered in great de-
tail. In addition, the Instructor’s Manual contains the data disk and the computer
programs that can be used to answer the end of chapter exercises. Programs are
provided for the most popular software packages.

In spite of all my efforts, some errors have undoubtedly crept into the text.
Portions of the manuscript that are crystal clear to me, will surely be opaque to oth-
ers. Towards this end, I plan to keep a list of corrections and clarifications. You can
receive a copy (of what | hope is a short list) from my Internet address ENDERS @
IASTATE.EDU.

Many pcople made valuable suggestions for improving the manuscript. I am
grateful to my students who kept me challenged and were quick to point out errors.
Pin Chung was especially helpful in carefully reading the many drafts of the manu-
script and ferreting out numerous mistakes. Selahattin Dibooglu at the University
of Hlinois at Carbondale and Harvey Cutler at Colorado State University used por-
tions of the text in their own courses; their comments concerning the organization,
style, and clarity of presentation are much appreciated. My colleague Barry Falk
was more than willing to answer my questions and make helpful suggestions, Hae-
Shin Hwang, Texas A and M University; Paul D. McNelis, Georgetown University;
Hadi Estahan, University of Illinois; M. Daniel Westbrook, Georgetown
University; Beth Ingram, University of Iowa; and Subhash C. Ray, University of
Connecticut all provided insightful reviews of various stages of the manuscript.
Julio Herrera and Nifacio Velasco, the “food gurus™ at the University of Valladolid,
helped me survive the final stages of proofreading. Most of all, I would like to
thank my loving wife Linda for putting up with me while I was working on the text.
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Chapter 1

DIFFERENCE EQUATIONS

The theory of difference equations underlies all the time-series methods employed
in later chapters of this text. It is fair to say that time-series econometrics is con-
cerned with the estimation of difference equations containing stochastic compo-
nents. The traditional use of time-series analysis was to forecast the time path of a
variable. Uncovering the dynamic path of a series improves forecasts since the pre-
dictable components of the series can be extrapolated into the future. The growing
interest in economic dynamics has given a new emphasis to time-series economet-
rics. Stochastic difference equations arise quite naturally from dynamic economic
models. Appropriately estimated equations can be used for the interpretation of
economic data and for hypothesis testing.
The aims of this introductory chapter are to:

1. Explain how stochastic difference equations can be used for forecasting and to
illustrate how such equations can arise from familiar economic models. The

‘chapter is not meant to be a treatise on the theory: of difference equations. Only

those techniques that are essential to the appropriate estimation of linear time-
series models are presented. This chapter focuses ‘on single-equation ‘models;
multivariate models are considered in Chapters 5 and 6. :

2. Explain what it means to “solve” a difference equation. The solution will deter-
mine whether a variable has a stable or an explosive time path. A knowledge of
the stability conditions is essential to understanding the recent innovations in
time-series econometrics. The contemporary time-series literature pays. special
attention to the issue of stationary versus nonstationary variables. The stability
conditions underlie the conditions for stationarity. -

3. Demonstrate how to find the solution to a stochastic difference equation. There
are several different techniques that can be used; each has its own relative mer-
its. A number of examples are presented to help you understand the different
methods. Try to work through each example carefully. For extra practice, you
should complete the exercises at the end of the chapter.
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2 Difference Equations

1. TIME-SERIES MODELS

The task facing the modern time-series econometrician is to develop reasonably
simple models capable of forecasting, interpreting. and testing hypotheses concern-
ing economic data. The challenge has grown over time; the original use of time-
series analysis was primarily as an aid to forecasting. As such, a methodology was
developed to decompose a series into a trend, seasonal, cyclical, and an irregular
component. Uncovering the dynamic path of a scries improves forecast accuracy
since each of the predictable components can be extrapolated into the future.
Suppuse you observe the 50 data points shown in Figure 1.1 and are interested in
forecasting the subsequent values. By using the time-series methods discussed in
the next several chapters, it is possible to decompose this series into the trend, sea-

Figure 1.1 Hypothetical time series.
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sonal, and irregular components shown in the lower part of the figure. As you can
see, the trend changes the mean of the series and the seasonal component imparts a
regular cyclical pattern with peaks occurring every 12 units of time. In practice, the
trend and seasonal components will not be the simplistic deterministic functions
shown in the figure. With economic data, it is typical to find that a series contains
stochastic elements in the trend, seasonal, and irregular components. For the time
being, it is wise to sidestep these complications so that the projection of the trend
and seasonal components into periods 51 and beyond is straightforward. )

Notice that the irregular component, while not having a well-defined pattemn, is
somewhat predictable. If you examine the figure closely. you will see that the posi-
tive and negative values occur in runs; the occurrence of a large value in any period
tends to be followed by another large value. Short-run forecasts will make use of
this positive correlation in the irregular component. Over the entire span, however,
the irregular component exhibits a tendency to revert to zero. As shown in the
lower part of the figure, the projection of the irregular component past period 50
rapidly decays toward zero. The overall forecast, shown in the top part of the fig-
ure, is the sum of each forecasted component.

The general methodology used to make such forecasts entails finding the “equa-
tion of motion” driving a stochastic process and using that equation to predict sub-

- sequent outcomes. Let y, denote the value of a data point at period f; if we use this
 notation, the example in Figure 1.1 assumed we observed y, through yso. For t = 1
to 50, the equations of motion used to construct components of the y, series are

Trend: 7,=1+0.1t
Seasonal: S, = 1.6 sin(tn/2)
Irregular: [=071_ +¢

I}

where T, = value of the trend component in period ¢
S, = value of the seasonal component in ¢

I, = the value of the irregular component in ¢
€, = a pure random disturbance in ¢

il

Thus, the irregular disturbance in ¢ is 70% of the previous period’s irregular distur-
bance plus a random disturbance term.

Each of these three equations is a type of difference equation. In its most gen-
eral form, a difference equation expresses the value of a variable as a function of its
own lagged values, time, and other variables. The trend and seasonal terms are both
functions of time and the irregular term is a function of its own lagged value and
the stochastic variable €,. The reason for introducing this set of equations is to make
the point that time-series econometrics is concerned with the estimation of differ-
ence equations containing stochastic components. The time-series econometrician
may estimate the properties of a single series or'a vector containing many interde-

. pendent series. Both univariate and multivariate forecasting methods are presented

in the text. Chapter 2 shows how to estimate the irregular part of a series, The first
half of Chapter 3 considers estimating the variance when the data exhibit periods of
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4 Difference Equations

volatility and tranquility. Estimation of the trend is considered in the last half of
Chapter 3 and in Chapter 4. Chapter 4 pays particular attention to the issue of
whether the trend is deterministic or stochastic. Chapter 5 discusses the properties
of a vector of stochastic difference equations and Chapter 6 is concerned with the
estimation of trends in a multivariate model.

Although forecasting was the mainstay of time-series analysis, the growing im-
portance of economic dynamics has gencrated new uses for time-series analysis.
Many economic theories have natural representations as stochastic difference equa-
tions. Moreover, many of these models have testable implications concerning the
time path of a key economic variable. Consider the following three examples.

1. The Random Walk Hypothesis: In its simplest form, the random walk model -
suggests that day-to-day changes in the price of a stock should have a mean
value of zero. After all, if it is known that a capital gain can be made by buying
a share on day 1 and selling it for an expected profit the very next day, efficient
speculation will drive up the current price. Similarly, no one will want to hold a
stock if it is expected to depreciate. Formally, the model asserts that the price of
a stock should evolve according to the stochastic difference equation:

Yt =X + €41
or
Ayu—l =€,
where 'y, = the price of a share of stock on day ¢

€., = arandom disturbance term that has an expected value of zero

Now consider the more general stochastic difference equation:

AYI+I O{)+a1yr +_€r+l

The random walk hypothesis requires the testable restriction o, = @, = 0.
Rejecting this restriction is equivalent to rejecting the theory. Given the infor-
mation available in period ¢, the theory also requires that the mean of €,,; be
equal to zero; evidence that €,,, is predictable inval:dates the random walk hy-
pothesis. Again, the appropriate estimation of a single-equation model is consid-
ered in Chapters 2 through 4.

2. Reduced Forms and Structural Equations: Often, it is useful to collapse a
system of difference equations into separate single-equation models. To illus-
trate the key issues involved, consider a stochastic version of Samuelson's
(1939) classic model:

— Yi=Cot, (1.0
C, =0y, +¢€, O<ax<i 1.2)
i=0Bc,—c ) +e, B>0 (1.3)

Time-Series Models 5

where y, c,, and i, denote real GNP, consumption, and investment in time period
1, respectively. In this Keynesian model, y,, ¢,, and i, are endogenous variables.
The previous period’s GNP and consumption, y,_; and c,_,, are called predeter-
mined or lagged endogenous variables. The terms €, and €, are zero mean ran-
dom disturbances for consumption and investment and the coefficients « and p
are parameters to be estimated.

The first equation equates aggregate output (GNP) with the sum of consump-
tion and investment spending. The sccond cquation asserts that consumption
spending is proportional to the previous period’s income plus a random distur-
bance term. The third equaiivn illustrates the accelerator principle. Investment
spending is proportional to the change in consumption; the idea is that growth in
consumption necessitates new investment spending. The error terms €, and €,
represent the portions of consumption and investment not explained by the be-
havioral equations of the model.

Equation (1.3) is a structural equation since it expresses the endogenous
variable i, as being dependent on the current realization of another endogenous
variable ¢, A reduced-form equation is one expressing the value of a variable
in terms of its own lags, lags of other endogenous variables, current and past
values of exogenous variables, and disturbance terms. As formulated, the con-

" sumption function is already in reduced form; current consumption depends

* only on lagged income and the current value of the stochastic disturbance term

€., Investment is not in reduced form since it depends on current period con-
sumption.

To derive a reduced-form equation for investment, substitute (1.2) into the in-
vestment equation to obtain

il = B(ay:-l te€,— Cl«l) +€,
= 0Py —Bery + e ey

Notice that the reduced-form equation for investment is not unique. You can

lag (1.2) one period to obtain c,, = by, , + €,.;. Using this expression, we can
also write the reduced-form investment equation as »

il = U'Byl—l - B(a)’/—z + Ec:-l) + Becl + €,
= O’B(yl—l - )’:—z) + B(éc, - €c1—1) +€; (1.4)

Similarly, a reduced-form equation for GNP can be obtained by subsmutmg
(1.2) and (1.4) into (1.1):

Y=0y, teE,t aﬁ()’,_\ - }'r—z) + B(Ec! - €c.*-l) + €,

=0l + By, = 0Py, + (1 +Ple, +€,~ Pey T sy

Equation (1.5) is a univariate reduced-form equation; y, is expressed solely
as a function of its own lags and disturbance terms. A univariate model is partic-
ularly useful for forecasting since it enables you to predict'a series based solely




[ )

s

Difference Equations

on its own current and past realizations. It is possible to estimate (1.5) using the
univariate time-series techniques explained in Chapters 2 through 4. Once you
obtain estimates of o and B, it is straightforward to use the observed values of y,
through y, to predict all future values in the series (i.€., Y115 Yiazs oo )-

Chapter 5 considers the estimation of multivariate models when all variables
are treated as jointly endogenous. The chapier also discusses the restrictions
needed to recover (i.c., identify) the structural model from the estimated re-
duced-form model.

. Error Correction: Forward and Spot Prices. Certain commodities and finan-

cial instruments can be bought and sold on the spot market for immediate deliv-
ery or for delivery at some specified future date. For example, suppose that the
price of a particular foreign currency on the spot market is s, dollars and the
price of the currency for delivery one-period into the future is f, dollars. Now,
consider a speculator who purchased forward currency at the price f, dollars per
unit. At the beginning of period r + 1, % speculator receives the currency and
pays f, dollars per unit received. Since spot foreign exchange can be sold at s
the speculator can earn a profit (or loss) of s,,, — f, per unit transacted.

1

The unbiased forward rate (UFR) hypothesis asserts that expected profits

from such speculative behavior should be zero. Formally, the hypothesis posits
the following relationship between forward and spot exchange rates:

Seet =f; €0 (1.6)

where €,,, has a mean value of zero from the perspective of time period .
In (1.6), the forward ratc in ¢ is an unbiased estimate of the spot rate in ¢ + 1.
Thus, suppose you collected data on the two rates and estimated the regression:

St = (x()+ alﬁ + €4y

If you were able to conclude that o, = 0, o, = | and the regression residuals
€,,, have a mean value of zero from the perspective of time period f, the UFR
hypothesis could be maintained.

The spot and forward markets are said to be in “long-run equilibrium” when
€,,, = 0. Whenever s,,, tuns out to differ from f,. some sort of adjustment must
occur to restore the equilibrium in the subsequent period. Consider the adjust-
ment process:

Spe2 =S = O(S, = f) F €0 a>0 -amn
,f:'$l:.fl+B(Sl+l '—fl)+eﬁ+) B>O (1.8)

where €,,,, and €;,, both have 2 mean value of zeto from the perspective of time
period t + 1 and 1, respectively.

Equations (1.7) and (1.8) illustrate the type of sumultaneous adjustment mech-
anism considered in Chapter 6. This dynamic model is called an error-correc-
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tion model since the movement of the variables in any period is related to the
previous period’s gap from long-run equilibrium. If the spot rate s,,, turns out to
equal the forward rate f, (1.7) and (1.8) state that the spot and forward rates are
expected to remain unchanged. If there is a positive gap between the spot and
forward rates so that s,,, — f, > 0, (1.7) and (1.8) lead to the prediction that the
spot rate will fall and the forward ratc will rise.

2. DIFFERENCE EQUATIONS AND THEIR SOLUTIONS

Although many of the ideas in the previous section were probably familiar to you,
it is necessary to formalize some of the concepts used. In this section, we will ex-
amine the type of difference equation used in econometric analysis and make ex-
plicit what it means to “solve” such equations. To begin our examination of differ-
ence equations, consider the function y = f{r). If we evaluate the function when the
independent variable ¢ takes on the specific value t*, we get a specific value for the
dependent variable called y,.. Formally, y,. = f{t*). If we use this same notation,
¥,+55 fepresents the value of y when ¢ takes on the specific value t* + h. The first
difference of y is defined to be the value of the function when evaluated at t =
t* + h minus the value of the function evaluated at t*: :

A}’l‘%h E./(t* + h) _ﬂ{*)
= Yiern = Yin “'.9)

Differential calculus allows the change in the independent variable (i.e., the term
h) to approach zero. Since most economic data are collected over discrete periods,
however, it is more useful to allow the length of the time period to be greater than
zero. Using difference equations, we normalize units so that & represents a unit
change in ¢ (i.e., & = 1) and consider the sequence of equally spaced values of the
independent variable. Without any Joss of generality, we can always drop the aster-
isk on r* We can then form the first differences:

Ay, =fi0) = ft = D) =y, =y,
A.YIH :ﬂ!+ 1 —ﬂt) =Y =
A.v1+2 :ﬂt+ 2) _ﬂt+ 1) = Y2~ Yt

Often, it will be convenient to express the entire sequence of values {- y,_,, ¥,
Vi Yerts Yeuzr =} as {¥,}. We can then refer to any one particular value in the se-
quence as y,. Unless specified, the index f runs from —eo to +oo. In time-series

econometric models, we will use r to represent “time” and A the length of a time pe- -

rod. Thus, y, and y,,, might represent the realizations of the {y,} sequence.in the
first and second quarters of 1995, respectively.

In the same way, we can form the second difference as the change in the first
difference. Consider '

R s et e
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wAly, ABY) =AY =y ) =0 = Y = Oy = Vi) =Y~ Wy + Y2
Ahy/»l = A(A,VHI) = A(ynl - ,Vr) = (.yul - .V/) - (Avl - .V1~l) =Y~ 2y/ + ¥y

The nth difference (4™) is defined analogously. At this point, we risk taking the
theory of difference equations too far. As you will see. the need to use second dif-
ferences rarely arises in time-series analysis. It is safe to say that third- and higher-
order differences are never used in applied work.

Since this text considers linear time-series mcthods, it is possible to examine
only the special case of an nth-order linear difference equation with constant coeffi-
cients. The form for this special type of difference equation is given by

n B
Y, =a, +Zu,-y,~, +x, R )
= ’

The order of the difference equation is given by the value of n. The equation is lin-
ear because all values of the dependent variablg are raised to the first power.

Economic theory may dictate instances in which the various a, are functions of -

variables within the economy. However, as long as they do not depend on any of
the values of y, or x,, we can regard them as parameters. The term x, is called the
forcing process. The form of the forcing process cun be very general; x, can be any
function of time, current and lagged values of other variables, and/or stochastic dis-
turbances. By appropriate choice of the forcing process, we can obtain a wide vari-
ety of important macroeconomic models. Reexamine Equation (1.5), the reduced
form equation for GNP. This equation is a second-order difference equation since ,
depends on y,_,. The forcing process is the expression (1 + B)e_, + €, — Pe.,_,. You
will note that (1.5) has no intercept term corresponding to the expression a, in
(1.10).
An important special case for the {x,} sequence is

xl:ZBxEr—i R

={)

where the f; are constants (some of which can equal zero) and the individual ele-
ments of the sequence {€,] are not functions of the y,. At this point, it is useful to
allow the {¢,} sequence to be nothing more than a sequence of unspecified exoge-
nous variables. For example, let {€,} be a random error term and set B, =1 and B, =
B, = -+ =0, then Equation (1.10) becomes the autoregression equation:

Yw=agtay, tay, ot tay,, e

Letn=1,a,=0,and a; = | to obtain the random walk model. Notice that Equation

. (1.10) can be *vritten in terms of the difference operator (A). Subtracting y,_, from

(1.10), we obt::in

e e S GLRRERG e M
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B : n
Vi~V =agt{a —Dy + 2““‘""' X
i=2

or dcﬁning ;ya {a,— 1), we get

B n A SHREN
A}’, =4y +‘Y_V,_] + 2aiyl—i +'\.I
i=2

Clearly, Equation (1.11) is just a modified version of (1.10).

A solution to a difference equation expresses the value of y, as a function of the
elements of the {x,} sequence and ¢ (and possibly some given values of the {y,} se-
quence called initial conditions). Examining (1.11) makes it clear that there is a
strong analogy to integral calculus when the problem is to find a primitive function
from a given derivative. We seek to find the primitive function f{t) given an equa-

tion expressed in the form of (1.10) or (1.11). Notice that a solution is a function .

rather than a number. The key property of a solution is that it satisfies the differ-
ence equation for all permissible values of 1 and {x,}. Thus, the substitution of a so-
lution into the difference equation must result in an identity. For example, consider
the simple difference equation Ay, =2 {(or y, = y,_; + 2). You can easily verify that a
solution to this difference equation is y, = 2 + ¢, where ¢ is any arbitrary constant.
By definition, if 2t + ¢ is a solution, it must hold for all permissible values of .
Thus for period ¢ — 1, y._, = 2(t — 1) + c. Now substitute the solution into the differ-
ence equation to form ‘

U+ec=2t- 1) +c+2 : (1.12)

It is straightforward to carry out the algebra and verify that (1.12) is an identity.
This simple example also illustrates that the solution to a difference equation need
not be unique; there is a solution for any arbitrary value of c.

Another useful example is provided by the irregular term shown in Figure §.1;
recall that the equation for this expression is I, = 0.7],_, + €. You can verify that the
solution to this first-order equation is

1, =2(0'7)i€1—i E (1.13)
i=0 . !

Since (1.13) holds for all time periods, the value of the irregulér chfyonent in
t—1is given by . o ORI

ibi i
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Now substitute (1.13) and (1.14) into /,=0.7/,_, + ¢, to obtain

€ +0.7¢,_, + (0.7, +(0.7) €,y +
=0.7(,

The two sides of (1.15) are identical; this proves that (1.13) is a solution to the
first-order stochastic difference equation 7, = 0.7/,_, + €,. Be aware of the distinction
between reduced-form equations and solutions. Since 7, = 0.7/,_, + ¢, holds for all
values of 4, it follows that I,_, = 0.71,_, + ¢,.,. Combining these two equations yields

5L=0.70.71_, +€,._) +e¢,
=049, +07¢,_,+€, = (1.16)

Equation (1.16) is a reduced-form equation since it expresses /, in terms of its
own lags and disturbance terms. However, (1.16} does not qualify as a solution
since it containg the “unknown” value of /,_,. To qualify as a solution, (1.16) must
express [, in terms of the elements of x,, 1, and any given initial conditions.

3. SOLUTION BY ITERATION

The solution given by (1.13) was simply postulated. The remaining portions of this
chapter develop the methods you can use to obtain such solutions. Each method has
its own merits; knowing the most appropriate to use in a particular circumstance is
a skill that comes only with practice. This section develops the method of iteration.
Although iteration is the most cumbersome and time-intensive method, most people
find it to be very intuitive. ,

If the value of y in some specific period is known, a direct method of solution is
to iterate forward from that period to obtain the subsequent time path of the entire y

sequence. Refer to this known value of y as the initial condition or value of y in

time period O (denoted by y,). It is easiest to illustrate the jterative technique using
the first-order difference equation:

Y, =ag+ay,., t+e, o '. (1.x7)'
Given the value of y,. it follows that y, will be given by
Yi=agtay,te
In the same way, y, must be ' sl
Y2=aot Uy, e

=ag+a(ag+ay,+€,) + e,
=g+ aga, + (@) Vo +a €, + €,

A+ 0765+ (0.7 e+ (0.7, + - 1+e, (115

Solution by lreration . 14
Continuing the process in order to find y,, we obtain

yi=daytay; +€;
=ayl +a, +(a, )2 ]+(a)y0+a[e|+a[ez+eq

'Yﬁu‘éan easily verify that for all 1 > 0, repeated iteration yields -

i

i ' . i . ) ) ’
y,=a02a1+alyo+2ale,_i . (1.18)

i=0 i=0

Equation (1.18) is a solution to (1.17) since it expresses y, as a function of ¢, the
forcing process x, = £(a,)'¢,_;, and the known value of y,. As an exercise, it is useful
to show that iteration from y, back to y, yields exactly the formula given by (1.18).
Since y, = ag + a,y,_, + €,, it follows that

Yi=4ag + al(ao + a1y 2 + E1—l) + €
=ay(l +a,) +ae,_, +¢+ala+a,y,_,+€.y)

Continuing the iteration back to period 0 yields Equation (1.18).

lteration Without an Initial Condition

Suppose you were not provided with the initial condition for y,. The solution given
by (1.18) would not be appropriate since the value of y, is an unknown. You could
not select this initial value of y and iterate forward, nor could you iterate backward
from y, and simply choose to stop at ¢ = t,. Thus, suppose we continued to iterate
backward by substituting ao+ a,y_, + €, for y, in (1.18):

1-1 -1

i ' i
¥, = (IOEal +a, (ao +ayy_ +€0)+20‘51_i

i=0 i=0

*“oza +2 aje,;+a"'y., S (1.19)

SRR

Commuing to iterate backward another m periods, we obtaif*

t+m t+m | .- .
t+m+ .
yf=aoZa *2”1::”: e . (120,
i i=0 i=0 . i .

Now examine the pattern emerging from (1.19) and (1.20). If lf],l <1, the term -
al*™*! approaches zero as m approaches infinity. Also, the infinite. sum.{} + a, +
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()" + -] converges o 11 — ). Thus, if we temporarily. assume that |a,‘ <1,
after continual substitution, (1.20) can be written as

o0

yo=apli-ap+ Y aje R (121)
i=0

You should take a few minutes to convince yourself that (1.21) is a solution to
the original difference equation (1.17); substitution of (1.21) into (1.17) yields an
identity. However, (1.21) is not a unique solution. For any arbitrary value of 4, a
solution to (1.17) is given by

¥, = Aay +ag(l=a))+ Y aje Soa

i=0
To verify that for any arbitrary value of A, (1.22) is a solution, substitute (1.22)

into (1.17) to obtain

aol(]—a,)+Aa,' +2 a,"e,ﬁ. = gy +ayiay/(l —-a,)+Aa;—I +Za:e/‘,_{. +e,

i=0 i=0
Since the two sides are identical, (1.22) is necessarily a solution to (1.17).

Reconciling the Two Iterative Methods

Given the iterative solution (1.22), suppose that you are now given an initial condi-

tion concerning the value of y in the arbitrary period ;. It is straightforward to

show that we can impose the initial condition on (1.22) to yield the same solution
as (1.18). Since (1.22) must be valid for all periods (including t,), then when =0,
it must be true that .

o0

y0=/\+~ao/(1—al)+;a:€_i so that
=0
A=y, =agl(l=a)= aje., | (123)
. i=0

Since y, :s given, we can view (1.23) as the value of A that renders (1.22) a solu-
tion to (1.17) given the initial condition. Hence, the presence of the initial condition
eliminates the “arbitrariness” of A. Substituting this value of A into (1.22) yields

Solution by Meration RX}

Y =Y "\9@/(1""1)"2“;5_; 11;¥§¢J1.1~f1.)+20;6,_; (1.249)
i=0 i=0

Simplification of (1.24) results in
t-1

» =[)’o‘ao/(l‘al)]a;+“0/(1‘”1)+2“;€z—1 oo U2y
=0

You should take a moment to verify that (1.25) is identical to (1.18).

Nonconvergent Sequences

Given that |a,| < 1, (1.21) is the limiting value of (1.20) as m grows infinitely
large. What happens to the solution in other circumstances? If Ia, > 1, it is not
; possible to move from (1.20) to (1.21) since the expression la, l’*’" grows infi-
; nitely large ‘as ¢ + m approaches infinity.! However, if there is an initial condition,
there is no need to obtain the infinite summation. Simply select the initial condition
Yo and iterate forward; the result will be (1.18):

' -1 Tl
: . it i
Lo o Y1 =‘102“1+01yo+za151-i
) i=0 i=0

- Although the successive values of the {y,} sequence will become progressively
larger in absolute value, all values in the series will be finite. )
A very interesting case arises if a; = 1. Rewrite (1.17) as

Y=g+ Y, T E

or

Ay, =ay+ €,

As you should verify by iterating from y, back to yg; a solution to this equation is® :
! .
y{:a01+261+y0 - (1.26)
i=}

After a moment's reflection, the form of the solution is quite intuitive. In every
period ¢, the value of y, changes by a, + €, units. After ¢ periods, there are t such
changes; hence, the total change is ta, plus the 1 values of the {e,} séquence. Notice

e
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Figure 1.2 Convergent and nonconvergent sequences.
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that the solution contains summation of all disturbances from e, through e,. Thus,
when a, = 1, each disturbance has a permanent nondecaying effect on the value of
¥, You should compare this result to the solution found in (1.21). For the case in
which |a; | <1, Ia[ l'is a decreasing function of ¢ so that the effects of past distur-
bances become successively smaller over time.

The importance of the magnitude of a, is illustrated in Figure 1.2. Twenty-five
random numbers with a theoretical mean equal to zero were computer-generated
and denoted oy ¢, through e,5. Then the value of y, was set equal to unity and the next
25 values of the {y,} sequence were constructed using the formula y, =09y, , + €,.
The result is shown by the thin line in part (a) of Figure 1.2. If you substitute a, =0
and a, = 0.9 into (1.18), you will see that the time path of {y,} consists of two parts.
The first part, 0.9', is shown by the slowly decaying thick line in the (a) panel of the
figure. This term dominates the solution for relatively small values of ¢. The influ-
ence of the random part is shown by the difference between the thin and thick lines;
you can see that the first several values of {e,} are negative. As f increases, the in-
fluence of the random component becomes more pronounced.

Using the previously drawn random numbers, we again set y, equal to unity and
a second sequence was constructed using the formula y, = 0.5y,_, + €,. This second
sequence is shown by the thin line in part (b) of Figure 1.2. The influence of the ex-
pression 0.5" is shown by the rapidly decaying thick line. Again, as.f increases, the
random portion of the solution becomes more dominant in the time path of {y,}.

When we compare the first two panels, it is clear that reducing the magnitude

of {a, | increases the rate of convergence. Moreover, the discrepancies between the
simulated values of y, and the thick line are less pronounced in the second part. As
you can see in (1.18), each value of €,_; enters the solution for y, with a coefficient
of {a,). The smaller value of @, means that the past realizations of ¢,_, have a
smaller influence of the current value of y,.

Simulating a third sequence with «, = -0.5 yields the thin line shown in part (c).
The oscillations are due to the negative value of a,. The expression (-0.5)', shown
by the thick line, is positive when ¢ is even and negative when ¢ is odd. Since }a, |
< 1, the oscillations arc dampened.

The next three parts of Figure 1.2 all show nonconvergent sequences. Each uses
the initial condition y, = | and the same 25 values of {€,} used in the other simula-
tions. The thin line in part (d) shows the time path of y, = y,_, + €. Since each value
of €, has an expected value of zero, part (d) illustrates a random walk process. Here,
Ay, = €, so that the change in y, is random. The nonconvergence is shown by the
tendency of {y,} to meander. In part (¢), the thick line representing the explosive
expression (1.2)" dominates the random portion of the {y,} sequence. Also notice
that the discrepancy between the simulated {y,} sequence and the thick line widens
as ¢ increases. The reason is that past values of ¢,_; enter the solution for y, with the
coefficient (1.2). As i increases, the importance of these previous discrepancies be-
comes increasingly significant. Similarly, setting a; = —1.2 results in the exploding
oscillations shown in the lower-right part of Figure 1.2. The value (-1.2) is posi-
tive for even values of 1 and negative for odd values of 1.

RPN

8
i
:
!
H
i
{
!
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4. AN ALTERNATIVE SOLUTION METHODOLOGY

Solution by the iterative method breaks down in higher-order equations. The alge-
braic complexity quickly overwhelms any reasonable attempt to find a solution.

Fortunately, there are several alternative solution techniques than can be helpful in !
solving the nth-order equation given by (1.10). Using the principle that you should "]
Jearn to walk before you learn to run, we see that it is best to step through the first-_ ;!
order equation given by (1.17). Although you will be covering some familiar - |
ground, the first-order case illustrates the general methodology extremely well. To
split the procedure into its component parts, consider only the homogeneous por-..i

tion of (1.17):

Y=Yy (1.27) .

The solution to this homogeneous equation is called the homogeneous solution; .

at times, it will be useful to denote the homogeneous solution by the expression yF.
Obviously, the trivial solution y, = y,_, = - = 0 satisfies (1.27). However, this solu-
tion is not unique. By sefting a, and all values of {¢,} equal to zero, (1.18) becomes
¥, = a\y,. Hence, y, = a}y, must be a solution to (1.27). However, even this solution
does not constitute the full set of solutions. It is easy to verify that the expression af
muitiplied by any arbitrary constant 4 satisfies (1.27). Simply substitute y, = A(a,)
and y,., = A(a,)"" into (1.27) to obtain

A(a) =a,Ala)"™!

Since a)= a,{a,)"", it follows that y, = A(a,)’ solves (1.27). With the aid of the
thick lines in Figure 1.2, we can classify the properties of the homogeneous solu-
tion as follows:

1If la, | <1, the expression (a,)’ converges to zero as ¢ approaches infinity.
Convergence is direct if O < @, < 1 and oscillatory if ~1 <a,; <0.

2. If lal | >1, the homogeneous solution is not stable. If a, > 1, the homogeneous

solution approaches infinity as  increases. 1f a; < -1, the homogeneous solution -

oscillates explosively.

3. If a, = 1, any arbitrary constant A satisfies the homogeneous equation y, =y, ;. If
= -1, the system is meta-stable: (a,) = 1 for even values of t and ~1 for odd
values of .

Now consider (1.17) in its entirety. In the last section, you confirmed that (1.21)
is a valid solution to (1.17). Equation (1.21) is called a particular solution to the
difference equation; all such particular solutions will be denoted by the term y7.
The term “particular” stems from the fact that a solution to a difference equation
may not be unique; hence, (1.21) is just one particular solution out of the many pos-
sibilities.

In moving to (1.22), you verified that the particular solution was not unique. The
homogeneous solution Aa} plus the particular solution given by (1.21) constituted

RN e
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the complete sofution to (1.17). The general solution o a difference equation is de-
fined to be a particular solution plus all homogeneous solutions. Once the general
solution is obtained, the arbitrary constant A can be eliminated by imposing an ini-
tial condition for y,.

The Solution Methodology

The results of the first-order case arc directly applicable to the nth-order equation
given by (1.10). In this general case, it will be more difficult to find the particular
solution and there will be n distinct homogeneous solutions: Nevertheless, the <olu-
tion methodology will always entail the following four steps:

STEP 1: Form the homogeneous equation and find all n homogeneous solutions.

STEP 2. Find a particular solution.

STEP 3: Obtain the general solution as the sum of the particular solution and a hn-
ear combination of all homogeneous solutions.

STEP 4: Eliminate the arbitrary constant(s) by imposing the initial condition(s) on
the general solution.

Before we address the various techniques that can be used to obtain homoge-
neous and particular solutions, it is worthwhile to 1llustratc the methodology using
the equation: »

)

¥, =09y,_,-02y,+3 (1.28)

Clearly, this second-order equation is in the form of (1.10) with ag =3, a;, = 0.9,
@, =~0.2, and x, = 0. Beginning with the first of the four steps, form the homoge-

- nous equation:

y,~09y,_,+02y,,=0 ) (1.29)

In the first-order case of (1.17), the homogeneous solution was A(a,)’. Section 6

will show you how to find the complete set of homogeneous solutions. For now, it
is sufficient to assert that the two homogeneous solutions are %, = (0.5) and y3, =

(0.4)". To verify the first solution, note that y,_, = (0. 5)" and y%,_, = (0.5)"*. Thus,
Y1 is a solution if it satisfies :

(0.5) = 0.9(0.55"! +0.2(0.5)2 = 0
If we divide by (0.5), the issue is whether

(0.5)*-0.9(0.5) +0.2=0
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Carrying out the algebra 0.25 - 0.45 + 0.2 does equal zero so that 0.5 .is a s'olu-
tion to (1.29). In the same way, it is easy to verify that ¥4, = (0.4)' is a solution since

(0.4) = 0.9(0.4)~" +0.2(0.4)* =0

Divide by (0.4)"? to obtain (0.4)" ~ 0.9(0.4) + 0.2 =0.16 - 0.3A6 +0.2=0. .

The second step is to obtain a particular solution; you can easily confirm that the
particular solution y” = 10 solves {1.28) as 10 = 0.9? 10) - 0.2(1.0) +3. o .

The third step is to combine the particular solution and a linear combination o
both homogeneous solutions to obtain

¥, =A0.5) + Ay 0.4) + 10

where A, and A, are arbitrary constants. N N

For thle fourth step, assume you have two initial conditions for the {y,} sequence.
So that we can keep our numbers reasonably round, suppose that y,=13 and y, =
11.3. Thus, for periods zero and one, our solution must satisfy

13=A,+A,+10
11.3 = 4,(0.5) + A,(0.4) + 10

Solving simulmnébusly for A, and A,, you should find A, = 1 and A, = 2. Hence,
the solution is

v, =(0.5) +2(0.4) + 10

Generalizing the Method

P

To show that the method is applicable to higher-order eqgiiations, ecmmﬁerﬂ%h&-

mogeneous part of (1.10):
n
i=]
As shown in Section 6, there are n homongneous solutions that :a.nsfy (1.30).
For now, it is sufficient to demonstrate the following proposition: If y," is @ homoge-

neous solution to (1.30). Ay" is also a solution for any arbitrary constant A. By as-
sumpt:on, ¥/ solves the homogeneous equation so that

n
h h IR PO 1.31
¥ = zui-vr—i ( ),
i=| )

30.
Y, = Z(I,-_V,_i . . a )

O O

R A AT ¥

. zero. Since y; solves the homogeneous equation, the exp
© parentheses is zero. Thus, (1.34) is an identity;
particular solutions solves (1.10).
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The expression Ay” is also a solution if:

n

Ay} ZZH;A%}’.[ ’ R (7))

i=]

We know (1.32) is satisfied since dividing each term by A yields (1.31). Now
suppose that there are two separate solutions to the homogeneous equation denoted -
by yi, and y4,. It is straightforward to show that for any two constants 4, and A, the

linear combination Ay}, + A2Y4, is also a solution to the homogeneous equation. If
Ayl + A%, is a solution to (1.30), it must satisfy

Ayl +AYs = a(A Y, + Ah ) + a Ay, + A5 D)+ + a (A, + AYsren)

Regrouping terms, we want to know if

n n
h h
[Al)’n - ZAxai)’n-i}“(Az)’;/ = ZAZGiygl—i] =0
i=1

i=1

Since Ay}, and A,%, are separate solutions to (1.30), each of the expressions in
parentheses is zero. Hence, the linear combinat

homogeneous equation. This result easil
tions to an nth-order equation.

Finally, the use of Step 3 is appropriate since the sum of any particular solution
and any linear combination of all homogeneous solutions is also a solution. To

prove the proposition, substitute the sum of the particular and homogeneous solu-
tions into (1.10) to obtain

ion is necessarily a solution to the
y generalizes to all n homogeneous solu-

h h
yrp+yl :a0+2ai(ytp~i+yr—i)+x1 . (1.33)

i=1

Recombining the terms in (1.33), we want to know if

n n S E
[}’/’ ~ 4y ‘Zaiy,p-i —-¥,]+[Yf' *Za.-.\‘f-fJ= U (1.34)
i= ’

i=1

Since y? solves (1.10), the expression in the first set of parentheses of (1.34) is
ression in the second set of

the sum of the homogeneous and

i
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5. THE COBWEB MODEL

An interesting way to illustrate the methodology outlined in the previous section is
1o consider a stochastic version of the traditional cobweb model. Since the model
was originally developed to explain the volatility in agricultural prices, let the mar-
ket for a product—say, wheat—be represented by

d=a~yp, y> 0 (1.35)
s, =b+PpF+e B>0 (1.36)
s, =d, (137
where d, = demand for wheat in period !
a s, = supply of wheatint

p. = market price of wheatin ¢

pX = price that farmers expect to prevail at

€, = azero mean stochastic supply shock

and parameters g, b, % and { are all positive such that a > 6.

The nature of the model is such that consumers buy as much wheat as desired at .

the market clearing price p,. At planting time, farmers do not know the price pre-
vailing at harvest time; they base their supply decision on the expected price (p¥).
The actual quantity produced depends on the planned quantity b + Bp¥ plus a ran-
dom supply shock €, Once the product is harvested, market equilibrium requires
that the quantity supplied equals the quantity demanded. Unlike the actual market
for wheat, the model ignores the possibility of storage. The essence of the cobweb
model is that farmers form their expectations in a naive fashion; let farmers use last
year’s price as the expected market price:
PE=pe (1.38)
Point E in Figure 1.3 represents the long-run equilibrium price and quantity com-
bination. Note that the equilibrium concept in this stochastic model differs from

_ that of the traditional cobweb model. If the system is stable, successive prices will

tend to converge to point E. However, the nature of the stochastic equilibrium is
such that the ever-present supply shocks prevent the system from remaining at E.
Nevertheless, it is useful to solve for the long-run price. If we set all values of the
{€,} sequence equal to zero, set p, = p,_; = - = p, and equate supply and demand,
the long-run equilibrium price is given by p = (a — b)/(y + B). Similarly, the equilib-
rium quantity (s) is given by s = (aP + yb)/(y + P).

To understand the dynamics of the system, suppose that farmers in ¢ plan to pro-
duce the equilibrium quantity s. However, let there be a negative supply shock such
that the actual quantity produced turns out 10 be 5, As shown by point 1 in Figure
1.3, consumers are willing to pay p, for the quantity s,; hence, market equilibrium in
t occurs at point 1. Updating one period allows us to see the main result of the cob-
web model. For simplicity, assume that all subscquent values of the supply shock
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are zero (i.€., €, = €,, = - = 0). Al the beginning of period ¢ + 1, farmers expect
the price at harvest time to be that of the previous period; thus, p¥, = p,.
Accordingly, they produce and market quantity s,,, (see point 2 in the ﬁgure); con-
sumers, however, are willing to buy quantity s,,, only if the price falls to that indi-
catefj by p.., (see point 3 in the figure). The next period begins with farmers ex-
pecting to be at point 4. The process continually repeats itself until the equilibrium
point E is attained.
As drawn, Figure 1.3 suggests that the market will always converge to the long- .

run equilibrium point. This result does not hold for all demand and supply curves.
To formally derive the stability condition, combine (1.35) through (1.38) to obtain

e b+ Bpr—l +e=a-p,
or .

pe=(BHp +(a- by —ely (1.39)

Clea'rly, (1.39) isa stochastic first-order linear difference equation with constant
coefficients. To obtain the general solution, proceed using the four steps listed at
the end of the last section:

1. Form the homogeneous equation: p, =-(-B/y)p,_,. In the next section, vyou will
lc?am how to find the solution(s) to a homogeneous equation. For now, it is suffi-
cient to verify that the homogeneous solution is

Figure 1.3 The cobweb model.
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4 3
P = APy
where A is an arbitrary constant. B T S .
2. If the ratio B/y is less than unity, you can it.erute(l.3‘9));~ba:ék§véi‘d’fm b m?,er.
. ify that the particular solution for the price is

i

Pl =(a=by(y+p) -y (-pr'e,; R

i=0
If B/y 2 1, the infinite summation in (1.40) is not convergent. As di§cusse>c1 Im
the last section, it is necessary to impose an initial condition on (1.40) if By 2 1.

3. The general solution is the sum of the homogeneous.and particular solutions; if
we combine these two solutions, the gencral solution is

Py =(a=bY(y+ )~ ()Y (-Bry)e,_; + AC-pY) (1.41)

i=0

4. In (1.41), A is an arbitrary constant that can be eliminated .if we know ‘the pn;:)e
. in some initial period. For convenience, let this initial period have a time sub-

zero, it must be the case that

- i 0
po =(a=bY(1+B)~ (1 Y (-Bry)e_; + AC-Bry)

i=0

Since (-B/)° = 1, the value of A is given by

A= py—(a=bY(+ B+ Y (-B)'e.

i=0

Substituting this solution for A back into (1.41) yields

H

p=@=bY(y +B)- W) Y (- e

i=0

HBN' | po = (a=bY(r+B) + U Y (B,

i=0

script of zero. Since the solution must hold for every period, including period”
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and after simplification of the two summations,

[ e S
(@b B = (prye, (=PI [Py ~ta= b¥iy+ )] (142)
i=0 e Yot «

We can interpret (1.42) in terms of Figure 1.3. In order to focus on the stability
of the system, temporarily assume that all values of the {¢,} sequence are zero,
Subsequently, we will return to a consideration of the effects of supply shocks. If
the system begins in long run equilibrium, the initial condition is such that Po =
(a—b)(y+ B). In this case, inspection of Equation (1.42) indicates that pe=(a-b)y

i \ remains in long-run
equilibrium. Instead, suppose that the process begins at a price below long-run
equilibrium: p, < (g - b)/(Y+ B). Equation (1.42) tells us that pris

Pr=(a =)+ B+ [py ~ (a - b)/y+ B (-Bry)! (1.43)

Since p, < (a — b)Yy + B) and ~By <0, it follows that P will be above the long- -
run equilibrium price (g — b)(y+ B). In period 2,

P2=(a=b)(y+B) + [p, ~ (a- by(y+ B (=Bryy* -

Although p, < (g — DYy +B), (~Pry?is positive; hence, p, is below the long-run
equilibdum. For the subsequent periods, note that (=B will be positive for even
values of + and negative for odd values of 1. Just as we found graphically, the suc-
cessive values of the {p.} sequence will oscillate above and below the long-run
equilibdum price. Since (B/YY goes to zero if B <y and explodes if B>, the mag-

oscillations will be explosive,

The economic interpretation of this stability condition is straightforward. The
slope of the supply curve [i.e., dp/d(s)] is 1/8 and the absolute value slope of the
demand curve [ie., ~dp, /d(d)} is 1/y. If the supply curve js steeper than the de-
mand curve 1/B > I/y or Bry <1, so that the system is stable. This is precisely the
case illustrated in Figure 1.3. As an exercise, you should draw a diagram with the
demand curve steeper than the supply curve and show that the price oscillates and
diverges from the long-run equilibrium,

Now consider the effects of the supply shocks. The contemporaneous effect of a

supply shock on the price of wheat is the partial derivative of p, with respect to [
from (1.42), we obtain T

OpJoe =~1ly (1.44)

Equation (1.44) is called the impact multiplier since it shows the impact effect
of a change in ¢, on the price in 1. In terms of Figure 1.3, a negative value of ¢, im-




v

POTSTT

PR

OV

-

24 Difference Equations

plies a price above the long-run price p; the price in ¢ rises by 17y units for each unit
decline in current period’s supply. Of course, this terminology is not specific to the
cobweb model; in terms of the nth-order model given by (1.10), the impact multi-
plier is the partial derivative of y, with respect to the partial change in the forcing
process.’®

The effects of the supply shock in ¢ persist into future periods. Updating (1.42)
by one perind vields the one-period multiplier:

a[),H/aE, = —( I/Y)(—ﬁ/y\
=Py
Point 3 in Figure 1.3 illustrates how the price in +1 is affected by the negative
supply shock in ¢. It is straightforward to derive the result that the effects of the
supply shock decay over time. Since B/y < 1, the absolute value of dp,/de, exceeds
p,.1/9€,. All the multipliers can be derived analogously; updating (1.42) by two pe-
riods yields:

S apalde = (NP
and after n periods,
apH—n/aEI = —( II‘Y)(—B/Y)H

The time path of all such multipliers is called the impulse response function.
This function has many important applications in time-series analysis since it
shows how the entire time path of a variable is affected by a stochastic shock. Here,
the impulse response function traces out the effects of a supply shock in the wheat
market. In other economic applications, you may be interested in the time path of a
money supply shock or a productivity shock on real GNP.

In actuality, the function can be derived without updating (1.42) since it is always
the case that:

apl*j/ael = 8[),/66, ¥l

To find the impulse response function, simply find the partial derivative of (1.42)
with respect to the various €, ;. These partial derivatives are nothing more than the
coelficients of the {¢,_;} sequence in (1.42).

Each of the three components in (1.42) has a direct economic interpretation. The
deterministic portion of the particular solution (¢ — b)/(y + B) is the long-run equi-
libdum price; if the stability condition is met, the {p,} sequence tends to converge
to this long-run value. The stochastic component of the particular solution captures

the short-run price adjustments due to the supply shocks. The ultimate decay of the

coefficients of the impulse response function guarantees that the effects of changes
in the various e, are of a short-run duration. The third component is the expression

a rr ———r————

n o
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(.-—B/y)'A = (—{5/7)’[p0 - (a — b)/(y+ B)]. The value of A is the initial period’s devia-
tion of ﬂle.p{xc.e' from its long-run equilibrium level. Given that Bry < 1, the impor-
tance of this initial deviation diminishes over time. ‘

6. SOLVING HOMOGENEOUS DIFFERENCE EQUATIONS

nghe.r—ordcr difference equaiions arise quite naturally in economic analysis
Equatxon (1.5)—the reduced-form GNP equation resulting from Samuels)cl)n's. '
(.1939) r'{lode]—is an example of a secund-order difference equation. Moreover, in
time-series econometrics, it is quite typical to estimate second- and highcr-orydcr

q . g minat g dcl the
1
nsi
equations IO be In our exami 10N ()l h()“l() €neous so u[l()llS, cons h

Y~ Ay _aYyl—Z‘_'O (1.45)

Given the findings in the first-order case, you should suspect that the homoge-

neous solution has the fo "= Aol i . N
yields rm y;' = Ac.’. Substitution of this trial solution into (1.45)

:A.a'v-—z_z,Aa"v—azAa*:O ‘ . T (146)

iClearly, any arbitrary value of A is satisfactory. If you diE\'ide (1.46) by A’ 2, the

problem is to find the values of o that satisfy

2
o —aqa-a,=0 (1.47)

Solving this quadratic equation—called the characteristic equation—yields two

values of a, called the characteristic roots. Using the quadratic formula, we find
that the two characteristic roots are ,

a, a, =(a, tyal +4a, )/2

=(a,£Vd)/2 o _ (1.48)

where d is the discriminant [(a,)? + 4a,).
Each of these two characteristic roots vi i i
' : yields a valid solution for (1.45). Again, -
these solutions are not unique. In fact, for any two arbitrary constantsgt, an)d Azg llhné

linear combination A,(a,) + A (o) i
2(0) also solves (1.45). As proof i
Ye=Aa) + Ax(0,) into (i.45) to obtain Proc Sl_mpl)’ subsitue

Aj(oy) + Ay = a[A(a)"" + Af0) '] + ayfA (o) + Ax(ay)?]

Now, regroup terms as follows:

Allay) - al(al)l‘il:— ax(o) ] + Azl(og) - 01(0"2)"_l = a)(0y) =0
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Since o, and @, each solve (1.45), both terms in brackets must equal zero. As
such, the complete homogeneous solution in the second-order case is

= A0 + Ay(ey)

Without knowing the specific values of a, and a,, we cannot find the two charac-
teristic roots &, and . Nevertheless, it is possible to characterize the nature of the
solution; there are three possible cases that are dependent on the value of the dis-
criminant 4.

CASE1

If a® + 4a, > 0, d is a real number and there will be two distinct real characteristic
roots. Hence, there are two separate solutions to the homogeneous equation denoted
by (o) and (a,). We already know that any linear combination of the two is also a
solution. Hence,

yr=Aa) + Ay ()

It should be clear that if the absolute value of either o, or o, exceeds unity, the
homogeneous solution will explode. Worksheet 1.1 examines two second-order
equations showing real and distinct characteristic roots. In the first example, y, =
0.2y,_, + 0.35y,_,, the characteristic roots are shown to be a; = 0.7 and o, = -0.5.
Hence, the full homogeneous solution is y” = A, (0.7) + A, (—0.5)". Since both roots
are less than unity in absolute value, the homogeneous solution is convergent. As
you can see in the graph on the bottom left-hand side of Worksheet 1.1, conver-
gence is not monotonic because of the influence of the expression (<0.5)".

WORKSHEET 1.1. Homogeneous Solutions: Second-Order Eduations

CASE *: v, =02y,_,)+ 0.35y,_4. Hence, ¢, =0.2, a, = 0.35.
Form the homogeneous equation: y, , — 0.2y, .1, — 0.35y,_5,=0.

A check of the discriminant reveals d = (a,)® + 4 * a,, so that d = 1.44.
Given that 4 > 0, the roots will be real and distinct.

Let the trial solution have the form y,, = o. Substitute into the homoge-
nous equation of = 0.2 - o' - 0.35 - " * = 0.

Divide by &'~ in order to obtain the characteristic equation:
ot - 0200~ 0.35=0 :

Compute the two characteristic roots:

T U

vl
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o, =05 (a, + Vd), o, =05 (a, - Vd)
=0.7 =-0.5
The homogeneous solution is A 07 +A,

-time path of this solution for the case in
equal unity and 1 runs from 1 to 20,

. (~.—O.5)’. The graph shows the
which the arbitrary constants

CASE2: ;, = 0.7y, + 0.35y,,_ - Hence, a, = 0.7, a, =053,

Form the homogeneous equation: y,,, ~ 0.7y, .,,~0.35y -0
S~ ‘ -2

A check of the discriminant reveals d = (@) +4-

Given that d > 0, the roots will be real a o thad = 189,

nd distinct.

Form the characteristic equation: of — 0.7 - ' ~035- 2=

Compute the two characteristic roots:

=05 (a,+Vd),  @,=05-(q —Vd)
=1.037 =-0.337

The homogeneous solution is A - 1037+ A
shows the time path of this solution for the ¢ 2
stants equal unity and ¢ runs from 1 to 20,

i - (-0.337)". The graph
ase in which the arbitrary con-

Case 2

10 20

In‘ the second example, y, = 0.7y,_, + 0.35y,

. obtain the solution for the two charac o

: oot is (1.037), the {

c{ay, =-0337) is re‘sponsible for the
(-0.337)" quickly approaches zero, the d

‘ - The worksheet indicates how to
teristic roots. Given that one : isti
. characteristic
¥} sequence explodes. The influence of the negative root
noqmonotonicity of the time path. Since
ominant root is the explosive value 1.037,
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1 " Divide by (a,/2)' and form
CASE 2 3
L ' . o) 2 _
! If & + 4a, = 0, it follows that d = 0 and &, = & = a,/2. Hence, a homogeneous so- ' Hadd) + i+ a2+ 2aq) =0
- a 2 = .
d homogeneous solution given . o i
' lution is a,/2. However, when d = gtt(he;;):si : asicc)(;:ogeneougs solution, substitute it Since we are operating in the circumstance where a? + 4a, = 0, each bracketed
by #(a,/2)'. To demonstrate that yi=ia ‘ expression is zero; hence, #(a,/2)' solves (1.45). Again, for arbitrary constants A,
4 l into (1.45) to determine whether | -and A,, the complete homogeneous solution is

- =27 — i
; a2y - a,l(t = D@2y = axl e = Da/2)™] 0 B yi' =A(a)2) + Ay i(a,/2)

Clearly, the system is expldsive if Ia, | >2.1f la, | <2, the term A(a,/2) con-

T ’ : N . verges, but you might think that the effect of the term #(a,/2)’ is ambiguous [since Ry
Figure 1.4 The homogeneous solution £+ (). the diminishing (a,/2)" is multiplied by ¢]. The ambiguity is correct in the limited N
o sense that the behavior of the homogeneous solution is not monotonic. As illus- ;
trated in Figure 1.4 for a,/2 = 0.95, 0.9, and —0.9, as long as |a, | < 2, lim[«(a,/2)']
is necessarily zero as ¢ — oo; hence, there is always convergence. For 0 < a, < 2, the
homogeneous solution appears to explode before ultimately converging to zero. For
-2 < a, <0, the behavior is wildly erratic; the homogeneous solution appears to os-
cillate explosively before the oscillations dampen and finally converge to zero.

-y

.-

8 T T T T

A URLN

e

.o

1(0.95% ,
0.9

P

CASE 3

(R

; If a? + 4a, < 0, it follows that d is negative so that the characteristic roots are imagi-
nary. Since a} 2 0, imaginary roots can occur only if a, < 0. Although hard to inter- o
pret directly, if we switch to polar coordinates, it is possible to transform the roots
into more easily understood trigonometric functions. The technical details are pre-
sented in Appendix 1 of this chapter. For now, write the two characteristic roots as

[

[OPR,

o, =(a, + N=d2, o, =(a, - iN-d)2

-

] wﬁere i~\f——T

As shown in Appendix 1, you can use de Moivre’s theorem to write the homoge-
neous solution as

LTy
s

.
B

<
&
o
b

i
s

= Pyr' cos(B1 + By) (1.49)
L r9) 0
i where §, and [3, are arbitrary constants, r = (—a,)'?, and the value of 8 is chosen so

as to simultaneously satisfy oL
-2 '

cos(8) = a/[2(-a) 7] o asy

20 50 80 100 . 1 The trigonometric functions impart a wavelike pattern to the time path of the ho-
0 20 ' mogeneous solution; note that the frequency of the oscillations is determined by 6.
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Since cos(81) = cos(2r + 6r), the stability condition is determined solely by the
magnitude of r = (~ay)"2 If faz | = 1, the oscillations are of unchanging amplitude;
the homogeneous solution is periodic. The oscillations will dampen if lgazl <1 and
explode if lazl > 1.

EXAMPLE: It is worthwhile to work through an exercise using an equation with
imaginary roots. The left-hand side of Worksheet 1.2 examines the behavior of the
equation y, = 1.6y,_, - 0.9y,_,. A quick check shows that the discriminant d is nega-
tive so that the characteristic roots are imaginary. If we transform to polar coordi-
nates, the value of r is given by (0.9)'% = 0.949. From (1.50), cos(8) = 1.6/(2 x
0.949) = 0.843. You can use a trig table or calculator to show that 6 = 0.567 {i.e.,if
cos(0) = 0.843, 8 = 0.567). Thus, the homogeneous solution is

¥ = B,(0.949) cos(0.567t + B,) (1.51)

The graph on the left-hand side of Worksheet 1.2 sets B, = 1 and B, = 0 and plots
the homogeneous solution for ¢ = 1, ..., 25. Case 2 uses the same value of a, (hence,

r=0.949) but sets a, = -0.6. Again, the value of d is negative; however, for this set

of calculations, cos(8) = —0.316 so that 8 is 1.25. Comparing the two graphs, you
can see that increasing the value of 6 acts to increase the frequency of the oscilla-
tions.

WORKSHEET 1.2 IMAGINARY ROOTS

CASE 1 CASE 2

Y l-éyl—l + O'ny—ﬂ Y+ 0'6YI—| + 0-9_)’,_2
(a) Check the discriminant d = a? + 4a,

i s d = (=1.6)F ~ 4(0.9) d = (0.6)* - 4(0.9)
::—1,04 :—3.24 -

Hence, the roots are imaginary. The homogeneous solution has the form
yr=PByr cos(Br + )
where 3, and §, are arbitrary constants.
(b) Obtain the value of r = (~ a,)'?

r=097
=0.949

r=(0.9)"2
=0.949

Wiy ey

R "

or
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(c) Obtain 6 from cos(6) = a/12(-a,)'?

cos(8) = 1.6/[2(0.9)'7)

=0.843 cos(6) = —0.6/[2(0.9)"?}

=-0.316
Given cos(9), use a trig table to find 6
C-0.567 =125
(d) Form the homogeneous solution: y; = 8~ cos(6r + B,
h _ 1
¥ =Bi(0.949) cos(0.567t 4 B;)  yh = B1(0.949) cos(1.25: + B,
ForB, =1and B, =

2 — ]

0, the time paths of the homogeneous solution are

T 2

1 25

~ Stability Conditions

'll'he general sfability conditions can be summarized using triangle ABC in Figure

mgt ‘.;\icazz(-)ﬁxs ti]e boundar).v between Cases 1 and 3; it is the locus of points’ such

=ai +4a, = 0. The region above A0B corresponds to Case 1 (since d > 0) and

LheI reéxon blelow AOB corresponds to Case 3 (since d < Q).
n Case 1 (in which the roots are real and disti ili i

; largest ro'ot.bc less than unity and the smallest root Il])(;t)g’r:;:x]'htg;r:eflu ”’I?;eﬁllat o

: characteristic root, oy = (g, + \/E)/2, will be less than unity if . et

‘ a;+ (@i +4a,)"2 <2 o (af-l~4az)”z<2--al

Hence, a} +4a, <4 - 44, +a?

a +a,< 1 (1.52)




SRS

-
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The smallest root, &, = (a, ~ \f?i_)IZ. will be greater than ~1 if

2 1
12 . > {a;+4a

o - (@ 440> or  2+a>(@i+da)
Hence, 4 + 4a, + a; > a; +4a,

or R , ;

(153
a, <l +a

Thus, the region of stability in Case 1 consists of all points in the regizn b(;)unded
b AOBt For any point in AOBC, conditions (1.52) and.('1.53) hol.d.and. l> . s
yln Cas.e 2 (repeated ToOts), a,> + 4a, = 0. The stability condition is |a, .

Hence, the region of stability in Case 2 consists of all points on arc AOB. In Case 3
(d < 0), the stability condition is r = (—a,)'"* < 1. Hence,

—a,<1 {where a, < 0) ' B (1.54)

. N . For
Thus, the region of stability in Case 3 consists of all points in region AO0B. F
inti is sati dd<0.
an int in AOB, (1.54) is satisfied an < N ' .
)/]\psouccint way to characterize the stability conditions 18 to §tate that th? cl};?xrire
teristic roots must lie within the unit circle. Consider the semicircle drawn in Fig

i i i i s on
1.6. Real numbers are measured on the horizontal axis and imaginary numbe -

Figure 1.5 Characterizing the stability conditions.
az

P S gy =1-a ay=1+ay

@

s+]

N

o
n

ay=-2
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Figure 1.6 Characteristic roots and the unit circle.

Imaginary
d‘l/2/2 ............... aq
0 - 01/2 . ﬁ“l
r

o2

the vertical axis. If the characteristic roots ¢, and ., are both real, they can be plbt- :

ted on the horizontal axis. Stability requires that they lie within a circle of radius 1.

Complex roots will lie somewhere in the complex plane. If o, > 0, the roots o, =

(a, + i\/g)/Z and o, = (a, - iﬁ)/2 can be represented by the two points shown in

?gure 1.6. For example, ., is drawn by moving a,/2 units along the real axis and
d

/2 units along the imaginary axis. Using the distance formula, we can give the :
length of the radius r by

and using the fact that 2 = -1, we obtain
‘ r=(-a,)"?
. The stability condition requires that » < 1. Hence, when plotted on the cohplex

plane, the two roots @, and o, must lie within a circle of radius equal to unity, In"~

the time-series literature, it is simply stated that stability requires that all charac-
teristic roots lie within the unit circle. :

; . Higher-Order Systems

The same method can be used to find the homogcncous solution to highér-brdér

- difference equations. The homogeneous equation for (1.10) is




i
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n

yl — Z (Ilyf_'_ = 0 T (155)

i=1

Given the results in Section 4, you should suspect each homogeneous solution to
have the form y! = Ac', where A is an arbitrary constant. Thus, to find the value(s)
of o, we seek the solution for

Ad' - Za,.Aa"' =0 (1.56)
i=1 T

or, dividing through by o™, we seek the values of ¢ that solve
o - alan—l - 1120."“2 =, =0 (1.57)

This nth-order polynomial will yield n solutions for ¢t Denote these n character-
istic roots by o, @, ..., 0,.. Given the results.in Section 4, the linear combination
Ay + A0+ -+ + A0 is also a solution. The arbitrary constants A, through A,
can be eliminated by imposing n initial conditions on the general solution, The ¢,
may be real or complex numbers. Stability requires that all real-valued ¢, be less

than unity in absolute value. Complex roots will necessarily come in pairs. Stability-

requires that all roots lie within the unit circle shown in Figure 1.6. ‘

In most circumstances, there is little need to directly calculate the characteristic
roots of higher-order systems. Many of the technical details are included in
Appendix 2 to this chapter. However, there are some useful rules to check the sta-
bility conditions in higher-order systems.

1. In an nth-order equation, a necessary condition for all characteristic roots to lie
inside the unit circle is

2":(1,.<]

i=!

2. Since the values of the a; can be positive or negative, a sufficient condition for
all characteristic roots to lie inside the unit circle is

Slal<1
i=|

3. "Kt Yeast one chara ﬁét}c root equals unity if
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n

Zai=l

i=|

Any sequence that contains o
called a unit root process.

4. For a third-order equation, the stability conditions can ve written as
l-a -a,-a,>0
l+a,—a,+a,50
l-aa,+a,~a>0
3+a,+a;~-3a,>0 or 3-a,+a,+3a,>0
Given that the first three ine

valities are sati i
checked. One of the last condi ; sausfied, cther of the last two can be

tions is redundant given that the other three hold.

7. FINDING PARTICULAR SOLUTION
S
'DETERMINISTIC PROCESSES FoR

Finding the particular solution to a d
Ity and perseverance. The
thf: {x.} process. we begin

! ’ , in econometric analysis
contain both deterministic and stochastic components,

CASE 1

X, = 0. When all element .
comes ents of the {x,} process are zero, the difference equation be-

Yi=a,+ ayy. .y + AYpq+ o+ ay,,

(1.58)
sollv“é‘&tfé’qiﬁﬁif.téiﬁiéi‘ﬁe”&ihﬁiﬁfﬁ?iffiﬁ I L
C=aotaictac+ - +arc
$0 that
Czéo/(l"ax‘az"“‘an) (159

ne or more characteristic roots that equal unity is
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As long as (1 —a, = ax = = = dy) does not equal zero, the value of ¢ given by
(1.59) is a solution to (1.58). Hence, the particular solution to (1.58) is given by
yr=af(l—a, —ay=— = a,)-

Ifi-a,—a,-——a,=0,the value of ¢ in (1.59) is undefined; it is necessary to
try some other form for the solution. The key insight is that {y,} is a unit root
process if Za; = 1. Since {y,} is not convergent, it stands to reason that the constant
solution does not work. Instead, recall equations (1.12) and (1.26); these solutions
suggest that a linear time trend can appear in the solution of a unit root process. As
such, try the solution yf = cf. For ct to be a solution, it must be the case that

ot =ag+aclt =1) +axli - 2) + - ac(t—n
or combining like terms, we obtain
(1-a,—a;——a)cr= ao; cla, +2a,+3ay+ - +nay,)
Since | —a, —a;— - —a,=0, select the value of ¢ such that
c=ay(a, +2a, +3as ot na,)
For example, let
y,=2+0.75y,. +0.25y,

Here, a, = 0.75 and a; = 0.25; {y,} is a_unit root process since a; + a; = 1. The

particular solution has the form ct, where ¢ = 2/{0.75 + 2(0.25)] = 1.6. In the event

that the solution ¢t fails, sequentially try the solutions y? = ct, ct, -, cf". For an
nth-order equation, one of these solutions will always be the particular solution.

CASE 2

The Exponential Case. Let x, have the exponential form b(d)”, where b, d,and r
are constants. Since r has the natural interpretation as a growth rate, we would ex-
pect to encounter this type of forcing process case in a growth context. We illus-
trate the solution procedure using the first-order equation:

Y, = g+ @Y + bd” (1.60)

To try to gain an intuitive feel for the form of the solution, notice that if =0,
(1.60) is a special case of (1 58). Hence, you should expect a constant to appear in
the particular solution. Moreover. the expression d” grows at the constant rate r.
Thus, you might expect the particular solution to have the form y” = co + €,d",
where ¢y and ¢, are constants. If this equation is actually a solution, you should be
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ablc to SUbS[llu(c “ baCk ln[O (1.60) Zlnd ( 1 H Cll[l[y laklllg (he a )l)l()[)lld‘c
h )btﬂln an d . 1 1
SUbSll(ullonS, we get N

Cotcd =ag+a,lcy+c,d V] + bd” (1.61)
For this solution to “work,” it is necessary to select ¢ and ¢, such that

co=a/' —a) and ¢, =bdl(d -a,)

: . Thus, a particular solution is
¥ =[a/(l - a)] + [bd"Ad"—a))}d”

pr;I;@ nat;]ure of the sc:;]ution is that y? equals Ithe: constant ay/(1 — a;) plus an ex-

ion that grows at the rate r. Note that for {d"| < i i

s o/, | 1, the particular solution con-
lIf f:xthcr a =1 or a, = d’, use the “trick” suggested in Case 1. If a; = 1, try the

solution ¢4 = ct, and' if a, = d", try the solution ¢; = 1(bd")/(d" - a;). Use precisely the

same methodology in higher-order systems.

CASE 3

D;ate‘rmm‘lstic tim;: trend. Ir.1 this case, let the {x,} sequence be represented by the
relationship x, = br® where b is a constant and d a positive integer. Hence

; i _ ¥, =a0+2aiy,_i+btd _ (1.62)

i=]

Smie y, depends on ¢7, it follows that y,_, depends on (t — 1)%, y,_, depends on
(t = 2)% etc. As such, the particular solution has the form y? = ¢, -;- cl—tz+ P4+
c#”. To find the values of the ¢, substitute the particular sc;lutioon intlo (1 622) The
, selec‘t the 'value of each ¢, that result in an identity. Although various valu;:s o}d ar:
pOSS}ble, in economic applications it is common to see models incorporating a lin-
ear time trend (d = 1). For illustrative purposes, consider the second-order equation
fj,;e:;: a:jy,_, +ﬂ€17).’,_2 + bt. Posit the solution y? = ¢, + ¢, 1, where ¢q and ¢, are un-

ined coefficients. ituti is * ion” i
ordor ditfonenee eqsntion ;\;})dssututmg this “challenge solution” into the second-

Cotcyt=ag+a,fco+c,(t— D]+ aylco+c,(t—~2)] + bt (1.63)

aul\:)zw .sbel]ect \lzaluesfof ;; and ¢, so as to force Equatidn (1.63) to be an identity for
ssible values of 1. If we combine all constant term i i
the required values of ¢, and ¢, are * and ol terms fnvolvin
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¢, =bl{l —a,—ay)
o =1[ag - (2a, + a))c, /(1 "‘Bl“az)

5o that
co=layf(l —a, - a)} - (b1 - a, - a,)}][2a, + a,]
Thus, the particular solution will als. _untain a linear time trend. You should
have no difficulty foreseeing the solution technique if a; + a, = 1. In this circum-

stance—which is applicable to higher-order cases also—try multiplying the original
challenge solution by ¢,

8. THE METHOD OF UNDETERMINED COEFFICIENTS

At this point, it is appropriate to introduce the first of two useful methods of finding
particular solutions when there are stochastic componentsin the {y,} process. The

key insight of the method of undetermined coefficients is that the particular solu-.

tion to a linear difference equation is necessarily linear. Moreover, the solution can
depend only on time, a constant, and the elements of the forcing process {x,). Thus,
it is often possible to know the exact form of the solution even though the coeffi-
cients of the solution are unknown. The technique involves positing a solution—
called a challenge solution—that is a linear function of all terms thought to appear
in actual solution. The problem becomes one of finding the set of values for these
undetermined coefficients that solve the difference equation.

The actual technique for finding the coefficients is straightforward. Substitute the
challenge solution into the orginal difference equation and solve for the values of
the undetermined coefficients that yield an identity for all possible values of the in-
cluded variables. If it is not possible to obtain an identity, the form of the challenge
solution is incorrect. Try a new trial solution and repeat the process. In fact, we
used the method of undetermined coefficients when positing the challenge solu-
tions yf = co + ¢,d” and yP = ¢y + ¢,¢ for Cases 2 and 3 in Section 7.

To begin, reconsider the simple first-order equation Y =ag + ay,_, + €, Since

you have solved this equation using the iterative method, the equation is useful for

illustrating the method of undetermined coefficients. The nature of the {y,} process
is such that the particular solution can depend only on a constant term, time, and
the individual elements of the {e,} sequence. Since ¢ does not explicitly appear in
the forcing process, £ can be in the particular solution only if the characteristic root
is unity. Since the goal is to illustrate the method, posit the challenge solution:

¥ = b0+blt+2(xie,_, (1.64)
i=0 .

where by, by, and all the @, are the coefficients to be determined.

vy
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Substitute (1.64) into the original difference equation to form

by + byt + oye, + Q€ + €,y +
=aorabo+b(1- 1)+ Oobry + €, + ] +¢,

Collecting like terms, we obtain

(by - a,— aby+ab)) +b,(1 - a)t + (ot De, + (¢, - a\Qy)e,_,

(0 —a,a))e,, + (0, - Qe 3+ =0 (165

Equation (1.65) must hold for all values

of t and all possible valu f th
sequence. Thus, each of the following condit e €s of the {e,}

ions must hold:

A-1=0
o —a0;=0

o —~a0 =0

bo—ay—ayby+ayb, =0
by~ab, =0
2%
Notice that the first set of conditions can be solved for the'a,
lution of the first condition entails setting o,
next equation requires a, = a,.

recursively. The so-
‘ = 1. Given this solution for Oy, the
t eg  rec . Moving down the list, we obtain o, = a,¢; or
o, = aj. Contmumg the recursive process, we find @, = af, Now consider the last
two equations. There are two possible cases depending on the value of a,. Ifag, # 1,

it immediately follows that 5, = Oand by = a /(] — F . )
solution is , i o = ay/(1 — a,). For this case, the particular

L ve=lag/i=a)+ Y afe,

i=0

] Compzjlre this .resu]'l to (1.21); you will see that it is precisely the same solution
ounc'i using the iterative method. The general solution is the sum of this particular
solution plus the homogeneous solution Ad|. Hence, the general solution is

i =lag/(l~a))+ Y ale,_, + Aa]
i=0

Now, if there is an initial condition for y,, it follows that

Yo =lap/(1-a)]+ Y ale_+ A
i=0
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Combining these two equauons 50 as to climinate the arbnraxy constant A we
obtain . o

Y, :[ad/gtia‘)]+2afe,‘,+af yQ‘—[aO/(l—al)]—Zafe_i
. i=0 i=0
so that
11 ) - <
v =lag/i—apl+ 3 ale,; ral{vo—[ap/(1=a))} L(1.66)

i=0

It is easily verified that (1.66) is identical to (1.25). Instead, if a, = 1, by ean be
any arbitrary constant and b, = a,. The improper form of the solution is

y, =by+ayt %Ze,_i
’ i=0

The form of the solution is “improper” since the sum of the {€,} sequence may

not be finite. Hence, it is necessary to impose an initial condition. If the value yyis -

given, it follows that

b e o REhrE
i=0

. kmposing the initial condition on the improper form of the solution yields (1.26)

!
Y =Y +a0’+2€i
i=1

To take a second example, consider the equation
Yi=ap+ay e+ B, (1.67)

Again, the solution can depend ohly on a constant, the elements of the {e,} se-
quence, and f raised to the first power. As in the previous example, t does not need
to be included in the challenge solution if the characteristic root differs from unity.

To reinforce this point, use the challenge solution given by (1.64). Substltute this -

tentative solution into (1.67) to obtain
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l:rt,-+!7,t+2401¢,_qg ﬁay+a, b0+b,(1-1)+201 i€ri-i |7 & FPie

i=0 i=0

Matching coefficients on all terms containing €, €,_,, €,_,, - yields

Op=1

o, =a,0q + B [so thatoy =a, + )]

0 =a,0, {so that o, = a(a; + B))
0y =a,0, . (so that o, = (a,)(a; + B,)]
Q;=aa;, | [SO that cxi'_‘(al)i_l(al +B')]

Matching coefficients of 1mercep[ terms and coefficients of terms comammg 1,
we get

by =ay+ a,by - a,b,
by=apb,

Again, there a.re  two cases, Ifa, # 1, then b, = =0and by = ay(1 - a;). The
pameular solution is

¥, =lag/(1-a))+€, +(q +B,)Za;-

i=l

The general solution augments the particular solution with the term Aa', You are
left with the exercise of imposing the initial condition for Yo on the general solution.
Now consider the case in which a, = 1. The undetermined coefficients are such that
b, = ag and by is an arbitrary constant. The improper form of the solution is

Vi=by+agt+e, +(1+B)Y €,

i=l

If yo is given, it follows that

Yo=botegr(1+B)Y €
i=|

Hence, imposing the initial condition, we obtain
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=1

CYmyptagt+e, +(14+B, ) e

izl

Higher-Order Systems

The identical procedure is used for higher-order systemns, A% an example, It us find
the particular solution to the second-nrder equation: :

NF Aot @y tan, ;te, +.68)
Since we have a second-order equation, we use the challenge solution:
Y= b+ byt + bor + Qe + €, + OLpE,_y

where by, by, b,, and the @ are the undetermined coefficients.
Substituting the challenge solution into (1.68) yields

' 2
(bo + byt + by + o€, + 06,y + O,y + - = ag+ alby+ bt~ 1) + bzz(t -1
OO, + Oy € Ly + OE, 3 + ]+ ay[by + by (= 2) + by(t - 2)
[ + Og€,p + O €,y + 0€, 4+ ] + €,

The necessary and sufficient conditions for the values of the o,’s to render the
equation above an identity for all possible realizations of the {¢,} sequence are

=1
O = a,04 [sothat a, = a]
W =a,0, + a0, [sothat o, = (a,)* + a,)

Oy = a0, + a,0, [so that &y = (a,)* + 2a,a,)

Notice that for any value of j 2 2, the coefficients solve the second-order thffelii :
ence rquation 0 = a,0y_, + a,0,,. Since we know @ ar}g (;,, we c.anlvso:;zseo;ias
i i erties of the coefficients will be precisely -

the o, iteratively. The prop

cussed when considering homogeneous solutions, namely the following:

i - i at con-
1. Converger.ce necessitates |a2| <l,a,+a,< 1, and a, ~a, < 1. Notice th

vergence implies that past values of the {¢,} sequence ultimately have a succes-

sively smaller influence on the current value of y,.

2. If the coefficients converge, convergence will be di.rect if (a? 1: 4ay) > 0, will
follow a sine/cosine pattern if (a} + 4a,) < 0. and will “explode” and then con-

verge if (a + 4a,) = 0. Appropriately setting the o, we are left with the remain-

ing expression:

“work,” it must satisfy
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by(l =a,—a) + [b,(1 =4, a;) +2b,(a, + 2a,))t
+[bo(l —a,-ay) - o+ a, (b, - b)) + 2a,(b, - 2b,)] = 0 (1.69)

Equation (1.69) must equal zero for all values of . First, consider the case in
which a, + a, # 1. Since (I - a, - a,) does not vanish, it is necessary to set the
value of b, equal to zero. Given that b, = 0 and the coefficient of + must equal
zero, it follows that b, must also be set equal to zero. Finally, given that
by =b, =0, we must set by = a/(1 - 4, = ay). instead, if a, + a, = 1, the solu-
tions for the b, depend on the specific values of Q, ay, and a,. The key point is
that the stability condition Jor the homogeneous equation is precisely the condi-

in the particular solution. The order of the polynomial is the number of unitary
characteristic roots. This result generalizes to higher-order equations.

ic portion of the particular
solution. In (1.67), for example, set €, = ¢,_, = 0 and obtain the solution a/(1-a,).

Now use the method of undetermined coefficients to find the particular solutjon of

Y=ay,, +e + Be_,. Add together the deterministic and stochastic components
to obtain all components of the particular solution,

A Solved Problem

To illustrate the methodology using a second-order equation, augment (1.28) with
the stochastic term €, SO that

Y=3+09y,, - 02y, ,+¢ (1.70)

You have already verified that the two homogeneous solutions are A,(0.5) and
A,(0.4)" and the deterministic portion of the particular solution is ¥? = 10. To find
the stochastic portion of the particular solution, form the challenge solution:

0ok, + e,y + e, + Ca€y + - = 0.9(0g¢,, + Xy€g + 06, 5+ e, + s Yoo
= 0.2[oge, , + €3+ 0€ 4 + Oy€, g + - ] +e€ (171
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Since (1.71) must hold for all possibie reahizations of €, €,_,, €,_y, -+, each of the
following conditions must hold:

o= |
o, =0.9u,
so that o, = 0.9, and forall i 2 2,
o, =0.9a,_, -0.2¢,, (1.72)

Now, it is possible to solve (1.72) iteratively so that a, ='0.901l - 0.2% = 0.’61,
oy = 0.9(0.61) - 0.2(0.9) = 0.369, etc. A more elegant solution mcth(?d; is to view
(1.72) as a second-order difference equation in the o, with initial conditions o = 1
and @, = 0.9. The solution to (1.72) is

o, = 5(0.5) - 4(0.4) (1.73)

To obtain (1.73), note that the solution to (1.72) is o; = A3(0.5) + A40.4Y, where

A, and A, are arbitrary constants. Imposing the conditionsooro =1 ax;d al.= O.?
yields (1.73). If we use (1.73), it follows that oy = 5(0.5)° -4(04)Y° =1, 0, =
5(0.5)' — 4(0.4)' =0.9; &, = 5(0.5)* - 4(0.4)* = 0.61, etc. ' ;

The general solution to (1.70) is the sum of the .two homogcncous solutions an
the deterministic and stochastic portions of the particular solution:

¥, =10+ A,(0.5) + A,(0.4) +Za‘.e,_i (1.74)
i=0 :

where the @ are given by (1.73). )
Given initial conditions for y, and y,, it follows that A, and A, must satisfy

Vo =10+ A, + A4, +2aie_i , (1.75)
i=0 . e
Y :10+A1(0-5)+A:(0-4)+2‘1i51—i (1.76)
i=0

Although the algebra becomes messy, (1.75) and (1.76) can be substituted into
(1.74) to eliminate the arbitrary constants:
-2

L =10+ (0.4) [5(yo —10)=10(y, = 10)]+ (0.5) [10(, —10)—4(y0—~10)]+2ai61_‘.

i=0
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9. LAG OPERATORS

If it is not important to know the actual values of the coefficients appearing in the
particular solution, it is often more convenient to use lag operators than the method

of undetermined coefficients. The lag operator L is defined to be a linear operator
such that for any value y,

Ly =y (.77

Thus, L' preceding y, simply means to lag v, by i periods. It is useful to remember
the following properties of lag operators:

1. The lag of a constant is a constant: Lc = ¢,

2. The distributive law holds for lag operators. We can set (L' + Dy, =Ly, + Uy, =
Y~ + yl—j‘ :

3. The associative law of multiplication holds for lag operators. We can set L'l/y, =
L'(Uy) = LY, = y,.;. Similarly, we can set L'Lly, = L** : = Y1 Note that
L, =y,

4. L raised to a negative power is actually a lead operator: L™y, =y, To explain,
define j =i and form Ly, =y, ; =y, :

5. For |a| < 1, the infinite sum (1 4 aL + *L% + L3 + )y, = y,/(1 - al). This

property of lag operators may not seem intuitive, but it follows directly from
properties 2 and 3 above.
Proof: Multiply each side by (1 ~ al) to form (I —al)l + aL + a°L* +
@’L’ + )y, =y, Multiply the two expressions to obtain (1 - aL + al — a®L% +
&L~ a®L® + )y, = y,. Given that |a| <1, the expression a"L"y, converges to
zero as n approaches infinity. Thus, the two sides of the equation are equal.

6. For |a| > I, the infinite sum [1 + (aL)™ + (aL)? + (aL)™> + -]y, = ~aly,)
(1-al).

Hence, y,/(1-aL)=—(aL)" Y (aL)™'y,
i=0 ' .
Proof: Multiply by (1 — aL) to form (1 = aL)[1 + (aL)™ + (aL)™® + (aL)™ + ]
" ¥, =-aly, Perform the indicated multiplication to obtain: {1 — aL + (aLy' -1+
(al)? = (al)™ + (aL)™ - (aL)™® -]y, = —aLy, Given that |a| > 1, the expres-

sion a™"L™"y, converges to zero as n approaches infinity. Thus, the two sides of
the equation are equal. ’

Lag operators.provide a concise notation for writing difference equations. Using

lag operators, we can write the pth-order equation y, = ag + a,y,_; + - +ay, ,+E
as

(- a)L - asz - apL”)y, =ag+ €,




-
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or more compactly as
ALYy, =ay+¢€,

i i - 2 —qalP). Gy :
where A(L) is the polynomial (1 - a,L —a,L . a, : ) .
Since A(L) can be viewed as a polynomial in the lag operatee, the notation A(lyis
used to denote the sum of the coefficients:
Ah=l-a —-a,—a,.
As a second example, lag operators can be used to express the equation y; = gg.+
Ay ot ay, , te + Bler—l +oet qul—q as

A(L)y, = aq + B(L)e,

i ders p and ¢, respectively. o
where A(L) and B(L) are polynomials of or . ‘ . ‘
It is straightforward to use lag operators to solve linear dxfferenlce ‘cquauons.
Again, consider the first-order equation y, = ag + @;¥,_; + €, where {a,| < 1. U;e

the definition of L to form

yr=ag+aly +e (1.78) |
Solving for y,, we obtain
ye=(ag+€)/(l —ayl) (179)

’ 2

From property |, we know that Lag = aq, so that a/(1 —a,L) = ag + a,a0 + ;zlao +
- = ay/(1 — a,). From property 5, we know that /(1 — a,.L) =g, + @y + i€ +
... Combining these two parts of the solution, we obtain the particular solution
given by (1.21). :

For practice, we can use lag operators to solve (1.67): y, =ag + a,y,_,‘+ €, +.B,e,f_,,
where [n, | <1.Use property 2 to form (I —a,L)y, = ay+ (1 + B,L)e,. Solving for
y, yields

v =lag+ (1 + B L)Vl ~a,L)
so that
v, = {a/(1 —apl+ [e/(1 = a, L)) + [Bre,.,/(1 = a,L)] (1.80)

Expanding the last two terms of (1.80) gives the same solution found using the
ethod of undetermined coefficients. o
K Now suppose y, = @o + a,¥,_; + €, but that la, | >1.The application of propen’)]/95
to (1.79) is inappropriate since it implies that y, is infinite. Instead, expand (1.79)

using property 6:
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y’:z[aol(l_.a')]_(alL)‘IE(a'L‘):‘ie' Lo ()

=0

=lag/(1=a))=(Va) Y (aL) e

i=0

41

:[ao/(l—aI)]-—(l/al)zal—iemﬁ Cam
=0

Lag Operators in Higher-Order Systems

We can also use lag operators to transform the nth-order equation y, =a4 + h,y;_, +
@Gy,p+ - +a,y,., +¢€ into

(I -aL-a,?—.. ~a,L"y,=a,+e,

or

Yi=(ag+ el ~al—a*—..ql"

From our previous analysis (also see Appendix 2 in this chapter), we know that
the stability condition is such that the characteristic roots of the equation a" —
a, 0™ — .~ g, =0 all lie within the unit circle. Notice that the values of ¢ solving
the characteristic equation are the reciprocals of the values of L that solve the equa-
tion 1 —a,L - —a,L"=0. In fact, the expression 1 —a,L - — g, L" is then called the
inverse characteristic equation, Thus, in the literature, it is often stated that the sta-
bility condition is for the characteristic roots of (I —a,L - = a,L™ to lie outside of
the unit circle.

In principle, one could use lag operators to actually obtain the coefficients of the
particular solution. To illustrate using the second-order case, consider y, = (a, + €,)/
(1-a L - a,L%. If we knew the factors of the quadratic equation were such that (1
=a\L—a,L?) = (1 - b,L)(1 - b,L)), we could write

Yo=(ao+€)/[(1 = b, L)1 - b,L)]
If both b, and b, are less than unity in absolute value, we can apply property 5 to

obtain

ag/(1-b, )]+zb;’5,_i

y’ = i=0
I=b,L
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e to a(! = by) and to each of thie clements in the summz?lion
ar solution. If you want to know the actual coefficients
1se the methed of undetermined coefficients. The
v can be used to denote such particular solutions

Reapply the rul

beauty of lag operators is that the
succinctly. The general model

ALYy, = ay+ B(L)e,

has the particular solutior:

v - aA(L) + B(L)eJA(L)

10. FORWARD - VERSUS BACKWARD-LOOKING
SOLUTIONS

As suggested by (1.82), there is a forward-lonking solution to any hnealr ?.1fier;rrx]zz
equation. The text will not make much use of the fqrward-lookmg solutio

future realizations of stochastic variables are not. directly observz.lble. ﬁowc‘iver,
knowing how to obtain forward-looking solulion.s is gseful for' solving ralxc.)ga cz;(
pectations models. Let us return to the simple .ueranve technique to COHS]l ‘er fe
forward-looking solution to the first-order equation y, = g + @1y, + € Solving for
v,y We obtain

vy = =(ag + e+ v la, P ; (1.83)
Updating one period yields
v, = =(ag + e)a + voolay (1.84)
Since v, =2 — Ao~ €,.»)/a,. begin iterating forward:
2
y, == (ay,+ €, )May + (¥ —an— €,,.)/(a))

= —(ay,+ €.y~ (ant 5;42)/(“1)2 + ,Vl+2/(al)z \
= —(ay+ €, a, = (ag+ e, M@y + Ona— a0~ eallay)

Therefore. after n iterations,

- Se L+ lal
yo==ay ) 4y =2 A & T Nl

i=l i=t

o W we-maiatain that la,l <1, A
- comes-infiniely large. However. it 1o,

(1.89)

this forward-locking solution will diverge as n be- -
| > 1, the expression ay" goes 1o zero while
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—ag(ay' +aj® + ai® + ) converges to ay/(1 — a,). Hence, we can write the forward-
looking particular solution for y, as

on

¥, =(10/(]_(11)—Za;i61+i (1.86)

i=1

Note that (1.86) is similar i Torm to (1.82); the difference is that the future val-
ues of the disturbances affect the present. Clearly, if la, | > 1. the summation is
convergent so that (1.86) is a legitimate particular solution to the difference equa-
tion. Given an initial condition, a stochastic difference equation will have a for-
ward- and backward-looking solution. For example, using lag operators, we can
write the particular solution to y, = a, + a,y,_, + €, as (a, + €,)/(1 — a,L). Now multi-
ply the numerator and denominator by —a;' L™ to form ‘

ye=a/(l —a) —a;'L7'e /(1 —a7'L7h)

—-i e
=a0/(l_al)m2al €4 G i (1.87y
i=|

More generally, we can always obtain-a forward-looking solution for -any nth-order
equation. (For practice in using the alternative methods of solving difference equa-

tions, try to obtain this forward-looking solution using the method of undetermined
coefficients.)

|
Properties of the Alternative Solutions

The backward- and forward-looking solutions are two mathematically valid solu-
tions to any n.th order difference equation. In fact, since the equation itself is linear,
it is straightforward to show that any linear combination of the forward- and back-
ward-looking solutions is also a solution. For economic analysis, however, the dis-
tinction is important since the time paths implied by these alternative solutions are

quite different. First consider the backward-looking solution. If la, | <1, the ex- -

pression af converges toward zero as i — co. Also, notice that the effect of €,_; on ¥,
is aly if IaI | < 1, the effects of the past €, also diminish over time. Suppose instead
that {a, | > 1; in this instance, the backward-looking solution for y, explodes.

The situation is reversed using the forward solution. Here, if |a, (>< 1, the ex-
pression a;’ gets infinitely large as i approaches oo, Instead, if |a,| > 1, the for-
ward-looking solution leads to a finite sequence for {y,}. The reason is that a;’ con-
verges to zero as i increases. Note that the effect of €,,; on y, is a7’; if ]aI I > ], the
effects of the future values of €,,; have a diminishing influence on the current value
of y,. ' ’

From a purely mathematical point of view, there is no “most appropriate™ solu-
tion. However, economic theory may suggest that a-sequence be bounded in the
sense that the limiting value for any value in the sequence is finite. Real interest

)
i
B
'
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rates, real per capita income, and many other economic variables can hardly be ex-
pected to approach either plus or minus infinity. Iinposing boundary restrictions en-
tails using the backward-looking solution if lu, | <1 and the forward-looking solu-
tion if Ial | > 1. Similar remarks hold for higher-order equations.

Cagan’s Money Demand Function

Cagan’s model of hyperinflation provides an excellent example of choosing the ap-
propriateness of forward- versus backward-looking solutions. Let the demand for
money take the form

nll_pt:a——B(I)l:»lmpl) B>O (1.88)
where m, = logarithm of the nominal moncy supply in?
p, = thelogarithm of price level in ¢
pry = the logarithm of the price level expected in period 1 + 1

The key point of the model is that the demand for real money balances (m, — p,) -

is negatively related to the expected rate of inflation (p,, — p,). Because Cagan was
interested in the relationship between inflation and money demand, all other van-
ables were subsumed into the constant a. Since our task is to work with forward-
looking solutions, let the money supply function simply be the process

m=m+e,

where m = the average value of the money supply
e, = adisturbance term with a mean value of zero

t

As opposed to the cobweb model, let individuals have forward-looking perfect
foresight so the expected price for £ + | equals the price that actually prevails:

p:il =P
Under perfect foresight, agents in period ¢ are assumed to know the price level in
t + 1. In the context of the example, agents are able to solve difference equations

and can simply “figure out” the time path of prices. Thus, we can write the money
market equilibrium condition as

"l+€r—p/:a_B[pul “P;]
or
P = (1 + 1B, =~m~o)B ~€/B (1.89)

For practice, we use the method of undetermined coefficients to obtain the par-
ticular solution. (You should check your abilities by repeating the exercise using
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lag operzftors.) We use the forward-looking solution since the coefficient on
(1 + 1/B) is greater than unity in absolute value. Try the challenge solution:

P
b= bO +Zai€r+i
i=0

Substituting this challenge solution intw the aoove, we obtain
by +Zai€1+l+i _((1+B)/B)Lbo +zai61+iJ: (a-—m-¢,)/B (1.90)
i=0 i=0

For (1.90) to be an identity for all possible realizations of {e,}, it must be the

case that '
by~ byl +B)/B:(a‘m)/B = b, =m-aq
—0o(1+ BB =-1/8 = oy = /(1 +p)
o= o, (1+ BB =0 = o, = B/(1 + By
o — 0, (1 +BYB=0 = o, = BY(1 +B)M

In compact form, the particular solution can be written as

P = m_a+(1/B>Z[B/“+B)1W61+1 ’ (191

i=0

The next step is to find the homogeneous solution. Form the homogeneous equa-

tion, p,,, — (1 + 1/B)p, = 0. For any arbitrary constant A, it is easy to verify that the
solution is

pr=A(l + 1/BY

Hence, the general solution is

p=m=a+(UB) Y [B/(1+B)] e,y + AL+ 1/B) (1.92)
i=0 .

If you examine (1 ‘92)‘ closely, you will note that-the impulse response function is
convergent; the expression [(B/(1 + B)1"™* converges to zero as i approaches infinity.
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However, the homogeneous portion of the solution is divergen?. For (1.92) to yield
a nonexplosive price sequence, we must be able to set the arbitrary constant equal
1o zero. To understand the economic implication of setting A = 0, suppose that th.e
initial condition is such that the price level in period zero is po. If we impose this
initial condition, (1.92) becomes

Po=m—0+ (1/13)2[[3/(1 +B)]'"e, + A
i=0
8olving fer A yields
A=po+o—m— (1/B)i[u/(1 +B)" e,
i=0
Thus, the initial condition must be such t:at

A=0  or  py=m-o+(UHYBABITE sy

i=0

Examine the three separate components of (1.92). The deterministic expression -

m — o is the same type of long-run “equilibrium™ condition encounlered_o'n s.everal
other occasions; a stable sequence tends to converge toward the determxm§t1c por-
tion of its particular solution. The second component of the particular solution con-
sists of the short-run responses induced by the various €, shocks. These @ovements
are necessarily of a short-term duration because the coefficients of. the impulse re-
sponse function must decay. The point is that the particular solunor} captures the
overall long-run and short-run equilibrium behavior of lhc. s'ysfem..Fmall?/,.t}.le ho-
mogeneous solution can be viewed as a measure of disequnl%bnurrT_ in the initial pe-
riod. Since (1.91) is the overall equilibrium solution for period 4, it should' be clear
that the value of p, in (1.93) is the equilibrium value of the pn‘cg for period zero.
After all, (1.93) is nothing more than (1.91) with the time sub.?cr.lpt lagged ¢ peri-
ods. Thus, the expression A(1 + 1/B)" must be zero if the deviation from equilib-
rium in the initial period is zero. .

Imposing the requirement that the {p,} sequence be bounded necessitates that the
general solution be

p,=m=-os (RS (BAL+BI e,

i=0

i

Notice that the price in each and every period ¢ is proportional to the miean value’

of the money supply; this point is easy to verify since all variables are expressgd in
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logarithms and dp/am = 1. Temporary changes in the money supply behave in an
interesting fashion. The impulse response function indicates that future increases in
the money supply, represented by the various «,,,, serve to increase the price level
in the current period. The idea is that future money supply increases imply higher
prices in the future. Forward-looking agents reduce their current money holdings,

with a consequent increase in the current price level, in response (o this anticipated
inflation.

SUMMARY AND CONCLUSIONS

Time-series econometrics is concerned with the estimation of difference equations

" containing stochastic components. Originally, time-series models were used for

forecasting. Uncovering the dynamic path of a series improves. forecasts since the
predictable components of the series can be extrapolated into the future. The grow-
ing interest in economic dynamics has given a new emphasis to time-series econo-
metrics. Stochastic difference equations arise quite naturally from dynamic eco-
nomic models. Appropriately estimated equations can be used for the interpretation
of economic data and for hypothesis testing.

This introductory chapter focused on methods of “solving” stochastic difference
equations. Although iteration can be useful, it is impractical in many-circumstances.
The solution to a linear difference equation can be divided into two parts: a particu-
lar solution and homogeneous solution. One complicating factor is that the homo-
geneous solution is not unique. The general solution is a linear combination of the
particular solution and all homogeneous solutions. Imposing 7 initial conditions on
the general solution of an nth-order equation yields a unique solution.

The homogeneous portion of a difference equation is a measure of the “disequi-
librium” in the initial period(s). The homogeneous equation is especially important

_in that it yields the characteristic roots; an nth-order equation has n such character-

istic roots. If all the characteristic roots lie within the unit circle, the series will be
convergent. As you will see in Chapter 2, there is a direct relationship between the
stability conditions and the issue of whether an economic variable is statiopary or
nonstationary.

The method of undetermined coefficients and use of lag operators are powerful
tools for obtaining the particular solution. The particular solution will be a linear
function of the current and past values of the forcing process. In addition, this solu-
tion may contain an intercept term and a.polynomial function of time. Unit roots
and characteristic roots outside of the unit circle require the imposition of an initial
condition for the particular solution to be meaningful. Some economic models ai-
low for forward-looking solutions; in such circumstances, anticipated future events
have consequences for the present period. : ‘ }

The tools developed in this chapter are aiméd at paving the way for the study of
time-series econometrics. It is a good idea to work all the exercises presented be-
low. Characteristic roots, the method of undetermined coefficients, and lag opera- -

tors will be encountered throughout the remainder of the text.
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QUESTIONS AND EXERCISES

G

1. Consider the difference equation y, = a, + a,v,., with the initial cotﬁfﬁpn Yo

Jill solved the difference equation by iterating backward:

Ye=0gt a1y
=ag+ a(dg+ ay,.s)
. 2 =1 'y
=ay+aga, +aga+ o+ aua +ay

Bill added the homogeneous and particular solutions to obtain y, = a/(} — a;) +
alyo — ad/(1 —apl.
A. Show that the two solutions are identical for |a, | <1.

B. Show that for a, = I, Jill's solution is equivalent to y, = ayt + yo. How
would you use Bill's method to arrive at this same conclusion in the case
a =17

2. The cobweb model in Section 5 assumed static price expectations. Consider an
alternative formulation called adaptive expectations. Let the expected price in ¢
(denoted by p¥) be a weighted average of the price in ¢ — 1 and the price expec-
tation of the previous period. Formally,

pr=oap._, +(1-apk,, D<a=1l
Clearly, when o = 1, the static and adaptive expectations schemes are equiv-
alent. An interesting feature of this model is that it can be viewed as a differ-
ence equation expressing the expected price as a function of its own lagged
value and the forcing variable p,_,. '

A. Find the homogeneous solution for p*

B. Use lag operators to {ind the particular solution. Check your answer by sub- .

stituting your answer in the original difference equation.

3. Suppose that the money supply process has the form m,=m +pm,_, +¢€, where |

misaconstantand 0<p < 1.

A. Show that it is possible to express m,,, in terms of the known value m, and |

the sequence {€,,y, €20 o s €0 0)

B. Suppose that all values of €,,; for 7 > 0 have a mean value of zero. Explain
how you could use your result in part A to forecast the money supply n pe-
riods into the future.

4. Find the particular solutions for each of the following:

Loy=ay e tBie,
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ii. _vE,; a,y,)_, +€,+Pe, (Hin: The form of the solution is v, = 5¢ €+
i€2-e ‘ — o

5. The unit root problem in time-series cconometrics is concerned wit

Th h character-
1stic roots that are cqual to unity. In order to preview the issue:

A. Find the homogeneous solution to each of the following: (

. Hinr: Each has :
- least one unit root. e

i Ye=2ap+ l's.yl—l - 0‘5y1—2 +€, ii. Yi=dp+ Yy, tE,
ULy, =ag+2y,_, -y, +€, V.Y, =ay+ v, + 0.25y,., - 0.25y,_,
+ €, »

B. Show that each of the backward-looking solutions is not convergent.

. Show that Equation i can be written entirely in first differences; that is
Ay, = ay + 0.5Ay,_, + €,. Find the particular solution for Ay,. (Hint:; Define

. .
¥ =4y, so that y* = a, — 0.5y%, + €, Find the particular solution for y* in
terms of the {¢,} sequence.) o

- Similarly transform the other equations into their first-difference form. Find

the bz.lckward-looking particular solution, if it exists, for the transformed
equations. '

E. Given the initial condition y,, find the solution for ¥, = ay=y,_, +€
_y €.

6. A researcher estimated the following relationship for the inflation rate (m,):

7, =-0.05+0.7m,_, + 0.6m,_, + ¢,

A. Suppose that in periods 0 and 1, the inflation rate was 10 and 11%, respec-

tlve.ly. Find the homogeneous, particular, and general solutions for the in-
flation rate.

. stcus; the shape of the impulse response function. Given that the United
States is not headed for runaway inflation, why do you believe that the re-
searcher’s equation is poorly estimated? ’

Consider the stochastic process Y=ay+anyv,_, + e,

A. Find the homogeneous solution and determine the stability condition.

B. Find the particular solution using the method of undetermined coefficients

[l;\(econsnder the Cagan demand for money function in which m, — p,=a-
Pray _[),)~ ,

A. Show that the backward-looking particular solution for p, is divergent.
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13, Obtain the forward-looking particular solution for p, in terms of the {m,}
sequence. In forming the general solution, why is it necessary to assume
that the money market is in long-run equilibrium?

C. Find the impact multiplier. How does an increase in m,,, affect p,? Provide
an intitive explanation of the shape of the entire impulse response func-

tion.

9. For each of the following, verify that the posited solution satisfies the differ-
ence equation. The symbols ¢. ¢, and a., denote constants:

Equation Solution
Ayi=ya=0 ye=c
B.y-y.=a y=ctay
Cy-y2=0 y,=c+ ey~
D. Y= Y2 =€ ‘ yl:C+CO(_I),+61+€1—2+61—4+"'

10. Part 1: For each of the following, determine whether {y,} reprf?sent§ a stable
process. Determine whether the characteristic roots are real or imaginary and
the real parts are positive or negative.

Ay =12y, +02y5 7 By, — 12y, + 04y,
C.y—-12y_,-12y., D. y,+ 1.2y,

E. y,— 0.7y, - 0.25y, 3+ 0.175y,; =0
(Hint: (x - 0.5)(x + 0.5)(x = 0.7) = X' = 0.7x? = 0.25x + 0.175.]

Part 2: Write each of the above equations using lag operators. Determing the
characteristic roots of the inverse characteristic equation.

11. Consider the stochastic difference equation:

Y= O'Syl—l +e - 0'561—-1

A. Suppose that the initial conditions arc such that y, = Oand ¢, =€) = 'O.
Now suppose that €, = 1. Determine the values y, through ys by forward it-
eration.

B. Find the homogeneous and particular solutions.
C. Impose the initial conditions in order to obtain the general solution.
D. Trace out the time path of an €, shock on the entire time path of the {v,] se-

quence.

12. Use Equation (1.5) to determine the restrictions on & and {3 necessary to ensure
that the {y,} process is stable.
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ENDNOTES

1. Another possibility is to obtain the forward-looking solution; such solutions are discussed
in Section 10.

2. Alternatively, you can substitute (1.26) into (1.17). Note that when ¢, is a pure random
disturbance, y, = a, + y,_; + €, is called a random walk plus drift model,

3. Any linear equation in the variables x, through x, is homogeneous if has the form ax, +
4% + - + a,x, = 0. To obtain the homogencc.. portion of (1.10), simply sct the inter-
cept term a, and forcing process x, equal to zero. Hence, the homogeneous equation for
(LIOYisv.=a,v_, +ay,_, + - + A,V

4. It b > q, the demand and supply curves do not intersect in the positive quadrant. The as-
sumption a > b guarantees that the equilibrium price is positive.

5. For example, if the forcing process is x, = €, + Bie., + Pae,p + -, the impact multiplier
can be taken as the partial derivative of y, with respect to x,. However, this text follows
the usual practice of considering multipliers with respect to the {e,} process.

APPENDIX 1 Imaginary Roots and de Moivre’s Theorem

Consider a second-order difference equation Yi = a1y, + ayy,_, such that the dis-

criminant d is negative (i.e., d = a? + 4a, < 0). From Section 6, we know that the
full homogeneous solution can be written in the form

Vi=A 0+ A0 (AL1)
where the two imaginary characteristic roots are

o, =, +iNd2  and

The purpose of this appendix is to explain how to rewrite and interpret (A1.1) in |

terms of standard trigonometric functions. You might first want to refresh your
memory concerning two useful trig identities. For any two angles 8, and 6,,

sin(8, + 6,) =sin(8,) cos(6,) + cos(8,) sin(B,)
cos(B; + 8,) = cos(8,) cos(8,) - sin(8,) sin(8,) (ALY

If 6, = 6,, we can drop subscripts and form
/
sin(26) = 2 sin(B) cos(0) ' :
€0s(28) = cos(B) cos(8) - sin(B) sin(0) ' (A1.4)

The first task is to demonstrate how to express imaginary numbers in the com-
plex plane. Consider Figure Al.1 in which the horizontal axis measures real num-
bers and the vertical axis imaginary numbers. The complex number a + bi can be
represented by the point a units. from the origin along the horizontal axis and b

o, = (a, —i\/Z)/Z (AL2)

pHarRimutdunrvie =
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Imaginary

0 a “  Real

xR

units from the origin along the vertical axis. It is convenient to represent the dl.S-
tance from the origin by the length of the vector denoted by r. Consider angle 6 in

triangle Oab and note that cos(8) = a/r and sin(6) = b/r. Hence, the lengths a and b.

can be measured by
a=rcos(f) and b =rsin(8)

In terms of (A1.2), we can define a = /2 and b= Jdrn. Thus, the chgracteristic‘
roots o, and @, can be written as

oy =a+bi=r[cos(B) +isin(B)] ;
o, =a-bi = rlcos(8) — i sin(6)] (AL5)

: . i | ’ in wi xpression
The next step is to consider the expressions ¢} and ¢t5. Begin with the exp
o? and recall that i2=—1:

af = {rlcos(B) + i sin(®)]} { r{cos(B) + i sin(6)])
- IJ[COS(G) cos(8) — sin(B) sin(B) + 2/ sin(B) cos(6)]

From (Al.4),
| a? = Plcos(28) + i sin(20)]
If we continue in this fashion, it is straighiforward to demonstrate that

af=rleos(rB) +isin(i8)]  and ;= rlcos(t0) ~isin(rB)]  (AL§)
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Since y! is a real number and @y and @, are complex, it follows that A and 4,

must be complex. Although A, and A, are arbitrary complex numbers, they must
have the form

A= B,[cos(B,) + i sin(B,)] and Az = By[cos(B,) - i sin(B,)] (ALT)

where B, and B, are arbitrary real numbers measured in radians.
In order to calculate A, (at!), use (A1.6) and (A1.7) to forn

A, 0= B [cos(B,) + i SIn(B))r feos() + i sin(19)] )
= B,7[cos(B,) cos(f) — sin(B,) sin(16) + i cos(19) sin(B,) + i sin(#0) cos(B,)]

Using (A1.3) and (A1.4), we obtain

A100= Bir'lcos(1® + By) + i sin(1 + B)] - (A1.8):
You should use the same technique to convince yourself that o

Ay =B\r'lcos(t0+ By) - isin( + By)] | (AL9)
Since the homogeneous solution yh is_lhe sum of (A1.8) and (A1.9), -

yi=B,r'cos(:9 + By) +isin(rB + B,)] + B,r'[cos(tB + B,) — i sin(16 + 8,)]
=2B,r'cos(19 + B,)

Since By is arbitrary, the homogeneous solution can be written in terms of the ar-
bitrary constants B, and B,

1= Byr' cos(6 + B,) (ALID)
Now imagine a circle with a radius of unity superimposed on Figure Al.1. The

stability condition is for the distance r = 0b to be less than unity. Hence, in the liter-

ature it is said that the stability condition s for the characteristic roots to lie within
this unit circle.

APPENDIX 2 Characteristic Roots in Higher-Order
Equations

/
The characteristic equation to an nth-order difference equation is

O~ a, 0"~ a0 e g = () S (ALY

As stated in Section 6, the n values of o that solve this characteristic equation
are called the characteristic roots. Denote the n solutions by «,, o, -, a,. Given

(AL10) .
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the results in Section 4, the linear combination A0t} + A, 05+ «-
lution to (Al.12).
A priori, the characteristic roots can take on any values. There is no resmctlon

+ A, is also a so-

that they be real versus complex nor any restriction concerning their sign or magni-

tude. Consider the following possibilities:

1. All the @, are real and distinct. There are several important subcases. First sup-
pose that each value of o, is less than unity in absolute value. In this case, the
homogeneous sclution (A1.12) converges since the limit of each o equals zero
as t approaches infinity. For a negative value of o, the expression @] is positive
for even values of r and negative for odd values of t. Thus, if any of the «; are
negative (but less than I in absolute value), the solution will tend to exhibit
some oscillation. If any of the @, are greater than unity in absolute value, the so-
lution will diverge.

2. All the o are real but m < n of the roots are repeated. Let the solution be
such that &, = 0, = -+ = @,,,. Call the single distinct value of this root a* and let
the other n—m roots be denoted by ¢,,., through c,. In the case of a second-or-
der equation with a repeated root, you saw that one solution was A&’ and the
other was A,t¢/. With m repeated roots, it is-casily verified that o™, Fat™, - |
™'’ are also solutions to the homogeneous equation. With m repeated roots,
the linear combination of all these solutions is

AT+ AJET + AP F e AT A Oy o F AL (ALLD)

3. Some of the roots are complex. Complex roots (which necessarily come in
conjugate pairs) have the form o, £ i6, where o; and 8 are real numbers and i is
defined 10 be V~1. For any such pair, a solution to the homogeneous equation is
A(a, +i8) + Ay(a, — i8)', where A, and A, are arbitrary constants. Transform-
ing to polar coordinates, we can write the associated two solutions in the form
B,r" cos(Br + B,) with arbitrary constants 3, and B,. Here stability hinges on the
magnitude of r'; if [rl < 1, the system converges, However, even if there is
convergence, convergence is not direct since the sine and cosine functions im-
part oscillatory behavior to the time path of y,. For example, if there are three
roots, two of which are complex, the homogencous solution has the form

Biricos(Br+B,) + A0,

Stability of Higher-Order Systems: In practice, it is difficult to find the actual
values of the characteristic roots. Unless the characteristic equation is easily fac-
tored, it is necessary to use numerical methods to obtain the characteristic roots.
However, for most purposes, it is sufficient to know the qualitative properties of the
solution; usually, it is sufficient to know whether all the roots lie within the unit cir-
cle. The Schur theorem gives the necessary and sufficient conditions for stability.
Given the characteristic equation of (A1.12), the theorem states that if all the n de-

A
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terminants below are pos;uve, the real parts of all characteristic roots are less than |

in absolute value:

Paa sraade 2k

1 ~a,
T | -a, 1
0 0 -a, -a,_, -a,.,
-1 0 -a, - -a, | 0 0 -a, —a,.,
-a 1 0 -, =~a ] 0 0 ~a
A = 1 2 | n
27—, 01 8, N ! I —a, -a,
-a,., —-a, 0 ~-a,, ~a, 0 0 1 -q
~A,_y =,y —a 0 0 1
] 0 0 0  -a, -a,, -a,
-a; | 0 0 0 -a, . —ay
~a, -a; | 0 0 0 =-a, —-a,
A =@ Qg —Q,_3 | 0 0 0 -a,
" ~a, O 0 . 0 I -ay =a, . . -a,,
-a,., —a, 0 . . 0 0 I . .. =,
~-a, —-as -a, . . 0 0 0 . v. I -a
-a, -a;, -ay . . -~a, 0 0 . .. 1

To understand the way each determinant is formed, note that each can be parti-
tioned into four subareas. Each subarea of A, is a triangular / x i matrix. The north-
west subarea has the value 1 on the diagonal and all zeros above the diagonal. The
subscript increases by I as we move down any column beginning from the diago-
nal. The southeast subarea is the transpose of the northwest subarea. Notice that the
northeast subarea has a, on the diagonal and all zeros below the diagonal. The sub-
script decreases by 1 as we move up any column beginning from the diagonal. The
southwest subarea is the transpose of the northeast subarea. As defined above, the
value of a, is unity.

Special Cases: As stated above, the Schur theorem gives the necessary and suffi-
cient-conditions for all roots to lie in the unit circle. Rather than calculate all these
determinants, it is often possible to use the simple rules discussed in Section 6.
Those of you familiar with matrix algebra may w1sh to consult Samuelson (1941)
for format proofs of these conditions.
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Chapter 2

STATIONARY TIME-SERIES MODELS

The theory of linear difference equations can be extended to allow the forcing
process {x,} to be stochastic. This class of linear stochastic difference equations un-
derlies much of the theory of time-series econometrics. Especially important is the
Box~Jenkins (1976) methodology for estimating time-series models of the form:

Y=g+ Yy ot apYi-p +€ + Blel—l +ot quz—q

Such models are called autoregressive integrated moving average (ARIMA)
time-series models. The aims of this chapter are to:

1. Present the theory of stochastic linear difference equations and consider the
time-series properties of stationary ARIMA models; a stationary ARIMA model
is called an ARMA model. It is shown that the stability conditions of the previ-
ous chapter are necessary conditions for stationarity.

2. Develop the tools used in estimating ARMA models. Especially useful are the
autocorrelation and partial autocorrelation functions. It is shown how th¢
Box-Jenkins methodology relies on these tools to estimate an ARMA model
from sample data.

3. Consider various test statistics to check for model adequacy. Several examples

of estimated ARMA models are analyzed in detail. It is shown how a properly
estimated model can be used for forecasting.

o /. '
1. :STOCHASTlC DIFFERENCE EQUATIVON MODELS .

" In this chapter, we continue to work with discrete, rather than continuous, time-

series models. Recall from the discussion in Chapter 1 lhat we’can evaluate the :
funcuon y=f(t) at 1o and ro + hto form

3
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Ay = f((n +h) - f1y)

As a practical matter, most economic time-series data are collected for discrete
time periods. Thus, we consider only the equidistant intervals fo, £, + h, ty + 2h.
I, + 3k, ... and conveniently set h = 1. Be carcful to recognize, however, that a dis-
crete time series implies 7, but not necessarily v, is discrete. For example, although
Scotland’s annual rainfall is a continuous variable, the sequence of such annual
rainfall totals for years | through ¢ is a discrele time series. In many economic ap-
plications, ¢ refers to “time™ <o that h represents the change in time. However, ¢
need not refer to the type of time interval as measured by a clock or calendar.
Instead of allowing our measurement units to be minutes, days, quarters, or years.
we can use ¢ to refer to an ordered event number. We could let y, denote the out-
come of spin ¢ on a roulette wheel; y, can then take on any of the 38 values 00, 0, [,

., 30.

A discrete variable y is said to be a random variable (i.e., stochastic) if for any
real number r, there exists a probability p(y < r) that y takes on a value less than or
equal to r. This definition is fairly gencral; in common usage, it is typically implied
that there is at least one value of r for which 0 < p(y = r) < 1. If there is some r for
which p(y = r) = 1, y is deterministic rather than random.

It is useful to consider the elements of an observed time series {Yg, Y1 Yz» - + - » ¥}
as being realizations (i.e., outcomes) of a stochastic process. As in Chapter 1, we
continue to let the notation y, refer to an element of the entire sequence {y,}. In our
roulette example, y, denotes the outcome of spin 7 on a roulette wheel. If we ob-
serve spins 1 through 7, we can form the sequence yy, y, ..., Yy, OF mMore com-
pactly, {y,}. In the same way, the term y, could be used to denote GNP in time pe-
riod t. Since we cannot forecast GNP perfectly, y, is a random variable. Once we
learn the value of GNP in period 1, y, becomes one of the realized values from a sto-
chastic process. (Of course, measurement error may prevent us from ever knowing
the “true” value of GNP.)

For discrete variables, the probability distribution of y, is given by a formula (or
table) that specifies each possible realized value of y, and the probability associated

with that 1calization. If the realizations are linked across time, there exists the joint :
. yr = rp), where r; is the realized value

probability distribution p(y, = r,, y, =713, .
of y in period i. Having observed the ﬁrst t lcalmmons we can form the expec:ted
value of y,,1, Yo - -
conditional mean, or cxpected value, of y,,; is denoted by E,(y,.; ly,, Yoot - Y)OF
Ly

Of course, if y, refers to the outcome of spinning a fair roulette wheel, the proba-
bility distribution is easily characterized. In contrast, we may never be able to com-
pletely describe the probability distribution for GNP. Nevertheless, the task of

economic theorists is to develop models that capture the essence of the true data- ‘

generating process. Stochastic difference equations are one convenient way of
modeling dynamic economic process. To take a simple example, suppose that the
Federal Reserve’s money supply target grows 3% each year. Hence,

, conditioned on the observed values of y, through y,. " This

Stochastic Difference Equation Models 65
m} = 1.03m¥, | .1
or given the initial condition m?¥, the particular solution is
mF = (1.03)'m}

where m}
omy

the logarithm of the money supply target in year ¢
the initial condition for the target muucy supply in period zero

il

Of course, the actual money supply m, and target need not be equal. Suppose that
at the end of period ¢ — 1, there exist m,_, outstanding dollars that are carried.for-
ward into period ¢. Hence, at the beginning of t there are m,_, dollars so that the gap
between actual and desired money holdings is m* —m, _,. Suppose that the Fed can-
not perfectly control the money supply but attempts to change the money supply by

p percent (p < 100%) of any gap between the desired and actual money supply. We
can model this behavior as

Am,=p(mF —m,_)) +¢,

or using (2.1), we obtain

m,=p(1.03Ym3 + (1 —p)m,_, + €, 2.2)

where €, = the uncontrollable portion of the money supply

We assume the mean of ¢, is zero in all time periods.

{Although the economic theory is overly simple, the model does illustrate the key
points discussed above. Note the following:

1. Although t'he money supply is a continuous variable, (2.2) is a discrete differ-
ence equation. Since the forcing process {¢,} is stochastic, the money supply is
stoc;hastlc; we can call (2.2) a linear stochastic difference equation,

;2. If we knew the distribution of {e,}, we could calculate the distribution for each
. element in the {m,} sequence. Since (2.2) shows how the realizations of the {m,}
sequence are linked across time, we would be able to calculate the various joint
probabilities. Notice that the distribution of the money supply sequence is com-

pletely determined by the parameters of the difference equation (2.2) and distri-
bution of the {¢€,} sequence.

13. Having observed the first ¢ observations in the {m,} sequence, we can make
i forecasts of m,,,, m,,,, . ... For example, if we update (2.2) by one pericd and

take the conditional expectatxon the forecast of m,,, i is p(1. 03)*'m¥ + (1 =~ p)m,.
Hence, Egn,,, = p(1.03)* ! mg + (1 - p)m,.

Before we proceed too far along these lines, let us go back to the basw buddmg
‘block of discrete stochastic time-series models: the white-noise process. A se-
quence {€,} is a white-noise process if each value in the sequence has a mean of
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66 Stationary Time-Series Models

zero, a constant variance, and is serially uncorrelated. Formally, if the netation E(x)
denotes the theoretical mean value of x, the sequence {€,} is a white-neise process
if for each time period ¢,

Ele)=Lle,_)=-=0
E(€)=E(e)==0"  [orwvar(e) = var(e, ) == G7]
and for all

E(e,e,,)=E(e,_ e, )=0foralls [or covie, €,_,) = cov(e,_;, &) = 0]

In the remainder of this text, {€,} will always refer to a white-noise process and
o? to the variance of that process. When it is necessary to refer to two or more
white-noise processes, symbols such as {€,,} and {€,} will be used. Now, use a
white-noise process to construct the more interesting time series:

= 231’61—[ ¥

For each period ¢, x, is constructed by taking the values e, €,._,, ..., €_, and mul-
tiplying each by the associated value of B;. A sequence formed in this manner is
called 2 moving average of order ¢ and denoted by MA(q). To illustrate a typical
moving average process, suppose you win $1 if a fair coin shows a head and lose
$1 if it shows a tail. Denote the outcome on toss ¢ by €, (i.e., for toss ¢, €, is either
+31 or =$1). If you wish to keep track of your “hot streaks,” you might want to cal-
culate your average winnings on the last four tosses. For each coin toss ¢, your aver-
age winnings on the last four tosses are 1/4e, + 1/4¢,_, + 1/4¢,_, + 1/4¢,_5. In terms
of (2.3), this sequence is a moving average process such that 8, = 0.25 for i < 3 and
zero otherwise.

Although the {e,} sequence is a white-noise process, the constructed {x,] se-
quence will not be a white-noise process if two or more of the f, differ from zero.
To illustrate using an MA(1) process, set B, = 1. B, = 0.5, and all other B, = 0. In
this circumstance, E(x) = E(e, + 0.5¢,_,) = 0 and var(x,) = var(e, + 0.5¢,.)) = 1.25¢%
You can easily convince yourself that E(x,) = E(x,_,) and var(x,) = var(x,_,) for all 5.
Hence, the first two conditions for {x,} to be a white-noise process are satisfied.
However, E(xx,_,) = E[(e, + 0.5¢,_)(€,_, + 0.5¢,_.)] = E[€e,_; + 0.5(¢,_)* + 0.5¢.,,
+0.23¢,_,€,_,) = 0.50% Given there exists a nonzero value of s such that E(v,x,_) #
0, the {x,} sequence is not a white-noise process.

Exercise | at the end of this chapter asks you to find the mean, variance, and co-
variance of your “hot streaks™ in coin tossing. For practice, you should complete
that exercise before continuing.

ARMA Models 67
2. ARMA MODELS

It is possible to combine a moving average process with a linear difference equa-
lion to obtain an autoregressive moving average model. Consider the pth-order dif-
ference equation:

Yr=ay+ L“iyl—i Ty (2.4)

Now let {x,} be the MA(g) process given by (2.3) so that we can wrile

P q : -
Y=ap+ zai)’r-i + EB.'EI_,‘ : A CRS)
i=} =0

We follow the convention of normalizing units so that B, is always equal to
unity. If the characteristic roots of (2.5) are all in the unit circle, {y,} is called an
autoregressive moving average (ARMA) model for y,. The autoregressive part of
the model is the “difference equation” given by the homogeneous portion of (2.4)
and the moving average part is the {x,} sequence. If the homogeneous part of the

difference equation contains p lags and the model for x, g lags, the model is called
;an ARMA(p, q) model. If ¢ = 0, the process is called a pure autoregressive process

denoted by AR(p), and if p = 0, the process is a pure moving average process de-

- noted by MA(g). In an ARMA model, it is perfectly permissible to allow p and/or ¢

to be infinite. In this chapter, we consider only models in which all‘the characteris-

“tic roots of (2.4) are within the unit circle. However, if one or more characteristic

roots is greater than or equal to unity, the {y,} sequence is said to be an integrated

- process and (2 5) is called an autoregressive integrated moving average (ARIMA)
- model.

Treating (2.5) as a difference equation suggests that we can “solve” for y, in
terms of the {¢,} sequence. The solution of an ARMA(p, g) model expressing y, in
terms of the {€,} sequence is the moving average representation of y,. The proce-

. dure is no different from that discussed in Chapter 1. For the AR(1) model Yi=ay +

a,y..; + €, the moving average representation was shown to be
Y =ap/(l=a))+ ZG{el—i
i=0
For the general ARMA(p, ¢) model, rewrite (2.5) using lag operators so that

zp:a:l" Adt *‘%"'ZB, €

AN

i=1

LR



Admin
Highlight

Admin
Highlight

Admin
Highlight

Admin
Highlight


—~ 5

so that the particalar solution tor y, is

68 Ntationary Time-Series Models

q S
) ‘*EBIEI—:‘ :
- =0

y, = __“_7’___. (. N ¢ 1)1

l——ZU,Li

i=1

Fortunately, it will not be necessary for us to expand (2.6) to obtain the specific
coefficient for each element in {¢,}. The important point to recognize is that the ex-
pansion will yield an MA(eo) process. The issue is whether such an expansion is
convergent so that the stochastic difference equation given by (2.6) is stable. As
you will see in the next section, the stability condition is that the characteristic roots
of the polynomial (1 - Za,L") must lie outside of the unit circle. It is also shown that
if y, is a linear stochastic difference equation, the stability condition is a necessary
condition for the time series {y,] to be stationary.

3. STATIONARITY

Suppose that the quality control division of a manufacturing firm samples four ma-
chines each hour. Every hour, quality control finds the mean of the machines’ out-
put levels. The plot of each machine’s hourly output is shown in Figure 2.1. If y,
represents machine y;’s output at hour ¢, the means (¥,) are readily calculated as

4
5)‘, = EYII/4
i=]

For hours 5, 10, and 15, these mean values are 5.57, 5.59, and 5.73, respectively.

The sample variance for each hour can similarly be constructed. Unfortunately,
applied econometricians do not usually have the luxury of being able to obtain an
ensemble (i.e., multiple time-series data of the same process over the same time pe-
riod). Typically, we observe only one set of realizations for any particular series,
Fortunately, if {y,} is a stationary series, the mean, variance, and autocorrelations
can usually be well approximated by sufficiently long time averages based on the
single set of realizations. Suppose you observed only the output of machine 1 for
20 periods. If you knew that the output was stationary, you could approximate the
mean level of output by

20
5= nl20

1=1

In using this approximation, you would be assuming that the mean was the same
for each period. In this example, the means of the four series are 5.45, 5.66, 5.45,

Stutionarity 69

Figure2.1 Hourly output of four machines.
6.5 1T

I O O #

4'5_%_Ifll!llllll,llil!|||
2 3 4 5 58 7 8 9101112131‘151617181920

and.5.71. Formally, a stochastic process having a finite mean and variance is co-
variance stationary if for all ¢ and r-s, ’

Ey)=E(y. )=p
Elo, - = El(y,, ~ ) = c;
E[(yl - l»l)(}’,-; - “-)] = E[(vz—j - “)(yr—j—: “)] =Y,

@.7)
[var(y)) = var(y,_,) = 67] 2.8)

(covhn ¥, ) =cov(y i y)] 29

where 11, &% and all v, are constants

In (2:9), allowing s = 0 means that Yo is equivalent to the variance of y,. Simply
put, a time series is covariance stationary if its mean and all amocovariz;nces are
unaffected by a change of time origin. In the literature, a covariance stationary
process is also referred to as a weakly stationary, second-order stationary, or wide-
sense stationary process. A strongly stationary process need not have a ﬁ;lite mean

- and/or variance (i.c., i andfor Yo need not be finite); this terminology implies that

weak stationarity can be a more stringent condition than strong stationarity. The
fext considers only covariance stationary series so that there is no ambiguity i.n us-
ing the terms stationary and covariance stationary interchangeably. One further
word about terminology. In multivariate models, the term autocovariance is re-
served foxf the covariance between y, and its own lags. Cross-covariance refers to
the covariance between one series and another. In unjvariate time-series models
there is no ambiguity and the terms autocovariance and covariance are used inter:
changeably.

For a covartince stationary series, we can define the autocorrelation between ¥
andy,_, as '

P, =Y
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here Y, and ¥, are defined by (2.9). ' ‘
; Sinczoy an}(; Yo are time-independent, the autocorrelation coefficients p, are also

time-independent. Although the autocorrelation bctweefl y, and y,_, can ((iilffer fr?;;
the autocorrelation between y, and y,_,, the autocorrelation })etween y,and y,_, m
be identical to that between y,_; and y,_,_,. Obviously, p= 1.

Stationarity Restrictions for an AR(1) Process

For expositional convenience, first consider the necessary an?-sgt"ﬁm‘efi»t gondmolns
for an AR(1) process 1o be stationary. Let | |

y=agta)y . tE

where €, = whitc noise

Suppose that the process started in period zero, so that yyis a dclerm1n¥suctm1[l;lzil:
condition. In Section 3 of the last chapter, it was shown that the solution to '
ec uation is (also see Question 2 at the end of this chapter)

-1 UL ‘
i fL ! 10
y,=002“{+“1>0+2a1£1-" @10
i=0 =0

Taking the expected value of (2.10), we obtain
D L
Eyo=aop aitaly . . @D
i=0

Updating by s periods yields

G

’ t+s-1 E )
f g al* 2.12)
EYies =0 Z“; +a"yo ‘ (

i=0

" we compare (2.11) and (2.12), it is clear that both means are. ;:Im::f:::r;?init;
Since Ey, is not equal to Ey,,,. the sequence c'annot be stanonarz.1 ;)he v ;eSSion
large, we can consider the limiting value .Of y,in (2.10). If g,[h SL;m g [1p+ oo
(a,)'y, converges to zero as ¢ becomes infinitely large an , 'fela <? i
ra,)? + (a;)® + -] converges to ay(} —a,). Thus, as t — e andi .

S 213
limy, 2510/(1“al)+20;€1—i 213
i=0

Now take expectations of (2.13) so that for sufﬁciemly large values of 1, I:E:y,i
1/(1 = @) Thus, the mean value of y, is finite and time-independent so that Ey, =
¢ eyt *

Stationarity 71

Ey,;, = for all +. Tumning to the limiting value of the variance, we find

EQ, - ) = El(€, + aye,_, + (a,)%,_, + )7
=01+ (a,) +(a)* + ] = 6¥[1 - (a,)%]

which is also finite and time-independent. Finally, it is easily demonstrated that the
limiting values of all autocovariances are finite and time-independent:

E[(yl - H)()’,—x - !»1)] = E{ {el +ae_; + (01)2614, + ."][EI—J + A€y (01)261—1-2 + ]}
=0T+ (@) + () + )
-=0%a,)'/[1 - (a,)?] (2.14)
In summary, if we can use the limiting value of (2.10), the {¥] sequ'ence‘will be
stationary. For any given y, and la, | < I, it follows that ¢ must be sufficiently
large. Thus, if a sample is generated by a process that has recently begun, the real-
izations may not be stationary. It is for this very reason that many econometricians
assume that the data-generating process has been occurring for an infinitely long
time. In practice, the researcher must be wary of any data generated from a “new”
process. For example, {y,} could represent the daily change in the dollar/mark ex-
change rate beginning immediately after the demise of the Bretton Woods fixed ex-
change rate system. Such a series may not be stationary due to the fact there were
deterministic initial conditions (exchange rate changes were essentially zero in the
Bretton Woods era). The careful researcher wishing to use stationary series might-
consider excluding some of these carlier observations from the period of analysis,
Little would change had we not been given the initial condition. Without the ini-

" tial value Yo, the sum of the homogeneous and particular solutions for y,is

Cvi=a/(-a)+ Y ale  +A@) S
: i=0 R

where A = an arbitrary constant

If we take the expectation of (2.15), it is clear that the {y,} sequence cannot be sta-

" tionary uniess the expression A(a,)' is equal to zero. Either the sequence must have
 started infinitely long ago (so that @ = 0) or the arbitrary constant A must be zero.

Recall that the arbitrary constant has the. interpretation of a deviation from long-run

- equilibrium. A succinct way to state the stability conditions is the following:

1. The homogeneous solution must be zero. Either the sequence must have started

infinitely far in the past or the process must always be in equilibrium (so that the
arbitrary constant is zero). - . ’

2. The chafacteristic root a, must be less than unity in absolute value.

These two conditions readily generalize to all ARMA(p, q) processes. We know
that the homogeneous solution to (2.5) has the form
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or if the roots are repeated,

S WY P
i=]

i=m+] N

where the A, represent p arbitrary values, ¢ are the repeated roots, and the ¢ are the
{p — m) distinct roots. '

If any portion of the homogeneous equation is present, the mean, variance, and
all covariances will be time-dependent. Hence, for any ARMA(p, q) model, station-
arity nccessitates that the homogeneous solution be zero. The next section ad-
dresses the stationarity restrictions for the particular solution.

4. STATIONARITY RESTRICTIONS FOR AN
ARMAp, q) MODEL

As a prelude to the stationarity conditions for the general ARMA(p, q) model, first
consider the restrictions necessary to ensure that an ARMA(2, 1) model is station-
ary. Since the magnitude of the intercept term does not affect the stability (or sta-
tionarity) conditions, set a, = 0 and write

Y=V +a,_v,_2+e,+ BXEI—-I (2.16)
From the previous section, we know that the homogeneous solution must be

zero. As such, it is only necessary to find the particular solution. Using the method
of undetermined coefficicnts, we can write the challenge solution as

Y 32”,61-, . 2.17)

For (2.17) to be a solution of (2.16), the various o must satisfy

OgE, + OLE, ) + Oy€,_y + O4€,_3 + - = A, (0g€, | + O €, 5 + 0L, 3 + (1€, 4 + )
+ @y O€ g + O &,y + Op€, 4 + OE s+ ) + € + Big,

To match coefficients on the terms containing €,, €,_;, €,_5, . . . , it is necessary to set
1. 0p=1 .
2. 0y=a,00+ B, =a,=a,+b !

~

3. 0= a0 + a0, foralliz?2

' . I

Stationarity Restrictions for an ARMA(D, q) Model 73

The key point is that for i > 2, the coefficients satisfy the difference equation o; =
@0, + a,0 5. If the characteristic roots of (2.16) are within the unit circle, the
{o;} must constitute a convergent sequence. For example, reconsider the case in
which a, = 1.6, a, = ~0.9, and let B, = 0.5. Worksheet 2.1 shows that the coeffi-

cients satisfying (2.17) are 1, 2.1, 2.46, 2.046, 1.06, ~0.146, . . . . (also see
Worksheet 1.2 of the previous chapter).

WORKSHEET 2.1  Coefficients of the ARMA(2,1) Process:
Ye=1.6y,;—09y,, + e, + 0.5¢,,.

If we use the method of undetermined coefficients, the ¢, must satisfy
%=1
o, =1.6+0.5 hence, a, = 2.1

=160, -090, foralli=234...

Notice that the coefficients follow a second-order difference equationh with imagi-
nary roots. With de Moivre's theorem, the coefficients will satisfy

o, = 0.949'B, cos(0.567i +B)
Imposing the initial conditions fof (o2 and a, yields
1v= B, cos(B,) and 2.1 =0.9490, cos(0.567 ‘+:f32)
Since B, = 1/cos(B,), we seek the solution to
cos(B,) — (0.949/2.1) - cos(0.567 + B,) =0
From a trig table, the solution for B, is —1.197. Hence, the o, satisfy
- 1/1.197 - 0.949 - c0s(0.567+i - 1.197)

Alternatively, we ¢an use the initial values of O and @, to find the other &, by iter-
ation. The sequence of the ¢, is shown in the graph below.
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The first 10 values of the sequence are k. before proceeding,) Considering conditions (2.7), (2.8), and (2.9), we ask the fol-

o 1 ; s S 6 . g 9 10 } lowing: |

G 100 2.10 246 2046 1.06 ~0.146 1187 1786 1961 —1226 —0.378 1 1. Is the mean finite and tin’le-independer'u? Take the expected value of .x, and re-
E member that the expectation of a sum is the sum of the individual expectations.
e Hence, -

To verify that the {v,) sequence generated by (2.17) is stationary, take the expec-
tation of (2.17) to form Ey, = Ey,_; = 0 for all t and /. Hence, the mean is finite and . E(x)=E(e, + Bre,_, + Ba€,a + )
ime-i 1ant. Si ¢ is assumed to be a white-noise proc.ss, ihe & T Co )
llm.e mvanant‘ Since the {€,} §equ§ncu 1 assu . b e p oo i | 3 = Ee, + B,Ee,., + Pofie, + =0
variance of y, is constant and time-independent, that is, >

, Repeat the procedure win x,_:
Var(y,) = E[0g€, + O €,y + O€, + 03€,3 + )]

2
=o' D,
i=0

E(,Y,_:) = E(er-—s + BIEI—J—I + Bler-x-z + "') =0

Hence, all elements in the (x,} sequence have the same finite mean (it = 0).

Hence, var(y,) = var(y,_,) for all 7 and s. Finally, the covariance between y, and 2. Is the variance finite and time-independent? Form var(x,) as

Yies i Var(x) = E[(e, + Bie. + Bye + 7]

Cov(y,,y,_l) - E[(E, O €+ O 5+ "')(El—l + O €,_5 + 0 €, 3 + 0LE, 4 + )]
=070y + OO + 030, + )

Cov(y, ¥ra) = El(g, + 06,y + Cp€py + )€, + Q€3 + 0€, 4 + Ua€ps + 20
= 030, + O30, + OOy + )

Square the term in parentheses and take expectations. Since {e€,} is a white-
noise process, all terms Fee, . = 0 for s # 0. Hence, :

Var() = E(e)? + (B)E(€,-1) + (B E(e, o) + -
=01+ (B)* + (B)* + -]

so that . )

As long as Z(B,)? is finite, it follows that var(x,) is finite. Thus, Z(B,)* being fi-

nite is a necessary condition for {x,} to be stationary. To determine whether
var(x,) = var(x,_.), form

Cov(y, Ys) = GO, + Oy Oy + CgyyOlp + +7) (2.18)

Hence, cov(y, ¥,,) is constant and independent of 1. Instead, if the characteristic
roots of (2.16) do not lie within the unit circle, the {0} sequence will not be con-
vergent. As such, the {y,} sequence cannot be convergent.

It is not too difficult to generalize these results to the entire class of ARMA(p, q)
models. Begin by considering the conditions ensuring the stationarity of a pure
MA(e0) process. By appropriately restricting the B, all the finite-order MA(g)
processes can be obtained as special cases. Consider

Var(x,) = E[(€,_ + Bre,y + Brgryr + )P = [1 + B + (B + ]

Thﬁs, var(x,) = var(x,_,) forall rand t - 5.

3. Are all autocovariances finite and time-independent? First form E(x.x,_,) as
E(xex, ) = El(e, + Brey + Pagg + )€ + Bregy + Bagrnyy + )]
Carrying out the multiplication and noting that E(ee,_;) = 0 for s # 0, we get

E(xx ) = 67 (B, + BiBouy + Bofra + )
where {€,} = a white-noise process with variance o? Lo o - "

, l‘iesmf:tmg t}}e sum B, + '[S,BJH + B,B,.2.+ - to be finite means that E(xx,_,) is
finite. Given this second restriction, it is clear that the covariance between x, and
x,_, depends on'only the number of periods separating the variables (i.e., the
value of s), but not the time subscript 1. ‘

We have already determined that {x,} is not a white-noise process; now the issue
is whether {x,} is covariance stationary? (If you need to refresh your memory con- .
cerning mathematical expectations, you should consult the appendix to this chapter

/
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In summary. the necessary and sufficient conditions for any MA process to be
stationary are for the sums of (1), Z(B,)%, and of (2). (B, + B\B,ss + BiBeez + =) t0
be finite. Since (2) must hold for all values of s and B, = 1, condition (1) is redun-
dant. The direct implication is that a finite-order MA process will always be sta-
tionary. For an infinite-order process, (2) must hold for all s > 0.

Stationarity Restrictions for the Autoregressive Coefficients

Now consider the pure autoregressive model:

14
Y=o+ Y ayte o7 2.19)
i=1 :

If the characteristic roots of the homogeneous equation of (2,19) all lie inside the
unit circle, it is possible to write the particular solution as ' o

. a -
, o, . Vi :_—O—+zai€r-i . . .
e i e G e 20

p
l_zni i=0

i=]

where the ¢; = undetermined coefficients

Although it is possible to find the undetermined coefficients {0}, we know that
(2.20) is a convergent sequence so long as the characteristic roots of (2.19) are in-
side the unit circle. To sketch the proof, the method of undetermined coefficients
allows us to write the particular sclution in the form of (2.20). We also know-that
the sequence {0} will eventuzily solve the difference equation: C

o= @ Uy = 304 5~ — a0, ,=0 BN
i
»
If the characteristic roots of (2.21) are all inside the unit circle, the {a;} sequence
will be convergent. Although (2.20) is an infinite-order moving average process,
the convergence of the MA coefficients implies that Zot? is finite. Hence, we can
use (2.20) to check the three conditions for stationarity. Since 05 =1, |

1

| Eyl:E.vH:aO/(l ‘Eai) ‘

You should recall from Chapter | that a necessary condition of all characteristic
roots to lie inside the unit circle is | = Za; # 0. Hence, the mean of the sequence'is
finite and time-invariant: i

2. Var(y,) = E[{€, + 0,€,_, + 0,€,_, + (1€, 4 + =)'} = 07 Zof

'-. of (2.23) is stationary as long as the roots of | =

.. vergent sequence. Time-series econometrics rul
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and
Var(yl—_\') = E[(EI"S + alel—x——l + aZEr—s—2 + aJel—r—J + )ZJ = Glza;
. 20 e . .
Given that Za? is finite, the variance is finite and time-independent

3. Cov(y, y,.) = El(e, + aje,_, + O, )€y Oy, + e,y 4 )
TV OGO+ 0, + )

Thus, the covariance between Yoand y,
and 1 —s.

Nothing of substance is chan ini
. ged by combining the A
into the general ARMA(p, ¢) model: ® e ARP) and MAG) models

1S constant and time-invariant for al] ¢

= ag +Za"y"i +.\‘I ) Ca
i=|
“ q AT ey e
T ZB"E'—" 2.22)
RS i=0 ; .

‘ If t.}fle roots of the inverse characteristic equation lie ouiside of the unit circle
t[}1’.6., if the roots qf the 'homogeneous form of (2.22) lie inside the.unit circle] and
e {x,} sequence is Stattonary, the {y,} sequence will be stationary. Consider

dy €

Yy =

‘ B Bre,y
7 +_%P +—-Ep RN (2.23)

p
1-Yq, 1-Y ol =Y al =Y al
=]

=l iz =1

. Withvery little effort, you can convince yourself that the {

‘ .. . h Y.} sequence satisfies
the three conditions for stationarity. Each of the expressions e

‘ on the right-hand side
' . . Za,L' are outside the unit circle
Given fhat {x,} is stationary, only the roots of the autoregressive portion of (2.22)
(?etermme whether the {y,) sequence is stationary. -

: \ghat :?bout the possibility of using the forward-looking solution? For example
In Cagan’s monetary model you saw that the forward:looking solution yields a con:
: . . es out this type ‘of perfect fore-
mght/forward-lookmg solution. It is the expectation of future events (not the real-

ized .value of future.evcnts) that affects the present. After all, if you had perfect
foresight, econometric forecasting would be unnecessary. )
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5. THE AUTOCORRELATION FUNCTION

The autocovariances and autcorrelations of the type found in (2.18) serve as useful
tools in the Box-Jerkins (1976) approach to identifying and estimating time-series
models. We illustrate by considering four important examples: the AR(l), AR(2),
MA(D and ARMAC(], 1) models. For the AR(1) model, y, = ap + a,y.; + &, 2.14)
shows

Yo = 01 = (¢,)’)
y, = G a T = (a,))

Forming the autocorrelations by dividing each v, by v, we find that py=1,p, =
ay; Py =@ ..., p,=(a). For an AR(1) process, a necessary condition for sta-
tionarity is for lal f< 1. Thus, the plot of p, against s—called the autocorrelation
function (ACF) or correlogram—should converge to zero geometrically if the se-
ries is stationary. If a, is positive, convergence will be direct, and if a, is negative,
the autocorrelations will follow a dampened oscillatory path around zero. The first
two graphs on the left-hand side of Figurc 2.2 show the theoretical autocorrela_lién
functions for a, = 0.7 and a, = —0.7, respectively. Here, po is not shown since its
value is necessarily unity. ‘

The Autocorrelation Function of an AR(2) Process "

Now consider the more complicated AR(2) process y, = @y, + dpYz + €. We
omit an intercept term {a,) since it has no eflect on the ACF. For the second-order
process to be stationary, we know that it is necessary (o restrict the roots of (I'—
a,L = a,L*) to be outside the unit circle. In Section 4, we derived the autocovari-
ances of an ARMA(2, 1) process by usc of the method of undetermined coeffi-
cients. Now we want to illustrate an alternative technique using the Yule-Walker
equations. Multiply the second-order difference equation by y, fors=0,s=1,
s =72, . .and take expectations to form

Ey,}‘, = (IlEyl—-l.Vl + (11[‘ V-2V + EElyl
E.ylyl—l = alE.YIAI.Yr—I + a,‘Eyl—lyz—l + EEJ/—AI
Eyy, 2= qEy, g+ @EY, o + E€yis

E}'L)JI'-V = aIE.yl—lyz—x + UZE.VI—Z.VIvJ + Eﬁlyl—.( (224)
By definition, the autocovariances of a stationary series are such that Eyy, , =
Evi_y, = E¥)oYeses = Y- We also know that the coefficient on e, is unity so that

Ee,y, =% Since Ee,y,_, = 0, we can use the cquations in (2.24) to form

Vo= @Y+ ApYa + O0 i e (229)

-0.5 1

Figure 2.2 Theoretical ACF and PACF p
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80 Stationary Time-Series Models

Yi =aYo + aty A (2.26)
Yx = a]‘YJ—l + aZYs—L‘ ) o ) . (2.27)

Dividing (2.26) and (2.27} by v, yields

P =a;pp + asp, (2.28)
px = alp:—l + a2p:-2 (229)

We know ﬁxat Po = 1, so that from (2.28), p, = a,/(1 = a,). Hence, we tan find all

p, for s 2 2 by solving the difference equation (2.29). For example, for s = 2 and
s=3, ‘ ) |

pr=(a,)/(1-ay) +a,
Py =a,[(@)/(1 — a)+ a,] + aa,/(1 — ay)

Although the values of the p, are cumbersome to derive, we can easily character-

ize their properties. Given the solutions for p, and p,, the key point to note is that
the p, all satisfy the difference equation (2.29). As in the general case of a second-
order difference equation, the solution may be oscillatory or direct. Note that the
stationarity condition for y, necessitates that the characteristic roots of (2.29) lie in-
side of the unit circle. Hence, the {p,} sequence must be convergent. The correlo-

gram for an AR(2) process must be such that p, = 1 and p, is determined by (2.28).

These two values can be viewed as “initial values” for the second-order difference
equation (2.29).

The fourth graph on the left-hand side of Figure 2.2 shows the ACF for the
process y, — 0.7y,_, — 0.49y,_, + €,. The propertics of the various p, follow directly
from the homogeneous equation y, = 0.7y,_, + 0.49y,, = 0. The roots are obtained
from the solution to '

o= {0.7 £ [(=0.7)% - 4(0.49)]'2) /2

Since the discriminant d = (=0.7)% — 4(0.49) is negative, the characteristic roots
are imaginary so that the solution oscillates. However, since a, = -0.49, the solu-
tion is convergent and the {y,} sequence is stationary. ’

Finally, we may wish to find the covariances rather than the autocorrelations.
Since we know all the autocorrelations, if we can find the variance of y, (i.e., ¥,),
we can {ind all the other y,. To find 7, use (2.25) and note that p; = Y,/Yo, S0

Var()’:)(pq —a\p, —aPy) = o’

Substittion for py, py, and p, yields

ol
_ =[(1—ay)(1+a,
Yo = var(y,) = [(1—ay)/( +u*)]l:(al+az—1)(02‘al-l):l
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The Autocorrelation Function of an MA(1) Process

Next .consider the. M{X(l) process y, = €, + Be,_,. Again, obtain the Yule-Walker
equations by multiplying y, by each y,_, and take expectations:

YO = var(yl) = EyLyl = E[(ﬁ, + BE,,,)(G, + Bel—l)] = (I + B2)02
Yl = Eyr.))l—l = E[(E/ + Ber—l)(ey—l + BEI—Z)] = BCZ

and

Y. = Eyy,, = El(e, + Be,_ )., + Pe,_,.)] =0 forall s> 1

Hence, by dividing each v, by 7,, it is immediately seen that the ACF is simply
Po= Lp =P/l +PB*, andp, =0 for all s > 1. The third graph on the left-hand side
of Figure 2.2 shows the ACF for the MA(1) process y, =€, ~ 0.7¢,_,. As an exercise, -

you should demonstrate that the ACF for the MA(2) process y, = €, + Bie,, + B,
€., has two spikes and then cuts to zero.

The Autocorrelation Function of an ABMA(1, 1) Process

Finally, let y, = a)y,_, + €, + B,e,,. Using the now familiar procedure, we find the
Yule-Walker equations: '

Eyy,=a\Ey,,y, + Eey, + BiEeyy, = Yo=ayY, + 0% + Bila; +Bo? a0y

EyYi = aEy iy + By + BiEe,_yy, =Y =a,y, + B,6° 231
Eyy, 2=a\Ey Y0+ Eey, 5 + BiEe1y.n =% =aY (2.32)
EyL)’z—: = alEyr—ly.»—: + Eezyz—s + BlEer——lyr-: = ‘Y: = ale—l (2-33)

Solving (2.30) and (2.31) simultaneously for Yo and v, yields

_1+Bi+2ap
(1-a})

_(I+aP)a +Bl)0'2
(1-af)

Hence,
A‘.‘p‘=(l+a,B,)(a,+B|)’ ' S sl
YT (+pl+2a8) - B:34)

and p, = a,p,._, forall s > 2.
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82 Stationary Time-Series Models

Thus, the ACF for an ARMA(!, 1) process is such that the magnitude of p, de-
pends on both a, and B,. Beginning with this value of p,, the ACF of an ARMA(],
1) process looks like that of the AR(1) process. If 0 < a, < 1, convergence will be
direct, and if -1 < a, < 0, the autocorrelations will oscillate. The ACF for the func-
tion y, = -0.7y,_, + € — 0.7¢,_, is shown in the last graph on the left-hand side of
Figure 2.2. The top portion of Worksheet 2.2 derives these autocorrelations.

We leave you with the exercise of deriving the correlogram of the ARMAQR, 1)
process used in Worksheet 2.1. You should be able to recognize the point that the
correlogram can reveal the pattern of the autoregressive coefficients. For an
ARMA(p, ¢) model beginning at lag g, the values of the p, will satisfy

Pi=mPiy ¥ AP+ AP,

The first p — | values can be treated as initial conditions that satisfy the Yule-
Walker equations.

6. THE PARTIAL AUTOCORRELATION FUNCTION

In an AR(1) process, y, and y,_, are correlated even though y,_, does not directly ap-
pear in the model. The correlation between y, and y,_, (i.e., p;) is equal to the corre-
lation between y, and y,_, (i.e., p,) multiplicd by the correlation between y,, and
y._2 (i.e., p; again) so that p, = p}. It is important to note that all such “indirect”
correlations are present in the ACF of any autoregressive process. In contrast, the
partial autocorrelation between y, and y,_, climinates the effects of the intervening
values y,_, through y,_.,,. As such, in an AR(1) process, the partial autocorrelation
between y, and y,_, is equal to zero. The most direct way to find the partial autocor-
relation function is to first form the series {y}*} by subtracting the mean of y (1)
from each observation: y* = y, ~ p. Next, form the first-order autoregression equa-
tion:

PR *
)r*-(DHYI‘I +¢,

where: e, = .n error term

Here, the symbol {e,} is used since this error process may not be white-noise.

Since there are no intervening values, ¢,, is both the autocorrelation and partial
autocorrelation between y, and y,_,. Now form the second-order autoregression
equation:

YE =0k 0yt e

Here, ¢,, is the partial autocorrelation coefficient between y, and y,_,. In other
words, ¢,, is the correlation between y, and y,_, controlling for (i.e., “netting out”)
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the effect of y..,. Repeating this process for all additional lags s yields the partial
autocorrelation function (PACF). In practice, with sample size T, only T/4 lags are
used in obtaining the sample PACF. '

Since most statistical computer packages perform these transformations, there is
little need to elaborate on the computational procedure. However, it should be
pointed out that a simple computional method relying on the so-called Yule-
Walker equations is available. One can form the partial autocorrelations from the
autocorrelations as ' '

b =0 ) - o (2.35)
b= {(p2—pDI(1 - p} (2.36)

andform@ndl@s, o ) |

! s—1 ’
Ps— Z ¢s—l.jp:—j
=

by = ——p—,  §=3,4,5, ... (237
I*Z‘b;-x,jpj L
j=1

. where q)xj: q):—l.j_q)nq):—l.:—j»j: 1,2,3,... ys—1

For an AR(p) process, there is no direct correlation between y, and y,_, for s > p.
Hence, all values of ¢,, for s > p will be zero and the PACF fora pure AR(p)

 process should cut to zero for all lags greater than p. This is a useful feature of the
. PACF that can aid in the identification of an AR(p) model. In contrast, consider the

PACF for the MA(1) process y, = €, + Be,_,. As long as B # —1, we can write y, /(1
+ pL) =, which we know has the infinite-order autoregressive representation:

Y= B)ﬁ—lb"’ BZyr~2 - ﬁSYr—s t+ =€

As such, the PACF will nor jump to zero since y, will be correlated with all 'its
own lags. Instead, the PACF coefficients exhibit'a geometrically decaying pattern,

: If B <0, decay is direct, and if B > 0, the PACF coefficients oscillate.

Worksheet 2.2 illustrates the procedure used in constructing the PACF for the

3 ARMA(}I, 1) model shown in the fifth graph on the right-hand side of Figure 2.2:

»=-0Ty., +¢-07¢

First calculate the autocorrelations. Clearly, p, = 1; use Equation (2.34) to calcu-

. late as p, = -0.8445. Thereafter, the ACF coefficients decay at the rate p, =
* (-0.0)p,, for i 2 2. Using (2.35) and (2.36), we obtain ¢,, = —0,8445 and ¢, =
. 2.—;).4250. All subsequent ¢,, and ¢,, can be calculated from (2.37) as in Worksheet
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WORKSHEET 2.2 Calculation of the partial autocorrelations of
Ye=-0T7y. ., +€-0Te,, . . R

The Partial Autocorrelation F, unction 85

Table 2.1:  Properties of the ACF and PACF

Process ACF PACF
e S J . White-noise Allp, =0, Alld,, =0.
: .34) to calculate a8 ‘ Ps
STEP 1: Calculate the autocorrelations. Use (2.34) & N AR(1:a,>0  Direct exponential decay: p, = aj. ¢ =py;o,=0fors>2,
. e AR():a, <0 Oscillating decay: p.=a. ¢ =p;i0,.,=0fors22.
o = (14+0.49(-0.7-0.7) = -0.8445 o ) AR(p) Decays toward zero. Coefficients may Spikes through lag p. All 0,,
1= ' i =
14+ 0.49 +2(0.49 oscillate. =0fors>p.
MA(D):B>0 Positive spike at lag 1. p, =0 for Oscillating decay: ¢,, > 0.
The remaining correlations decay at the rate p; = -0.7p,_,, so that £27

STEP2:

STEP 3:

. Similarly. (0 find s, use

MA():B<0  Negative spikeatlag 1.p, = 0 for s > 2.

Decay: ¢,, <0.
- 0.59] py=-0.414 p,=0.290 ps=-0.203 . ARMA(I, 1): Exponential decay beginning at lag 1. Oscillating decay beginning at
P2=1 =-0.010 pg = 0.070 Po=-0.049 - - 3 a,>0 Signp,=sign(a,+ﬂ). lag 1. ¢, =p,.
pe=0.142 pr=-0. 8 ARMA(I, 1): Oscillating decay beginning at lag 1. Exponentiat decay beginning at
. . . d (2.36). a, <0 Sign p, =sign(a, + ). » lag 1. ¢,, =p, and sign(é,,)
Calculate the first two partial autocorrelations using (2.35) and ( . = sign(6, ).
Hence ARMA (p, q) Decay (either direct or oscillatory) Decay (either direct or oscil-
’ B 4 beginning at lag ¢. . latory) beginning at lag p.
o, =p, =-0.844 _ ' 3 o
2= [0.591 ~ (-0.8445 Y[ - (-0.8445)") =-0.425
Construct all remaining ¢, iteratively using (2.37). To find ¢5,, note that

$21 = &5y = 0201y = —1.204 and fOﬂp

-1
5 2
b3y = [Pz = 2¢’2,‘P3-/’ ]{1 - 2 ¢2jpj}
j=1

j=

More generally, the PACF of a stationary ARMA(p, g) process must ultimately
decay toward zero beginning at lag p. The decay pattern depends on the coefficients
of the polynomial (1 + B,L + BoL? + - 4 B,L?). Table 2.1 summarizes some of the
properties at the ACF and PACF for various ARMA processes. Also, the right-

hand-side graphs of Figure 2.2 show the partial autocorrelation functions of the five

indicated processes.
=[~0.414 - (=1.204)(0.591) — (-0.425)(-0.8445)}/

For stationary processes, the key points to note are the following:
204)(-0.8445) — (—0.425)(0.591)]
[1 —(~1.204)(-0.8445) — (

1. The ACF of an ARMA(p, g) process will begin to decay at lag q. Beginning at
lag g, the coefficients of the ACF (i.e., the p,) will satisfy the difference equation
Pi=ap,  +ap,5+ - + a,P;-,)- Since the characteristic roots are inside the
unit circle, the autocorrelations will decay beginning at lag g. Moreover, the pat-

tern of the autocorrelation coefficients wil] mimic that suggested by the charac-
teristic roots.

=-0.262

!

s e Rl
=1pa— ) Gypaj | 1= ) dyjp;
bas =1 Pa }2:; A g’ 2. The PACF of an ARMA(p, q) process will begin to decay at lag p. Beginning at

. lag p, the coefficients of the PACF (i.e., the d,,) will mimic the ACF coefficients

. from the model y,/(1 + BiL+BL+ -+ BLY. :

' We can jllustrate the usefulness of the
Yi=ag+ 0.7y, + €. If we compare th
shows the monotonic decay of the aut
- single spike at lag 1. Suppose that a r
the ACF and PACF functions, If the ac
. retical patterns, the researcher might

Since Oy = Oy — G330, it follows that ¢3, = —1.315 and &5, = _074
Hence, ' ACF and PACF functions using the model
¢ top two graphs of Figure 2.2, the ACF
ocorrelations, while the PACFE exhibits the
esearcher collected sample data and plotted
tual patterns compared favorably to the theo-
try to estimate data using an AR(1) model.

das=-0.173 |

If we continue in this fashion, it is possible to demonstrate that ¢5,%
—0.117, g = ~0.081, 0, = —0.056, and dgq = —0.039.

T
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distributed with a mean equal to zero. For the PACF coefficients, under the null hy-
pothesis of an AR(p) model (i.e, under the null that all ¢, .. are zero), the vari-
ance of the ¢, ,,; is approximately T~".

In practice, we can use these sample values to form the sample autocorrelation
and partial autocorrelation functions and test for significance using (2.41). For ex-
ample, if we use a 95% confidence interval (i.e., two standard deviations), and the °

Correspondingly, if the ACF exhibited a single spike and the PACF monotonic de- -
cay (see the third graph of the figure for the model y, = €, — 0.7¢,_), the researcher

might try an MA(1) model.

7. SAMPLE AUTOCORRELATIONS OF « @ |
STATIONARY SERIES - F

T FEy oo e ey v

calculated value of r, exceeds 277", it is possible to reject the null hypothesis that
> first-order autocorrelation is 1no: “2tistically different from zero. Rejecting this.
. : ; - hypothesis means rejecting an MA(s — 1) = MA(0) process and accepting the alter-
In practice, the {heoretical mean, variance, and autocorrelations of a series are un f YpP! ) b4 ( ) @p pung

native g > 0. Next, try s = 2; var(r,) is (1 + 22T 1f » s 0.5 and T 100, the vari-

. ‘s is stationary, we can use the sample ( L+ |
known to lhe researcher, O e o ance of r, is 0.015 and the standard deviation about 0.123. Thus, if the calculated

mean, variance, and autocorrelations to estimate the parameters of the actual data-

generating process. Let there be T observations labeled y, through y,. We can let ¥,
&, and r, be estimates of i, o?, and p,, respectively, where:

T
Z)’l
y == (2.38)
Y T

s ey ey

(2.39)

and foreach valueof s=1,2,...,

T —
3 =P =)
ro= sl . (2.40)

, ‘Z(y, -’
r=1

The sample autocorrelation function [i.e., the ACF dcriv‘ed 'from. (2.40)]‘ and1 1
PACF can be compared to various theoretical functions to help identify the actual !

nature of the data-generating process. Box and Jcnk.ins (1?76) disc.uss the dl]?m:u
tion of the sample values of 7, under the null that y, is stationary with normaby' is-
tributed errors. Allowing var(r,) to denote the sampling variance of r,, they obtain

fors=1

= 1+22 r; T fors>1 @41

if the true value of r, =0 [ie, if the true data-generating process is'an MAG —al})
process). Moreover, in large samples (i.e., for large values of 1), r, will be normally

value of r* exceeds 2(0.123), it is possible to reject the hypothesis r, = 0. Here, re-
jecting the null means accepting the alternative that g > 1. Repeating for the various
values of s is helpful in identifying the order to the process. In practice, the maxi-
mum number of sample autocorrelations and partial autocorrelations to use is 7/4.

When looking over a large number of autocorrelations, we will see that some ex-
ceed two standard deviations as a result of pure chance even though the true values
in the data-generating process are zero. The Q-statistic can be used to test whether a
group of autocorrelations is significantly different from zero. Box and Pierce
(1970) used the sample autocorrelations to form the statistic

Q0= Ti r,(2
k=l

If the data are generated from a stationary ARMA process, Q is asymptotically
x* distributed with s degrees of freedom. The intuition behind the use of the statis-
tic is that high sample autocorrelations lead to large values of Q. Certainly, a white-
noise process (in which all autocorrelations should be zero) would have a Q value
of zero. If the calculated value of Q exceeds the appropriate value in a ¥? table, we
can rejéect the null of no significant autocorrelations. Note that rejecting the null
means accepting an alternative that at least one autocorrelation is not zero. '

i A problem with the Box-Pierce Q-statistic is that it works poorly even in moder-

" ately large samples. Ljung and Box (1978) report superior small sample perfor-

mance for the modified Q-statistic calculated as

Q=T(T+2)Y (T ~K) L aw
k=t B

zero at the specified significance level. The Box—Pierce and Ljung-Box Q-statistics
also serve as a check to see if the residuals from an estimated ARMA(p. g) model

RS0V 8 124

If the sample value of Q calculated from (2.42) exceeds the critical value of 3%
with s degrees of freedom, then at least one value of r, is statistically different from
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behave as a white-noise process. However, when we form the s correlations from
an estimated ARMA(p, g) model. the degrees of freedom are reduced by the num-
ber of estimated coefficients. Hence, if using the residuals of an ARMA(p. q)
model, O has a % with s-p-q degrees of freedom (if a constant is included, the de-
grees of freedom are s-p-g-1).

Model Selection Criteria

One natural question to ask of any estimated model is: How well does it fit the
data? Adding additivnai lags for p andivr ¢ will necessarily reduce the su of
squares of the estimated residuals. However. adding such lags entails the estimation
of additional coefficients and an associated loss of degress of freedom. Moreover,
the inclusion of extranecus coefficients will reduce the forecasting performance of
the fitted model. There exist various model selection criteria that trade off a reduc-
tion in the sum of squares of the residuals for a more parsimonious model. The

two most commonly used model selection criteria are the Akaike information crite-

rion (AIC) and Schwartz Bayesian criterion (SBC), calculated as

AIC = T In(residual sum of squares) + 2n
SBC = 7T In(residual sum of squares) + n in(T)

where n= number of parameters estimated (p + g + possible constant term); ©
T = number of usable observations. :

Typically in creating lagged variables, some observations are lost. To adequately
compare the alternative models, T should be kept fixed. For example, with 100 data
points, estimate an AR(1) and AR(2) using only the last 98 observations in each es-
timation. Compare the two models using 7= 98.2

Ideally, the AIC and SBC will be as small as possible (note that both can be neg-
ative). We can use these criteria to aid in selecting the most appropriate model;
model A is said to fit better than model B if the AIC (or SBC) for A is smailer than
that for model B. In using the criteria to compare alternative models, we must esti-
mate over the same sample period so that they will be comparable. For each, in-
creasiny the number of regressors increases 7, but should have the effect of reduc-
ing the residual sum of squares. Thus, if a regressor has no explanatory power,
adding it to the model will cause both the AIC and SBC to increase. Since In(T)
will be greater than 2, the SBC will always select a more parsimonious model than
the AIC: the marginal cost of adding regressors is greater with the SBC than the
AlC.

Of the two criteria, the SBC has superior large sample properties. Let the true or-
der of the data-generating process be (p*, g*) and suppose that we use the AIC and
SBC 16 estimate all ARMA models of order (p. g) where p 2 p* and g 2 ¢*. Both
the AIC and SBC will select models of orders greater than or equal to (p*, ¢*) as
the sample size approaches infinity. However, the SBC is asymptotically consis-
tent, whereas the AIC is biased toward selecting an overparameterized model.
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Estimation of an AR{1) Mode!

Let us use a specific example to see how the sample autocorrelation function and
partial autocorrelation function can be used as an aid in identifying an ARMA
model. A computer program was used to draw 100 normally distributed random
numbers with a theoretical variance equal to unity. Call these random variates «,,
where t runs from 1 to 100. Beginning with ¢ = 1, values of y, were generated using
the formula y, = 0.7v,_; + €, and initial condition y, = 0. Note that the problem of
nonstationarity is avoided since the initial condition is consistent with long-run
equilibrium. The upper-left-hand graph of Figure 2.3 shows the sample correlogram
and upper-right-hand graph the sample PACF. You should take a minute to com-
gazre the ACF and PACF to those of the theoretical processes illustrated in Figure

In practice, we never know the true data-gencrating process. However, suppose
we were presented with these 100 sample values and asked to uncover the true
process. The first step might be to compare the sample ACF and PACF to those of
the various theoretical models. The decaying pattern of the ACF and the single

Figure 2.3 ACF and PACEF for two simulated processes.
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large spike in the sample PACF suggest an AR(1) model. The first three autocorre-
lations are r, = 0.74, r, = 0.58, and ry = 0.47, which are somewhat greater than the
theoretical values of 0.7, 0.49 (0.7* = 0.49), and 0.343. In the PACF, there is a siz-

~ able spike of 0.74 at lag one and all other partial autocorrelations (except for lag

12) are very small.

" Under the null hypothesis of an MA(0Q) process, the standard deviation of ry is
T-12 = 0.1. Since the sample value of r, = 0.74 is more than seven standard devia-
tions from zero, we can reject the null that ry equals zero. wu standard deviation of
r, is obtained by applying (2.41) to the sampling data, where s =2:

Var(rz) = [1 + 2(074)2]/100 =0.021

Since (0.021)'2 = 0.1449, the sample value of ry is approximately four standard
deviations from zero; at conventional significance levels, we can reject the null hy-
pothesis that r, equals zero. We can similarly test the significance of the other val-
ues of the autocorrelations. ‘

As you can see in the second part of the figure, other than ¢, ;, all partial auto-
correlations (except for lag 12) are less than 2T-42 = 0.2. The decay of the ACF

and single spike of the PACF give the strong impression of a first-order autoregres- - E

sive model. If we did not know the true underlying process and happened to be us-
ing monthly data, we might be concerned with the significant partial autocorrela-
tion at lag 12. After all, with monthly data we might expect some direct relationship
between y, and y,_j,-

Although we know that the data were actually generated from an AR(1) process,
it is illuminating to compare the estimates of two different models. Suppose we €s-
timate an AR(1) model and also try to capture the spike at lag 12 with an MA coef-
ficient. Thus, we can consider the two tentative models:

Model L:y,=a, v, + €&
Model 2: y,=a,v,_, + €+ B12€12

Table 2.2 reports the results of the two estimations.® The coefficient of model 1
satisfies the stability condition lall < 1 and has a low standard error (the associ-
ated r-statistic for a null of zero is more than 12). As a useful diagnostic check, we
plot the correlogram of the residuals of the fitted model in Figure 2.4. The Q-statis-
tics for these residuals indicate that each one of the autocorrelations is less than two
standard deviations from zero. The Ljung-Box Q-statistics of these residuals indi-
cate that as a group, lags 1 through 8, | through 16, and 1 through 24 are not sig-
nificantly different from zero. This is strong evidence that the AR(1) model “fits”
the data well. After all, if residual autocorrelations were significant, the AR(1)
mode] would not be utilizing all available information concerning movements in
the {y,} sequence. For example, suppose we wanted to forecast y,,, conditioned on
all available information up to and including period . With model 1, the value of
Vyor 180 Y01 = A1Y, + €. Henee, the forecast from model 1 is a,y,. If the residual au-
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Table 2.2: Estimates of an. AR(1) Model

Model 1 Model 2
Y=Y T & Yi=ay &+ B,

Degrees, of freedom : 99 98
Sum of squared residuals . 85.21 85.17
Estimated a, (standard 0.7910 (0.0622) 0.7953 (0.0683)

error) '
Estimated B (standard error) -0.033 (0.1134)
AIC/SBC AIC =442.07/SBC =444.67 AlC=44401/SBC=

449.21

Ljung-Box Q-statistics for
the residuals (significance
level in parentheses)

0(8) = 6.43(0.490)
0(16) = 15.86 (0.391)
0(24) =21.74 (0.536)

Q(8) = 6.48 (0.485)
Q(16) = 15.75 (0.400)
Q(24)=121.56 (0.547)

tocorrelations had been significant, this forecast would not be capturing all the
available information set.

Examining the results for model 2, note that both models yield similar estimates
for the first-order autoregressive coefficient and associated standard error.
How'ever, the estimate for B,, is of poor quality; the insignificant ¢ value suggests
that it should be dropped from the model. Moreover,‘comparing the AIC and SBC
values of tvhe two models suggests that any benefits of a reduced residual sum of
squares are overwhelmed by the detrimental effects of estimating an additional pa-

_ rameter. All these indicators point to the choice of model I.

- Figure 2.4 ACF of residuals from model 1.
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Exercise 7 at the end of this chapter entails various estimations using this data
set. In this exercise you are asked to show that the AR(1) model perfprms b<?tI:r
;han some alternative specifications. It is important that you complete this exercise.

Estimation of an ARMA(1, 1) Model

A second {y,} sequence was constructed to illustrate the estimation of an ARMA-
(1, 1) Givcn’ 100 normally distributed values of the {¢,}, 100 values of {y,} were
generated using

y,==0T7y,_, +¢€ ~0.7¢,,

where y, and €, were both set equal to zero.

Both the sample ACF and PACF from the simulated data (see the se?orlld sctdoi
“in Fi ivalent to those of the theoretical mode
hs'in Figure 2.3) are roughly equiva ‘

ftrx?\)un in Fiogure 2.2. However, if the true data-generating procei: w:;(uztiknoxzn],
er mig! tain discrepancies. An mode
searcher might be concerned about certain ‘ :
tc};eu]rde yield a sample ACF and PACF similar to those in the figure. Table 2.3 re

ports tﬂe results of estimating the data using the following three models:

Model I: y,=a,y,_, +¢,
Model 2: y,=ayy,., + €+ Bj€,,
Model 3: y, = a\y,_, + ay, ; + €,

In examining Table 2.3, notice that all the estimated values of a, are highly sig-
nificant; each of the estimated values is at least eight standarfl (?evnfzatlons grec;rr; f:g:

i , is i iate. The Q-statistics for mo ndi-
It is clear that the AR(1) model is inappropriate. : L indt

is signifi lation in the residuals. The estima

te that there is significant autocorre :
?R?VlA(l 1) model does not suffer from this problem. Moreover, both the AIC and
SBC select model 2 over model 1.

Table 2.3: Estimates of an ARMA(1, 1) Model

Estimates® Q-Statistics® AIC/SBC
T S e
T e oun- im0 ShCodses
B e i

“Standard errors in parentheses. o iy e
i i . Significance levels in pare
*Ljung-Box Q-statistics of the residuals from the fitted model. S g
ses.
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With the same type of reasoning, model 2 is preferred 1o model 3. Note that for
each model, the estimated coefficients are highly significant and the point estimates
imply convergence. Although the Q-statistic at 24 lags indicates that these two
.models do not suffer from correlated residuals, the Q-statistic at 8 lags indicates se-
rial correlation in the residuals of mode} 3. Thus, the AR(2) model does not capture

short-term dynamics as well as the ARMA(1, 1) model. Also note that the AIC and
SBC both select model] 2.

Estimation of an AR(2) Model

A third data series was simulated as

Y= 0‘7.))1—1 - 0-49)',_2 te
The estimated coefficients of the ACF and PACF of the series are
ACF:

Lag:  1: 0.4655046 —0.1607289 -0.321629] -0.1077528 -0.0518159 ~0.1649841
7. -0.0995764  0.1283475 0.1795718  0.0343415 -0.0869808 -0.1133948
13: ~0.1639613 -0.057905] 0.1151097  0.2540039 0.0460659 —0.1745434
19: -0.1503307 0.0100510 0.0318942 ~0.0869327 -0.0456013  0.0516806

PACF:

I: 04655046 -0.4818344 0.0225089  0.0452089
7: 0.1011489 0.0367555 -0.0758751  0.0229422

13: ~0.1671389  0.2066915 0.0074996  0.0851050
19: —0.0223151

-0.2528370 —0.1206075
~0.0203879 -0.1391730

~0.2156580 0.0131360
-0.0324078  0.0148130 —0.0609358  1.0374894 ~0.1842465

Note the large autocorrelation at lag 16 and large partial autocorrelations at lags
14 and 17. Given the way the process was simulated, the presence of these autocor-

CoefTicient Estimate Standard Error  t-Statistic Significance
a, 0.692389807 0.089515769 7.73484 " 0.00000000
a - -0.480874620  0.089576524 =5.36831  0.00000055

AIC =21 9,87333; SBC=225.04327

. Overall, the model appears to be adequate. However, the two AR(2) coefficients
are unable to capture the correlations at very long lags. For example, the partial au-
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96 Stationary Time-Series Models

Jenkins argue that parsimonious models produce better forecasts than overparame-
terized models. A parsimonious model fits the data well without incorporating any
needless cocfficients. The aim is to approximate the true data-generating process
but not to pin down the exact process. The goal of parsimony suggested eliminating
the MA(12) coefficient in the simulated AR(1) model above.

In selecting an appropriate model, the econometrician needs to be aware that sev-
eral very different models may have very similar properties. As an extreme exam-
ple, note t~~t the AR(1) model y, = 0.5y,_; + ¢, has the equivalent infinite-order
moving average representation y, = €, + 0.5¢,_, + 0.25¢,_, + 0.125¢, 3 + 0.0625¢,_, +
... In most samples, approvimating this MA(ee) process with an MA(Z) or MA(D
model will give a very good fit. However, the AR(1) model is the more parsimo-
nious model and is preferred.

Also be aware of the common factor problem. Suppose we wanted to fit the
ARMA(2, 3) model:

(L =aL=alhy,= (1 +BL+BL?+ Bl 24y

Also suppose that (1 — a,L — a,L*) and (1 + B,L + B,L7 + B,L*) can each be fac-
tored as (1 + cL)(1 + al) and (1 + ¢L)(1 + b,L + b,L?), respectively. Since (1 + cL)
is a common factor to each, (2.43) has thc equivalent, but more parsimonious,
form:*

(1 +aLlyy, = (1 + b,L + b,L7e, (2.44)

In order to ensure that the model is parsimonious, the various g; and f3; should all
have t-statistics of 2.0 or greater (so that each coefficient is significantly different
from zero at the 5% level). Moreover, the cocfficients should not be strongly corre-
lated with each other. Highly collinear coetficients are unstable; usually one or
more can be eliminated from the model without reducing forecast performance.

Stationarity and Invertibility

The distribution theory underlying the use of the sample ACF and PACF as approx-
imations to those «f the true data-generating process assumes that the {y,} sequence
is stationary. Morcover, f-statistics and Q-statistics also presume that the data.are
stationary. The estimated autoregressive coefficients should be consistent with this
underlying assumption. Hence, we should be suspicious of an AR(1) model if the
estimated value of a, is close to unity. For an ARMA(Z, ¢) model, the characteristic
roots of the estimated polynomial (1 — a,L — a,L”) should lie outside of the unit cir-
cle. ‘

The Box-Jenkins approach alse nccessitates that the model be invertible.
Formally, {y,} is invertible if it can be represented by a finite-order or convergent
autoregressive process. Invertibility is important because the use of the ACF and
PACF implicitly assumes that the {y,} sequence can be well approximated by an
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a_utpregressive model Asa dgm@nstration, consider the simple MA(1) model:

) yl=€I_BI€I—| (2.45)
sothatif!B,I<1. |
o -Bh=e,
) or
Yot By + By + Biyis + - =, @)

' If IB, | < 1, (2.46) can be estimated using the Box—Jenkins method. However
if IB, 2 1, the {y,} sequence cannot be represented by a finite-order AR process‘:
as such, it is not invertible, More genérally, for an ARMA model to have a conver-
gent AR representation, the roots of the polynomial (1 + BiL+B,L* + . ¢ B.LY
must lie outside of the unit circle. Note that there is nothing “improper” about a
non-invertible model. The {y,} sequence implied by y, = €, — €,_, is stationary in
that it has a constant time-invariant mean (Ey, = Ey,_,= 0, a constant time-invariant
variance [var(y,) = var(y,_,) = 6°(1 + B})], and the autocovariances ¥, =-B,6% and

all other 7, = 0. The problem is that the technique does not allow for the estimation
of such models. If B, =1, (2.46) becomes

I= Ve ¥ Y2~ Yzt Y o

Clearly, the autocorrelations and partial autocorrelations between y,and y,_, will
never decay. '

Goodness of Fit

A good model will fit the data well. Obviously, R? and the average of the residual
sum of squares are common *“goodness-of-fit” measures in ordinary least squares.
The problem with these measurces is that the “fit” necessarily improves as more pa-
rameters are included in the model. Parsimony suggests using the AIC and/or SBC
as more appropriate measures of the overall fit of the model. Also. be cautious of
estimates that fail to converge rapidly. Most software packages estimate the param-
eters of an ARMA model using non-linear search procedures. If the search fails to -
converge rapidly, it is possible that the estimated parameters are unstable. Ifi such

circumstances, adding an additional observation or two can greatly alter the esti-
mates. " S

* The third stage in the Box-Jenkins methodology involves diagnbsﬁc ci;eéking.' ‘

The sl.andar‘d practice is to plot the residuals to Jook for outliers and evidence of pe-
riods in which the model does not fit the data well. If all plausible ARMA models
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98 Stationary Time-Series Models

show evidence of a poor fit during a rcasonably long portion of the sample, it is
wise to consider using intervention analysis, transfer function analysis, or any other
of the multivariate estimation methods discussed in later chapters. If the variance of
the residuals is increasing, a logarithmic transformation may be appropriate.
Alternatively, you may wish to actually model any tendency of the variance to
change using the ARCH techniques discusscd in Chapter 3.

[t is particularly important that the residuals from an estimated model be serially
uncorreiated. Any evidence of serial correlition implies a systematic movemen: in
the {v,} sequence that is not accounted for by the ARMA coefficients included in
the model. Hence, any of the tentative models yielding nonrandom residuals should
be eliminated from consideration. To check for correlation in the residuals, con-
struct the ACF and PACF of the residuals of the estimated model. You can then
use (2.41) and (2.42) to determine whether any or all of the residual autocorrela-
tions or partial autocorrelations are statistically significant.” Although there is no
significance level that is deemed “most appropriate,” be wary of any model yield-
ing (1) several residual correlations that are marginally significant and (2) a Q-sta-

tistic that is barely significant at the 10% Icvel. In such circumstances, it is usually”

possible to formulate a better performing model.

In the previous section, recall that the estimated AR(1) model had Box-Ljung
Q-statistics indicating a possible MA term at lag 12. As a result, we also estimated
the model y, = 0.7953y,_, + €, — 0.033¢,_,. The procedure of adding another coeffi-
cient is called overfitting. Overfit a mode! if the initiat ACF and PACF yield am-

biguous implications conceming the proper form of the ARMA coefficients. In the -

first example, the AR(1) model (i.e., model 1) outperformed the ARMAC(L, 1)
mode}. Obviously, in other circumstances, the “overfitted” model may outperform
the first model. As an additional diagnostic check, some researchers will overfit a
model by including a coefficient at some randomly selected lag. If such overfitting
greatly affects the model, the estimated mo-el is likely to yield poor forecasts.

If there are sufficient observations, fitting the same ARMA model to each of two

subsamples can provide useful information concerning the assumption that the

data-generating process is unchanging. In the estimated AR(2) model in the last
section, the sample was split in half. In general, suppose you estimated an
ARMA(p, g) model using a sample size of T observations. Denote the sum,of:the
squared residuals as SSR. Divide the T observations into two subsamples with ¢,
observations in the first and r, = T — 1, observations in the second. Use each sub-
sample to estimate the two models:

y=aglH) +a Dy, + -+, (Vy_, +€+ Bihe,, +-+B,(De,,

using £y, . ... L
Y= (1()(2) + 511(2)}‘/4 +ot a[l(?‘)_\‘f—/’.-’- €+ Bl(z)el—l + ot Bq(z)el—q

using t,,,.- - ., Iy

Let the sum of the squared residuals from each model be SSR, and SSR,. respec- ‘

tively. To test the restriction that all ceeflicients are equat [i.e., ag(1) = a(2) and
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a()=a(2)and ... a,(1)=a,2) and B,(1)=B,(2) and ... B,(1) = B,(2)], usc an
F-test and form:®

- (SSR-SSR,~SSR,)/ (n)
(SSRy+SSR, /(T ~2n)

(2.47)

where n = number of parameters estimated (n = p + ¢ + 1 if an intercept is in-
cluded and p + g otherwise) '
the number of deg;ees of freedom are (n. T ~ 2n).

Intuitively, if the restriction that the two sets of coefficients is not binding, the
total from the two models (i.e., SSR, + SSR;) should equal the sum of the squared
residuals from the entire sample estimation. Hence, F should equal zero. The larger
the calculated value of F, the more restrictive is the assumption that the two sets of
coefficients are equal. :

Similarly, the model can be estimated over nearly all the sample period. If we
use 20 years of quarterly data, for example, the model might be estimated using
only the first 19 years of data. Then, the model can be used to make forecasts of the
last year of data. For each period ¢, the forecast error is the difference between the
forecast and known value of y,. The sum of the squared forecast errors is a useful
way to compare the adequacy of alternative models. Those models with poor out-
of-sample forecasts should be elimirated. Some of the details in constructing out-
of-sample forecasts are discussed in t1e next section.

9. THE FORECAST FUNCTION

Perhaps the most important use of an ARMA model is to forecast future values of
the {,} sequence.” To simplify-the discussion, it is assumed that the actual data-
generating process and current and past realizations of the {¢,} and {»,} sequences
are known to the researcher. First, consider the forecasts from the AR(1) model Y =
ay+ ayy, ) + €. Updating one period, we obtain . :

Y1 = ay + ay, +e€

141

If you know the coefficients a, and a,, you can forecast ¥,.1 conditioned on the
information available at period r as

Elyn-! =a,+ayy, (2.48)

where Ey,,; = a short-hand way to write the conditional expectation of y,,; given
the information available at ¢ '

Formally, Ey,.; = E(y,., 'y,, Victs Yoty o oo s € €py o a L)
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100 Starionary Time-Series Models

In the same way, SINCE Y 2 = Ao + @Y1+ €ra2: the forecast of Y., conditioned on

the information available at period 7 is

Eyia=a+ il

and using (2.48), we obtain

E{.VHB =yt + ),
It should nut require too much efforttv convince yourself that
2 3
ElyN} =dy + Aoty + doy +ayy:

and in general, ..

E,ij:ao(l + a; +a%+ '"+aj;_l)+allyr .(2‘50?

Equation (2.50)—called the forecast fu_nction——yields the j-step ahead forfe?asts
for each value y,,;. Since 1a, | <1, (2.50) yields a convergent sequence 0 %rﬁ-
casts. If we take the limit of Ey,,; asj — e, we find that Ey,.; = a(,/(l.—. a,). This
result is really quite general. For any stationary ARMA model, the condxltzonkclzl);ore-
cast of y,,; converges 1o the unconditional mean as j — - Unfonuna.te y, the fore ‘
casts from an ARMA model will not be perfectly accuraté. Forecastlr?g from time
period 1, we can define the j-step ahead forecast error, f.(j)—as the difference be-
tween the realized value of y,,; and forecasted value:

f,(_}) =Yy, v Eryn—j

Hence, the one-step :head forecast error is: f(1) = Y1 — E,y,f, =¢,, (e, t?}c
“unforecastable” portion of y,., given the information available in £). To find the

two-step ahead forecast error, we need to form f(2) = Y2~ EVrea: Since y,,2=dp+
I
4y + @3y, + € + @€y AN Eypy = o+ @ido + Yo it follows that

f(2) =€+ A€

You should take a few moments 10 Jdemonstrate that for the AR(1) model, the
j-step ahead forecast error is given by

. 2 3 el (2.51)
f,(_]) = Frﬂ + alemj—l + (I)E,,J,Q + (1\6,,,1-_) + + al e”‘

Equation (2.51) shows that the forecasts from (2.50)’yield unbiased es[imates;f
each value y,,;. The proof is trivial; since E€,., = Eg == Eg,,, =0, the condi-
tional expc—ctation of (2.51) is Ef,(j) = 0. Since the expected value of the forecast
error is zero, the forecasts are unbiased.
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Although unbiased, the forecasts from an ARMA model are necessarily inaccu-
rate. To find the variance of the forecast error, continue to assume that the elements
of the {¢,} sequence are independent with variance o2 Hence, from (2.51) the vari-
ance of the forecast error is .

Var{f(H1 =01 +a% + at + ab + - + @}V (2.52)

‘Since the one-step forecast error variance is o, the two-step ahead forecast error
variance is (1 + a?), etc. The essential point to note is that the variance of the
forecast error is an increasing function of j. As such, you can fiave moic cuniiduce
in short-term rather than long-term forecasts. In the limit as j — oo, the forecast er-
ror variance converges to 6%/(1 — a?); hence, the forecast error variance converges
to the unconditional variance of the {y,} sequence.

Moreover, assuming that the {€,} sequence is normally distributed, you can place
confidence intervals around the forecasts. The one-step ahead forecast of y,,, is
a, + a,y, and the variance is 6% As such, the 95% confidence interval for the one-

step ahead forecast can be constructed as
ay +a,y, * 1.96c
In the same way, the two-step ahead forecast is a,(1 + a,) + aly, and (2.52) indi-

cates that var[f,(2)] is 6*(1 + a?). Thus, the 95% confidence interval for the two-
step ahead forecast is

a1 +a,) + aly, £ 1.966(1 +a})'*

Of course, if there is any uncertainty concerning the parameters, the confidence
intervals will be wider than those reported here.

lterative Forecasts

" The derivation of (2.50)—the forecast function for an AR(1) model—relied on for- ‘

ward iteration. To generalize the discussion, it is possible to use the iterative tech-
nique to derive the forecast function for any ARMA(p, ) model. To keep the alge-
bra simple, consider the ARMA(2, 1) model:

Y= Ao+ Gy, + A+ €+ BiE » (2.53)

Updating one period yields
| Yest :ao'*al)’r*a?)’:—l_'*' €.+ Bi€
If we continue to assume that (1) all coefficients are known; (2) all variables sub-

scripted 7, £ 1, 1 — 2, etc. are known at period r; and (3) Eje,.; = 0 for j > O, the con-
ditional expectation of y,,, is
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Eyuy = ag+ayy, + @y, +Bie, o (2.54)

! Equation (2.54) is the one-step ahead forecast of y,,,. To find the two-step ahead
: forecast, update (2.53) by two periods:

Y2 = Uy +a ¥ Ay, +E€,,t Blﬁl*l
{ The conditional expectation of y,,, is
Eyua=ay+ By, +ayy, MmN

Equation (2.55) expresses the two-step ahead forecast in terms of the one-step
ahead forecast and current value of y,. Combining (2.54) and (2.55) yields

EYia = Go+a(ao+a,y, + axy,_y + Bie) +ay,
2
=ay(l +a,) + (@} + @)y, + aay,., + a, B,

You should be able to demonstrate that the three-step ahead forecast is

Ezy“J =dy + alErynz + azE/ynl

_% i . =ay+a{all +a)+[al+aly, +aay,, +aBe) +
b ayao + a,y, + ayy,, + Bye)
=ay(] + a, + @ + ay) + (@} + 2a,ay)y, + (diay + ady,_ + Bi@l + ar)e,  (256)
¥
; Finally, all j-step ahead forecasts can be obtained from
! Ezij =ay+ alELYNj—l + aZEl.VHj-:‘ .] =2 i (2.57)
e Equations (2.56) and (2.57) suggest that the forecasts will satisfy a second-order
difference equation. As long as the characteristic roots of (2.57) lie inside the unit
i circle, the forecasts will coverge to the unconditional mean ao/(1 — a, — a,).
An Alternative Derivation of the Forecast Function’
L Instead of using the iterative technique, it is often preferable to derive the forecast
3? ¥ function using the solution methodology discussed in Section 4 of Chapter 1. For

any ARMA(p, q) model, the solution technique entails (1) finding all homogeneous
solutions; (2) finding the particular solution; (3) forming the general solution as the
sum of the homogeneous and particular solutions; and (4) imposing the initial con-
ditions. This solution methodology will express y, in terms of the p initial condi-
NS Yo, Y1, - - - » ¥poy and g initial values €, €,. ... €,_,. The only twist is that the
forecast function expresses y,,; in terms of ¥ ¥,_1, . oo 2 Yicpuy and €, €,_,, ...,
€,_qu1- To illustrate the appropriate modification of the time subscripts, consider the
U AR(2) model:

[OROR

- and the {¢,} sequence. Updating by j periods, we find
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vi=3+09y,_,-02y,,+¢

In Section 8 of Chapter 1, it was shown that the solution is

) -2
% =10+(04)[5(y5 ~10)~ 100y, = 10)]+ (0.5)"[10(y, ~ 10) - 4(yy — 10)] + za,.e

i=(}

1=i

where the values of o, satisly o = 5(0.5) - 4(0.4y".

The problem is to modify this equation so as to express y,,; in terms of v, y,_,
/ ’

Yiaj =104+0.4Y[5(y,_, =10)=10(y, 10)]
1

FOTI00y, =10) =405, ~10)]+ Y ae,, s

i=()

Taking the conditional expectation of y,,; yields the forecast function:
Ey; =10+ (0.4Y[5(y,_, — 10) = 10(y, — 10)] + (0.5Y[10(y, - 10) —4(y,_, - 10)]

Obviously, as j increases, the forecast approaches the unconditional mean of 10.
For practice, try the ARMAC(1, 1) model:

V= ag+ay, +e + B,

\favhere {€} is a white-noise process, ]a, [ < I, and there is a given initial condition
or y,

You should recognize that the homogeneous equation y, - @,y,.., = 0 has the solu-

tion A(a,)’, where A is an arbitrary constant, Next, use lag operators to obtain the
particular solution as

vi=a/(l—a)+el(l —a,L)+Bie_ /(1 —al) (2.58)

so0 that the general solution is

oo oo

v, =ay/(l-a)+ 201161_;‘*5:20{6,4-;+A“1’ T s9)

=0 i=0

Now impose the initial condition for ¥, Since (2. 59) must hold for all penods
including period zero, it follows that :

0—(10/(l~a,)+ Za,e_,+B Za,e ,_,+A (2.60)

i=0 i=0
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Solving (2.60) for A climinates the arbitrary constant. Cqmbinmg .(2'59) and |
(2.60), we get BN

i=1) i=0

v =ay/l—a+ Za{e,“i +£312a;e,_1;i4 s

i=0 i=0
s0 that

-1 =1

. , :
¥, =ag/(l—a)+ 2“;6!—1 +Bx2”f€, =t —ap/=aplar o0

=0 i=0

To this point, (2.61) is simply the general solution to the stochastic difference
equation represented by an ARMA(L, 1) process. This solution expresses thg cur-
rent value of y, in terms of the constants a,, «,, and B,. {€) sequence, and initial

value of y,. N .
The important point is that (2.61) can be used to forecast y, conditioned on infor-

mation available at period zero. Given Ege; = 0 for i > 0, it follows that
Epy, =al(l —a))+ Biat ey + vy — a1 - apla (2:62)

Equation (2.62) can be viewed as the t-step ahend forecast function giy§n infor-
mation available in period zcro. To form the j-step ahead forecasts condltlone.d on
information available at 1, first change the time subscript in (2.62) so that the j-step
ahead forecasts are

Ew; = ay/(b —a) + B,a'{" €, + vy — a1l - ql)]aé
= [a /(1 = a))(1 = a)) + Bai™ €0+ yoat P (2.63)

Next, update (2.63) by 1 periods so that

Ey,.,=la/(l —a))() = a)) + Pal e, + ya 264

(A4S0

Equation (2.64) is in the desired form; (2.64) expressed the forecast of y,,; condi-
tioned on information available at period 1. The various j-step ahead forecasts are

EL))I*I—_-(IO+BYEI+LIlyl ,
Ey,a=lag/(l —a)i(l = a7) + Biase, + vay

2 3
ELVM] = [(10/(] - (1,)‘(1 - ‘/?) + BlaI€l+)‘lal

S o i al
+| yg =ay/th—uy) —Etlle_f—i3| A€y |

Ao oa i
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Given that |aI | < 1, the limiting value of the forecast as j — oo is the uncondi-

. tional mean: lim Ey,,, = a/(1 - a,).

As a check, you can compare (2.64) to (2.50); after all, the AR(l) and ARMA(1,

. 1) models are equivalent if §, = 0. If B, = 0, (2.64) becomes ‘

Ey,;=la/(1 —ap)(] —a}) + ya’, (2.65)

Note that (2.65) is identical to (2.50); for |a,| < 1,

i=0

il
ay Y 4l =lap/(1~a)(1-af)

The example illustrates the basic point that for any ARMA( P, q) model, the fore- .

cast function for y,,; will have the form

Euey = 0() + @y, + 020t + = 4 0Yicpar + 1D + o 4 V€ g (266) -

where  all values of o,(j) and ¥,(j) are undetermined coefficients.

The notation ou(j) and y,(j) is designed to stress the point that the coefficients are a
function of j. Since we are working with stationary and invertible processes, we

know the nature of the solution is such that as j = oo, 0o(j) = ay/(1 — Zay), o.(j) —

0, and that Z[y,(/)]* is finite.

In practice, you will not know the actual order of the ARMA process or coeffi-
cients of that process. Instead, to create out-of-sample forecasts, it is necessary to
use the estimated coefficients from what you believe to be the most appropriate
form of an ARMA model. The rule of thumb is that forecasts from an ARMA
model should never be trusted if the model is estimated with fewer than 50 observa-
tions. Suppose you have T observations of the {y,} sequence and choose to fit an
ARMA(2, 1) model to the data. Let a hat or caret (i.e.: a ") over a parameter denote
the estimated value of a parameter and let {£,} denote the residuals of the estimated
model. Hence, the estimated AR(2, 1) model can be written as

Ye :ao +a|y1—1 +a2yr—2 + €, + Blel—l

Given that the sample contains T observations; the out-of-sample forecasts are
easily constructed. For example, you can use (2.54) to forecast the value of yr,, as

Eyvray =g +d\yr +dovr, P& (267
Given the estimated values of dy, d,, and d,, (2.67) can easily be constructed us-

ing the actual values y,, y,_,, and &, (i.e., the last residual of your estimated model).
Similarly, the forecast of y,,, can be constructed as
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Eqyro =do + 8By, + vy

where E;yr,, = the forecast from (2.67)
Given these two forecasts, all subsequent forecasts ¢an be obtained from the dif-

ference equation:

Epvry=ao+ @\ Epyr, + 2y EJ‘)‘T*J% forj22

10. A MODEL OF THE WPI

The ARMA estimations performed in Section 8 were almost too straightforward. In
practice, we rarely find a data series precisely conforming to a theoretical ACF or
PACF. This section is intended to illustrate some of the ambiguities frequently en-
countered in the Box~Jenkins technique. These ambiguities may lead two equally

skilled econometricians to estimate and forecast a series using very different .

ARMA processes. Many view the necessity to rely on the researcher’s judgment
and experience as a serious weakness of a procedure that is designed to be scien-
tific.

It is useful to illustrate the Box-Jenkins modeling procedure by estimating a
quarterly model of the U.S. Wholesale Price Index (WPI). The file labeled
WPLWKI on the data disk contains the data used in this section. Exercise 10 at the
end of this chapter will help you to reproduce the results reported below.

The top graph of Figure 2.5 clearly reveals that there is little point in modeling
the series as being stationary; there is a decidedly positive trend or drift throughout
the period 1960:1 to 1990:1V. The first difference of the series seems to have a con-
stant mean, although inspection of the middle graph suggests that the variance is an
increasing function of time. As shown in the bottom graph of the same figure, the
first difference of the logarithm (denoted by Alwpi) is the most likely candidate to
be covariance stationary. The large volatility of the WPI accompanying the oil
price shocks in the 1970s should make us somewhat wary of the assumption that
the process is covariance stationary. At this point, some researchers would make
additional transformations intended to reduce the volatility exhibited in the 1970s.
However, it seems reasonable to estimate a model of the {Alwpi,} sequence. As al-
ways, you should maintain a healthy skepticism of the accuracy of your model.

Before reading on, you should examine the autocorrelation and partial autocorre-
lation functions of the {Alwpi,} sequence shown in Figure 2.6. Try to identify the
tentative models that you would want to estimate. In making your decision, note the
following:

1. The ACF and PACF converge to zero reasonably quickly. We do not want to
overdifference the data and try to model the {A%wpi,) sequence.

2. The theoretical ACF of a pure MA(q) process cuts off to zero at lag g and the
theoretical ACF of an AR(1) model decays geometrically. Examination of the
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two graphs of Figure 2.6 suggests that neither of these specifications seems ap-
propriate for the sample data.

3. The PACF is such that ¢, , = 0.609 and cuts off to 0.252 abruptly (i.e., §,, =
0.252). Overall, the PACF suggests that we should consider models such asp = 1
and p = 2. The ACF is suggestive of an AR(2) process or a process with both au-
toregressive and moving average components.

4. Note the jump in ACF at lag 4 and the small spike in the PACF at lag 4 (¢,4 =
0.198). Since we are using quarterly data, we nugii want to incorporate a sci-
sonal factor at lag 4. :

Figure 2.5 U.S. wholesale price index (1985 = 100).
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Figure 2.6 ACF and PACF for the logarithmic change in the WPL
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Points 1 to 4 suggest an ARMA(!, 1) or AR(2) model. In addition, we might
want to consider models with a seasonal term at lag 4. Since computing time is in-
expensive, we can estimate a variety of modcls and compare their results, Table 2.4
reports estimates of {ive tentative models; note the following points:

1. The estimated AR(1) model confirms our analysis in the identification stage.
Although the estimated value of g, (0.618) is less than unity in absolute value
and more than eight standard deviations from zero, the AR(1) specification is in-
adequate. Forming the Ljung-Box Q-statistic for 12 lags of the residuals yields
a value of 23.6; we can reject the null that O = 0 at the 1% significance level.
Hence, the lagged residuals of this model exhibit substantial serial autocorrela-
tion. Then we must eliminate this model from consideration.
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2. The AR(2) model is an improvement over the AR(1) specification. The esti-

mated coefficients (a, = 0.456 and a, = 0.258) are cach significantly different
from zero at the 1% level and imply characteristic roots in the unit circle. Q-sta-
tistics indicate that the autocorrelations of the residuals are not statistically sig-
nificant. As measured by the AIC, the fit of the AR(2) model is superior to that
of the A.R(l); the SBC is the same for the two models. Overall, the AR(2) mode!
dominates the AR(1) specification.

3. The ARMA(], 1) specification dominate t»2 AR(2) model. The estimated coef-

ficients are of high quality (with ¢ values of 14.9 and —4.22). The estimated
value of ¢, is positive but fess than unit- and the Q-statistics indirate that the
autocorrelations of the residuals are not statistically significant. Moreover, ail
goodness-of-fit measures select the ARMA(, 1) specification over the AR(2)
model. Thus, there is little reason to maintain the AR(2) specification.

Table 2.4: Estimates of the WPI (Logarithmic First Differences)

p= 1 p= 2 p= 1 p= 1 p= 1
q=0 ¢=0 g=1 g=14 g=2
a, 0.011 0.011 0.012 0.011 0.012
4.14) (3.31) - . (2.63) (2.76) T (2.62)
a, 0.618 0.456 0.887 0.791 0.887
(8.54) (5.11) (14.9) 9.21) (13.2)
a, ) 0.258
_ (2.89) ,
8, ‘ -0.484 -0.409 -0.483
, . (—4.22) (-3.62) . (—4.19)
B, - -0.002
. ' (-0.019)
B : 0315
‘ (3.36)
SSR 0.0156 0.0145 0.0141 0.0134 0.0141
L AIC -503.3 -506.1 -513.1 -518.2 ~511.
. SBC  —497.7 -497.7 -504.7 -507.0 ~499.9

i Q(12) . 23.6(0.008) 11.7 (0.302) 11.7 (0.301) 4.8 (0.898) 11.7 (0.301)
© (4 28.6 (0.157) 15.6 (0.833) 15.4 (0.842) 9.3 (0.991) 15.3(0.841)

(30) 40.1 (0.082) 22.8 (0.742) 22.7 (0.749) 14.8 (0.972) 22.6 (0.749)

Notes: Each coefficient is reported with the associated r-statistic for the null hypothesis that the esti-
mated value is equal to zero, ) ’

SSR is the sum of squared residuals.

Q(n) reports the Ljung-Box Q-statistic for the autocorrelations of the 1 residuals of the estimated
model. With 122 observations, T/4 is approximately equal to 30. Significance levels are in paren-
theses. ’
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4. Inorder 1o account for the possibility of seasonality, we estimated the ARMA(,

1) model with an additional moving average cocfficient at lag 4, that is, we esti-
mated a model of the form v, = aq + a,v,_, + €, + B€,_; + B.e,_s. More sophisti-
cated seasonal patterns are considered in the next section. For now, note that the
additive expression B,e,_ is often preferable to an additive autoregressive term
of the form a,v,_,. For truly seasonal shocks, the expression €., best captures
spikes—not decay—at the quarterly lags. The coefficients of the estimated
ARMATL, (1, 4)] model are all highly significant with ¢-statistics of 9.21, =3.62,
and 3.36.* The Q-statistics are all very low, implying that the autocorrelations of
the residuals are statistically equal to zero. Morcover. the AIC and SBC strangly
select this model over the ARMA(1, 1) model.

5. In contrast, the ARMA(I, 2) contains a superfluous coefficient. The t-statistic

for (3, is sufficiently low that we should eliminate this model.

Having identified and estimated a plausible model, we want to perform addi-
tional diagnostic checks of model adequacy. Due to the high volatility in the 1970s,
the sample was split into the two subperiods: 1960:1 to 1971:1V and 1972:1 10
1990:1V. Model estimates for each subperiod are

Alwpi, = 0.004 + 0.641Ahwpi,_, + €, - 0351e_, + 0.172¢,, (1960:1-1971:1V)
and
Abwpi,=0.016 + 0.753Ahvpi,_, + €,— 0.39%4¢,_, + 0.335¢,_, (1972:1-1990:1V)

The coefficients of the two models appear to be quite similar; we can formally
test for the equality of coefficients using (2.47). Respectively, the sums of squared
residuals for the two models are SSR, = 0.001359 and SSR, = 0.011681, and from
Table 2.4 we can see that SSR = 0.0134. Since 7= 122 and n = 4 (including the in-
tercept means there are four estimated coefficients), (2.47) becomes

F=1(0.0134 - 0.001359 - 0.011631)/41/[0.001359 + 0.011681)/(122-8)]
=0.78681

With 4 degrees of freedom in the numerator and 114 in the denominator, we can-
not reject the null of no structural change in the coefficients (i.e., we accept the hy-
pothesis that there is no change in the structural coefficients).

As a final check, out-of-sample forecasts were constructed for each of the two

models. By using additional data through 1992:11. the variance of the out-of-sample
forecast errors of the ARMA(1, 1) and ARMA[I. (1,4)] models were calculated to
be 0.00011 and 0.00008, respectively. Clearly, all the diagnostics select the
ARMAIL, (1.4)] model. Although the ARMA[I. (1,4)] model appears to be ade-
quate, other researchers might have selected a decidedly different model. Consider
some of the alternatives listed below:
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1. Trends: Although the logarithmic change of the WPI wholesale appears to be
stationary, the ACF converges to zero rather slowly. Moreover, both the
ARMAC(], 1) and ARMA[L, (1,4)] models yield estimated values of a, (0.887
and 0.791, respectively) that are close to unity. Some researchers might have
chosen to model the second difference of the series. Others might have de-

tests for the appropriate form of the trend.

. The seasonality of e duta was modeled using a moving average term at lag 4:
However, there are many other plausible ways to model the seasonality in the
data, as discussed in the next section. For example, many computer programs
are capable of estimating multiplicative seasonal coefficients. Consider the mul-
tiplicative seasonal model:

(I=a,Lyy,=(1+ P, L)1 + ByLYe,
Here, the seasonal expression B,e,_, enters the model in a multiplicative, rather
than a linear, fashion. Experimenting with various multiplicative seasonal coef-
ficients might be a way to improve forecasting performance.

. Given the volatility of the {Alwpi,} sequence during the 1970s, the assumption
of a constant variance might not be appropriate. Transforming the data using a
square root, rather than the logarithm, might be more appropriate. A general
class of transformations was proposed by Box and Cox (1964). Suppose that all

values of {y,} are positive so that it is possible to construct the transformed {y*}
sequence as

yE=OF-D/A,  A#0
= ln(y)), A=0

The common practice is to transform the data using a preselected value of A.
Selecting a value of A that is close to zero acts to “smooth” the sequence. As in
the WPI example (which simply set A = 0), an ARMA model can be fit to the
transformed data. Although some software programs have the capacity to simul-
taneously estimate A along with the other parameters of the ARMA model, this
approach has fallen out of fashion. Instead, it is possible to actually model the
variance using the methods discussed in Chapter 3.

11. SEASONALITY

Many economic processes exhibit some form of seasonality, The agricultural, con-
struction, and travel sectors have obvious seasonal patterns resulting from their de-

¢ pendence on the weather. Similarly, the Thanksgiving-Christmas holiday season

has a pronounced influence on the retail trade. In fact, the seasonal variation of

some series may account for the preponderance of its total variance. Forecasts that

trended the data using a deterministic time trend. Chapter 4 discusses formal -

2
:
t
k-
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1ignore important seasonal patterns will have a high variance. In the last section, we

saw how the inclusion of a four-quarter seasonal factor could help improve the .

model of the WPI. This section expands that discussion by illustrating some of the
techniques that can be used to identify scasonal patterns.

Too many people fall into the trap of ignoring seasonality if they are working
with deseasonalized or seasonaily adjusted data. Suppose you collect a data set
that the U.S. Burcau of the Census hax “seasonally adjusted” using its X-11
method.® In principle. your seasonally adjusted data should have the seasonal pat-
tern removed. However, caution is necessary. Although a standardized procedure
may be necessary for a government agency reporting hundreds of series, the proce-

dure might not be best for an individual wanting to model a single series. Even if -

you use seasonally adjusted data, a seasonal pattern might remain. This is particu-
larly true if you do not use the entire span of data; the portion of the data used in
your study can display more (or less) seasonality than the overall span. There is an-
other important reason to be concerned about seasonality when using deseasonal-
ized data. Implicit in any method of seasonal adjustment is a two-step procedure.
First, the seasonality is removed, and second, the autoregressive and moving aver-
age coefficients are estimated using Box-Jenkins techniques. As surveyed in Bell
and Hillmer (1984), often the seasonal arid ARMA coefficients are best identified

and estimated jointly. In such circumstances, it is wise to avoid using seasonally
adjusted data.

Models of Seasonal Data

The Box-Jenkins technique for modeling seasonal data is no different from that of
nonseasonal data. The twist introduced by seasonal data of period s is that the sea-

sonal coefficients of the ACF and PACF appear at lags s, 2s, 3s, . . ., rather than at
lags 1,2, 3, ... . For example, two purely seasonal models for quarterly data might
be

vEayave,  lal<r e

and

v,=€ + €4 (2.69)

You can easily convince yourself that the theoretical correlogram for (2.68) is
such that p; = (a,)"* if i/4 is an integer, and p, = 0 otherwise; thus, the ACF exhibits
decay at lags 4, 8, 12, ... . For model (2.69), the ACF exhibits a single spike at lag
4 and all other correlations are zero.

In practice, identification will be complicated by the fact that the seasonal pattern
will interact with the nonseasonal pattern in the data. The ACF and PACF for a
combined seasonal/nonseasonal process will reflect both elements. Note that the fi-
nal model of the wholesale price index estimated in the last section had the form

vo=a,v,., +e€+Pe .+ Bae . (2.70)
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Alternatively, an autoregressive coefficient at lag 4 might have been used to cap-
ture the seasonality:

ylzaIYI—l+a4yl—4+€I+Bl€l-l (2'71)

Both these methods treat the seasonal coefficients additively; an AR or MA cocf-
ficient is added at the seasonal period. Multiplicative seasonality allows for the in-
teraction of the ARMA and scasonal effects. Cons..!2r the multiplicative specifica-
tions: .

(1—a L)y, = (1 +B,L)(1 + BuL¥)e, S am
(1 = a,L)(1 — aLYy, = (1 + B,L)e, . an

Equation (2.72) differs from (2.70) in that it allows the moving average term at

lag 1 1o interact with the seasonal moving average effect at lag 4. In the same way,

(2.73) allows the autoregressive term at lag 1 to interact with the seasonal autore-
gressive effect at lag 4. Many researchers prefer the muitiplicative form since a rich
interaction pattern can be captured with a small number of coefficients. Rewrite
(2.72) as

Yo=Y+ €+ Bigy + Bags + BiBagis (2.74)

Estimating only three coefficients (i.c., a,, B, and B,) allows us to capture the ef-
fects of an autoregressive term at lag 1 and the effects of moving average terms at
lags 1, 4, and 5. Of course, you do not really get something for nothing. The esti-
mates of the three moving average coefficients are interrelated. A rescarcher esti-

- mating the unconstrained model y, = a,y,_; + €, + B,€.; + Pu€, + Pse,_s would nec-

essarily obtain a smaller residual sum of squares, since B is not constrained to
equal B,B,. However, (2.72} is clearly the more parsimonious model. If the uncon-
strained value of Bs approximates the product {3,B,, the multiplicative model will be
preferable. For this reason, most software packages have routines capable of esti-
mating multiplicative models. Otherwise, there are no theoretical grounds leading
us to prefer one form of seasonality over another. As illustrated in the last section,
experimentation and diagnostic checks are probably the best way to obtain the most
appropriate model.

Seasonal Differencing

Spain is undoubtedly the most popular destination for European vacationers.
During the months of July and August, the beaches along the Mediterranean coast
swell ‘with tourists basking in the sun. Figure 2.7 shows the monthly number of
tourists visiting Spain between January 1970 and March 1989; the.strong seasonal
pattern dominates the movement in the series. You will also note that Spain’s popu-
larity has been growing; the series appears to be nonstationary in that the mean is

_increasing over time,
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Figure 2.7  Tourism in Spain.
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This combination of strong seasonality and nonstationarity is often found in eco-
nomic data. The ACF for a nonstationary seasonal process is similar to that for a
nonstationary nonseasonal process; with seasonal data the spikes at lags s, 25,35, ...
do not exhibit rapid decay. The other autocorrelations are dwarfed by the seasonal
effects. Notice ACF for the Spanish tourism data shown in Figure 2.8. The autocor-
relation coefficients at lags 12, 24, 36, and 48 are all close to unity and the seasonal
peaks decay slowly. The coefficients at lags 6, 18, 30, and 42 are all negative since
tourism is always low 6 months from the summer boom. '

Let y, denote the log of number of tourists visiting Spain each month; the first

step in the Box—Jenkins method is to difference the {y,} sequence so as to make-it -

stationary. In contrast to the other series we examined, the appropriate way to dif-
ference strongly seasonal data is at the seasonal period. Formal tests for seasonal
differencing are cxamined in Chapter 4. For now, it is sufficient to note that the
seasonal difference (1 = L'?)y, = y, — ¥,_;» will have a smaller variance than the first
difference y, — y,_y. In the Spamsh data, the strong seasonality means that January-
to-January and July-to-July changes are not as pronounced as the changes between
June and July. Figure 2.9 shows the first ‘and twelfth differences of the data; clearly,
the twelfth difference has less variation and should be easier to identify and esti-
mate.

The logarithmic twelfth difference (i.e., ¥, — ¥,_,,) displays a flat ACF showing
little tendency to decay. The first 12'of the autocorrelations are '
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P1 P2 P3 P Ps Ps P7 Ps Py Pio P Pin
026 031 026 028 023 024 0.19 021 0.19 020 0.15 -0.17

There is no'reasonable way to fit a low-order model to the seasonally differenced
data; the seasonal differencing did not eliminate the time-varying mean. In order to
impart stationarity into the series, the next step is to take the first difference of the

“already seasonally differenced data. The ACF and PACF for the series (1 - L)
(1= L'%)y, are shown in Figure 2.10: the properties of this series are much more
; amenable to the Box-Jenkins methodology. For the first 10 coefticients, the single
. spike in the ACF and uniform decay of the PACF suggest an MA(1l) model. The
: significant coefficients at lags 11, 12, and 13 might result from additive or multi-
plicative seasonal factors. The estimates of the following three models are reported

_in Table 2.5:

(1 =L ~ L)1 = apl)y, =+ BL),

Model 1: Autoregressive
(1L =L(1 = Ly, = (1 + BLY(L + BioL e,

Model 2: Multiplicative moving
average
(1=L"( ~Ly,=(1 +B,L+PB,L"%e,  Model 3: Additive moving average
The point estimates of the coefficients all imply stationarity and invertibility.
Moreover, all are at least six standard deviations from zero. However, the diagnos-
tic statistics all suggest that model 2 is preferred. Model 2 has the best fit in that it
has the lowest sum of squared residuals (SSR). Moreover, the Q-statistics for lags

Figure 2.8 Correlogram of tourism in Spain. ’
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Figure 2.9  First and twelfth differences. S
6

Million s

Jan.'70 Jan. '74 Jan.'78 Jan. '82 Jan. '86
—— First —— Twelfth .
Table 2.5: Three Models of Spanish Tourism
Model 1! Model 2 Model 3
a5 -0.408
(-6.54)
B -0.738 EEER 0.740 e ~-0.640
I (~15.56) (=16.14) (=14.75)
8 R - ST -0.306
? (—=13.12) (~7.00)
SSR 2.823 st B 3.367
alc a8 ‘ 21298 268.70
SBC 2245 219.75 275.47
Q(12) 8.59 (0.571) ’ 4.38 (0.928) 25.54 (0.004)
Q24) ' SR 41011 (0.007) 15.71 (0.830) 66.58 (0.000)
Q(48) 67.91 (0.019) 37.61 (0.806) 99.31 (0.000)

. N .
Clearly, there is no difference between an additive seasonality and maltiplicative seasonality
when all other autoregressive coefficients are zero.
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12, 24, and 48 indicate that the residual autocorrelations are insignificant. In con-
trast, the residual correlations for model 1 are significant at long lags [i.e., Q(24)
and Q(48) are significant at the 0.007 and 0.019 levels] and the residual correla-
tions for model 3 are significant for lags 12, 24, and 48. Other diagnostic methods
including overfitting and splitting the sample suggest that model 2 is appropriate.
The procedures illustrated in this example of fitting a model to highly seasonal
data are.typical of many other series. With highly season

al data, it is necessary to
supplement the Box-Jenkins method:

1. In the identification stage, it is necessary to seasona!!ly 2Tl iCuce g data and
check the ACF of the resultant series. Often, the seasonally differenced data will

not be stationary. In such instances, the data may also need to be first-differ-
enced.

2. Use the ACF and PACF to identify potential models. Try to estimate models
with low-order nonseasonal ARMA coefficients. Consider both additive and

multiplicative seasonality. Allow the appropriate form of seasonality to be deter-
mined by the various diagnostic statistics.

A compact notation has been developed that allows for the efficient representa-
tion of intricate models. As in previous sections, the dth di

fference of a series is de-
noted by A“. For example, '

Azy/ = A(y: - yl—l)
=Ye= 2 4y,

Figure 2.10 ACF and PACF for Spanish Tourism.
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A seasonal difference is denoted by A, where s is the period of the data. The Dth
such seasonal difference is A, For example, if we wanted the second seasonal dif-
ference of the Spanish data, we could form

estimated model (1) is parsimonious; (2) has coefficients that imply stationarity and
invertibility; (3) fits the data well; (4) has residuals that approximate a white-noise
process; (5) has coefficients that do not change over the sample period; and (6) has
good out-of-sample forecasts.

In utilizing the Box-Jenkins methodology, you will find yourself making many
scemingly ad hoc choices. The most parsimonious mode! may not have the best fit
or out-of-sample forecasts. You will find yourself addressing the following types of

A%Z.yl IZOy Ye- l‘ T
=Apy, -8y ;
=Y~ Yietz = Visi2 = Viaa)

2= Wzt Y 2

:model more appropriate than an ARMA(1, 2) specification? How to best model

seasonality? Given this latitude, many view e Box-Jenkins methodology as an ant

_nlhcr than a science. Nevertheless, the technique is best learned through experi-

ence. The exercises at the end of this chapter are designed to guide you through the

S types of choices you will encounter in your own research.

Combining the tw~ *par of differencing yicids AAR Multiplicative models are
written in the form ARIMA(p, d, g)(P. D, Q),

where pand g = the nonseasonal ARMA coefficients

= number of nonseasonal differences

= number of multiplicative autoregressive coefficients;
= number of seasonal differences

= number of muitiplicative moving average coefficients
= seasonal period

"QUESTIONS AND EXERCISES

LoD TR

1. In the coin-tossing example of Section 1, your winnings on the last four tosses

Using this notation, we can say that tht fitted model of Spanish tourism is an (w,) can be denoted by

ARIMA(O, 1, 1), 1, 1),, model. In applied work, the ARIMA(OQ, 1, 1)G, 1, 1), ;
model occurs routinely; it is called the “airline model” ever since Box and Jenkins |

w,= 1/4e, + 1/de,_| + 1/de,_, + 1/de,
(1976) used this model to analyze airline travel data. :

A. Find the expected value of w,. Find the expected value given that ¢, ; =
€,=1.

SUMMARY AND CONCLUSIONS _ ,
A % B. Find var(w,). Find var(w,) conditional on €,y = ¢,_, = 1.
The chapter focuses on the Box~Jenkins (1976) approach to identification, estima- ;
tion, diagnostic checking, and forecasting a univariate time series. ARMA models
can be viewed as a special class of linear stochastic difference equations. By defini-
tion, an ARMA model is covariance stationary in that it has a finite and time;
invariant mean and covariances, For an ARMA model to be stationary, the charae
teristic roots of the difference equation must lic inside the unit circle. Moreover, the
process must have started infinitely far in the past or the process must alwavs be i i
equilibrium. LA
In the identification stage, the series is plotted and the sample autocorrelauons
and partial correlations are examined. As illustrated using the U.S. Wholesale Pnccjf
Index, a slowly decaying autocorrelation function suggests nonstationarity behav__
ior. In such circumstances, Box and Jenkins recommend differencing the da.”

C. Find: i. Cov(w,, w, ) ii. Cov(w,, w,_5) itl. Cov(w,, w,_s)

- Substitute (2.10) into y, = a5 + a,y,_, + €,. Show that the resulting equation is an
identity.

A. Find the homogencous solution to y, = ay + a,y,., + ¢,

B. Find the particular solution given that ,al <1

solutions.

Consxder the second-order autoregressive process Y= ag + ay,, + €, where

Formal tests for nonstationarity are presented in Chapter 4. A common practice is - l <l _
to use a logarithmic or Box-Cox transformation if the variance does not a ear 10 S ..
PP A. Find:i. £y, i. E,_,y, . Ey,.,
be constant. Chapter 3 presents some modern techniques that can be used to modcl . , .
the variance. iv. Cov(y, y,y) v. Cov(y, y,.2) ‘vi. The: pamal autocorrelauons

0y, and ¢,

B. Find the impulse response function. leen Vi2s trace out the effects on an e,
shock on the {y,} sequence.

The sample autocorrelations and partial correlations of the suitably traneformcd
data are compared to those of various theoretical ARMA processes. All plausible
models are estimated and compared using a battery of diagnostic criteria. A well

_Questions: What is the most appropriate data transformation? Is an ARMA(2, 1)

C. Show how to obtain (2.10) by combining the homogeneous and particular

©ag
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C. Determine the forecast function E,v,,.. The forecast error f, is the differ-
ence between v
[Hint: Find E,f,, var(f,), and E(f, f,_) for j=010s.]

. L "
. Two different balls are drawn from o jar containing three balls numbered 1, 2.
and . Let x = number on the first hall drawn and v = sum of the two balis

drawn.

A. Find the joint probability distribution for x and y; that is, find prob(x = 1,

v=3) . problx=1.v=5. .. .. and prob(x =4, v = 6).

B. Find each of the following: E(x), E(v), E(y|x =1), E(x‘_v =35), var(xly =
5), and E(P).

C. Consider the two functions w, = 3x2 and w? = x™". Find E(w, + w,) and
E(w, +w, | y=3).

" D. How would your answers change if the balls were drawn with replacement?

. The general solution to ‘an nth-order difference equation requires n arbitrary
... constants. Consider the second-order equation y, = a + 0.75y,., — 0.125y,_, +

€,

A. Find the homogeneous and particular solutions. Discuss the shape of the
impulse response function.

B. Find the values of the initial conditions (and A, and A,) that ensure the {)“,]
sequence is stationary. (Note: A, and A, are the arbitrary constants in the
homogeneous solution.)

C. Given your answer to part B, derive the correlogram for the {y,} sequence.

. Consider the second-order stochastic difference cquation y, = 1.5y, = 0.5y,, +

€,

A. Find the characteristic roots of the homogeneous equation.

B. Demonstrate that the roots of 1 — 1.5L + O.SL? are the reciprocals of your:

answer in part A.

C. Given initial conditions for y, and v,, find the solution for y, in terms of the

current and past values of the {¢,} sequence. Explain why it is not possible

to obtain the backward-looking selution for v, unless such initial conditions
are given.

D. Find the ferecast function for y .

E. Find: Ey, Ey,,,, var(y,), var(y,, ). and cov(y,,. |, »).

. The file entitled SIM_2.WK! contains the simulated data sets used in this

chapter. The first column contains the 100 values of the simulated AR(1)

.. and Ey,,.. Derive the correlogram of the {f,} sequence. :
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process used in Section 7. This first series is entitled Y1. Use this series to perform
the following tasks. (Note: Due to differences in data handling and rounding, your
answers need only approximate those presented here.)

A. Plot the sequence against time. Do the data appear to be stationary? Show
that the properties of the sequence are :
Sampic mean  -0.3707418062

Variance - 39987
Skewness -0.31011

Stgnificance Level (Sk=0) 0.21239328

B. Verify that the first 12 coefficients of the ACF and PACF are

ACF:
1: 07394472 0.5842742 0.4711050  0.3885974 0.3443779  0.3350913
7. 02972263 0.3251532  0.2689484 0.2007989  0.1886648  0.0824283

PACF:
I: 07394472 0.0827240  0.0302925  0.0255945 0.0601115  0.0889358
7:-0.0165339  0.1438633 -0.1002335 —0.0653566 0.0699036 -0.2040202

Ljung-Box Q-statistics: Q(8) = 177.5774,
0(16)=197.8423, Q(24) = 201.2825

- C. Use the data to verify the results given in Table 2.2.

. D. Determine whether it is appropriate to include a constant in the AR(D)
process. You should obtain the following estimates:

Standard Significance
: Coefficient Estimate . Error t-Statistic Level
1. CONSTANT  —0.538045291  (.380434 146 —1.41429  0.16044514

12, AR{1} 0.756861387  0.067241069  11.25594  0.00000000

;E. Estimate the series as an AR(2) process without an intercept. You should
obtain:

Standard Significance
CoefTicient Estimate Error ¢-Statistic - Level
1. AR{1} 0.7048671016 0.0993987373 7.09131  0.00000000
2. AR{2}

0.1094585628 0.0986680252 110936 0.26998889

" Ljung-Box Q-statistics: Q(8)=5.1317, Q(16) =15.8647, 0(24)=21.0213

F. Estimate the series as an ARMA(I, 1) process without an intercept. You
should obtain:
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Standard Significance
CoefTicient Estimate Error t-Statistic Level
1. AR{1} 0.846376753  0.068533381  12.34985  0.00000000
2. MA( 1} —0.148770547  0.125784398 -1.18274  0.23977273

Verify that the first |2 coefficients of the ACF and PACF of the residuals are:

ACT:
o -00060900  -0N2A5955  ~0.0375520 -0.0749124  —0.0683620  0.0546530
7: -0.0808082 0.1598166 0.0732022 -0.0080406 0.1686742 -0.0484844

PACF:
1: 0.0069909 -0.0366462 -0.0381264 ~0.0770739 ~0.0733243  0.0460005
7: -0.0923797 0.1542973 0.0630681 0.0027253 0.1917630 ~-0.0374165

significance level 0.5 1057476
significance level 0.32919794
significance level 0.51487365

Ljung-Box Q-statistics: Q(8) = 5.2628,
. Q(16) = 15.7449,
0(24) =21.0950,

G. Compare the AIC and SBC values from the models estimated in parts D, E,
and F.

. The second column in file entitled SIM_2. WK contains the 100 values of the

simulated ARMA(], 1) process used in Section 7. This series is entitled Y2.
Use this series to perform the following tasks. (Note: Due to differences in data
handling and rounding, your answers need only approximate those presen;ed

here.)

A. Plot the sequence against time. Do the data appear to be stationary? Show
that the properties of the sequence are:

0.02254818000  Variance 5.743104

Sample mean
-0.06175 Significance level (Sk-=0)  0.80390523

Skewness

ACF:
1. -0.8343333 0.5965289  ~0.4399659 0.3497724  -0.3187446  0.3316348
7. -0.3371782 03166057 ~0.2761498  0.1789268 -0.0839171  0.0375968

PACF:

1: -0.8343833 —0.3280611 -0.1942907 -0.0145160 -0.1398293  0.0891764
70 0.0004335  0.0143663  0.0166776 -0.1987829 —0.0462213 —0.0212410

B. Verify the results in Table 2.3,

. The third column in SIM_2.WK!1 contains the 100 values of an A
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C. Estimate the process using a pure MA(2) model. You should obtain:

Standard Signifi
' ' gnificance

Coefficient Estimate Error t-Statistic Level
I.MA(1} —1.152648087 0.087208938 -13.21709 0.00000000
2. MA{2) 0.521919469 0.087336869 5.97594  0.00000004
D. Verify that the first 12 coetlicients of the ACF and PACF of the residuals

are
ACF:

I.: -0.1281102  0.2841720 -02721070  0.0641308 -0.1690135  0.1591088
701711865 0.1009624  -0.2300744  0,0202238 -0.0918914  ~0.0507396

" PACF:

b -0.1281102  0.2722277 =0.2314021 -0.0521753 —0.0407344  0.0989550
7:-0.1253922 —0.0203505  -0.1278106 -0.0870339  0.0170745 ~-0.1709188

Ljung~Box Q-statistics: 08) = 28.4771,
o(16) = 37.4666,
0(24) = 38.8424,

significance leve] 0.00007638
significance level 0.00062675
significance level 0.01470990

R(2) process;
. owing tasks. (Note:
g and rounding, your answers need only ap-

this series is entitled Y3, Use this series to perform the foll
Due to differences in data handlin
proximate those presented here.)

A. Plot the sequence against time. Verify the ACF and PACF coefficients re-

ported in Section 7. Compare the sample ACF and PACEF t
¢ th -
oretical AR(2) process. © (hose of a the

B. Estimate the series as an AR(1) process. You should find:

Standard Signi
. . gnificance
CoefTicient Estimate Error t-Statistic Level
1. AR{1} 0.4676067905 0.089295] 880 523664 0.00000093
ACF of the Residuals: :
11 0.2226399 -0.3349466 -0.3386407 0.0569540 0.0807033 -0.1656232
7: -0.1358947 0.1490039 041810292‘ —0.0022135 -0.0893884 -0.0245175

PACF of the Residuals:

1102226399  -0.4045690 =0.1309423  0.0803672 ~0.1663664  ~0.2353309
7: -.-0‘0327129 0.0578083  ~0.0587342 0.0005358  0.0422312 -0.0381843

Sty . . e b
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Ljung-Box Q-statistics: Q(8) = 36,9968,
Q(16) = 55.8708,
Q(24) = 69.0486,

significance level 0.00000470
significance level 0.00000127
significance level 0.00000170

C. Why is the AR(1) model inadequate?

D. Could an ARMAC(I, 1) process generate the type of sample ACF and PACF:’ ,

found in part A? Estimate the serics as an ARMA(1, 1) process. You
should obtain:

Stundard Significance
Coefficient Estimate Error t-Statistic Level

1. AR{1} 0.1861328174 0.1592235925 1.16900  0.24526729
2. MA{1}) 0.5057665581 0.1407905283 3.59233  0.00051680
ACF of the Residuals:
1: 0.0284101 -0.1131579 -0.3143993 0.0716440  0.0162748 -0.1293382
7. -0.1197985 0.1392267 0.1194444 0.0174992 -0.1155456  0.0427301
PACEF of the Residuals:
1: 0.0284101 -0.1140571 -0.3118831 0.0757999 -0.0596767 —0.2396433
7: -0.0872039 0.1041284 —0.0272326 ~0.0175071 -0.0164607 0.0486076

Ljung-Box Q-Statistics: Q(8) = 17.7685,
Q(16) =37.0556,
0(24) = 44.9569.

significance level 0.00683766
significance level 0.00072359
significance level 0.00268747

Why ts the ARMA(L, 1) model inadequate?

E. Estimate the series as an AR(2) process to verify the results reported in the
text. Also show that

ACF of the Residuals:

I: 0.0050856 0.0167033 -0.1311013  0.0737802 -0.0183142 —0.1857531
7: -0.1223167  0.1169804  0.0827404 -0.0445903 -0.1014803  0.0879798
13: -0.1499004  0.0365971 -0.1062701  0.2608459 —-0.0365855 -0.1119749
19: -0.0855518  0.0179101  0.0695385 -0.1661957 -0.0183144  0.0479631

PACEF of the Residuals:
1 0.0050856  0.0166779 -0.1313096  0.0764420 -0.0160463 -0.2098313
7: =0.1023138  0.1265615 0.0378627 —0.0653412 -0.0679885 0.0629571

13: ~0.2287224  0.0563135 -0.0068239  0.2076758 -0.0936362 -0.1587757
19: <0.0419646 —0.0410407  0.0716762 —0.1014686  0.0384143 -0.0779761
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Ljung-Box Q-Statistics: Q(8) = 9.2697,
Q(16) = 24.6248,
0(24)=31.8487,

significance level 0.15896993
significance level 0.03845761
significance Ievel 0.08001287

The Q-statistics indicate that the autocorrelations at longer lags are statistically

different from zero at the usual significance levels. Why might you choose not 10
model such long lags when using actual economic data?

F. Now estimate the series as an AR(2) but also include a moving average
term at lag 16. Show that the residuals are such that

- ACF of the Residuals:
C 1 00265736  0.0040771 -0.0933018  0.0858766  0.0225622 -0.1521287
7. -0.1643954  0.0947202  0.1447444  0.0017055 -0.0718022 0.0512581

13: -0.1023376  0.0151149 -0.1029252  0.0174225 -0.0629532 -0.1078434

19: -0.0754905 -0.0307818  0.0130560 -0.1275938 0.0223896  0.0338]57
PACEF of the Residuals:

1:  0.0265736  0.0033733 -0.0935665 0.0917077  0.0182999 -0.1663372
7. -0.1432380  0.1106009  0.1204167 -0.0169905 ~0.0350092 0:0517180
13: -0.1887574  0.0078523  0.0014991 0.0232808 -0.0985569 -0.1417484

19: -0.0753388 -0.0797882  0.0086627 —0.1045587  0.0291697 -0.0227024
Ljung-Box Q-statistics: Q(8) = 8.2222,
Q(16)=13.9801,
0(24) = 19.0856,

significance level 0.14440657
significance level 0.37524746
significance level 0.57964913

C. Compare the AIC and SBC values from the models estimated in parts B, D,
E,and F.

. The file called WPLLWK1 contains the U.S. Wholesale Price Index from

1960:Ql to 1992:Q32. Make the data transformations indicated in the text.

A. Use the sample from 1960:Q1 to 1990:Q4 in order to reproduce the results
“of Section 10.

B. Use the fitted model to create “out-of-sample” forecasts for the 1991:Q1 to
1992:Q2 period.

C. Consider some of the plausible alternative models suggested in the text.
i. Try to fit a model to the second-difference of the logarithm of the WPI.

ii. Estimate the multiplicative seasonal model

D. Compare these models to that of part B.
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The file entitled US.WK1 contains quarterly value of the U.S. money supply

(M 1) from 60:Q1 to 91:Q4. :

A. Plot the sequence against time. Verify that the pwﬁé{’_ties of the sequence
are T

Sarrtomean 3.80169890625 Vari: nce o 5.260577E+22
Skewness 0.83949 Significance level (Sk=0) 0.00012712

B. Detrend the data by estimating the reuression:
Alog(M1) = a, + b(time) + €,
The ACF of the residuals is

1- 0.8835022  0.8752123  0.8064355  (.8334758  0.7165115  0.6968131

7. 06249026  0.6437679  0.5285896  0.5118881 0.4507793 04770092 |

Ljung-Box Q-statistics: Q(8) = 630.0809, significance level 0.000
O(16) = 836.4612, significance level 0.000

Does detrending seem to render the sequence staticnary?

C. Calculate the ACF and PACEF of the first difference of log(M1). You should
obtain:

ACF:

I: 0.5394848  0.3234781 -0.5573607  0.8528067 —0.5168406  0.2986240 )

7. 20.5523817 07950047 -0.5096188  0.2695013 -0.5425407  0.7549618

PACF:
1 ~0.5304848  0.0457493 -0.5175494  0.7167389 -0.0356317 -0.1396979

7. -0.0457462  0.1998479 -0.0995162 —0.1475262 -0.0125845  0.0905883 ';

Explain the observed pattern at lags 4, 8. and 12.
D. Seasonally difference the money supply as &, log(M1) = A log(M1),
- Alog(M1),_. You should find that the ACF and PACF are

ACF:
1 0.8585325 0.7148654 0.5452426 0.3963377 0.3401345-  0.2636718
7. 0.1814409 0.0991204 0.0554050 0.0287039 0.0423198  0.0651970

PACE:

1: 08585325 ~-0.0844838 -0.1831526 -0.0283342  0.2688532 —0.1594976 R

7. —0.1789985 -0.0055668  0.2312324 -0.0787959 -0.0015501 0.0736405
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E. For convenience, let ml, denote A, log(M1). Estimate the seasonally differ-
enced log of the money supply as the AR(1) process:

mly=a,+aml_, + €,

. Standard - Significs
Coefficient . Estimate Error t-Statistic lg?lhi'c:'nce
CONSTANT 0.06217 0.0090502490  6.86967 0.000000
AR{1} - 0.86241 0.0446622831 1020070 nNnooes

ERVAVIVIV]

Examine the diagnostic statistics to show that this model is inappropriate

F. Estimate log(M1) using each of the following:

ARIMAC(L, 0,0)0, 1, 1)
ARIMA[L, 0, )]0, 1, 0)

Why is each inadequate?

G. Define Aml, = ml, — ml,_, so that Aml, is the first difference of

. h
difference of the money supply. Estimate Aml, as ¢ seasonal.

Aml,:(l +B4L4)€, . Lt

You should. obtain:

' v Standard Si niﬁcance
Coefficient Estimate Error t-Statistic gLevel
MA{4) . —0.672328387  0.071121156 -9.45328 . 0.00000000

ACEF of Residuals:

I: 0.0616653  0.1387445 —-0.0388472  0.0720538 0.0875724 0.0110692
7. -0.0622441  -0.0953258 -0.0131446 —0.1265891 -0.0802878 —0.0407282

PACF of Residuals:

I: 0.0616653  0.1354570 -0.0558297  0.0601665 0.0952727 -0.0207820

7: -0.0826424  -0.0831404  0.0052625 -0.1232642 -0.0717116  0.0263945

Ljung-Box Q-statistics: Q(8) = 6.5331, significance level 0.479
Q(16) = 10.3813,  significance level 0.795
Q(24) = 14.0666, significance level 0,925
Q(32) =17.4491, - sign_iﬁcance level 0.976

Explain why this model is superior to any of those in part F.

3
3
3
£
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ENDNOTES

I. The appendix to this chapter provides a revicw ol constructing joint probabilities, ex-
pected values, and variances.

2. Some authors let T equal the maximum number of observations that can be used in the es-
timation; hence, T changes with the number of parameters estimated. Since there is no un-
derlying distributional theory associated with the AIC and SBC, this procedure cannot he
said to be incorrect. Also be aware that there are several equivalent formulations of the
AlC and SBC. Your software package may nut yicld the precise numbers reported in e
text.

3. Newl, an coonoiietric software packages oo o Box—Jenking esusnanon procedure.
Mechanics of the estimation usually entail nothing more than specifying the number of
autoregressive and moving average coefficients 10 include in the estimated model.

4. Most software programs will not be able to estimate (2.43) since there is not a unjque set
of parameter values that minimizes the likelihood function.

5. Some software programs report the Durbin-W atson test statistic as a check for first-order
serial correlation. This well-known test statistic is biased toward finding no serial correla-

tion in the presence of lagged dependent variables. Hence, it is ususally not used in -

ARMA models. :

6. Estimation of an AR(p) mode! usually entails a loss of the number of usable observa-
tions, Hence, to estimate a sample using T observations, it will be necessary to have (T +
p) observations. Also note that the procedure outlined necessitates that the second sub-
sample period incorporate the lagged values 1, t,,_(, ..., tpput-

7. Many of the details concerning optimal forecasts are contained in the appendix to Chapter
3.

8. In essence, the estimated equation is an ARMA(!, 4) mode!l with the coefficients {3, and
B3, constrained to be equal to zero. In order to distinguish between the two specifications,
the notation ARMA(I, (1,4)] is used to indicate that only the moving average terms at
lags | and 4 are included in the model.

9. The details of the X-11 procedure are not important for our purposes. The SAS statistical
package can preform the X-11 procedure. The technical details of the procedure are ex-
plained in the Bureau of the Census report (1969).

APPENDIX Expected Values and Variance

1. Expected value of a discrete random variable )
A random variable x is defined to be discrete if the range of x is countable. If x
is discrete, there is a finite set of numbers x,. x,, ..., x, such that x takes on
values only in that set. Let f(x;) = the probability that x = x;. The mean or ‘ex-
pected value of x is defined to be

E(x)= ) x,[(x))

J=t

Note the following: ' A

3. Expected value of a function !
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. We can let 7 go to infinity; the notion of a discrete variable is that the set be

.dgnumgrab}e” or a countable infinity. For example, the set of:all positive
ntegers is discrete.

. Ifojf(,rj) does not converge, the mean is said not to exist,

. E(x) is an “average” of the possible values of x; in the sum, e

: . ach possible x
ts weighted by the probability that x = X;, that is, e

Loy =wyx, +wpx, + o WX,

where Zwy =

- Expected value of a continuous random variable

No»y let x be a continuous random variable. Deno
the interval (x,, x,} be denoted by f(x, <
by Figure A2.1, it follows that

te the probability that x is in
X £.x,). If the function f(x) is depicted

f(.rOst,r,)zjf(x)dx

o
The mean, or expected value, of x is S

oo

E(x)= J'xf(_r) dx

—oo

&

Let x be a random variable and g(x) a function. The

; mean or ex
o expected value of

Elg(x)]= Y g(x;)f(x)

=

Figure A2.1 Frequency of x.
flo) -
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for diserete x or

Flg(n)= je« r)f(x) dr

—oo

for continuous x. Note: If g(x;) = x;, we obtain 1 1 simple mcan.
4. Properties of the expectations operator

. The expected value of a constant ¢ is the valuc of the (:Qﬁstam That is.
E(¢c)=c.

Proof:

oo

g(x):cjcf(x) d,\‘zcjf(x) dyx=c

oo —o0

2. The expected value of a constant times a function is the constant times the
expected value of the function. ~ ;

LY iR

Proof:

Fleg(0l= [ cgtfx) de=c [ u(x)f (o) dx = cElg(x)}

ot

3. The expected value of a sum is the suin of the expectations:
Ele,g1(0)  cy85(0)] = ¢, £g,(¥) = cEgx(x)

Proof:

=3
oo

'[[clgxi})i cﬂzé@iﬁb dx = Jclgl () f(x)ydek Jc‘zgz(x)f(x) dx

—oo
—cn

= ¢ Elg, ()] £ c,E{g,(x)]

S. Variance of a Random Variable .
The variance of x is defined such that var(x) = E{[x = E()]"}:

Var(x) = E[¥* = 2x E(x) + E(x) E(x)]

Appendix 131

Since E(x) is a constant, E[E(x)] = E(x) and E{xE(x)] = [E(x)]*. Using these
results and the property that the expectation of a sum is the sum of the expecta-
tions, we obtain

Var(o) = E() - 2E[x E(0)] + B}
= E(F) = [Ewyy

. Jointly Distributed Discrete Random Variables

Let x and y be random variables such that xtakes on values x, x,,...,x,and y

valiee v v, Monlet [y dencie the probability that x = x; and y = y;. If
glx, y) denotes a funcuon of x and y, the expected value of the function is

Elg(x, y)]—ZZf,,g(x,.y,
ci=l j=l

Expected value of a sum
Let the function g(x, y) be x + y. The expected value of x + yis: .

E(X+)’)=22f,j(xi+)’j)

i
=szuxi+zzf.y)’j
BEE e 1 J I J

=Z(fljx1+f2sz+ +f;lj'xn)+2(f;'lyl+ﬁ2y2+ At fimYm)
j i

Note that (f,, + fi> + fi3 + - + f1,.} is the probability that x takes on the value
x, denoted by f|. More generally, (f; + f + fia + - + f;) is the probability
that x takes on the value x; denoted by f; or f(x). Since (fy; + for + fo; + = +

f.) is the probability that y = y, denoted by f(y,), the two summations above .

can be written as

E(x + y) = L f(x)) + Zyf(y;)
= E(x) + EQ)

Hence, we have generalized the result of 4.3 above to show that the expected :

value of a sum is the sum of the expectations.

. Covariance and Correlation

The covariance bétween x and y, cov(x, y), is defined to be

Cov(x, y) = E{[x - ExO]Ily - E()’)]}
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. Conditional Expectation

. Statistical Independence
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Multiply [x ~ E(x)} by [y — E(y)] and use the property that the expected E(xy) = .
’ )= fuxy, +
value of a sum is the sum of the expectations: W S22 % ik bt £ xy, ¢ faxayi+ fxyy,

Hfak Yyt oy et TaiZa¥i + fu2%, 92 + frsXuys + o

nmxnym
Cov(x, ) = E(xy) = ELXE()] = E[E(0)] + EE(OER)) 4 i indepe
S S~ ElsE) 5 Since x and y are independent, fy= flx)f(y). Hence
E(xy) = Zf:‘lxiyl + o +Z-f;mxiym
i=1 i=1

The correlation coefTicient between v and v is defined to be

___covlxy) ¥ n
yvar(x)yva. . ) y " SRR =2f(x‘.)f\)l)xiyl +Zf(x‘)f(y2)xiy2+ +ZJ\"i)f()’m)fV')' .
i=l i=1 i= o
Since cov{x, ¥) = L(xy) = E(x)E(x), we can 2xpress the expectation of the prod- & -

uct of x and y, E(xy), as

i=|

=f()’1))’|2f(x,»)xi + .. +f(ym)}’m2f(x,~)x,-
i=|
E(xy) = E()E(y) 4 covix, ¥) .
= E()EW + py, 0,0, Recall that Xf(x)x; = E(x). Thus
where the standard deviation of variable z (:lenoted by o) = the positive square
root of z. E(xy) = EQ[f(y,)y, + fOy, + -+ Fmdy )
so that E(xy) = E(x)E(y). Since cov(x, y) = E(xy) —
follows that the covariance and correlation
. events is zero,

EXE(y), it immediately

Let x and y be jointly distributed random variables, where fi denotes the prob- coefficient. of two independent

ability that x = x; and y = y,. Each of the f; values is a conditional probability;
each is the probability that x takes on the value », given that y takes on the spe-
cific value y,.

The expected value of x conditional on y taking on the value y;is:

.. An Example of Conditional Expectation

' Since the concept of conditional expectation plays such an important role bin
moc!em macroeconomics, it is worthwhile to consider the specific example of
tossing dice. Let x denote the number of spots showing on die 1, y the number
.of spots on die 2, and § the sum of the spots (S=x + ¥). Each die is fair so that
t}?e probability of any face turning up is 1/6. Since the outcomes on die 1 and
die 2 are independent events, the probability of any specific values forxand y

is thc. product of the probabilities. The possible outcomes and the probability
associated with each outcome $ are - '

E(—"|.\’,) = fljxl oyttt fnj-\’n

If x and y are statistically independent, the probability of x = x; and y = yiis
the probability that x = x; multiplied by the probability that y =y, If we use the
notation in number 6 above, nwo events arc stutistically independent if and only
if £, = f(x)f(y). For example, if we simultaneously toss a fair coin and roll a
fair die, the probability of obtaining a heal and a three is 1/12; the probability
of a head is 1/2 and the probability of obtaining a three is 1/6.

An extremely important implication follows directly from this definition. If
xand y are independent cvents, the expected value of the product of the out-
comes is the product of the expected outcomes:

s 2 3 4 5 6 7 8 9 10 11 12

f) 136 2736 336 4736 5736 6/36  5/36 4/36 3/36 2/36 1736

To find the expected value of the su
the probability associated with that o
been to Las Vegas, the expected valu
quentially and that the first turns up 3
sum given that x = 3? We know that y

m S, multiply each possible outcome by
utcome. As you well know if you have
e is 7. Suppose-that you roll the dice se-
Spots. What is the expected value of the
can take on values | through 6 each with

E(oy) = E(0)E(y)

The proof is straightforward. Form E(xy) as




-
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a probability of 1/6. Given x = 3, the possible outcomes for S are 4 through 9,
each with a probability of 1/6. Hence, the conditional probability of S given
three spots on die 1 is E(Slx =3) = (1/6)4 + (1/6)5 + (1/6)6 + (1/6)7 + (1/6)8 +
(1/6)9 =6.5.

Chapter 3

- MODELING ECONGMIC
TIME SERIES: TRENDS AND
VOLATILITY

: Many cconomic time series do not have a constant mean and most cxhibit phases
of relative tranquility followed by periods of high volatility. Much of the current

_ analyze this type of time-series behavior. The aims of this chapter are to:

1. Examinec the so-called stylized facts concerning the propertics of cconomic time-
series data. Casual inspection of GNP, financial aggregates, interest and ex-
change rates suggests they do not have a constant mean and variance, A stochas-
tic variable with a constant variance is called homoskedastic as opposed to
heteroskedastic.' For series exhibiting volatility, the unconditional variance
may be constant even though the variance during some periods is unusually
large. You will learn how to use the tools developed in Chapter 2 to model such
conditional heteroskedasticity.

. Formalize simple models of variables with a time-dependent mean, Certainly, the
mean value of GNP, various price indices, and the money supply have been in-
creasing over time. The trends displayed by these variables may contain determin-
istic and/or stochastic components, Learning about the properties of the two types
of trends is important. It makes a great deal of difference if a series is estimated
and forecasted under the hypothesis of a deterministic versus stochastic trend.

. Iustrate the differcnce between stochastic and deterministic trends by consider-
ing the modern view of the business cycle. A methodology that can be used to
decompose a series into its temporary and permanent components is presented.

1. ECONOMIC TIME SERIES: THE STYLIZED FACTS

Figures 3.1 through 3.8 illustrate the behavior of some of the more important vari-
ables encountered in macrocconomic analysis. Casual inspection does have its per-
ils and formal testing is necessary to substantiate any [lirst impressions. However,

- econometric research is concerned with extending thc Box-Jenkins methodology Lo -

S B



7
%

T

N,

136 Mdeling Economic Time Series: Trends aond Volatilite

; Figure 3or ULS GNP (TO8S prices).
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the strong visual pattern is that these series are not stationary; the sample means do
not appear (o be constant and/or there is the strong appearance of heteroskedastic-
ity. We can characterize the key features of the various scries with these “stylized
facts™

1. Most of the series contain a clear trend. Real GNP and its subcomponents and
the supplies of short-term financial instruments exhibit a decidedly upward
trend. For some serics (interest, and inflation rates), the positive trend is “Tnter-
rupted by a marked decline, followed by a resumption of the positive growth,
Nevertheless, it is hard to maintain that these serics do have a time-invariant
mean. As such, they are not stationary.

Figure 3.2 Investment and government consumption (1985 prices).
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Fifgure 33 Chcdmblc deposits and moncy marke! instrumenis,
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. Some series scem to meander. The pound/dollar exchange rate shows no par-
ticular tendency to increasc or decrease. The pound scems to.go through sus-
tained periods of appreciation and then depreciation with no tendency to revert

to a long-run mean. This type of “random walk” behavior is typical of nonsta--
tionary series.

Any shock to a series displays a high degree of persistence, Notice that the
Federal Funds Rate experienced a violently upward surge in 1973 and remained
at the higher level for nearly 2 years. In the same way, UK. industrial produc-

tion plummeted in the late 1970s, not relurning to its previous level until the
mid-1980s.

. 4. The volatility of many serics is not constant over time. During the 19705,

:U.S. producer prices fluctuated wildly as compared with the 1960s and 1980s.
: Real investment grew smoothly throughout most of the 1960s, but became
 highly variable in the 1970s also. Such series are called conditionally het-
+ eroskedastic if the unconditional (or long-run) variance is constant but there are
periods in which the variance is relatively high.
5. Some scries share comovements with other series. Large shocks to U.S. in-
dustrial production appear to be timed similarly to those in the U.K. and Canada.
Short- and long-term interest rates track cach other quite closcly. The presence
of such comovements should not be too surprising. We might cxpect that the un-

derlying economic forces affecting U.S. industry also affect industry internation-
- ally.
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Figure 3.4 U.S. moncy supply: M2.
4

Figure 3.6  U.S. price indices (percent change).
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Please be aware that “cyeballing” the data is not a substitute for formally testing
for the presence of conditional heteroskedasticity or nonstationary behavior.?
Although most of the variables shown in the figures are probably nonstationary, the
issue will not always be so obvious. Fortunately. it is possible to modify the tools
developed in the last chapter to help in the identification and estimation of such se-
rics. The remainder of this chapter considers the issue of conditional heteroskedas:
ticity and presents simple models of trending variables. Formal tests for the pres-

ence of trends (either deterministic and/or stochastic) arc contained in the m;:m.
chapter. The issue of comovements must wait untit Chapter 6.

et PR ATREAL S

2. ARCH PROCESSES

In conventional econometric models, the variance of the disturbance term is as- -
sumed to be constant. However, Figures 3.1 through 3.8 demonstrate that many
economic time series exhibit periods of unusually large volatility followed by peri-
ods of relative tranquility. In such circumstances, the assumption of a constant vari-
ance (homoskedasticity) is inappropriate. It is easy to imagine instances in which
you might want to forecast the conditional variance of a series. As an asset holder,
you would be interested in forecasts of the rate of return and its variance over the
holding period. The unconditional variance (i.e., the long-run forecast of the vari-
ance) would be unimportant if you plan to buy the assct at £ and sell at £ + 1.
One approach to forecasting the variance is to explicitly introduce an indepen-
dent variable that helps to predict the volatility. Consider the simplest case in which

Figure 3.5 Short- and long-term U.S. interest rates.
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the variable of interest
a white-noise disturbance term with variance 6%
an independent variable that can be observed at period ¢
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M x, = x_y = x,_, =~ = constant, the'{y,} sequence is the familiar white-noise
process with a constant variance. However, when the realizations of the {x,} se-
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Figure 3.7 Exchange rate indices (currency/dollar).
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quence are not all cqual, the variance of y,,, condl&mﬁﬂﬂﬂ ﬁwﬂbscwablc value of
X, is

Var(y,,, | x) = }0?

Here, the conditional variance of y,,, is dependent on the realized value of x,. Since
you can obscrve x, at time period ¢, you can form the variance of y,,, conditionally
on the realized value of x,. If the magnitude (v is large (small), the variance of
Y1 will be large (small) as well. Furthermore. if the successive values of {x,) ex-
hibit positive serial correlation (so that a large value of x, tends to be followed by a
large value of x,,,), the conditional variance of the {y,} sequence will exhibit posi-
tive serial correlation as well. In this way, the introduction of the {x,} sequence can
explain periods of volatility in the {y,} scquence. In practice, you might want to
modify the basic model by introducing the coefficients a4 and g, and estimating the
regression equation in logarithinic form as

hi(y,) = ag+ a, In(x,_;) + e,

where e, = the error term [formally, ¢, = In(e,)}

The procedure is simple to implement since the logarithmic transformation re-
sults in a lincar regression equation; OLS can be uscd to estimate a, and a, directly.
A major difficulty with this strategy is that it assumes a specific cause for the
changing variance. Often, you may not have a firm theoretical reason for selecting
one candidate for the {x,] sequence over other reasonable choices. Was it the oil
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price shocks, a change in the conduct of monctary policy, and/or the breakdown of
the Bretton-Woods system that was responsible for the volatile WPY during the
1970s? Moreover, the technique necessitates a transformation of the data such that
the resulting series has a constant variance. In the example at hand, the {e,} sc-
quence is assumed to have a constant variance. If this assumption is violated, some
other transformation of the data is necessary.

ARCH Processes

Instead of using ad hoc variable choices for x, andfor data transformations, Engle
(1982) shows that it is possible to simultancously model the mean and variance of a
series. As a preliminary step to understanding Engle’s methodology, note that con-
ditional forecasts are vastly superior to unconditional forecasts. To elaborate, sup-
pose you cstimate the stationary ARMA model y, = «a, + a,y,_, + €, and want to
forecast y,,,. The conditional forecast of y,,, is:

Ly =ay+ay,
If we use this conditional mean to forecast y,,,, the forecast crror variance is
El — ay — ay)"] = Ef€%, = 6% Instead, if unconditional forecasts are uscd, the
uncondmonal forccast is always (he long-run mean of the {y,} sequence that is

cqual to ay/(1 ~ a,). The unconditional {orecast error variance is

E{ly,,, —ay/(1 - ”|)12) =Ll(e,, +u g+ “%61—1 + ll?E:-z + )2]
=61 - ad)

Figure 3.8 Industrial production.
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Since (1 ~ aj) > 1, the unconditional furecast has a greater variance than the
conditional forccast. Thus, conditional forecasts (since they take into account the
known current and past realizations of serics) are preferable.

Similarly, if the variance of {€,} is not constant, you can estimate any tendency
for sustained movements in the variance using an ARMA model. For example, let

{€,] denote the estimated residuals from the model y, = a4 + a,y,, + €, so that the

conditional variance of y,,, is

V'"'(.)H»I I.YI) - (.):nl "”!)“al.))l) ]
=Eg,,

Thus far, we have set Ee2,, equal to o, Now suppose that the conditional vari-
ance is not constant. One simple strategy is to model the conditional variance as an
AR(q) process using the square of the estimated residuals:

2= Oy + L + 0,87, + - + QEL  + v, 3.0

where v, = a white-noise process

If the values of o, O, . .., o, all equal zcro, the estimated variance is simply
the constant o, Otherwise, the conditional variance of y, evolves according to the
auto: tgressive process given by (3.1). As such, you can use (3.1) to forecast the
conditional variancc at f + 1 as

a2 A2 ~ 2 A2
E&ia=0,+ Oyer + Oy + -+ aqEH-l—q i

For this reason, an cquation like (3.1) is called an autoregressive conditional

heteroskedastic (ARCH) model. There are mmany possible applications for ARCH

models since the residuals in (3.1) can come from an autoregression, an ARMA

model, or a standard regression model.

In actuality, the lincar speeification of (3.1) is not the most convenient, The rea-’
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Le,= Elv,(t, + o€, )"

= Ev, (0 + o€l ) = R 3
Since Evy,_; = (), it also follows that
Eee,_. =0, i#0 (3.4)

The derivation of the unconditional variance of e, is also s(mlbhlf()rw(ml Square
¢,and take the unconditional expectation to form ' :

Eelz = E["rz(ao + alelz—l)l
= EviE(o + o€l )

Since ¢® = 1 and the yaconditional variance of €, 18 xdcmmi m ﬁ’mt m €., (i.c.,
Ee? = Ee2_)), the unconditfonal variance is

Ee} = o/(1 - o)) (3.5)
Thus, the unconditional mean and variance are unaffected by the presence of the
error process given by (3.2). Similarly, it is easy to show that the conditional mean

of €, is equal to zero. Given that v, and €,_; are independent and v, = 0, the condi-
tional mean of ¢, is

E(e e, € q .. )= Ev Lo, + o€t ) =0

At this point, you might be thinking that the propertics of the {e,} scqucnéé are

. not affected by (3.2) since the mean is zero, the variance is constant, and all autoco-
‘vamnces are zero. However, the influence of {3.2) falls entirely on the conditional

{ variance. Slncc o= I, the variance of €, conditioned on the past history of e

=15 €122

e
R
&
"
a
&
3
4

son is that the model for {y,} and the conditional variance are best estimated simul-
tancously using maximum likelihood techniques. Instead of the specification given
by (3.1), it is more tractable to specify v, as a multiplicative disturbance. :

The simplest example {rom the class of multiplicative conditionally hetero-
skedastic models proposed by Engle (1982) is

e, =voy, + e, i 32

E(e} ‘ €ty €an v - ) = Oty + 0L €] (2.6)

In'(3.6), the conditional variance of ¢, is dependent on the realized value of €2
If the realized value of €7, is large, the conditional variance in ¢ will be large as
well. In'(3.6) the conditional variance follows a {irst-order autorcgressive process
denoted by ARCH(1). As opposed to a usual autoregression, the cocefficients o, and
a; have to be restricted. In order to ensure that the conditional variance is never
negative, it is necessary to assume that both o, and o, are positive. After all, if «,
is negative, a sufficiently small realization of e,, will mean that (3.6)is negative.
Similarly, if a; is negative, a sufficiently large realization of €,_, can render a nega-
tive value for the conditional variance. Morcover, (o ensure the stability of the au-
toregressive process, it is nccessary to restrict o, such that O < oy < 1,

where v, = white-noise process such that 62 = 1, v, and €, are independent of cach
other, and @, and @, are constants such that ¢, >0and 0 <o, < 1.

Consider the properties of the {€,} sequence. Since v, is white-noise and indepen-
dent of €, |, it is easy to show that the clements of the {€,} sequence have a mean of
zero and arc uncorrclated. The proof is straig htforward. Take the unconditional ex-
pectation of €,. Since Ev, =0, it follows that
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Equations (3.3), (3.4), (3.5), and (3.0) illustrare the cssential features of any
ARCH process. In an ARCH model, the crror structure is such that the conditional
and unconditional means are equal to zero. Moreover, the {€,] sequence is serially
uncorrelated since for all s # 0, Eee,_, = 0. The key point is that the errors are not
independent since they are related through their second moment (recall that con’c.la-
tion is a linear relationship). The conditional variance itself is an autoregressive
process resulting in conditionally heteroskedastic crrors. When the realized value ?f
€,.; is far from zero—so that o, (€, )? is relatively large—the variance ofie,' wx‘ll
tend to be large. As you will sce momentarily. the conditional heteroskedasticity in

{€,} will result in {y,) being an ARCH process. Thus, the ARCH model is able to

capture periods of tranquility and volatility in the {y,} series.

The four graphs of Figure 3.9 depict two different ARCH models. The upp'cr-i‘
Jeft-hand graph (a), representing the {v,} sequence, shows 100 scrially uncorrelated *
and normally distributed random deviates. I'rom casual inspection, the {v,} se-

Fipure 3.9 Simulated ARCH processe:.
White noise process v, £, = v, J1+0.8 -[(s,_ﬁz]
8 T & T
0 0 .
8 ' —u 1
o 50 100 0 50 100

() 12}

=02y, 47¢ ¥ =09y, 4"¢g
20 T 20 T

! -20 L
-20 50 100 0 50 100
{e) ‘ td)
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quence appears to fluctuate around a mean of zero and have a constant variance.
Note the moderate increase in volatility between periods 50 and 60. Given the ini-
tia] condition €, = 0, these realizations of the {v,} sequence were used to construct
the next 100 values of the (€} sequence using equation (3.2) and setting 0, = 1 and
o, =0.8. As illustrated in the upper-right-hand graph (b), the {€,} sequence also has
a mean of zero, but the variance appears to experience an increase in volatility
around ¢ = 50. :

How docs the crror structure affect the {y,} sequence? Clearly, if the autoregres-
sive paramcler a, is zcero, y, is nothing more than €, Thus, the upper-right-hand
graph can be uscd to depict the lime path of the {y,} sequence for the casc of a, = 0.
The Iower two graphs (c) and (d) show the behavior of the {y,) scquence for the
cases of @, = 0.2 and 0.9, respectively. The essential point to notc is that the ARCH
error structure and autocorrclation parameters of the {y,} process intcract with-each
other. Comparing the lower two graphs illustrates that the volatility of {y,} is in-
creasing in @, and a,. The cxplanation is intuitive. Any unusually large (in absolute
value) shock in v, will be associated with a persistently large variance in the (e} sc-
quence; the larger @y, the longer the persistence. Morcover, the greater the autore-
gressive parameter @, the more persistent any given change in y, The stronger the
tendency for {y,} to remain away {rom its mean, the greater the variance.

:To formally examine the properties of the {y,) sequence, the conditional mean
and variance are given by

E .y, =ap+ @Y

and

Var(y, |.thh Viezs - )=E (¥, —ap— alyr—l)z
= E:—l(er)z
=0y + oy (€,,)°

Since o, and €2, cannot be negative, the minimum value for the conditional vari-

ance is 4. For any nonzero realization of €,_,, the conditional variancc of y, is posi-

tively related to o,. The unconditional mean and varance of y, can be obtained by
solving the difference equation for y, and then taking expectations. If the process

began sufficiently far in the past (so that the arbitrary constant A can safely be ig- -
nored), the solution for y, is

Y :ao/(!-al)JrEa:e,_, _ ' (3.7
i=0 .

Since Ee, = 0 for all 7, the unconditional expectation of (3.7) is Ey, = a/(1 — a,).
The unconditional variance can be obtained in a similar fashion using (3.7). Given
that Ee€,,; is zero for all.¥ # 0, the unconditional variance of y, follows directly
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from (3.7) as

Var(y)= Y a¥’ var(e,_))

=0

From the result that the unconditional variance of €, is constant li.e., var(e) = -

var(e,_,) = var(e,_,) = - = o /(1 — )], it follows that

Var(y,) = [o/(1 - o] [1/(1 = a?)] |

Clearly, the variance of the {y,} sequence is increasing in both e, apd thc; al.)-i
solute value of a,. Although the algebra can be a bit tedious, the essennal‘pc?mt is
that the ARCH crror process can be used to model periods of volatility within the
univariate framework. . .

The ARCH process given by (3.2) has been extended in several 1ntere§llng ways.
Engle’s (1982) original contribution considered the entire class of hlgher-order‘
ARCH(g) processes:

(3.8)

In (3.8), all shocks from ¢,_, to €,_, have o dircct effect on €, so that the condi-
tional variance acts like an autoregressive process of order q. Question 2 at the-end
of this chapter asks you to demonstrate that the forecasts for E€Z,, arising from
(3.1) and (3.8) have precisely the same form.

The GARCH Model

Bollerslev (1986) extended Engle’s original work by developing a technique that
allows the conditional variance to be an ARMA process. Now let the error process
be such that

SRR R W el E,: 1,,\ /',

where ol=1

and

, q P
hy =0+ 2‘155/2-,‘ + Eﬁihl—i ' | (39)
[ i1

Since {v,} is a white-noise process that is independent of past realizations of ¢,
the conditional and unconditional means of e, arc equal to zero. By taking the eg-

jor-  residuals is as follows:

pected y’alu‘e of e, it is eﬂéy to verify that
Ee,=Evih, =0

The important point is that the conditional variance of €, is given by E_€=h,
Thus, the conditional variance of € is given by h, in (3.9).

' This generalized ARCH(p, ¢) model—called GARCH(p, ¢)—allows for both

weset p=0and ¢ = |, itis clear that the first-order ARCH model given by (3.2) is
simply a GARCH(0, 1) model. If all the B: equal zero, the GARCH(p, ) model is
equivalent to an ARCH(g) model. The benefits of the GARCH model should be

clear; a high-order ARCH model may have a more parsimonious GARCH repre-
sentation that is much easier to identify an

all coefficients in (3.9) must be positive.
variance is finite, all characteristic roots
Clearly, the more parsimonious model will entail fewer coefficient restrictions.>
The key feature of GARCH models is that the conditional variance of the distur-
bances of the {y,} sequence constitutes an ARMA process. Hence, it is to be ex-
pected that the residuals from a fitted ARMA model should display this characteris-
tic pattern. To explain, suppose you estimate {y,) as an ARMA process. If your
model of {y,} is adequate, the ACF and PACEF of the residuals should be indicative

of a white-noise process. However, the ACF of the squared residuals can help iden-

tify the order of the GARCH process. Since E,_ €, = h,, it is possible to rewrite (3.9)
as .

Moreover, to ensure that the conditional
of (3.9) must lie inside the unit circle.

q P R
E &l =0+ zaiﬁfz-[ + ZBih/—i (.10
i=l

i=1
Equation (3.10) looks very much like an ARMA(g, p) process in the {€?} se-

quence. If there is conditional heteroskedasticity, the correlogram should be sug-
gestive of such a process. The technique to construct the correlogram of the squared

STEP 1: Estimate the {y,) sequence using the “best-fitting” ARMA model (or re-
* gression model) and obtain the squares of the fitted crrors &2, Also calcu-
late the sample variance of the residuals (62) defined as

.
&1=> el
t=]

where T = number of residuals
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_autoregressive and moving average components in the heteroskedastic variance. If -

d estimate. This is particularly true since
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STEP 22 Calenlate and plot the sample ausocorrelations of the squared residuals as

.
PRGELRICEELS!

1=l

T
PRCELRS
1=1

pli) =

STEP 3: In large samples, the standard deviation of p(i) can be approximated by

T-'2, Individual values of p(i) with a value that is significantly different -

from zero are indicative of GARCH errors. Ljung-Box (-statistics can be

used to test for groups of significant coefficients. As in Chapter 2, the sta-
tistic

Q=T(T+2)y pH(T~i)

i=l

has an asymptotic x* distribution with n degrees of frccdom if the &7 are
uncorrelated. Rejecting the null hypothesis that the € é? are uncorrelated is
cquivalent to rejecting the null hypothesis of no ARCH or GARCH errors.
In practice, you should consider values of n up to Ti4.
The more formal Lagrange multiplier test for ARCH disturbances has
" been proposed by Engle (1982). The methodology involves the Tollowing
two steps:*

STEP 1. Usc OLS 1o estimate the most appropriate AR(n) (or regression) model:

Y=o+ ay, g ¥ Ayt YAyt E
STEP2: Obtain the squarcs of the fitied crrors €2 Regress these squared residuals
” ~ A2 a2 .
on a constant and on the g lagged values €,y el €l ... €&, thatis, es-
timate

€2 =0 + e |+ 082, + o+ O Ef 3.1

If there are no ARCH or GARCH cffects, the estimated values of «,
through «,, should be zero. Hence, this regression will have little explana-
tory power so that the coefficient of determination (i.c.. the usual R%-sta-
listic) will be quite low. With a sample of T residuals, under the null hy-
pothesis of no ARCH errors, the test statistic TR? converges to'a xq

distribution. If TR? is sufficiently large, rejection of the null hypothesis
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that oy through ¢, arc jointly cqual o zero is cquivalent to rejecting the
null hypothesis of no ARCH errors. On the other hand, il 7R 15 sulli-
ciently low, it is possible to conclude that there are no ARCH effects.

3. ARCH AND GARCH ESTIMATES OF INFLATION

ARCH and GARCH modecls have become very popular in that they cnable the
econometrician to estimate the variance of a serics at a particular point in time. To
illustrate the distinction between the conditional variance and the unconditional
variance, consider the nature of the wage bargaining process. Clearly, firms and
unions need to forecast the inflation rate over the duration of the labor contract.
Economic theory suggests that the terms of the wage contract will depend on the in-

- flation forecasts and uncertainty concerning the accuracy of these forecasts. Let

Eqr,,, denote the conditional expected rate of inflation for ¢ + | and o2, the condi-
tional variance. If partics to the contract have rational expectations, the terms of the
contract will depend on Ex,,, and G2, as opposed to the unconditional mean or un-
conditional variance. Similarly, as mentioned above, asset pricing models indicate
that the risk premium will depend on the expected return and variance of that re-
turn. The relevant rlsk measure is the risk over the holding period, not the uncondi-
tional risk.

The example illustrates a very important point. The rational expectations hypoth-
esis asserts that agents do not waste useful information. In forecasting any time se-
ries, rational agents use the conditional distribution, rather than the unconditional
distribution, of that series. Hence, any test of the wage bargaining model above that
uses the historical variance of the inflation rate would be inconsistent with the no-
tion that rational agents make use of all available information (i.e., conditional

means and variances). A student of the “economics of uncertainty” can immedi--

ately see the importance of ARCH and GARCH models. Theoretical models using

variance as a measure of risk (such as mean variance analysis) can be tested using -

the conditional variance. As such, the growth in the use of ARCH/GARCH meth-
ods has been nothing short of impressive.

Engle’s Model of U.K. Inflation

Although Section 2 focused on the residuals of a purc ARMA model, it is possible
to estimate the residuals of a standard multiple-regression model as ARCH or
GARCH processes. In fact, Engle’s (1982) seminal paper considered the residuals

of the simple model of the wage/price spiral for the U.K over the 1958:11to 1977:11 -
period. Let p, denote the log of the U.K. consumer price index and w, the log of the:

index of nominal wage rates. Thus, the ratc of inflation is &, = p, — p,_, and the real

wage r, = w, — p,. Engle reports that after some experimentation, he chose the fol-

lowing model of the U.K. inflation ratc (standard errors appear in parcntheses):

v
L

>
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T, = 00257 +0.3347,., +0.408m,, - 0.404m,_ +0.0559r, , + ¢,

(0.0057)  (0.103) 0.110) (0.114)  (0.0136)

h, = 0.000089 a1

where 1, = the variance of (€}

The nature of the model is such that increasies in the previous period’s real wage
increase the current inflation rate. Lagged inflation rates at t — 4 and 1 — 5 are in-
tended to capture scasonal factors. All coeflicients have a t-statistic greater than
3.0, and a battery of diagnostic tests did not indicate the presence of serial correla-
tion. The estimated variance was the constant value 8.9E~5. In testing for ARCH
errors, the Lagrange multiplier test for ARCH(1) errors was not significant, but the
test for an ARCH(4) error process yielded a value of TR? equal to 15.2. At the 0.01
significance level, the critical value of X with four degrees of freedom is 13.28;
hence, Engle concludes that there arc ARCH crrors,

Engle specified a ARCH(4) process forcing the following declining set of
weights on the errors:

Bollerslev’s (1986) estimate of U.S. inf]
a standard autoregressive time-scrics m
mode! with ARCH errors, and model wi
procedure has been useful in modeli
i out (see pp. 307-308) that

I SN PN T T s

ARCH and GARCH Exstimates of Inflation [RH
is a convergent process. Using the calcul
finds that the standard deviation of inf]
economy moved from the “predict
estimate of 0.955 indicates

ated values of the {h} sequence, Engle

ation forecasts more than doubled as the
able sixtics into the chaotic scventies.”

The point
anextreme amount of persistence.

Bollerslev’s Estimates of U.S. Inflation

ation provides an interesting comp

arison of
odel (which assumes a constant y

ariance),
th GARCH errors. He notes that the ARCH

ng different economic phenomena but points

Common to most . . | applications, however, is the introduction of 4

rather arbitrary lincar declining tag structure in the conditional variance
cquation to take account of {he long memory typically found in cempiri-
cal work, since estimating a totally free lag distribution often will tead

to violation of the non-negativity constraints,

(e S TR STy

i
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2 2 2 2 . - . . . ¥
hy= 0y + 0o (0.del ) + 03¢, . +0.2¢75+0.1€7 (313 There is no doubt that the lag structure Engle used to model I in (3.14) 1s subject 3
) to this criticism. Using quarterly data over the 1948.11 10 1983.1V period, Bollersley
b The rationale for choosing a two-paramelcr variance function was 1o ensure the (1986) calculates the inflation rat

iee

; nonncgativity and stationarity constraints th
‘ ' unrestricted estimating equation. Given this pa
and sufficient conditions for the two constr
L : O<a, <.

at nvight not be satisfied using an- *
rlicular set of weights, the necessary
aints to be satisfied are 0, > 0 and

¢ (m,) as the log

arithniic change in the U, GNP
orcgression:

deflator. He then cstimates the aut

A
4.
5

‘R

T, =0.240 + 0.552r,_, + 0. 177, 5 + 0.232m,_, - 0.2097,_, + ¢,

(0.080) (0.083) (0.089) (0.090) (0.080)

Engle shows that the estimation of the parameters of (3.12) and (3.13) can be h,=0.282

i considered separately without loss of asymptotic efficiency. One procedure is to es-

' : timate (3.12) using OLS and save the residuals. From these residuals, an estimate (?ff
— the parameters of (3.13) can be constructed, and based on these estimates, new es_.u
b : mates of (3.12) can be obtained. To cstimate both with fult cfficiency, continued it
erations can be checked to determine whether the separate estimates are converg
- ing. Now that many statistical software packages contain nonlinear maximum

¥ = likelihood estimation routines, the current procedure is to simultaneously estimat
both equations using the methodology discussed in Section 7 below.

Engle’s maximum likelihood estimates of the model are

(3.15)

. Equation (3.15) seems to have all the propertics of a well-
%2t model. All coefficients are significant at conventional levels (the standard Ccrrors

eppear in parentheses) and the estimated values of the autoregressive cocfficients
mply stationarity. Bollersley reports that the ACF and

estimated time-series

is typical of
4t ARCH errors, the ACF and PACF of the s s (i.c., €) show signifi-
& cant correlations. The Lagrange multipli

\ ultiplicr tests for ARCH(), ARCH(4), and
<5 ARCH(8) errors are alj highly significant.

o Bollerslev next cstimates the restricted ARCH(8) model origin
> Engle and Kraft (1983). By way of comparison to (3.15), he {inds

i ey

T, =0.0328 + 0.162n,_, + 0.264m,_, - 0.325m, ¢ + 0.0707r,_, +¢,
(0.0049)  (0.108)  (0.08%)  (0.099) (0.0 15)
h,=1.4E-5 + 0.955(0.4€2, + 0.3¢2, + 0.2, +0.1€2)
(8.5)  (0.298)

ally proposed by

1:2_.\") Lhos

™= 0.138 +0.423m,_, + 02221, , +0.377,_, - 0175, +¢,
= ©059) 0081 (.108)  (0.078) (0. 104)

R
i =0.058-+0802)" (9-i)36¢2,
i=}

(0.033) (0.265)

s

.14

T
Lo

The estimated values of h, are one-step ahead forecast error variances.‘All coeffi-
r cients (except the own lag of the inflation ratc) are significant at conventional lev:
! els. For a given real wage, the point estimates of (3.14) imply that the inflation rate

(3.16)

~
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Note that the autoregressive coclficients ol (3.15) and (3.16) are similar. The
maodels ol the variance, however, are quite different. Equation (3.15) assumnes a
constant vanance, whereas (3.16) assumcs the variance (/1) is a geometrically de-
clining weighted average of the variance in the previous cight quarters.?

Hence, the inflation rate predictions of the twoe models should be similar, but the
confidence intervals surrounding the forecasts will differ. Equation (3.15) yields a
constant interval of unchanging width. Equation (3.16) yields a confidence interval
that expands during periods of inflation volatility and contracts in relatively tran-
quil periods.

In order to test for the presence of a first-order GARCH term in the conditional
variance, it is possiblc to estimate the equation:

8
B =g+ Y (9= /36eL + By GaD

i=]

The finding that 8, = 0 would imply an absence of a first-order moving average

term in the conditional variance. Given the difficulties of estimating (3.17),

Bollerslev (1986) uscs the simpler Lagrange multiplier test. Formally, the test in-
volves constructing the residuals of the conditional variance of (3.16). The next
step is to regress these residuals on a constant and h,_y; the expression TR? has a
distribution with onc degree of freedom. Bollerslev finds that TR? = 4.57; at the 5%
significance level, he cannot reject the presence of a first-order GARCH process.
He then estimates the following GARCH(1, 1) model: .
7, =0.141 +0.433r,_, + 02291, _, + 0.3497, - 0.102n,_, + €,

(0.060) (0.081)  (0.110)  (0.077)  (0.104)

h,=0.007 + 0.135€_, + 0.8294,_,

(0.006)  (0.070)  (0.068) (3.18)
Diagnostic checks indicate that the ACF and PACF of the squared residuals do
not reveal any coefficients exceeding 27772 LM tests for the presence of addi-

tional lags of €7 and for the presence of /1,_, are not significant at the 5% level.

4. ESTIMATING A GARCH MODEL OF THE WPI:
AN EXAMPLE

To obtain a better idea of the actual process of litting a GARCH model, reconsider
the U.S. Wholesale Price Index data uscd in the last chapter. Recall that the

Box-Jenkins approach led us to estimate a model of the U.S. rate of inflation ()
having the form:

M=y a T e+ P+ Pag,
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When we uscd the standard criteria of the Box-=Jenkins procedure, the estimated
model performed quite well. All estimated paramcters were significant at conven-
tional levels and both the AIC and SBC sclecied the ARMAI(L, (1, 4)) specilica-
tion. Diagnostic checks of the residuals did not indicate the presence of serial corre-
lation and there was no evidence of structural change in the estimated cocfficients.
During the 1970s, however, therc was a period of unusual volatility that is charac-
teristic of a GARCH proccss. The aim of this section is to illustrate a step-by-step
analysis of a GARCH estimation of the rate of inflation as mcasurcd by the WP]. The
data series is contained in the file labeled WPLWKI on the data disk. Question 7
at the end of this chapter guides you though the estimation procedure reported below.

In the last chapter, some of the observations were not used-in the estimation
stage, so that out-of-sample forecasts could be performed. Estimating the same
model over the entire 1960:1 to 1992:2 sample period yields

,=0.0101 +0.78751,_, + €, — 0.4374e,_, + 0.2957¢,_,

(0.0039)  (0.0865) 0.1126)  (0.0904)
h,=19193E-4 (3.19)
The ACF and PACEF of the residuals do not indicate any sign of serial correla-
tion. The only suspect autocorrelation coefficient is for lag 6; the value p(6) =
0.1619 is about 1.8 standard deviations from zero. All other autocorrelations and
partial autocorrclations are less than 0.11. The Ljung-Box @-statistics for lags of
12, 24, and 36 quarters are 8.47, 15.09, and 28.54; none of these values are signifi-
cant at conventional levels. »
Although the model appcars adequate, the volatility during the 1970s suggests an
examination of the ACF and PACEF of the squared residuals. The autocorrclations
of the squared residuals are such that p(1) =0.126, p(2) = 0.307, p(3) = 0.115, and
p(4) = 0.292. Other values for p(i) arc generally 0.10 or less. The Ljung-Box
Q-statistics for the squared are all highly significant; for example, Q(4) = 27.78 and
Q(12) = 37.55, which are both significant at the 0.00001 level. At this point, onc
might be tempted to plot the ACF and PACF of the squared residuals and estimate

. the squared residuals using Box—-Jenkins methods. The problem with this strategy is -

that the errors were not generated by the maximum likelihood technique and are not
fully efficient. Hence, it is necessary to formally test for ARCH errors.

Alternative Estimates of the Model

Next, let € denote the residuals of (3.19) and consider the ARCH(q) model for lag
lengths of 1, 4, and 8 quarters: ‘

=g+ Y o, (320

i=l

If we estimate (3.20) using OLS, the calculated values of TR for ¢ = 1, 4, and 8
arc 22.91, 35.70, and 37.60, respectively. Hence, there appear 1o be ARCH errors at
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the 1% significance level; the critical values ol %? with one, four, and eight degrees
of freedom are 5.41, 11.67, and 18.17, respectively. Since the values of TR? forg =
4 and ¢ = 8 arc similar, it scems worthwhilc to pin down the lag length to an
ARCH(4) process. A straightforward method is to estimate (3.20) for g = 8. In this
instance, the F-test for the null hypothesis o = ¢, = a; = 0tg = 0 cannot be rcjected
at conventional levels.

Another way to determine whether four versus eight lags are most appropriate is
to use a Lagrange multiplier test. To use this test, estimate (3.20) with g = 4; let
{es,} denote the residuals from this regression. To determine whether lags 5

through 8 contain significant explanatory power, use the {€,,} sequence to estimate
the regression:

8
2 2
€4y = Oy +ZO‘£EM—|’
i=|

If lags 5 through 8§ contain little explanatory power, TR* should be small.
Regressing €,, on a constant and eight lags of €,, yiclded a value of TR* = 3.85.
With four degrees of freedom, 3.85 is far below the critical value of % it seems
plausible to conclude that the errors arc characterized by an ARCH(4) process. The
same procedure can be used to test whether the model is an ARCH(1) or ARCH(4)
process. Now lct {€,} denote the residuals of (3.20) estimated with g = 1.
Regressing €,, on a constant and four lags of ¢, yiclded a value of TR? = 16.32. At
the 0.001 significance level, the critical value of % with three degrees of freedam is
16.27. Hence, it hardly seems plausible to conclude that an ARCH(1) characterizes
the error process; lags 2 through 4 cannot be cxcluded from (3.20).

Overall, these tests suggest estimating the inflation rate using an ARMAT[I, (1,

4)] model by assuming an ARCH(4) error process. The results from a maximum
likelihood estimation are

n, =0.0021 + 0.5723n,_, +¢€,—-0.118%¢,_, + 0.3108¢,

(0.0012)  (0.1298) (0.1135)  (0.0645)
h,=2.1247E-5 + 0.1433¢%, + 0.2270€2, + 0.0037€Z, + 0.6755¢€2,
(0.0000)  (0.1384)  (0.1725)  (0.0709)  (0.2031) @321

Although cach estimated coefficient has the correct sign, we should be somewhat
concerned about the number of insignificant coeflicients. Note that the estimated
cocfficicnt on €,_, in the equation for =, is about one standard error from zero; we
know, however, that eliminating this coefficient from the ARMAC(L, (1, 4)] model
of inflation leads to residuals that are serially correlated. Moreover, three values of
the ARCH(4) error process arc not insignificantly different from zero at conven-
tional significance levels. The likely solution to the problem concerns the modeling
of the ARCH process; perhaps a more parsimonious model is in order.
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One approach to reducing the number of cstimated parameters is to constrain the
conditional variance to have the same declining weights given by (3.13), The maxi-
mum likelihood estimates of this constrained ARCH(4) process are

,=0.0011 +0.9201r,_, + €, —0.4304¢,_, +0.1198€, ,
0.0011)  (0.0795) 0.1476)  (0.0929)

B, = 6.3T67TE-5 + 0.5850(0.4€% , +0.3¢2, + 0.2€2, + 0.1 €2,y
(1.08E-3)  (0.0795)

3.22)

Here, the estimated parameters of the ARCH process are both positive and sig-
nificantly different from zero. The estimated value of o, (=0.5850) implics that /i, is
convergent. The problem with this model is that the cstimated valuce of a, (=0.9201)
is dangerously close to unity (implying a divergent process) and B, is significant at
only the 0.19 level. Before contemplating the use of sccond differences or sclting
B4 = 0 and eliminating €,_, from the modcl, we should be concerned about the va-
lidity of the restricted error process. Onc way to proceed is to try alternative
weighting patterns and select the “best” pattern. Of course, this approach is subject
to Bollerslev’s criticism of being completely ad hoc.

A better alternative is to use a GARCH(I, 1) model. As a first step, the crror
process was estimated as

1, =0.0013 + 0.79687,_, + €, — 0.4014¢,_, + 0.2356¢,_,
(0.0012) (0.1141) (0.1585)  (0.1202) .+
h,= 1.5672E-5 + 0.2226€2, + 0.6633h,_,

(9.34E-6)  (0.1067)  (0.1515) (3.23)

Notice that the point estimates of the parameters imply stationarity and all coeffi-
cients but the intercept term in the 7, equation are significant at the 10% level. The
value of the maximized likelihood function is greater for the GARCH(!, 1) modcl
than pure ARCH processes even though all models were estimated over the same
time period.® The maximized values of the likélihood function for (3.21), (3.22)
and (3.23) are 483.25, 491.83, and 496.98, respectively. Morcover, the GARCH(1,
1) model necessitates the estimation of only two parameters. Thus, the GARCH(I,
1) process yields the best fit.

Diagnostic tests did not indicate the need to include other lags in the GARCH(I,
1) model. The Lagrange multiplier tests for the presence of additional values of o
or 3, were insignificant at conventional levels. Since /1, is an estimate of the condi-
tional variance of 7, (h,,,)""? is the standard crror of the one-step ahead forecast cr-
ror of w,, . Figure 3.10 shows a band of +2 (k,,,)"* surrounding the one-step ahcad
forecast of the WPL7 In contrast to the assumption of a constant conditional vari-

ance, note that the band width increases in the mid-1970s and latter part of the
‘1980s. s
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Figure 3,10 Two-standard-deviation forecast interval for the WPL
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Note: The band spans two standard deviations on either
side of the one-step ahead forecast of the WPL.
5. A GARCH MODEL OF RISK

An interesting application of GARCH modeling is provided by Holt and Aradhyula .

(1990). Their theoretical framework stands in contrast to the cobweb model in that

rational expectations are assumed to prevail in the agricultural sector. The aim of

the study is to examine the extent to which producers in the U.S. broiler (i.e.,
chicken) industry exhibit risk-averse behavior. To this end, the supply function for
the U.S. broiler industry takes the form:*

= ayh, ~apfeed,y + ashateh,_ + asq,q + €y,

g,=dy+ ap; (3.24)
where ¢, = quantity of broiler production (in millions of pounds}) in ¢

oA = expected real price of broilers at 7 conditioned on the informa-
tion at t =1 (so that pf = £,y

h, = expected variance of the price of broilers in ¢ conditioned on
the information at £ — 1

pfeed, , = real price of broiler feed (in conts per poundyat r—1

hatch,_, = hatch of broiler-type chicks in commercial hatcheries (mea-

sured in thousands) in ¢t — |
supply shock int

€1
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and the length of the time period is one quarter.
The supply function is based on the biological fact that the production cycle of
broilers is about 2 months. Since bimonthly data are unavailable, the model as-
sumes that the supply decision is positively related to the price expectation formed
by producers in the previous quarter. Given that feed accounts for the bulk of pro-
duction costs, real feed prices lagged one quarter are negatively related to broiler
production in t. Obviously, the hatch available in ¢ — 1 increases the number of
broilers that can be marketed in ¢. The fourth lag of broiler production is included to
-account for the possibility that production in any period may not fully adjust to the
desired level of production:
- ‘For our purposes, the most interesting part of the study is the negative cffect of

the conditional variance of price on broiler supply. The timing of the production
- process is such that feed and other production costs must be incurred before output

is sold in the market. In the planning stage, produccrs must forecast the price that
will prevall 2 months hence. The greater pf, the greater the number of chicks that
will be fed and brought to market. If price variability is very low, these forecasts
. can be held with confidence. Increased price variability decreases the accuracy of
«. the forecasts and decreases broiler supply. Risk-averse producers will opt 1o raise
_ and market fewer broilers when the conditional volatility of price is high.

In the initial stage of the study, broiler prices are cstimated as the AR(4) process:

¥

(= BL~ Bl = BoL? = Bul)p, = By + €y, (3.25)

Ljung-Box (-statistics for various lag lengths indicate that the residual series -
appear to be white-noisc at the 5% level. However, the Q-statistic for the squared
residuals, that is, the {€3,], of 32.4 is significant at the 5% level. Thus, Holt and
Aradhyula conclude that the variance of the price is heteroskedastic.

In the second stage of the study, several low-order GARCH estimales of (3.25)
are compared. Goodness-of-fit statistics and significance tests suggest « GARCH(1
1) process. In the third stage, the supply cquation (3.24) and a GARCH(1,1)
_process are simultaneously estimated. The estimated price cquation (with standard
* errors in parentheses) is

(1= 0.5HL~-0.129L7 - 0.130L7 ~ 0.138L%p, = | 632 + ¢, (3.26)
(0.092) (0.098) (0.094) (0.073) (1.347)
fi,=1.353 +0.162€3,_, + 0.591h,_, (3.27)
(0.747)  (0.080) (0.175)

-~ Equations (3.26)-and (3.27) are well behaved in that (1) all estimated cocfficients
fo0 are significant at conventional significance levels; (2) all coclficients of the condi+

(, . tional variance equation are positive; and (3) the coefficients all imply convergent
4 processes.

: Holt and Aradhyula assume that producers use (3. 26) and (3. 27) to form their
- price expectations. Combining these estimates with (3.24) yields the supply cquation
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7, =2.767p7 — 2]/1, —4.325pfeed, 1 1.88Thatch,_, + 0.603q,_s + e,, (3.28)

(0.585) ).344) (1.403) (0.205) (0.065) -

All estimated coetficients are significant at conventional levels and have the ap-

propriate sign. An increasc in the expected price increases broiler output. Increased
uncertainty, as measured by conditional variance, acts to decrease output. This for-

ward-looking rational expectations formulation is at odds with the more traditional -

cobweb model discussed in Chapter 1. In order to compare the two formulations,
Holt and Aradhyula (1990) also consider an adaptive expectations formulation (see
Exercise 2 in Chapter 1). Under adaptive expectations, price expectations are
fqrmcd according to a weighted average of the previous period’s price and the pre-
vious period’s price expectation:

7"0l)ll+(l ll

or solving for p; in terins of the {p,} sequence, we obtain

P:, :az(l—")il’;—l—i

i=0

Simitarly, the adaptive cxpectations lormulation for congitional risk is given by

B =BY =B (P = Py ) )

i=0

where 0 <P < 1and (p,_,_,—pr.,_)" = the forecast error variance for period £ — 1.

Note that in (3.29), the expecied measure of risk as viewed by producers is not
necessarily the actual conditional variance. The estimates of the two models differ
concerning the implicd long-run elasticitics of supply with respect to expected price
and conditional variance.” Respectively, the estimated long-run elasticities of sup-
ply with respect to expected price arc 0.587 and 0.399 in the rational expectations
and adaptive expectations foumulations. Similarly, rational and adaptive expecta-
tions formulations yield long-run supply clasticities of conditional variance of
—0.030 and —0.013, respectively. Not surprisingly, the adaptive expectations model

suggests a more sluggish supply response than the forward-looking rational expec-

tations modecl.

6. THE ARCH-M MODEL

Engle, Lilicn, and Robins (1987) extend the basic ARCH framework to allow the .

mean of a sequence to depend on its own conditional variance. This class of model,
called ARCH-M; is particularly suited to the study of asset markets. The basic in-
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sight is that risk-averse agents will require compensation for holding a risky assct.
Given that an assct’s riskiness can be measurcd by the variance of returns, the risk
premium will be an increasing function of the conditional variance ol returns, '
Engle, Lilien, and Robins express this idea by writing the excess return from hold-
ing a risky assct as

V=N E (330

where y, = cxcess return from holding a long-term asscl relative to @ one-period
treasury bill '
B, = risk premmm necessary to induce the risk-averse agent to hold the
long-term assct rather than the onc-period bond
¢, = unforccastable shock to the excess return on the long-term asset

To explain (3.30), note that the expected excess return from holding the long-
term assct must be just equal to the risk premium:'!

E_y, =W

Engle, Lilien, and Robins assume that the risk premium is an increasing function
of the conditional variance of €, in other words, the greater the conditional variance
of returns, the greater the compensation necessary to induce the agent to hold the
long-term asset. Mathematically, if /1, is the conditional variance of €, the risk pre-
mium can be expressed as

=B+ dh, >0 : 3.31)-

where I, 1s the ARCH(g) process:

q
2 :
h=ag+ Y e I AP

As a sct, Equations (3.30), (3.31), and (3.32) constitute the basic ARCH-M
model. From (3.20) and (3.31), the conditional mean of y, depends on the condi-
tional variance /1. From (3.32), the conditional variance is an ARCH(qg) process.
It should be pointed out that if the conditional variance is constant (i.e., if &, =0, =
-« = o, = 0), the ARCH-M model degenerates into the more traditional casc of a
constant risk premium. ’

Figure 3.11 illustrates two different ARCH-M processes. The upper-left-hand
graph (a) of the figure shows 60 realizations of a simulaled white-noisc process de-
noted by {e,}. Note the temporary increase in volatility during periods 20.to 30. By
initializing €, = 0, the conditional variance was constructed as the first-order ARCH
process: ' - :

ho=1+0.65€,




-
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As you can scc in the upper-right-hand graph (b), the volatility in {€,} translates

itself into increases in the conditional variance. Note that large positive and nega- i £

tive realizations of €,_; result in a large value of I; it is the square of each {e,} real-
ization that enters the conditional variance. In the lower left graph (c), the values of
B and & are sct equal to —4 and +4, respectively. As such, the y, sequence is con-
structed as y, = -4 + 4h, + €,. You can clearly sce that y, is above its long-run value
during the period of volatility. In the simulation, conditional volatility translates it-
self into increases in the values of {y,}. In the latter portion of the sample, the
volatility of {€,} diminishes and the values y,, through y,, fluctuate around their
long-run mean.

The lower-right-hand graph (d) reduces the influence of ARCH-M effects by re-
ducing the magnitude of & and B (sec Exercise 5 at the end of this chapter).
Obviously, if & = 0, there arc no ARCH-M effects at all. As you can sce by compar-
ing the two Jower graphs, y, more closely mimics the €, sequence when the magni-
tude of 3 is diminished from § =4 to §=1."?

As in ARCH or GARCH models, the form of an ARCH-M modecl can be deter-
mincd using Lagrange multiplier tests exactly as in (3.11). The LM tests are rela-

Figure 3.11  Simulated ARCH-M processcs.

White noise process.

hy = oty + ayle, 412
T 4 T T

{a} (b}

vy=~& v dhag,

10 7 ‘ o4

viy=-=1»hve, o

3 )

{c) ' {d)
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tively simple to conduct since they do not requii% estimation of the full model. The

statistic TR? is asymptotically dnsmbuted as x* with dcgrccs of freedom cqual to the
number of restrictions.

Implementation

Using quarterly data from 1960:1 to 1984:11, Engle, Lilien, and Robins (1987) con-
structed the excess yield on 6-month treasury bills as follows. Let r, denote the
quarterly yicld on a 3-month treasury bill held {rom ¢ to (¢ + 1). Rolling over all
proceeds, at the end of two quarters an individual investing $1 at the beginning of
period ¢ will have (1 + r)(1 + r,,,) dollars. In the same fashion, if R, denotes the
quarterly yield on a 6-month treasury bill, buying and holding the 6-month bill for

the full two quarters will result in (1 + R,)? dollars. The cxcess yicld due 10 holding
the 6-month bill is approximately

¥, =2R, = r,, — T, (3.33)

The results from regressing the excess yicld on a constant are (the ¢-statistic is in
parentheses)

y,=0.142+¢, . ' . © (3.34)
4.04)

The excess yield of 0.142% per quarter that is over four standard deviations from
zero. The problem with this estimation method is that the post-1979 period showed
markedly higher volatility than the earlier sample period. To test for the presence of
ARCH errors, the squared residuals were regressed on a weighted average of past
squared residuals as in (3.13). The LM test for the restriction ¢, = 0 yiclds a value
of TR* = 10.1, which has a * distribution with one degree of freedom. At the 1%
significance level, the critical value of x? with one degree of freedom is 6.635;
hence, there is strong evidence of heteroskedasticity. Thus, there appear to be

- ARCH errors so that (3.34) is misspecified if individuals demand a risk premium.

The maximum likelihood estimates of the ARCH-M model and associated t-sta-.
- tistics are

=-0.0241 + 0.687h, + ¢,
(-129)  (5.15)

= 0.0023 + 1640467, + 037, + 0.2¢] 5+ 0.1€2)
(1.08)  (6.30)

The estimated coefficicnts imply a time-varying risk premium. The estimated pa-
rameter of the ARCH equation of 1.64 implies that the unconditional variance is in-

Shocks 1o €,_; act to increase the conditional variance so that there are periods of
tranquility and volatility. During volatile periods, the risk prémium rises as risk-
averse agents seek assets that are conditionally less risky.

finite. Although this is somewhat troublesome, the conditional variance is finite. -
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The next scction considers some of the mechanics involved in estimating an
ARCH-M modecl. Excrcise 8 at the end of this chapter asks you to estimate such a

ARCH-M modecl using simulated data. The questions are designed to guide you
through a typical estimation procedure.

and

&=y (y, ~WAT

Thus, with sample data, the maximum likelihood estimate of the mean is 1 and
the maximum likelihood estimate of the variance is 6. The same principle applics
in a regression analysis. Suppose that {¢,} is gencrated by the following model:

7. MAXIMUM LIKELIHOOD ESTIMATION OF GARCH AND
ARCH-M MODELS

Many software packages contain built-in routines that estimate GARCH and
ARCH-M models such that the researcher simply specifies the order of the process
and the computer does the rest. Even if you have access to an automated routine, it
is important to understand the numerical procedures used by your software pack-
age. Other packages require user input in the form of a small optimization algo-
rithm. This section explains the maximum likelihood methods required to under-
stand and write a program for ARCH-type models.

Suppose that values of {y,} arc drawn from a normal distribution having a mean

W and constant variance ¢°. From standard distribution theory, the log likelihood
function using T independent observations is

- B".I

-In the classical regression model, the mean of €, is assumed to be zero, the vari-
ance is the constant 6%, and the various realizations of {€,} arc independent. If we

use a sample with T observations, the log Jikelihood cquation is a simple modifica-
tion of the above:

,
log £ =~(T/2) In(2m)—(T/2) n” =(1126%) Y (y, —x,)?

=]

5 ) T 2 Maximizing the likelihood equation with respect to 62 and 3 yiclds
log ¢ =~(T/2) n(2m)~(T/2) lnG” = (1/26%) Y (3, =1

t=1

T
(@ log £)/367}=~(T1267)+(1/26") Y (¥, ~Px,)?

1=

where  log £ = log of the likelihood function -

The procedure in maximum likelihood estimation is to select the distributional : nd
parameters so as to maximize the likelihood of drawing the observed sample. In the n

example at hand, the problem is to maximize log € with respect to i and ¢°. The
first-order conditions arc

. "' )
(@ log £)/0B)=(1/6")Y (y,x, ~Bx2)

1=l

:

T
[(d log £)/3u)=(1/5")d (v, ~H)
= Oz lhat yield the maximum value of log £ result in the familiar OLS estimates of

and the vz_m.mce and B (denoted by 52 and f3). Hence,

T G2 =S(e)T
[(Qlog £)/36°)=~(T26")+(1126") Y (y, )’

=1

Setting thesc partial derivatives equal to zero and solving for the values of [t and

B=Zry,/Zx)?
o? that yicld the maximum valuc of log £ (denoted by j1 and G?), we get

All this should be familiar ground since most econometri¢ texts concerned with

=%y /T ‘;:;: rcgressnon analysis discuss maximum likclihood estimation. The point to cmpha-

Semng these partial derivatives equal to zero and solving for the values of B and
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size here is that the first-order conditions are casily solved since they are all linear.
Calculating the appropriate sums may be tedious, but the methodology is straight-
forward. Unfortunately, this is not the case in estimating an ARCH-type model
since the first-order equations are nonlinear. Instead, the solution requires some sort
of scarch algorithm. The simplest way to illustrate the issue is to introduce an
ARCH(1) error process into the regression model. Continue to assume that €, is
generated by the lincar equation €, = v, — Bx,. Now let €, be given by (3.2):

€, = v (0t + o el )7
so that the conditional variance of €, is
Iz 0+ oel
Although the conditional variance of €, is not constant, the necessary modifica-

tions arc clear. Since each realization of €, has the conditional variance h,, the ap-
propriate log likelihood function is ‘

T T
log £ =~(T/2) In@m)—(1/2) 3 In b, =(112) Y by, ~Bx,)’
=1 =1
where h, = O+ 0,€,_,
’ = 0+ oy (Yo = Bx,y)? ta

Finally, it is possible to combine the above and then to maximize log & with re-

spect 1o O, o, and B. Fortunately, computers are able to select the parameter val- -

ues that maximize this log likelihood function. In most time-series software pack-
ages, the procedure ncessary to wrile such programs is quite simple. For example,
RATS uses a typical set of starements to estimate this ARCH(1) model.
Consider:"? :

NONLIN B oy ot

FRML e =y ~ fx

FRML h = 0y + o, *€2, »

I'RML LIKELIHOOD = ~0.5*|log(h,) + (€2/h,)}

COMPUTE P = initial guess, 0ty = initial gitess, o) = initial guess
MAXIMIZE(RECURSIVIY) LIKELIHOOD 2 end

The first statement preparcs the program to estimate a nonlincar model. The sec-
ond statement sets up the formula (FRML) for €; €, is defined to be y, — Bx,. The
third statement scts up the formula for i, as an ARCH(1) process. The fourth state-
ment is the key o understanding the program. The formula LIKELIHOOD, defines
the tog likelihood for observation f; the program “understands” that it will

have the form
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‘maximize lhisl sum over all 7'~ | observations. Note that the constant term
—(T72)/tog(2m) is excluded from the definition of LIKELIHOOD:

- o is ex he defl i-a constant has no
ect on the solution to an optimization problem. The program requires initial

guesses for 3, oy, and o,. In practice, a reasonable initial guess for B could come
from an OLS regression of {v,} on {x,}. The initial guess for o, could be the vari-
ance of the residuals estimated from this OLS regression. After all
ARCH effect, OLS and the maximum likelihood methods are identical. The initial
guess for a,.could be a small positive number, The final statement tell
gram to maximize LIKELIHOOD from obsery
is lost) to the end of the sample."*

It is possible to estimate more sophisticated models using a comparable proce-
dure. The key Fo writing a successful program is to correctly specify the error
process and variance. To cstimate the ARMAIL, (1, 4)1-ARCH(4) model of the in-

flation rate given by (3.22), lines 3
with:'*

, if there is no

. s the pro-
ation 2 (since the initial observation

and 4 of the program would be replaced

FRMLe=r, - q, - afm,_y ~bye,_, ~ b,
FRML h = + 0, (0.4€}, + 0.3, + 0.2¢2,+0.1€2)

Here, the first formula statément defines €, as the residual from an ARMAL(1, (1
4] process. The second statement constraing the lagged coefficients to cxhibil a

smooth decay. Similarly, the GARCH(!, 1) version of this same model—see
(3.23)—uses the program steps: .

FRML € =10, ~ a, - afn,_, — bye,_, — bye,_,
FRML h =0, + €7, + B,

The program steps for the ARCH-M model of Engle, Lilien, and Robbins (1987)-

FRMLe=y-u,-ah
FRML /1 = at, + o, (0.d€2 | + 0.3€2, + 0.2e7, + 0.1e2)

The first statement defines €, as the value of y, less the conditional variance. The :
sccond statement defines the conditional variance, .
. Fmally, 1.t 18 possible to include explanatory variables in the formula for the con- i
ditional variance. In the GARCH(1, 1) inflation model, it is possible to write S i

FRML it = oty + o€, + By, + B

25

where z,isan explanatory variable tor /.
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8. DETERMINISTIC AND STOCHASTIC TRENDS

It is helpful to represent the general solution to a linear stochastic differenge QU
tion as consisting of the three distinct parts: '

¥, =trend + scasonal + irregular

We have examined how ARMA(p, q) techniques can be used to model the irreg-
ular and scasonal components. GARCH and ARCH-M models try to capture the
tendency of economic time series to exhibit periods of sustained volatility, The
other distinguishing feature of Figures 3.1 through 3.8 is that the series appear to be
nonstationary. The mean values for GNP and its subcomponents, the supplies of the
financial instruments, and industrial production levels generally appear to be in-
creasing over time. The exchange rate series shown in Figure 3.7 have no obvnous
tendency for mean reversion.

For some series, such as GNP, the sustained upward trend might be captured by a

simple linear time trend. Such an assumption is controversial, however, since itim- -

plies a deterministic long-run growth rate of the real economy. Adherents to the
“real business cycle” school argue that technological advancements have perma-
nent effects on the trend of the macroeconomy. Given that technological innova-
tions are stochastic, the trend should reflect this underlying randomness. As such, 1t
will be useful to consider models with stochastic and deterministic trends.

A critical task for econometricians is to develop simple stochastic difference
cquation models that can mimic the behavior of trending variables. The key feature
of a trend is that it has a permanent effect on a series. Since the irregular cGmpo-
nent is stationary, the effects of any irregular components will “die out” while the
trending elements will remain in long-term forecasts. Examples of models thh de-
terministic trends include

Y, =ag+at+e,
Y, =dg+ i+ a4t a it e

(linear time trend)
(polynomial time trend)

Either of these equations can be augmented with lagged values of the {y,} se-
quence and/or the {€,} sequence. However, models with stochastic trends are prob-
abily less familiar to you. The remainder of this section develops time-serics mod-
els cxhibiting a stochastic trend.

The Random Walk Model
Let the current value of y, be equal to last period’s value plus a white-noise term:
Y=Yy te  (0ordy =€)

The random walk model is clearly a special case of the AR(1) process y, = ay+
a,y,., + €, when a, =0 and a, = 1. Supposc you were betting on the outcome of a
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coin toss, and a head added $1 to your wealth while a tail cost you $1. We could let
=+$1 if a head appears and —$1 in the cvent of a tail. Thus, your current wealth
(y,) cquals last period’s wealth (y,_,) plus the realized value of €. If you play again,
your wealthint+ lisy,, =y, + €.,
If y, is a given initial condition, it is readily verificd that the general solution to
the first-order difference equation represented by the random walk modet is

1
Y=Y +z€i
: =1

Taking expected values, we obtain E(y,) = £(y,..) = yu thus, the mean of a ran-.
dom walk is a constant. However, all stochastic shocks have nondecaying cffects
on the {y,} sequence. Given the first ¢ realizations of the {e€,} process, the condi-
tional mean of y,,, is

EIYHI = El(yl + €)=Y,

Similarly, the conditional mean of y,,, (for any 5 > 0) can bc obtained from

At
y1+x = yl +z€1+i
i=1

so that

By =y EIEEIH =

The conditional means for all values of y,,, for all positive values of s are equal
to y,. However, an €, shock has a nondecaying effect on the {y,} scquence so that

the {y,} sequence is permanently influcnced by an €, shock. Notice that the variance
"is time-dependent. Recall that

Var(y,) = var(e, + €,_; + - + €,) = 107

50

Var(y,.,) = var(e,, + €,y + - + €)= (1 - 5)0°

Since the variance is not constant [i.e., var(y,) # var(y_J], the random walk
process is nonstationary. Moreover, as t — oo, the variance of y,also approaches in-
finity. Thus, the random-walk mcanders without exhibiting any tendency to in-

B
¥
i
%
{3
o
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crease or decrease. It is also instructive to cualculate the covariange of y, and y,..
Since the mean is constant, we can form the covariance v,_, as

E[(_)’, - .yn)(yl»r - .\'()H = E[(el +tE ot ﬁl)(ef-x +€ +V"' + el)]
= El(e, )" + (&, )+ +(€)7]
= (t - 5)o?

To form the correlation cocfficient p,, we can divide v,_, by the product of the
standard deviation of y, multiplied by the standard deviation of y,_.. Thus, the ¢ome.
lation cocfficient p, is

p,={t— )N - .s~)/_
=1t - s

This result plays an important role in the detection of nonstationary series. For
the first few autocorrclations, the sample size ¢ will be large relative to the number G2
of autocorrelations formed; for small values of s, the ratio (¢ — s)/t is approximate} b
equal to unity. However, as s increases, the values of p, will decline. Hence, in uss
ing sample data, the autocorrelation function for a random walk process will show
a slight tendency to decay. Thus, it will not be possible to use the ACF to disti
guish between a unit root processes (a, = 1) and processes such that a, is close
unity. In the Box~Jenkins identification stage, a slowly decaying ACF or PACF can!
be an indication of nonstationarity. Ay

Graph (a) in Figure 3.12 shows the time path of a simulated randorr'\’Wal »
proccss Fxrst 100 normally distributed. random deviates were drawn from a th

0, each value of y, (r =1, IOO) was conxtructcd by adding the random devxa!c.
to the value of y,_,. As expccted the simulated series meanders without any tcn-
dency to revert to a long-run value. However, there does appear to be a slight posi
tive trend in the simulated data. The reason for the upward trend is that the realized
values of the deviates used in this small sample of 100 do not precisely conform
the theoretical distribution. This particular simulation happened to contain more.
positive values than negative values. The impression of a trend in the true data- gcn-
erating process is false and serves as a reminder against relying solely on causal i -
spection.

3

.

The Forecast Function

Suppose you collected a sample of values y, through y, and wanted to forecast fu-’
ture values of the data serics. From the perspective of time period ¢, the optimal
forecast of y,,, is the mean value of y,,, conditioned on the information available at

Eyu.s=Y
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Hjre 3.12  Four nonstationary models. (a) Random waltk model. (b) Random walk plus

drift. (c) Random walk plus noise. (d) Local lincar trend model.
8 —_ 150 ]
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Hence, the constant value of y, is the unbiased estimator of all future values of
Yo for all s > 0. To interpret, note that an €, shock has a permanent effect on y,. The
impact multiplicr of €, on y, (i.e., 3y,/d¢,) is the same as the multiplicr of €, on all
Y- This permanence is directly reflected in the forecasting function for y,,.. In the
time-series literature, such a scquence is said to have a stochastic trend since the

texpression Xe; imparts a permanent, albeit random, change in the conditional mean -

of the series. Note that the random walk model scems to approximate the behavior
of the exchange rates shown in Figure 3.7. The various cxchange rate series have
o particular tendency to increase or decrease over time; ncxthc; do they exhibit uny
t:ndency to revert to a given mean value:
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The Random Walk plus Drift Model

Now lct the change in y, be partially deterministic and partly stochastic. The ran-

dom walk plus drift model augments the random walk model by adding a constant
lcrm ag:

Ye=Yi tag+ e (3.36)

Given the initial condition y,, the gencral solution for y, is:

!

Vi = Yo Hagtt D g, @37

i=]

Here, the bebavior of y, is governed by two nonstationary components: a lincar
deterministic trend and the stochastic trend Ze,. I we take expectations, the mean
of y, is yy + ayt and the mean of y,,, is Ey,,, = yo + a( + 5). To explain, the deter-
ministic change in cach realization of {y,} is ay; after ¢ periods, the cumulated
change is agt. In addition, there is the stochastic trend Te;; each €; shock t'las a per-
manent effect on the mean of y,. Notice that the first difference of the series is sta-
tionary; taking the first difference yields the stationary sequence Ay, = a, +e.

Graph (b) of Figure 3.12 illustrates a simulated random walk plus drift model.
The value of a, was set equal to unity and (3.37) simulated using the same 100 de-
viates used for the random walk model above. Clearly, the deterministic time trend

dominates the time path of the series. In a very large sample, asymptotic theory

suggests this will always be the case. However, you should not conclude that it is
always casy to discern the difference between a random walk model and a model
with drift. In a small sample, increasing the variance of {e,} or decreasing the ab-

solute value of a, could cloud the long-run properties of the sequence. No’tic.e that
the pattern evident in the random walk plus drift model looks strikingly sxm}lar to
many of the serics—including the money supply and real GNP—shown in Figures

3.1 through 3.8.

The Forecast Function
Updating (3.37) by s periods yiclds
t+s

Yiws = Yo T ap(I+5)+ ZG,

i=l
<
=y, +a0s+2€m
i=l

Taking the conditional expectation of y,, ,, we get

“where  {7,} is a white-noise process with variance = g2
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In contrast to the pure random walk mod

el, the forccast function is not flat, The
fact that the mean change in y, is alwa

ys the constant ay is reflected in the forecast,
Inaddition to the given valuc of ¥n» We project this deterministic change s times into
* the future. Thus, the model does not contain an irregular component; the random
walk plus drift contains only a deterministic trend and stochastic trend. '

The Random Walk plus Noise Model

In the random walk plus noise model, y,

is the sum of a stochastic trend and white-
noise component. Formally, this third m

odel is represented by
Ye=H + 1,

and

W=l +e, ‘ (3.39)

5 and €, and n,_ are inde-
pendently distributed for all ¢ and s lie, Ee,n,.,) =0].

Itis easy to verify that the {H,} sequence represents the stochastic tre

nd. Given
the initial condition for Hos the solution for 1, is '

r
By =1y + 2 €
i

Combining this expression with the noisc term yields

!
Yi=hot Y €t
' i=1

Now recognize that in period zero, the valuc of Yo is given by y, = Mo + Mg, SO
that the solution for the random walk plus noisc model can be written as

t
Y =y0—'r]0+26,.+71, ) (3.40)
il ' '

The key properties of the random walk plus noise model are as follows:

» The unconditional mean of the {y.} scquence is const

_ ant: £y, = y, — n, and up-
dating by s periods yields Ey,; = y, - N, Nolice th

at the successive €, shocks

i
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have permancnt effects on the {y,} sequence in that there is no decay factor on
past values of €,_;. Hence, y, has the stochastic trend p,.

2. The (v, sequence has a pure noisc component in that the {7,) sequence has
only a temporary effect on the {y,} sequence. The current realization of 1, af-
fects only y, but not the subsequent values y,, .

3. The variance of {y,} is not constant: var(y,) = 16* + 62 and var(y,_,) = (t — s)o* + .

Op. As in the other models with a stochastic trend, the variance of y, approaches

infinity as ¢ increases. The presence of the noise component means that the cor-

relation coefficient between y, and y,_, is smaller than for the pure random walk
model. Hence, the sample correlogram will exhibit even faster decay than in the
; pure random walk model. To derive this result, note that the covariance between
; yeand y,_, is

Covly, v...) = El(y,~ Yot M) (v, = Yo+ N
=Ll teyt e+t g+ N e eyt eg+ kg + M, )]

Since {¢,} and {7,} arc independent white-noise sequences,
Cov(y, y,-) = (t = 5)0?
Thus, the correlation coefficient p, is

(t —.9)02

o \/(:cz +opl(t=s)0” +02]

p

Comparison with (3.35)—that is p, for the random walk model—verifies tha
the autocorrelations for the random walk plus noise model are always smaller f
c2>0.

Consider graph (c) of Figure 3.12 that shows a random walk plus noise mode

tributed random deviates to represent the 7, series. For each value of 1, 1, = 1],

parts (a) and (c) of the figure, it is seen that the two series track each other qui
well. The random walk plus noisec model could mimic the same set of macroec

vy {n,}, is to increase the variance of {y,} without affecting its long-run behavio
3 After all, the rando n walk plus noise series is nothing more than the random wal
; model with a purcly temporary component added. ;
The Forecast Function

r’ To {ind the forecast function, update (3.40) by s periods to obtain !

The serics was simulated by setting 1, = 0 and drawing a second 100 normally dis%-':;‘

was added to the value of y, calculated for the random walk -model. If we compare

. nomic variables as the random walk model. The effect of the “noise” compondnL-
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1+s

oy F YTy + Zei + My

i=1

&y
=Yom+ z € TNy,
i=t

Taking the conditional expectation, we get

El.))n\ =¥Y.-M,

. ‘Thus, the random walk plus noise model cont

t' component. Certainly, 1, has only a temporary cffect on yp; the forecast of y,, | is the
, current value y, less the temporary component n,. .
¢ [y} is the stochastic trend Ze,.

ains both a trend and an irregular

The permanent component of

As an exercise, it is useful to show that the random w

- ‘ alk plus noise model can
B5' also be written in the form

Ye=Yy t g+ L1 P} PO

t The proof is straightforward since (3.38
Ay, = A, + An,. Given (3.39), A, =€
are equivalent.

) can be written in first differences as
n s0 that Ay, = €, + An,. Hence, the two forms

The General Trend plus Irregular Model

5The random walk plus noise and random w
i blocks of more complex time-series models.
ponents can easily be incorporated into
that the trend in y, cont
replace (3.39) with

alk plus drift model are the building
For example, the noise and drift com-
! a single model by modifying (3.39) such
ams a deterministic and stochastic component. Specifically,

]
oy

“I = ”l—l + Uy + €

d

34D

b= o

&

~n

2
(=)

I

= aconstant
a white-noisc process

M
ol
i}

Here, t'he trend t, contains the stochastic change e,':md_ deterministic change «,,.
0 establish this point, use (3.37) to obtain the It as

. ! .
K, :u”+u()l+26i .
i=1 :

refy

e e

v ¥
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Now combine the deterministic and stochastie trends with the noise term (0 ob-
tain

!
Yo T Py T aplt 2 €+, (342)

i=1

If we impose the initial condition y, = R, + 1, the solution for y, is

!
Y=Y T My Faylt L €+, L a4y

i=l

Equations (3.38) and (3.41) are called the trend plus noise model; y, 1s the sum
of a deterministic trend, stochastic trend, and pure white-noise term. Of course, the
noisc sequence docs not need to be a white-noise process. Let A(L) be a polynomial
in the lag operator L it is possible 1o augment a random walk plus drift process

with the stationary noisc process A(L)n, so that the general trend plus irregular
modcl is

1
Y, =Wyt agt+ Zef +A(L)m, ; (3.44)

i=|

The Local Linear Trend Model

The local linear trend model is built by combining scveral random walk plus noise
processes. Let (g}, (n,}, and {§,] be three mutually uncorrelated white-noise
processes. The local linear trend model can be represented by

,VI = “I + nl
H,=U,_ +a +e,

a,=a,_, + 9, i ) (3.45)

The local lincar trend model consists of the noise term 7, plus the stochastic
trend term 4, What is interesting about the moilel is that the clange in the trend is
a random walk phus noise: that is, Ay, is equal to the random walk term a, plus the

noise term €, Since this is the most detailed model thus far, it is useful to show that

the other processcs are special cases of the local lincar trend model. For example,

t. The random walk plus noise: If all values of the {q,} sequence are equal to
zero, (3.45) is a random walk (3, = t,_, + €,) plus noise (n,). Let var(§) = 0, so
thata, = a, ;= - = a,. W ay =0, 14, = 1,_; + €, so that y, is the random walk §3,
plus the noise term 0,

'in the {y,} sequence cont

alizations of the {3,
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2. The random walk plus drift: Again, let var(d) = 0, so that A=,y = =y,
Now if g, differs from zero, the trend is the random walk plus drift: y, = W, +
ay + €. Thus, (3.45) becomes trend plus noise model. If we further restrict the

model such that var(n) = 0, the model becomes the purc random walk plus drift ..
model.

The solution for y, can casily be found as follows. First, solve for @, as

Next, use this solution to write 1, as

Py =iy tay + 28:' +€

i=|

so that

I .
By =g+ )€+ 1y +8))+8, (1~ 1) +8,(1-2)+ 48

i=l

Since y, = lg + 1), the solution for ¥, is

’ _
Y, =¥+ (m, _n0)+2€i+t(u(,+61)+(l—-])82+(1—-2)83+ B,
i=1 '

Here, we can sce the combined propertics of all the other models. Each clement

ains a deterministic trend, a stochastic trend, and an irreg-

ular term. The stochastic trend is Ze; and the irrcgular term .. Of course, in a more

- general version of the model, the irregular term could be given by A(L)n,. What-is

most interesting about the mode! is the form of the determinis

. bout. lic time trend. Rather
than being deterministic, the coefficient on time depends-on the current and past re-

} sequence. If in period #, the realized value of the sum ¢, +
5,'+v--- + 8, happens to be positive, the coefficicnt of # will be positive, Of course,
this sum can be positive for some values of ¢ and negative for others. The simulated - .
local linear trend model shown in graph (d) happens to have a sustained positive

slope since there were more positive draws in the 100 values of {8,} than negative
values. '
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Removing the Tremd %3
The Forecast Function . ' ‘
L(Ay) = E(a, + €)=,

If we update the solution for y, by s periods, it is simple to demonstrate that Var(Ay,) = I(Ay, - ) = L(e,) = g2

and
I4+s

Voo = Yo H (M, M)+ Eei + (5, +0))H(t+s =10, + (1 +5-2)3,
i=1 '

Cov(Ay, Ay,.,) = E[(Ay, - @By, —ag)l = Ee,..) = 0
+o 8, -

" Since the mean and variance arc const
: dy,, depends solely on s, the {Ay,}

The random walk plus noise mo

ants and the covariance between Ay, and ‘
SO

sequence is stationary,
del is an interesting case study. In first differ-

(=€ An,. In this form, it is casy to show
ing:

S

| . ) is station i t
Vs = ¥t (Mg =)+ zﬁm +isag +8 +9y + - +8r)+2(5+ =08, ationary. Notice the follow

i=1 i=l
E(Ay) = E(e, + An) =0

E(Ay)? = E[(e, + An)?)

= El(e)* + 2e,Am, + (An,)7)

=0" +2E(e,An,) + [

Taking conditional expectations yiclds Var(ay,)

fi

E’y“” = (y' - n') + S(CIO * 8' + 62 et 8’) (1],)2 - 211,7%-1 + (T],-;)QJ =0+ 20:

i COV(Ayn A}’H) = EI(E + T] - € + — = 2
The forccast of y,,, is the current value of y, less the transitory component 1, plus M€+ N = M) = o)
s multiplied by the slope of the trend term in ¢. : and
CovlAy, By = El(&, + M= M e+ ML =M )1 =0 fors s |
9. REMOVING THE TREND

Ly

If we set s =1, the correlation cocfficient between Ay, and Ay, is
You have secn that a trend can have deterministic and stochastic components. The o e
form of the trend has important implications for the appropriate transformation
attain a stationary series. The usual methods for eliminating the trend are differenr
ing and detrending. Detrending entails regressing a variable on “time” and savir
the residuals.'” We have alrecady examined an ARIMA (p, d, g) model in which i
dth difference of a series is stationary. The aim of this section is to compare the.
two mcthods of eliminating the trend.

M = —w — 2 2 )
pth var(dy,) ~On/(c”+207)

k. Examination reveals —0.5 < p(1) €0 and th
2310, Since the first difference of Y, acts ex
swalk plus noise model js ARIMA(O, 1,
no effect on the corrclogram, it additiona
gf(3.43) also acts as an ARIMA(0, 1,
‘The local linear trend model acts a
and second difference of y,

at all other correlation coefficicnts are
actly as an MA(I) process, the random
D). Since-adding a constant to-a scries has
lly follows that the trend plus noise model
1) process.

odel - s an ARIMA(0, 2, 2) model. Taking the first
in this model, we obtain

Differencing

First consider the solution for the random walk plus drift model:

t
¥, = Yot agt+ ZG‘. By, = Ay, + An,
i=l =a,+ €+ 4N,
Taking the first differcnce, we obtain Ay, = ag + €,. Clearly, the {Ay,} sequence—

equal to a constant plus a white-noise disturbance—is stationary. Viewing Ay, as

2 A 2
the variable of interest, we have Ay, =Aa, + Ag, + A,

=08, + Ae, + A™,
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it is stinghtforward to show that the first differ- Detrending

Since a, itself s nonstationary,
ence of v, is not stationary. Examining A%y, we note We have shown that differencing can sometimes be used 1o transform a nonstation-
ary model into a stationary modcel with an ARMA representation. This does not
mean that all nonstationary models can be transformed into a well-behaved ARMA
-model by appropriate differencing. Consider, for example, a model that is the sum

2 of a deterministic trend component and pure noise component:
Y .

E(AYy) = E(5,+ M, + ) =0
Lo Var(Alv,) = E(3, + de, + A )7 = E[0.)7 + dea” +(am)”+ . )
5 e 23 = 287 + 2 ')
=3+ 200 - 6ak o .
CovlA™Y. ATy = EJd. = de. = A0 - de - =AM
o AT TR S WA \ PR \WEY ;1 ¢
\8: Ve T € : + “,.,] - h\r—:*‘“_t—))( )
= —G: - -‘6‘:‘ . 5
CoviAly, Aly, ) = E[(§, + A, + A, 1 + A€, 5 + 8N,0)]

= E[(SI +€—€. +T, - 2“/-1 + T\:-z) ;
(61 >t e €y +N,. 2“1—.\ + nN)

Yi=Yor ol t e
The first difference of y, is not well behaved since
AyI: oy +e—¢€.,

Here, Ay, is not invertible in the sense that Ay, cannol be expressed in the form of
,iulorcgressivc process. Recall that the invertability of a stationary process re-
ires that the MA component not have a unit root.

Iistead, an appropriate way to transform this model is to cstimate the regression
gq_ﬁalion ¥, =y + o1 + €, Subtracting the estimated values of y, from the obscrved
ies yiclds estimated values of the {e,} series. More generally, o time serics may
fave the polynomial trend

:GT‘“

that =2/3 < p(1) £ 0. 0 £ p(2) < 1/6 and all other values of p(s) are zero.
Now consider a general class of ARIMA(p. 4. ¢) models:

Vo= A+ Uy U U e U e,

A(L)y, = B(L)e, :

3

fwhere (e} = astationary proccss

Detrending is accomplished by regressing {y,} on a polynomial time trend. The

ppropriate degree of the polynomial can be determined by standard r-tests, F-tests,

pd/or using statistics such as the AIC or SBC. The common practice is to estimate

regression equation using the largest value of n deemed reasonable.

2f the r-statistic for o, is zero, consider a polynomial trend of order n — 1.

ggninuc to pare down the order of the polynomial trend until a nonzero cocfficient”
ound. F-tests can be used to determine whether group coefficients—sayv,

gh o, —are statistically different from zero. The AIC and SBC statistics

¢ used 10 reconfirm the appropriate degree of the polynomial.

S .
difference betwceen the estimated/values of the {y,} scquence from the actual

order p — 1. Since A(L) has only one unit root. it follows that all roots of A*(L),zﬁ
outside of the unit circle. Thus, we can write (3.46) as 1oy

(- LWy = Bibwe

Wow dsiing v = Avo wtha

AX Ly = B(L)e,

The {y*} scquence is stationary since all roots of A*(L) lie outside the un
‘Tlhic point is that the first difference of a unil root process is stationary. IfA(u
two unit roots, the same argument can be uscd to show that the second differeagsi
{v,} is stationary. The general point is that the dth difference of a process \
unit roots is stationary. An ARIMA(p, d. q) model has d unit roots; the dih
ence of such a model is a stationary ARMA(p, ¢) process. If a serics has'd’
roots, it is said to be integrated of order d or simply I(d). :

model by differencing and a trend stationary modcel (TS) can be trans-
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formed into a stationary model by removing the deterministic lrer‘xd.. A serious
problem is encountered when the inappropriale mcthod. is used to cllmma.te l'rcncl_.
We saw an example of the problem in attempting to difference the cquation: y, =
v, + 1 + €, Consider, a trend stationary process of the form

ALYy, = oy + 04yl + e,

where the characteristic roots of the polynomial A(L) are all outsi‘dc the gnlt circle
and the expression ¢, is allowed to have the MA form ¢, = B(L)e,. .Subtrz.xclmg an ej;
timate of the deterministic time trend gives a stationary and. invertible ARI\:
model. However, if we use the notation of (3.47), the first difference of sgc a
model yiclds

AL)y* = oy + (1 = L)B(L),

First-diffcrencing the TS process has introduced a noninvertible unit. rgot proccs{si
into the MA component of the model. Of course, the same problem is mtroducc‘
into ¢ with a polynomial time trend. '
Im;)ndl}rlzos(:lcr:m way,iubylructing a deterministic time trend frorr} a difference stauo‘r;-
ary process is also inappropriate. In the random walk plius drift model abgve, §uc;
tracting y, + ayf from cach obscrvation does not resul‘t ma stau.onary sencs.s%n_
the stochastic trend is not climinated. More generally, 1nc'orpora.ung a.dcteli'mlmstlc
trend component in a regression when none cxists xtcsults ina mlsspecxﬁ'cz;(uf)n crrqx:
if the process actually contains a unit root. You might be {c.mptcd to think 1t possi
ble to estimate the deterministic trend from the data using a such regression,
Unfortunately, all such cocfficients are statistical artifacts in the presence of a non-
stationary crror term.

The Yen/Dollar Exchange Rate: An Example

The random walk shown in Figure 3.12 might fool a rcsc'archcr into lhlvnklng. the s}<1:~
. rics is actually trend stationary. Instead of focusing on 51‘mulatcd data, cor;sx(}l]ert ¢
time path of the yen/dollar exchange rate illuslrz}tcd in Figure 3.7. OvcralE, the yc'r::
rose by more than 60% during the 21-ycar period 1971 through 1991. dconorr}:‘-
theory suggests no reason to expect the nominal ycn./dollar rate to have a etermi -
istic component; in fact, some versions of the cfficient market h.yp.ol}.xesm sqggclso
that the yen/dollar ratc must have a stochastic trend. However, 1t 18 mterestmgh ;
consider the consequences of detrending the ycn/doll'ar ratg. If y, denotes the
yen/dollar exchange rate, regressing y, on a constant and time yiclds

y, = 0.8479 — 0.0064 ume + e,
(44.91)  (-=14.10)

The r-statistics (shown in parentheses) indicate that the cocfficients are :xgzﬂ)ﬂ
significant. The residuals from this regression—the {e,} scquence——are the de-

JE e T S
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trended values of the yen/dollar exchange rate. The top portion (a) of Figure 3.13
. shows the ACF and PACF of the detrended exchange rate; as you can clearly sec,
the ACF does not die out after 16 quarters! Here, detrending the data does not result
in a stationary series. The Jower portion (b) of the figure shows the ACF and PACF
of the logarithmic change in the yen/dollar rate. The single spike at lag 1 is sugges-
tive of an AR(1) or a MA(1) model. The negative correlation coefficients at lags 5
and 15 do not suggest any particular seasonal patterns and may be spurious. With
70 usable observations, 2T~ = 0.239 is almost exactly cqual to the PACF coeffi-
© cient at lag 5. The results of two alternative cstimations of the logarithmic change
‘in the yen/dollar rate are shown in Table 3.1. For both models, the estimated inter-
*cept (ao) is not statistically different from zcro at conventional significance levels.
The Q-statistics for autocorrelations up to 17 (/4 = 17) show that as a group, all
can be treated as being equal to zero. However, by a small margin, the SBC selects
the MA(1) model. The critical point is that cither of these models using differenced
data will be vastly superior to a model of the detrended yen/dollar rate,

10. ARE THERE BUSINESS CYCLES?

Traditional business cycle rescarch decomposed real macrocconomic variables into
a deterministic secular trend, a cyclical, and an irregular component. The typical
decomposition is illustrated by the hypothetical data in Figure 3.14. The sccular
trend, portrayed by the straight line, was deemed to be in the domain of growth the-
ory. The slope of the trend line was thought to be determined by long-run factors
such as technological growth, fertility, and educational attainment levels. One
source of the deviations from trend occurs because of the wavelike motion of real
economic activity called the business cycle. Although the actual period of the cycle
was never thought to be as regular as that depicted in the figure, the periods of
prosperity and recovery were regarded to be as inevitable as the tides. The goal of
monetary and fiscal policy was to reduce the amplitude of the cycle (mcasured by
distance ab). In terms of our previous discussion, the trend is the nonstationary

. component of growth and the cyclical and irregular components arc stationary.

: Table 3.1 Alternative Estimates of the Yen/Dollar Exchange Rate

Estimates® Q(17) Statistic”

SBC*
AR(1) ay: ~0.0104 (0.0095) QUI7) = 19.06 (0.3249) ~114.359

: a: 03684 (0.1148)

MA(1) ay: =0.0116 (0.0082) QI7) = 19.22 (0.2573) —114.932

B 0.3686 (0.1123)

*Standard errors are in parentheses.
*Tl4 is approximately 17.

‘Since both models have the same number of paramcters, both the AIC and SBC sclect the same model.
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Figure 3.13
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Although there have been recessions and periods of high prosperity, the
post-World War II experience taught us that business cycles do not have a regular
period. Even so, there i$ a widespread belief that over the Jong run, macroeconomic
variables grow at a constant trend rate and that any deviations from trend are even-
wally eliminated by the “invisible hand.” The belicf that trend is unchanging over
time leads to the common practice of “detrending” macroeconomic data using a lin-
ear (or polynomial) deterministic regression cquation.
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This detrending procedure might entail estimating real GNP using the regression
¥ = Oy + 0t + €, The calculated residuals are the detrended data. Subtracting the
trend from each observation might yicld something similar to the lower graph of
Figure 3.14; the deviations from the cycle are the irregular components of the se-
ries. If the residuals are actually stationary, the cyclical and irregular components
can be fitted using traditional means.

The problem with this type of analysis is that the trend may not be deterministic.
As we have seen, it is improper to subtract a deterministic trend from a difference
stationary series. The economic significance of real macroeconomic variables being
difference stationary, rather than trend stationary, is profound. If a variable is trend

-stationary, current economic shocks of any variety will not have any long-run cf-

fects on the series. Consider the forecast function from the trend stationary model

‘Figure 3.14  The business cycle?
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y, = Oy + 0,1 + € above. If €, is a white-noise process, the forccast of y,,, is o + Table 3.2 Selected Autocorrelations from Nelson and Plosser ;§
! i S L - g : by
o, (r + ) for all s; ncither C}lrrcn( nor pn}st events affect the very long-run forecast of o(l) o2 ) @) o a2 ,r‘
the future y values. Morc important, given the values 0 and o, the forecast error i
variance is constant. The forecast error for any s is always €, hence, the forecast Real GNP 0.95 0.90 0.34 0.04 0.87 0.60 v
’ error variance for any s is var(e,,,). Even if {¢]} is serially correlated, long-term Nominal GNP 0.95 0.89 0.44 0.08 0.93 0.79 4
i i . d the forecast horizon (s). : . . i
forecasts will eventually depend only on o, and 0., and the fo (5) Industrial production  0.97 0.94 0.03 011 084 067 i
}r-' This is in stark contrast to the case in which the {y,} series has a stochastic trend. . U’ i o 0o i
A Consider the simple random walk plus noise model y, = p., +1,, where f, = l,_ + €, nemployment rate 0.75 0.47 0.09 -0.29 )75 0.40 ;::
' Given the initial condition for y,, we can solve for y,,, a Notes: 1. Full details of the corrclogram can be obtained from Nelson and Plosser (1982) who report %f
. the first six sample autocorrelations. : 37":
{ s 2. Respectively, p(i), r(i), and d(i) refer to the ith-order autocorrelation coefficient of cach se- '.5,%: 5
) Vs =V, F 2 €t M =M, ries, first difference of the series, and detrended values of the scries. i@
i= , 15
i
Notice that the forecast error variance becomes unbounded. for fong-term fore- ,z,g:
casts. The s-step ahead forecast of y,, , is D R RO are gencrated from DS processes. Nelson and Plosser point out that the positive au- 34
tocorrelation of differenced real and nominal GNP at lag | only is suggestive of an
Ey..=y—1, MA(1) process. To further strengthen the argument for DS-generating processes, i
3 recall that diffcrencing a TS process yields a noninvertible moving process. Nonc 53
s0 that the s-step ahead forecast error variance is of the differenced series reported by Nelson and Plosser appear to have a unit root
e in the MA terms.
¥ " The results from fitting a lincar trcnd to the data and forming sample autocorrela-
‘4

AY
V"'“-(.),l—}j - ElyH—.r) =var ZEHI' R
i=1

tions of the residuals are shown in the last two columns of the table. An intcresting
feature of the data is that the sample autocorrelations of the detrended data are rea-
sonably high. This is consistent with the fact that detrending a DS serics will not

2 2
=S0"+ Gy . . . . .
K eliminate the nonstationarity. Notice that detrending the unemployment rate has no

)
{
!
;

As we forecast further into the future, the confidence interval surrounding our
forecasts grows progressively larger. As s — oo, the variance of the forecast error
becomes infinitely large.

Nelson and Plosser (1982) challenged the traditional view by demonstrating that
important macroeconomic varfables are DS rather than TS processes. They ob-
tained time-series data for 13 important macrocconomic time series: real GNP,
nominal GNP, industrial production, employment, unemployment rate, GNP defla-
tor, consumer prices, wages, rcal wages, money stock, velocity, bond yields, and an
index of common stock prices. The sample began as carly as 1860 for consumer
prices to as latc as 1909 for GNP data and ended in 1970 for the entire series. Some
of their findings arc reported in Table 3.2. The first two columns report the first-
and second-order autocorrelations of real and nominat GNP, industrial production,
and the unemployment rate. Notice that the autocorrelations of the first three series
are strongly indicative of a unit root process. Although p(1) for the unemployment
rate is 0.75, the sccond-order autocorrelation is less than 0.5.

First differences of the series yicld the first- and sccond-order sample autocorre-
lations r(1) and r(2), respectively. Samplc autocorrclations of the first differences
are indicative of stationary processes. The evidence supports the claim that the data

effect on the autocorrelations.

"¢ Rather than rely solely on an analysis of correlograms, it is possible o formally
test whether a series is difference stationary. We examine such formal tests in the
next chapter. The testing procedure is not as straightforward as it might scem. We
cannot use the usual statistical techniques since classical procedures all presume that
the data are stationary. For now, it suffices to say that Nelson and Plosser arc not
able to reject the null hypothesis that their data are DS. If this view is correct; macro-
sconomic variables do not grow at a smooth long-run rate. Some macrocconomic
shocks are of a permanent nature; the effects of such shocks arc never climinated.

‘\

. l

11 STOCHASTIC TRENDS AND UNIVARIATE
DECOMPOSITIONS

Nelson and Plosser’s (1982) flndlngs suggest that many economic time serics have -
a stochastic trend and an irregular component. Having observed a series, but not the
individual components, is there any way to dccompose the series into the con-
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stituent parts? Numerous cconomic theorics suggest it is important to distinguish
between temporary and permanent movements in a series. A sale (i.c., a temporary
price decline) is designed to induce us to purchase now, rather than in the future.
Labor economists arguc that “hours supplied™ is more responsive to a temporary
wige increase than a permanent increase. The idea is that workers will temporarily
substitute income for leisure time. Certainly, the modern theories of the consump-
tion function that ¢lassify an individual’s income into permanent and transitory
components highlight the importance of such a decomposition.

Any such decomposition is straightforward il it is known that the trend in {y,} is
purcly deterministic. For example, a linear time trend induces a fixed change each
and cvery period. This deterministic change can be subtracted from the actual
change in y, to obtain the change resulting from the irregular component. If, as in
Section 9, there is a polynomial trend, simple detrending using OLS will yield the
irrcgular component of the serics.

A difficult conceptual issue arises if the trend is stochastic. For example, suppose
you arc asked to measure the current phase of the business cycle. If the trend in
GNP is stochastic, how is it possible to tell if the GNP is above or below trend?
The traditional measurement of a recession by consecutive quarterly declines in
rcal GNP is not helpful. After all, if GNP has a trend component, a negative realiza-
tion for the irregular component may be outweighed by the positive trend compo-
nent. .

If it is possible to decompose a sequence into its separate permanent and station-
ary components, the issue can be solved. To better understand the nature of sto-
chastic trends, note that—in contrast to a deterministic trend—a stochastic trend in-
creases on average by a fixed amount cach period, For example, considéfthe
random-walk plus drift model of (3.36): ‘

Ye= Y + Ay + €,

Since Fe, = 0, the average change in y, is the deterministic constant ag. Of
course, in any period ¢, the actual change will differ from g, by the stochastic quan-
tity €, However, each sequential change in {y,} adds to its level, regardless of
whether the change results from the deterministic or stochastic component. As we
saw in (3.37), the random walk plus drift model has no irregular component; hence,
it is a model of pure trend.

The idea that a random walk plus drift is a pure trend has proven especially use-
ful in time-scries analysis. Beveridge and Nelson (1981) show how to decompose
any ARIMA(p, 1, g) model into the sum of a random walk plus drift and stationary
component (i.c., the general trend plus irregular model). Before considering the
general case, begin with the simple example of an ARIMA(O, 1, 2) mode!:

Yo=Yy +ayt €+ By + Bag, s (.48)

I B, =B, =0, (3.48) is nothing morc than the pure random walk plus drift
modet. The introduction of the two moving average terms adds an irregular compo-
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nent to the {y,} sequence. The first step in understanding the Beveridge and Nelson
(1981) procedure is to obtain the forccast function. For now, keep the issue simple
by ('lcﬁnmg.e., =€+ B,y + B, 50 that we can write y, = Yiop + dy + ¢, Given an
initial condition for y,, the general solution for v, is2"

it

: y
Y=gyl ty, + 2":‘ o o O Gay

i=1 ) o ’ )
Updating by s periods, we get

4+

Yrvs =g (t+s5)+ Yot Z ¢; . (3.50)

=l
S

Substituting (3.49) into (3.50) so as to eliminate Yy viclds o

kY
y{+J:a05+yr+261+i e e (3.5

i=]

To express the solution for Yies i terms of {e,} rather than {e,}, note that

5 ) < 5
zem = Z‘-m‘ +B, ZE/—IH +B, ZEI—ZH
i=l i=1 i=1 i

i=

) (3.52)
so the solution for y,,, can be written as

¥ ¥

5
Yias = aOS+y1 +z€r+i +Bl ZGI—HJ +822€l—2+i (3.53).

i=l i=] i=1

- Now consider the forecast of y,,, lor various values of . Since all values of
Eg,..=0fori>0,it follows that

El.vl+| =4y +_V,+ BIEI+ BZEI—I
Exyx+2 = 200 +.VI + (Bl + BZ)GI + BZEI—I

E/.VHJ =384, + Y + (ﬁl + BZ)EI + BZGI—I : (354)

Here, the forecasts for all s > 1 are cqual to the expression saq + y, +(B; + Bo)e, +
B,ef_,. Thus, the forecast function converges to a lincar function of the forcczlxsl
horizon s; the slope of the function equals a, and the level equals y, + B, + Bye, +
Ba€,.;. This stochastic level can be called the trend at £, in terms of our carlier nota-
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tion, this trend is denoted by g, This trend plus the deterministic value agys consti- The General ARIMAI(p, 1, q) Model
tutes the forecast Ly, . There are several inter:sting points to note: .
The .ﬁrsl-dlffcrcncc of any ARIMA(p, 1, ¢) scrics has the stationary infinite-order
1. The trend is defined to be the conditional expectation of the limiting value of the moving average representation:
forecast function. In lay terms, the trend is the “long-term” forecast. This fore-
cast will differ at cach period ¢ as additional realizations of {€,} become avail-
able. At any period ¢, the irregular component of the series is the difference be-

;‘{ tween y, and the trend p,. Hence, the irregular component of the series is

Yo=Y =dg+ €+ e, + e,y + o

As in'the carlier example, it is uscful to define ¢, =€, + [}e

carlier ¢ it g+ Brey
+ -+, 50 that it is possible to write the solution for Yies

in the same form as (3.51):

| 0 Y~ K= —(BI + BZ)EI - BZEI—] (3.55)

5 o
At any point in time, the trend and irregular components are perfectly correlated Yies =¥, Faags+ 2 ¢ B
. Wl . . & ' i
(the correlation cocfficient being —1). e .

, 2. By dcfinition, €, is the innovation in y, and the variance of the innovation is ¢%
b Since the change in the trend resulting from a change in €, is | + B, + B, the

= variance of the innovation in the trend can exceed the variance of y, itself. If |
. (1 + B, + B,)* > 1, the trend is more volatile than y, since the negative corrcla- -

o tion between the trend and irregular components acts to smooth the {y,} se-
quence. ’

The next step is to cexpress the {e,] scquence in terms of the

. various values of the
{€,} sequence. In this general case, (3.52) becomes . . ("

5 K3

5 R ) 5
EeH-i = Z €. +P 2€/—l+i +B, Z €24 TP Z €t o (350)
i=1 i=1 i=1 .

i=] i=]

3. The trend is a random walk plus drift. Denote the trend at ¢ by |, so that 1, = y,
+ (3, + Bye, + Be,y. Hence,

Since Ee,,; = 0, it follows that the forecast function can be written as

A, = Ay, + (B + B)Ae, + BrAe,
=, = y) + (B + Boe, - Biey ~ Baey

5 s+} s+2 .
El-ylﬂ =Y +(IO.Y+ ZB, €, + EB, €+ EB’ €+ o (3.57)
Since y, —y o =ag+ e+ Piey + Py, i=1 i=2 i=3

Ap, = ay+ (1 + ﬁl +Boe,

Now, to find the stochastic trend, take the limiting value of the forecast Ly, -

. - 8o5) as s becomes infinitely large. As such, the stochastic trend is?'
Thus, P, = [, + g + (1 + By + Bye, so that the trend at ¢ is composed of the

dnft term g, plus the white-noisc innovation (1 + B, + B,)e,.

Beveridge and Nelson show how to recover the trend and irregular components
from the data. In the example at hand, estimate the {y,} series using Box-Jenkins
techniques. After the data are differenced, an appropriately identified and estimated *
! ARMA model will yicld high-quality estimates of a,, f,, and ,. Next, obtain ¢,
. and €,_, as the one-step ahead forecast errors of y, and y,_,, respectively. To obtain
these values, use the estimated ARMA model to make in-sample forecasts of each
obscrvation of y,_, and y,. The resulting l'orecast errors become €, and ¢,_;.
Combining the estimated values of By, B,, €, and €,_, as in (3.55) yields the irregular
componcnt. Repeating for each value of ¢ yields the entire irregular sequence. From
(3.55), this irregular component is y, less the trend; hence, the permanent compo-
ncnt can be obtained directly.

oo Sl S0 ke[S o -
i=} i=2 i=3

[
i

The key to operationalizing the decomposition is to reco

: gnize that can be
written as . ylf"n

Yias = Ayl+x + Ayl+.r-| + Aylm—2 +oeee AylH +y,

As such, the trend can be always be written as the current value of ¥
- sum of all the forecasted changes in the scquence. If we
- chastic portion of the trend is

plus the
abstract from ays, the sto-
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Lim E,.VHJ = lim Ef 1()’[” = Yiss-t )+ (ytﬂ 4T Vs-2 )+ e
$os S—yoo

+ (V2 = Ye) + U’r-&l =yl +y,
=hm E Ay, + 8y, + - +Dy ,+ Ay, )+, (3.58)
§—)o0

The uscful feature of (3.58) is that the Box—Jenkins method allows you to calcu-
fate each value of EAy,,.. For cach observation in your data set, find all s-step
ahcad forecasts and construct the sum given by (3.58). Since the irregular compo-
nent is y, minus the sum of the deterministic and stochastic trends, the irregular
component can be constructed as

Y= Hm(E y, —ays)=—1im E(Ay,,, + Ay, - + Ay g + Ay ) —say
$de0 Sren

Thus, to use the Beveridge and Nelson (1981) technique:

STEP 1:  Estimatc the first difference of the serics using the Box-Jenkins technique.
Select the best-fitting ARMA(p, ¢) mode} of the {Ay,} sequence.

STEP 2: Using the best-fitting ARMA model. for cach time period t = 1, ..., .T,
find the one-step ahcad, two-step aheud, . . | s-step ahead forecasts: that is,
find EAy,,, for cach value of ¢ and s. For cach value of 1, use these fore-
casted values to construct the sums: £,(Ay,,, + Ay,,._, + - + Ay,.)+y.In

- practice, it is necessary to find a reasonalle approximation to (3.58); in
their own work, Beveridge and Nelson let s = 100. For example, for the
first usable observation (i.c., r = 1), find the sum:

Ry = Ey (Byig) + By + -+ Avy) + 3,
The value of y, plus the sum of these forecasted changes equals E,y,q);
the stochastic portion of trend in period 1 is E,y,,, — a,s and the determin-
istic portion ays. Similarly, for 1 = 2, construct

My = Lo (Ayioz + Ayigy + - + Ay3) + 3,

Il there are T observations in your data sct, the trend component for the
last period is

Uy = Ep (Aypon + AYy oy + = + Ayp ) + ¥y

The entire sequence of constructed trends (i.c., . M, . . ., Hy) constitutes
the {y,} scquence.

" the data set yiclds the irrcgular and perm

~ set equal to zero. As such, you should be
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STEP3: Form the irregular component at ¢ by subtracting the stochastic portion of
the trend at ¢ from the value of ¥, Thus, for cach obsery

ation ¢, tlic irregu-
lar component is ~E, (AYrion + AYypgy + - + Ay

ul)'

Note that for many series, the value of s can be quite small. For cx
ARIMA(0, 1, 2) model of (3.58), the value of s can be set cqual to 2 since all fore-
casts for s > 2 are equal to zero. If the ARMA model that is estimated in Step | has
slowly decaying autoregressive components, the value of s should be large cnough
so that the s-step ahead forecasts converge to the deterministic change .

ample, in the

An Example

" In Section 9, the natural log of the yen was estimated as the ARIMA(Q, 1, l)

process:

Ay, ==0.0116 + (1 + 0.3686L)e,

where Ay, = the logarithmic change in the yen/dollar exchange rate

Step 2 requires that for cach obscrvation, w
ahead: forecasts. For this modcl, the mech
the one-step forecast is

¢ form the one-step through s-step
anics are trivial since for cach period ¢

)

EAy,. ==0.0116 + 0.3680¢,

and all other s-step ahcad forecasts arc 0.0 16. :
Thus, for each observation ¢, the summation ELAY, 00 + AY,pgy + - + Ay,,) is
equal to —100(0.0116) + 0.3686e,. For cxample, for 1973:Q2 (the first usable obser-
vation in the sample), the stochastic portion of the trend is Moz + 0.3686€ 455,
and the temporary portion of Yig73.02 Is =0.3680€,474.5. Repeating for each point in
anent components of the sequence. Figure
3.15 shows the temporary and the permanent portions of the serics. As you can
clearly see, the trend dominates the movements in the irregular component. Hence,
nearly all changes in the yen are permancnt changes.

The estimated ARIMA(, 1, 1) model is the special case of (3.48), in which B is

able (o write the equivalent of (3.49 1o
(3.55) for the yen/dollar exchange rate.

An Alternative Decomposition

The Beveridge and Nelson (1981) decomposition has proven especially uscful in
that it provides a straightforward method to decompose any ARIMA( P 1. q) process
into a temporary and permanent component. However, it is important 1o note that the
Beveridge and Nelson decomposition is not unigue. Equations (3.54) and (3.55) pro-
vide an example in which the Beveridge and Nelson decomposition forees the inno-
vation in the trend and stationary components o be perfectly correlated.
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Figure 3.15  Decomposition of the yen/tlollar exchange rate.
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In fact, this result applies to the more general ARIMA(p, 1, q) modcl..Obtammg
the irregular as the difference between y, and its trend forcelzs the correlation (\,O'C,ftti-
cient between the innovations to cqual --1. However, there is no reason to c'onstram
the two innovations in the two components to be perfectly correlated. To illustrate
the point using a specific example, consider the trend plus noise model of (3.41):

Y= R+, ’ ; (3.59)
U, =, + 1L,y + € : (3.60)

where Lemn, = 0 e ‘
To derive the forccast function, update (3.43) by s periods 1o obtain

rts

Yies = Yo~ Mg T+ 5)+ Eei + %y

i=1

R
Yias =Y T UpS+ 2 Ci T~

i=l

"(3.62) to satisfy the restrictions of (3.61), it must be the casc that
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The forecast function for all s > 0 is such that LYy = ¥+ ags — 1),; henee, the
stochastic level is y, — 1,. Thus, the stochastic trend at ¢ is Y, =M, =\, so that the ir-

regular component is 1,. The trend and irregular components are uncorrclated since
EQ, ~mm, = Egun, = 0. Thus, the Beveridge and Nelson methodology would in-
correctly identify the trend and irregular since it would force the lwo innovations to
be perfectly correlated.

Now. consider the correct way to identify the two components in (3.59) and
(3.60). In Section 9, this trend plus noisc model was shown to have an cquivalent
ARIMA(0, 1, 1) representation such that

Edy =0, var(Ay)=0%+202,  andcov(ay, Ay p)=-0l 36

Hence, it is possible to represent (3.59) and {3.00) as the MA(1) process:

Ay, =ay+ e, + Bie

-1
where e, = an independent white-noise disturbance,

The notation ¢, is designed to indicate that shocks 10 Ay, come rom two sources: e,
and n,. The problem is 10 decompose. the estimated values of {e,} into these two
source components.

In this instance, it is possible to recover, or identify,

the individual {€,} and {n,}
shocks from the estim

ation of (3.62). The appropriatc use of the Box~Jenkins
methodology will yield estimates of ag, By and the elements of the {e,} sequence. If
we use these estimates, it is possible (o form

Var(Ay,) = var(e, + Bie,_) = (1 + B,)? var(e,)

and

Cov(ay, Ay,.,) =B, var(e,)

However, these estimates of the variance and covariance are not arbitrary; for

(1+B0)* varte) = 6 + 202

‘ ' By varte) = -¢?

Now that we have estimated B, and var(e,),
from ihe data. The-individual values of the {
ered as well. From the forécast function,

itis possible to recover ¢ and o}
€,} and- {n,} sequences can be recoy-
Ey., =¥, +a, -7, Hence, it is possible
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to usc one-step ahcad forecasts from (3.62) o find LAy, = ¢y + B,e,, so that
Eya =y, +ay + Bie. Since the two forecasts must be equivalent, it follows that

Blcl:—n’

Thus, the estimated values of Bye, can be used to identify the entire {n,} se-
quence. Given {e,} and {m,}, the valucs of {¢,} can be obtained from Ay, = g, + €, +
An,. For cach value of 1, form €, = Ay, - a, — /\1], using the known values of Ay, and
the estimated values of ¢, and Any,.

The point is that it is possible to decomposc a series such that the correlation be-
tween the trend and irregular components is zero. The example illustrates an espe-
cially important point. To decompose a scrics into a random watk plus drift and sta-
tionary irrcgular component, it is necessary to specify the correlation coefficient
between innovations in the trend and irregular components. We have seen two
ways to decompose an ARIMA(O, 1, 1) model. In terms of (3.59) and (3.60), the

Beveridge and Nelson technique adds the restriction that

Ee/n/ccn = 1

so that the innovations arc perfectly corrclated, while the second decomposition
adds the restriction:

Een, =0

In fact, the correlation coefficient between the two components can be any.num-
ber in the interval -1 to +1. Without the extia restriction concerning the correlation
between the innovations, the trend and stationary components cannot be identified;
in a sense, we are an equation short. This result carries over to more complicated
models since it is always necessary to “cleave” or “partition” the contemporancous
movement of a series into its two counstituent parts. The problem is important be-
cause cconomic theory does not always provide the relationship between the two
innovations. However, without a priori knowledge of the relationship between in-

novations in the trend and stationary components, the decomposition of a series:

into a random watk plus drift and a stationary component is not unique. S

What if €, and 7, arc uncorrelated, but you incorrectly use a Beveridge and: ;

Nelson (1981) decomposition to obtuis the temporary and permanent componerts?
Clearly, the in-sample forccasts are invariant to the form of the decomposition

Equation (3.58) has an ARIMA(O, 1, 1) representation that you should properly.
capturc using Step | of the Beveridge and Melson method. As such, there is no vlvay :
for you to determine that the assumption of perfectly correlated innovations is in- :

correct. The issue has nothing to do with the correct form of the ARIMA model

rather, the problem is the way in which the innovations in the trend and irreghlar °

components are partitioned. |

'

What will the researcher i.correctly partitioning the variances find? Using 8
Beveridge and Nelson decomposition for an ARIMA(O, 1, 1) model—sce (3.48)
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Such an integratcd GARCH (IGARCH) procss allows for shocks to have a perma-
nent effcct on the conditional variance.

Conditional variance is a measurc of risk. ARCH and GARCH effects have been
included in a regression framework (o test hypotheses involving risk-averse agents.
For cxample, if producers are risk-averse, conditional pricc variability will affect
product supply. Producers may reduce their exposurc by withdrawing from the
market in periods of substantial risk. Similarly, assct prices should be negatively re-
lated to their conditional volatility. Such ARCH effects in the mean of a series
(ARCH-M) are a natural implication of assct-pricing models. The basic GARCH
model has been extended to allow the conditional variance to have a unit root. This
integrated GARCH, or IGARCH, process is discussed in Engle and Bollerslev
(1986).

Nonstationarity due to a time-dependent mean and/or variance is another com-
mon fcature of cconomic time serics. The trend ina series can contain both stochas-

tic and deterministic components. Differencing can remove i stochastic trend and

“detrending” can climinate a deterministic trend. However, it is inappropriate 10

difference a trend stationary series and detrend a series containing a stochastic -

trend. The resultant irregular component of the series can be estimated using
Box-Jenkins techniques.

In contrast to traditional theory, the concensus view is that most macrocconomic
time series contain a stochastic trend. Decomposing real GNP into its permanent
and temporary COMponents, as in Beveridge and Nelson (1931), indicates that inno-
vations in the stochastic trend account for 2 sizable proportion of the period-to-pe-
riod movements, However, the Beveridge and Nelson decomposition is not unique
in that it forces the correlation coefficicnt between innovations in the trend"and ir-
regular components to be unity. Some of the issues are considered in the appendix
to this chapter. In a very technical paper, Quah (1992) takes the issue one step fur-
ther: He proves that the random walk plus drift model is not a unique form for the
trend. In Chapter S, you will be shown multivariate technique that allows for a
unique decomposition of a serics into its temporary and permanent components.

QUESTIONS AND EXERCISES

| Consider the ARCH-M model represented by Equations (3.30) to (3.32). £F
Recall that {€,} is a white-noise disturbance; for simplicity, let Eef = Eet =

=]

A. Find the unconditioral mean Ly, How does a change in d affect the mean?
Using the example ¢ { Section 6, show that changing f3 and § from (-4, 4) to

(-1, 1) preserves the mean of the |y,} sequence.

7
B. Show that the unconditional variunce of y, when h, = 0 + oe2, does not %

4 depend on B, 8, or 0.
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2. Suppose that the {€,} sequence is generated by the ARCH OCCSS
o by (1) s : | y (q) process repre-

€= V(0 + QL€ + o + aqﬁlz—., V2

. Show that the conditional expectation £,_ e has the same form as the condi-
tional expectation of (3.1).

the GARCH(p, q) process rcpresented by (3.9) acts as an ARMA(m, p)

process, where m = max(p, q). You arc to illustrate this result using the exam-
ples beiow.

A. Consider the GARCH(I, 2) process h, = o, + 0 €2, + 0el, + B/1,_,. Add
the expression (7~ #,) to each side, so that ) "

2_ 2
€7= O + O €L, + Ol + Byl1y + (] 1)

=0ty + (o + Bel + el , — Pilel, = b)) + (€] hy)

Define 1, = (¢?— &), so that

€2= O+ (0 + B)ef; + el , = B,y + 1,
Show that:

i. m,is serially uncorrelated,

ii. The (€7} sequence acts as an ARMA(2, 1) process.

B. Conﬁ(%er the QARCH(2, 1) process h, = o + 0,€_, + Byl1,_y + Baht,_p. Show
that it is posmblc‘to add my, to cach side so as to obtain

L2 2
€= 0g+ o€y + Bh + M+ Bl

Sho?v that a.ddingi and subtracting the terms Bym,_, and f,n,_; to the right-
hand side of this equation yield an ARCH(2, 2) process.

C. Provide an intuitive explanation of the statement: “The Lagrange multiplicr

test. for ARCH errors cannot be used 1o test the null of white-noise squared
residuals against an alternative of a specific GARCH(p, ¢) process.”

. Sketch the proof of the general statement that the ACF of the squared resid-

uals resulting from the GARCHY(p, ¢) process represented by (3.9)

acts as
an ARMA(m, p) process, where m = max(p, q). .

Given an initial condition for y,, find and interpret the forecast function for
each of the following models: ; '

Lo

. Bollerslev (1986) proves that the ACF of the squared residuals resulting from .

Ay

"
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*G. How can you make the models of parts B and D stationar’y?/

. Let y, = 0 and the first five realizations of the {€,} scquence be (1, -:-l", -2, 1,

. The filc labeled ARCH.WKI contains the 100 realizations of the simulated

Modeling Economic Time Series: Trends and Volatility

A. Y=Y I'*'6 +05€I 1 B ¥ = l'l.YI—l +€I

C.y=y_,+1+e D. y,=y_, +/+¢€
E. y, =i, +m,+0.5m,_, where i, =11, , +¢,

F. y, =1, +n,+0.570,, where t, = 0.5+ 1, + €
H. Does model E have an ARIMA(p, 1, ¢) representation?

1). Plot each of the following sequences:
Model 1: y,=05y._, +€

Model 2: y, =€~ €2,
Model 3:  y,=0.5v., + € — €2,

A. How does the ARCH-M specification affect the behavior of the {y,] se- -

quence? What is the influence of the autoregressive term in model 37

B. For each of the three models, calculate the sample mean and variance of -

{»}

{y,} sequence used to create the lower right-hand graph .of Figure 3.9. }?ecall
that this series was simulated as y, = 0.9y,_, + €, where €, is tlhe ARCH(1) étror
process €, = v,(1 + 0.8¢,_,)"2. You should find that the series has a mean of

0.263369480, a standard deviation of 4.89409139 with minimum and mgxi- ‘

mum values of —10.8 and 15.15, respectively.

A. Estimate the series using OLS and save the residuals. You should obtain
=0.9444053245y,_, + €,

The r-statistic for a, is 26.50647.
Note that the estimated value of a, differs from the 1hcorct1¢dl value of09

}
This is due to nothing more than sampling error; the simulated values of {v)

do not precisely conform to the theoretical distribution. However, can you pro-
vide an intuitive explanation of why positive serial correlation in the {v,} se-
quence might shift the estimate of «, upward in small samples?

B. Plot the ACF and PACF of the residuals. Use Ljung~Box Q-statistics to de-
termine whether the residuals approximate white noise. You should find

ACF of the residuuls:

1 0.1480160 00044162 —0.0178424 -0.0124788  0.0682729  0.0028705 :
7. -0.0994202 -0.1508656  0.0643873  0.1012332  0.0898023 -0.0379116‘

f Ljung-Box Q-statistics: Q(4) = 25.4702,
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PACF of the residuals:

I 0.1489160  -0.0181625 —0.0161712 -0.0074713  0.0727149 -0.0192058
T =0.0996379  -0.1234779  0.1115448  0.0731477  0.0606913 =-0.0565560

Ljung-Box Q-statistics: 0(4) = 2.3142,
Q8)= 0.3861,
0(24) = 18.4914,

significance level 0.50980859
significance level 0.49546069
significance level 0.73031863

C. Plot the ACF and PACF of the squared residuals. You should find

ACF of the squared residuals:

I: 04730473 0.1268669 -0.0573466 ~0.0777808 Q0570613 0.2424039
7002727332 02140628 0.1368675 —0.0053388 =0.0660162  -0.0942429

PACF of the squared residuals:

I: 04730473 -0.1248437 -0.0861060  0.0037908 01351502 0.1981716

T 00702680 0.0620095  0.0682656 -0.0656655 -0.0381717 ~(.1030398

significance level 0.00001231
significance level 0.00000012
significance level 0.00076745

Q(8) = 45.2535,
0(24) = 50.6029,

Based on the ACF and PACF of the residuals and squarcd residuals, what

‘can you conclude about the presence of ARCH errors?

D. Estimate the squarcd residuals as: €= 0, + o€ ;. You should veri fy

Standard
Coefficient Estimate Error (-Statistic  Significance
(o7 1.5501077352 0.7484906416 2.820613 0.00573246
o 0.4745095418 0.)899397119 5.27586 0.00000082

Show that the Lagrange multiplicr ARCH(1) errors is TR? = 22.027771 with’

a significance level of (.00000269.

E. For comparison purposes, estimate the squared residuals as an ARCH(4)
process. You should {ind

Standard

CocfTicient Estimate Error -Statistic -~ Significance

U 1.934317326 0.653781567 2.95866 0.00394756
o, 0.520622438] 0.105584787 4.93085 0.00000372
o, ~0.079036621 0.118547940 -0.66671 0.50666555
o -0.089127597 0.118593767 -0.75154 0.45429036
oy 0.004812599 0.105440847 0.04564 0.96369827
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L Why is this ARCH(4) modcl inappropriate?

F. Simultancously cstimate the {y,} sequence and /\RCH(I) error pﬂ)ﬁess us-
ing maximum likelihood cstimation. You should find

Standard
CocfTicient Estimate Error (-Statistic  Significance
a, 0.88646316606 0.0270362312 32.78797 0.00000000
Oy 1.1735726519 0.2703953538 4.34021 0.00001423
Ty 0.6663896955 0.00270802

(0.2221985284 2.99907

. The file WPLWKI contains the quarterly values of the U.S. Wholesale Price

Index (WPI) from 1960:Q! to 1992:Q2. Usc the @ata to construct the logarith-
mic change as

Abwpi, = log(wpi,) = log(wpi,_,)

You should find:

Observa- Standard
Series tions Mean Error Minimum Maximum
wpi 130 65.09 31.360 30.50 116.2

Abwpi 129

Ly

A. Use the entire sample period to estimate Equation (3.19). Perform diagnos-
tic checks to determine whether the residuals appear to be white-noise.

B. Plot the ACF and PACF of the squarcd residuals.
C. Estimate the various GARCH models given by (3.21), (3.22), and (3.23).

. Serics Y on the file labeled ARCHM.PRN contains 100 observations of a simu-

latcd ARCH-M process. The propertics of the sequence are

Sample mean  1.06988500000 Variance - 0.267006
Skewness 0.47442 Significance level (Sk=0) 0.05642422

A. Plot the ACF and PACF of the {y,} scquence. You should find that the first
12 values are

ACF:
1: 0.0115085 0.0316424  0.2320040 -0.0643045 -0.1395873 ~0.3094448

70 -0.0009952 —0.1573020 -0.2247642  0.1861901 -0.0510400 0.0451368

0.0101428  0.01452535 -0.02087032  0.06952606
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" PACF

1: 0.0115085  0.0315141  0.2315492 -0.0727560 -0.1616008 -0.3873124
7. 0.03693060 -0.0059871 -0.0779783  0.1446746 -0.0821942 ~0.0051101

LJung —-Box Q-statistics: Q(4)= 6.2172,
Q(12) =31.5695,
0(24)=49.8118,

significance level 0.18350104
significance level 0.00161 190
significance level 0.0014961 |

B. Estimate the {y,} sequence using the Box-Jenkins methodology. Try o im-
prove on the model:

Yi=dy + € + ﬂ.‘ﬁl—l + B(vet»(y

where
Standard
Coeflicient Estimate Error {-Statistic  Significance
a 1.071771081 0.048009924 22.32395 0.00000000
; B34 0.254214138 0.098929960 2.56904 0.01170287
Be ~0.262006589 0.099273537 -2.63924 0.00968214

:4C. Examine the ACF and PACF of the residuals from the MA[(3, 6)] model

above. Why might someone conclude that the residuals appear to be white-
noise? Now cxamine the ACF and PACF of the squared residuals. You
should find

ACF of the squared residuals:

I: 04981203  0.2509847  0.2895971  0.1625192  0.0430988  0.1141240
7. 00907499  0.0532747  0.1365060  0.0261814  0.1592152  0.2503240

PACF of the squared residuals:

I: 04981203  0.0038049  0.2170029 -0.0878890 -0.0413535  0.1013672
7: -0.0172378  0.0348213  0.0984692 -0.1475101  0.2890676  0.0322684

Ljung-Box Q-statistics: Q(4) = 43.7460,
Q(8) =406.5766,

Q(12)=58.9113,

0(24) = 64.5293,

* significance level 0.0000
significance level 0.0000
significance level 0.0000
significance level 0.0000

D. Estimate the {y,} sequence as the ARCH-M process:

Y= ag+a)h, + e,
h= o+ o e,
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You should find

Standard

CocfTicient Istimate Error . t-Statistic  Significance
a, 0.9081809340 0.0646439764 14.04896  0.00000000
a 0.6252387171 0.3491817146 1.79058  0.07336030
g 0.1079170551 0.0193136878 5.58759  0.00000002
o, A 0.5973791022 0.2387112973 250252 0.01233137

E. Check the ACF and PACF of the estimated {€,} sequence. Do they appear
to be satisfactory? Experiment with several other simple formulations of
the ARCH-M process.

9. Consider the ARCH(2) process Ee?= o 4 0€2 | + 0€7,.

A. Suppose that y, = a, + a,y,., + €. Find the conditional and unconditional
variance of {y,) in terms of of the parameters a,, O, &, and .

B. Suppose that {y,} is an ARCH-M process such that the level of y, is posi-

tively related to its own conditional variance. For simplicity, let y, = tg + - !

o,€2, + 0,el, + €, Trace out the impulse response function of {y,} to an
{e,} shock. You may assume that the system has been in long-run equilib-
fium (€,_, = €,_; = 0) but now ¢, = 1. Thus, the issue is to find the values of
Y1s Y25 ¥3, and y, given that €, = €, = - = 0.

C. Use your answer to part B to explain the following result. A student esti-
mated {y,} as an MA(2) process and found the residuals to be white-noise.
A sccond student estimated the same series as the ARCH-M process y, = 0

+ 0,€_, + 0,€_, + €. Why might both estimates appear reasonable? How |

would you decide which is the better model?
D. In general, explain why an ARCH-M model might appear to be a moving
average process.
10. Given the initial condition y,, find the general S(_)lu(ion and forccast function
for the following variants of the trend plus irregular modek:
A. y, =, +v, wherc u, = u,_, + €, v,=( +B,L)n, and Eemn, = 0.

B. y, =1, + v, where u, = 1, + €, and v, = (1 + B,L)n, and the correlation be-
tween €, and 1), equals unity.

C. Find the ARIMA representation of cach model.

11. The columns in the file labeled EXRATES.WKI1 contain exchange ra‘tc indices
for the British pound, French franc, German mark, Italian lira, Canadian dollar,

and Japancse yen over the 1973:Qt to 1990:Q4 period. The units are currency
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per U.S. dollar and the values have been converted into indices such that
1971:Q1 = 1.00.

For the yen and Canadian dollar (columnns S and 6, respectively) yon shoubd
find the following:

A. Usc the data for the yen/dollar exchange rate (i.c., the last colums) (o repro-
duce the results reported in the text.

Observa- Standard
Series  tions Mean Error Minimum Maximum
Yen 72 0.61561729167  0.15471136174  0.34800000000  0.84316700000
Canadian :

dollar 72 1.16505638889 0.12397561475 0.95716300000 1.39188 100000

Form the logarithmic change of each of the two serics.

B. Decompose the yen/dollar exchange rate into its temporary and transitory
components using the Beveridge and Nelson (1981) decomposition. You
should be able to reproduce the results in the text.

C. Detrend the logarithm of the Canadian dollar (denoted by y,) by estimating
the regression y, = ag + a;t + €, Save the residuals and form the correlo-
gram. You should find that the residuals do not appear to be stationary. For
example, the ACF of the residuals is

ACF of the residuals:

1: 09381108 08516773 07656438  0.6707062  0.5656608 0.4646090
T 03665752 0.2619469  0.1602961  0.0668779 -0.0233500 -0.0959095

D. Estimate the logarithmic change in the Canadian dollar as an MA(1) model.
You should find

Ay, = e, + 0.630867 1509, _,

The standard error of B, is 0.0927381095, yiclding a t-statistic of 6.80267.

E. Perform the appropriate diagnostic checks of the model. Is it necessary to
include a constant? What about the autocorrelation cocfficient of
0.2249136 at lag 37 You shuld verify that the Ljung-Box Q-statistics are:

Q@)= 5.6905, significance level of 0.12734706
o) = 7.9077, significance level of 0.34080750
Q(16) = 16,3652, significance level 0 0.35820258

F. To keep the issuc as simple as possible, proceed with the Beveridge and
Nelson decomposition using'the MA(}) model. For each period !, form the
various s-step ahead forceasts. Why is it sufficient toset s = 17

AT T A AT

FERYHET b M i

LTRSS RETI T e T e

T DN T MR ROM (2 e

o
Id
5



204

Modeling Economic Time Series: Trends and Volaiiliry

G. Form the trend and irregular components of the loganlhm of the Canadian

dollar. You should be able to verifly

Trend Temporary
Period Log Canadian § Component Component
1973:02 -0.008634167376 -0.006909245096 ~0.001724922281
1673:03 -0.004671896332 -0.003260426492 -0.001411469840
1973:04 —0.008734030846 -0.012187148030 0.003453117184
1990:03 " 0.134045635379 0.132362802801 0.001682832578
1990:04 0.140821380972 0.146157620084 —0.005336239112

H. How would you sclect s if you found the autoregressive coefficient at lag 3
1o be important?

1. Detrend at least one of the other cxchange rate serics in the file (you may
convert to logs). Does the detrended scries appear to be stationary?
Compaic with the first diffenence of the serics.

ENDNOTES

1. Some authors prefer the spelling homoscedastic and heteroscedastic; both forms are cor-

2.

. Estimating a model with n lags usually entmle a loss of the first n observations, To cor-!

S -
rect. : o .
If the unconditional variance of a scries is not constant, the serics 1s nonstationary.
However, conditional heteroskedasticy is not a source of nonstationarity.

. Letting oLy and B(L) be polynomials in the lag operator L, we can rewrite h, in the

form:
h, = o+ a(L)ef+ Bl

The notation a(l) denotes the polynomial ofL) evaluated at L = 1; that is,
o(l) = a, + o, + - + . Bollerslev (1986) shows that the GARCH process is
stationary with Ee, =0, var(e,) = o /(1 — a(l) = B(1)], and cov(e,€,_,) = 0 for
sEQIfa()+B(H< 1.

. Unfortunately, there is no available method to test the null of white- noise errors versus:
" the specific alternative of GARCH(p, g) errors. Bollerslev (1986) proves that the ACF.

of the squared residuals resulting from (3.9) is an ARMA(m, p) model, whcrc m=!
max(p, q). Question 3 asks you to illustrate this result. ;

. Constraining the coefficients of /1, to follow a decaying pattern conserves degrees ofl

freedom and considerably eases xhe estimation process. Moreover, the lagged coeffi-!
cients given by (9-1)/36 (i.e., 8/36, 7/36, . . ., 1/36) arc each positive and sum to unity.

rect for this problem, the ARCH and GARCH modcls should be compared over the

~3
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identical sample period. In this way, the number of usable obscrvations will be identical
for the two models. In this scction, all models were estimated over the 1962:2 to 1992:2
sample period. One observation was lost duc to differcncing and cight were lost due to
the estimation of the ARCH(8) modcl.

. The estimated value of I, is the conditional vartance of the fogarithmic change in the

WPI; in constructing the figure, the interval for the percentage change was converted to
the level of the WPL.

. In addition to the intercept term, three scasonal duminy variables were also included in

the supply equation,

If the underlying data-gencrating process is autoregressive, adaptive expectations and ra-
tional expectations can be perfectly consistent with cach other.

. If the utility function is quadratic and/or the excess returns from holding the assct are

normally distributed, an increase in the variance of returns is cquivalent to an increase in
il
risk.

. Of course, to the individual contemplating the purchase of a risky asset, the value of y,

is not stochastic. Note that j, is the expected return that the individual would demand in
order to hold the long-term asset.

. The unconditional mean of y, is altered by changing only 8. Changing [ and 8 commen-

surately maintains the mean value of the {y,} sequence.

. The Greek character set and subscripts decending below the line are not permitied in

RATS. To actually write such a program, the parameters f, o, o, and J, mlghl be de-
noted by B, A0, A1, and H(T), respectively.

. The method is recursive since the program first calculates e, then 4, and then LIKELI-

HOOD.

. In actuality, the program steps in RATS would differ slightly since € could not be de-

fined in tenms of its own lagged values. Similar remarks hold for all the program state-
ments below.

. Many treatments use the representation y, = trend + cyclical + seasonal + irrcgular. In

the text, any cyclical components are included with the irregutar term; the notion is that
cyclical economic components are not deterministic,

- A linguist might want to know why “detrending” entails removing the deterministic
. rend and not the stochastic trend. The reason is purely historical; originally, trends were

viewed as deterministic. Today, subtracting the deterministic time trend is still called
“detrending.”

. If B(L) is of infinite order, it is assumed that P} is finite.
. W only B(L) has 2 unit root, the process is not invertible. The {y,} scquence is stationary
. (may be stationary), but the usual estimation techniques are inappropriate, 11 both A(L)

and B(L) have unit roots, the common factor problem discussed in Chapter 2 exisls, The
unit root can be factored from A(L) and B(L).

20. Also assume that all values of ¢, arc zero for i < 1.
.-As an exercise, prove that the first difference of the trend acts as a random walk plus

drift. Show that yt, — it,_, has the intercept a, plus a serially uncorrelated error,

. The assumption that €, anc 7, are uncorrelated places restrictions on the autoregressive

'and moving average coefticients of Ay,. For example, in the pure random walk -plus

‘noise model, B, must be negative. To avoid estimating a constrained ARIMA. modcl,
"Watson estimates the trend and irregular terms as unobserved components. Many soft-
iwm‘e packages are capable of estimating such cquations as time-varying parameter mod-
“els. Details of the procedure can be obtained in Harvey (1989).
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APPENDIX: Signal Extraction and Minimum Mean
Square Errors : SE

Linear Least-Squares Projection
The problem for the econometric forecaster is to select an optimal forecast of a ran-
dom variable y conditional on the observation of a sccond variable x. Since‘ the the.-
ory is quite general, for the time being we ignore time subscripts. Call this condi-
tional forecast y*, so that the forecast crror is (y — y*) and the mean square forecast
error (MSE) E(y — y*)°. One criterion used to compare forecast functions is the
MSE; the optimal forecast function is that with the smallest MSE. o
Suppose x and y are jointly distributed random variables with known distribu-
tions. Let the mean and variance of x be 1, and 62, respectively. Also suppose the
value of x is observed before having to predict y. A linear forecast will be such that
the forecast y* is a lincar function of x. The optimal forecast will necessarily be lin-
car if x and y arc lincarly related, and/or if they are bivariatc normally distributed
variables. In this text, only lincar relationships are considered; hence, the optimal
forccast of y* has the form

The problem is to select the values of ¢ and b so as to minimize the MSE:
Min E(y - y*)? = Ely — a - b(x — p,)}?

{a’ b} . *
= E[y? + a® + b*(x — ,)* — 2ay + 2ab(x ~ L) — 2by(x — |1,)]

Since E(x —1,) =0, Ey =, E(x - 1w)? = o2, and E(xy) - B, = covix, y) = 0.,

it follows that
E(y-y*)?=Ey* + a® + b*c% - 2ap, — 2bo,,
Minimizing with respect to a and b yields
a=p, b=0,/c}
" Thus, the optimal prediction formula is

y* =j - (ny/Gi)p.X + (C‘,)./Oi)x

The forecast is unbiased in the sense that the mean value of the forecast is equal

to the mean value of y. Take the expected valuc of y* to obtain

Ey* = Elp, - (0,,/oDp, + (0, /00)x]
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, 'Since. uy; O,y and o2 are constants and B, = Lx, it follows that
Ey* =y,

You should recognize this formula from standard regression analysis; a regres-
sion equation is the minimum mean square error, lincar, unbiased forecast of y*.
The argument easily generalizes forecasting y conditional on the observation of the
n variables x; through x, and forecasting y,,, conditional on the observation of Yo
Yi-1s « . . . For example, if y, = a, + a,y,_, + €, the conditional forecast of Yia 18
Ey1 = ay + a,y,. The forecasts of y,,, can be obtained using the forecast function -
(or iterative forecasts) discussed in Section 11 of Chapter 2.

Signal Extraction

Signal extraction issues arise when we try to decompose a series into its individual
components. Suppose we observe the realizations of a stationary sequence {y,} and
want to find the optimal predictor of its components. If we phrase the problem this
way, it is clear that the decomposition can be performed using the minimum MSE
criterion discussed above. As an example of the technique, consider a sequence
composed of two independent white-noise components:

yI:€l+nl

where Fe, =0
En, =0
Een, =0
Ee¢ =gt
En} = o

Here, the correlation between the innovations is assumed to be equal to zero; it is

istraightforward to allow nonzero values of Len,. The problem is to find the optimal

prediction, or forecast, of €, (called €F) conditioned of the observation of y,. The lin-
‘ear forecast has the form

e =a+ by,
In this problem, the intercept term a will be zero, so that the MSE can be written
MSE = E(¢, — €*)?
=E(e,— by,)?
= E[EI - b(EI + n:)]z
Hence the optimization problem is to select b so as to minimize:

MSE = E[(1 - b)e, — b1, 2 .
=(1- by’ Le? + b*In? since Een, =0
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The first-order condition is

=2(1-1)5° +2b0i =0

so that

b=c%(c* + 02

Here, b partitions y, in accordance with the relative variance of €,; that is, o¥/(c?
+0p). As ¢® becomes very large relative to o2, b — 1; as 62 becomes very small
relative o 67, b — 0. Having extracted €,, we see that the predicted value of 1, is

N7 =y, — €. However, this optimal valuc of b depends on the assumption that the
two innovations are uncorrelated.

Forecasts of a Nonstationary Series Based on Observables R
Muth (1960) considers the situation in which a researcher wants to find the optimal, i
forecast of y, conditional on the observed values of Yeets Yi2r - - - - Let {y,} be aran-

dom walk plus noise. If all realizations of {€,} are zero for 1 <0, the solution for y;
is ‘

!

Y= Zei +n -

i=]

where  y,is given and p, = 0.
. -~

Let the forecast of y, be a linear function of the past values of the series, so that

V=D Vi "3

i=]

where  the various values of v; arc selected so as to minimize the mean square
forccast error,

Usc (A3.1) to find each value of y,_, and substitute into (A3‘2) so that

-1 -2 3

:
i= =l =l

A
Thus, the optimization problem is to sclect the V; 50 as to minimize the MSE:

2
f -1 -2

E(YI—y;')ZZE Z€i+n1_vl Z€i+nr—l —V Zei+7\l-2

i=1 i=l - =

V= AR+ A5 where A, and 4, are
teristic roots. If you use the quadratj
(say, 1)) is greater than unity; hence, if the {
-must equal zero. The smaller root satis

To find the value of A, substitute v, =AA and v, = A2
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Since all cross- t i i
products are zero, the problem is to select the V; 80 as 1o minimize

i

SF - 12 12, 2 N
M‘SL—105+0“+GQZ I—Zvj '*01212"}
J=1

i=i j=i
For each value of Vi the first-order condition is

J

20ly, — 202 -y = =
2 GG,Z[I dvil=0, k=12 .. (A33)

i=l

All {v,) will satisfy the difference

equation given b
nature of the solution, set k

=1, so that the first cquation of (A3.3) is

205y, ~2ofi l—ivi =0
AN

i=]

and for k=2,

2c§v2—2ofi l-ivi 0
j=2

i=]

H

50 that by subtraction,

2
o, (1—v,)+(5,21(\'2—v|):0 {A3.4)

Now take the second difference of (A3.3) to obtain

Vi F 2+ (03/0’,2])]v,( ¥, =0 fork=23, ...

The solution to this homogeneous second-order difference equation has the form

arbitrary constants and A, and A, the charac-
¢ formula, you will find that the larger root

v} sequence is 1o be convergent, A4,
fies

A2+ (GG A + 1 =0 (A3.5)

nto (A3.4);
oX(l -AN) - Urzy/‘l(lf ~A)=0

y (A3.3). To cilafacterizc the. o

FaN

Ao

A%

i
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If you solve (A3.5) for &,, it is possible to verify

A =1 =M,
}jcnee, iheiv;,m jdc;@,rmined by
T PR = A

The one-step ahead forecast of y, is
* j—1 N
==Y Ny
J=1 C

Since |k, | <1, the summation is such that (1 — A)ZN"" = 1. Hence, the optimal
forecast of y, can be formed as a geometrically weighted average of the past realiza-
tions of the series.

The Hodrick~Prescott Decomposition

Another method of decomposing a series into a trend and stationary component has
been developed by Hodrick and Prescott (1984). Suppose you observe the values y,
through y; and want to decompose the series into a trend {},} and stationary com-
ponent y, — L,. Consider the sum of squares

T T o
WTYY (3 =)+ (T [ = 1) = (&, =)V

t=1 =2

The problem is to select the {1} sequence so as to minimize this sum of squares.
In the minimization problem, A is an arbitrary constant reflecting the “cost” or
penalty of incorporating fluctuations into the trend. In many applications, including
Hodrick and Prescott (1984) and Farmer (1993), A is set equal to 1600. Increasing
the value of A acts to “smooth out” the trend. If A = 0, the sum of squares is mini-
mized when y, = |t; the trend is equal to y, itself. As A — o, the trend approaches a
linear time trend. Intuitively, for large values of A, Hodrick-Prescott decomposition
forces the change in the trend (i.e., Al,,, — AR,) to be as small as possible. This oc-
curs when the trend is linear.

The benefit of the Hodrick—Prescott decomposition is that it can extract the same
trend from a set of variables. For example, many real business cycle models indi-
cate that all variables will have the same stochastic trend. A Beveridge and Nelson
decomposition separately applied to each variable will not yield the same trend for
each.

Chapter 4

TESTING FOR TRENDS AND
UNIT ROOTS

A A I

Inspection of the autocorrelation function serves as a rough indicator of whether a
trend is present in a series. A slowly decaying ACF is indicative of a large charac-
teristic root, true unit root process, or trend stationary process. Formal tests can
help determine whether or not a system contains a trend and whether that trend is
deterministic or stochastic. However, the existing tests have little power to distin-
guish between near unit root and unit root processes. The aims of this chapter are
to:

1. Develop and illustrate the Dickey-Fuller and augmented Dickey-Fuller tests for
the presence of a unit root. These tests can also be used to help detect the pres-
ence of a deterministic trend. Phillips—Perron tests, which entail less siringent
restrictions on the error process, are illustrated.

~ 2. Consider tests for unit roots in the presence of structural change. Structural

change can complicate the tests for trends; a policy regime change can result in
a structural break that makes an otherwise stationary series appear to be nonsta-
tionary.

3. Illustrate a general procedure to determine whether or not a series contains a unit
root. Unit root tests are sensitive to the presence of deterministic regressors,
such as an intercept term or a deterministic time trend. As such, there is a so-
phisticated set of procedures that can aid in the identification process. These
procedures can be used if it is not known what deterministic elements are part of
the true data-generating process. It is important to be wary of the results from
such tests since (1) they all have low power to discriminate between a unit root
and near unit root process and (2) they may have used an inappropriate set of de-
terministic regressors.
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/ 1. UNIT ROOT PROCESSES

-

As shown in the last chapter, there are important differences between stationary and
nonstationary time series. Shocks to a stationary time series are necessarily tempo-
rary; over time, the effects of the shocks will dissipate and the series will revert to
its long-run mean level. As such, long-term forecasts of a stationary series will con-
verge to the unconditional mean of the series. To aid in identification, we know that
a covariance stationary series:

1. Exhibits mean reversion in that it fluctuates around a constant long-run mean.
2. Has a finite variance that is time-invariant.

3. Has a theoretical correlogram that diminishes as lag length increases.

On the other hand, a nonstationary series necessarily has permanent components.
The mean and/or variance of a nonstationary series are time-dependent. To aid in
the identification of a nonstationary series, we know that:

1. There is no long-run mean to which the series returns.
2. The variance is time-dependent and goes to infinity as time approaches infinity.

3. Theoretical autocorrelations do not decay but, in finite samples, the sample cor-
relogram dies out slowly.

Although the properties of a sample correlogram are useful tools for detecting
the possible presence of unit roots, the method is necessarily imprecise. What may
appear as a unit root to one observer may appear as a stationary process to another.
The problem is difficult because a near unit root process will have the same shaped
ACF as a unit root process. For example, the correlogram of a stationary AR(1)
process such that p(1) = 0.99 will exhibit the type of gradual decay indicative of a
nonstationary process. To illustrate some of the issues involved, suppose that we
know a series is generated from the following first-order process:'

V=AYt & 4.0

where (€,} is generated from a white-noise process.

First, suppose that we wish to test the null hypothesis that a; = 0. Under the
maintained null hypothesis of a, = 0, we can estimate (4.1) using OLS. The fact
that €, is a white-noise process and ‘al { < 1 guarantees that the {y,} sequence is
stationary and the estimate of a, is efficient. Calculating the standard error of the
estimate of a,, the researcher can use a r-test to determine whether a, is signifi-
cantly different from zero.

The situation is quite different if we want to test the hypothesis a; = 1. Now, un-
der the null hypothesis, the {y,} sequence is generated by the nonstationary process:

1

Y, = Ze( 62

i=1

Thus, if a, = 1, the variance becomes infinitely large as ¢ increases. Under the
null hypothesis, it is inappropriate to use classical statistical methods to estimate
and perform significance tests on the coefficient a,. If the {y,} sequence is gener-
ated as in (4.2), it is simple to show that the OLS estimate of (4.1) will yield a bi-
ased estimate of a,. In Section 8 of the previous chapter, it was shown that the first-
order autocorrelation coefficient in a random walk model is

pr=[t-1* <1

Since the estimate of a, is directly related to the value of p,, the estimated value
of a, is biased to be below its true value of unity. The estimated model will mimic
that of a stationary AR(1) process with a near unit root. Hence, the usual ¢-test can-
not be used to test the hypothesis a, = 1.

Figure 4.1 shows the sample correlogram for a simulated random walk process.
One hundred normally distributed random deviates were obtained so as to mimic
the {€,} sequence. Assuming y, = 0, we can calculate the next 100 values in the {y,}
sequence as y, = y,_, + €, This particular correlogram is characteristic of most sam-
ple correlograms constructed from nonstationary data. The estimated value of p, is
close to unity and the sample autocorrelations die out slowly. If we did not know
the way in which the data were generated, inspection of Figure 4.1 might lead us to
falsely conclude that the data were generated from a stationary process. With this
particular data, estimates of an AR(1) model with and without an intercept yield
(standard errors are in parentheses):

 y,=0.9546y,_, + ¢, R*=0.86 (4.3)
(0.030)
o y,=0.164 +09247y,_, +€, R*=0.864 (4.4)
(0.037) )

Examining (4.3), a careful researcher would not be willing to dismiss the possi-
bility of a unit root since the estimated value of a, is only 1.5133 standard devia-
tions from unity. We might correctly recognize that under the null hypothesis of a
unit root, the estimate of a, will be biased below unity. If we knew the true distrib-
ution of a, under the null of a unit root, we could perform such a significance test,
Of course, if we did not know the true data-generating process, we might estimate

the model with an intercept. In (4.4), the estimate of a, is more than two standard

deviations from unity: (1 ~ 0.9247)/0.037 = 2.035. However, it would be wrong to
use this information to reject the null of a unit root. After all, the point of this sec-

tion has been to indicate that such ¢-tests are inappropriate under the null of a unit”

root.

Fortunately, Dickey and Fuller (1979, 1981) devised a procedure to formally test
for the presence of a unit root. Their methodology is similar to that used in con-
structing the data reported in Figure 4.1. Suppose that we generated thousands of
such random walk sequences and for each we calculated the estimated value of a,.
Although most all of the estimates would be close to unity, some would be further
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Figure 4.1
A simulated random walk process.
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from unity than others. In performing this experiment, Dickey and Fuller found that
in the presence of an intercept:

Ninety percent of the estimated values of a, are less than 2.58 standard errors from
unity.

Ninety-five percent of the estimated values of a, are less than 2.89 standard errors
from unity.

Ninety-nine percent of the estimated values of a, are less than 3.51 standard errors
from unity.?

The application of these Dickey~Fuller critical values to tests for unit roots is

- straightforward. Suppose we did not know the true-data generating process and

were trying to ascertain whether the data used in Figure 4.1 contained a unit root.
Using these Dickey-Fuller statistics, we would not reject the null of a unit root in
(4.4). The estimated value of a, is only 2.035 standard deviations from unity. In
fact, if the true value of a, does equal unity, we should find the estimated value to
be within 2.58 standard deviations from unity 90% of the time.

" Be aware that stationarity necessitates ~1 < @, < 1. Thus, if the estimated value
of a, is close to -1, you should also be concerned about nonstationarity. If we de-
fine ¥ = @, ~ 1, the equivalent restriction is ~2 <y < 0. In conducting a Dickey-
Fuller test, it is possible to check that the estimated value of yis greater than =27

Monte Carlo Simulation

The procedure Dickey and Fuller (1979, 1981) used to obtain their critical values is
typical of that found in the modern time series literature. Hypothesis tests concern-
ing the coefficients of non-stationary variables cannot be conducted using tradi-
tional t-tests or F-tests. The distributions of the appropriate test statistics are non-
standard and cannot be analytically evaluated. However, given the trivial cost of
computer time, the non-standard distributions can easily be derived using a Monte
Carlo simulation.

The first step in the procedure is to computer generate a set of random numbers
(sometimes called pseudo-random numbers) from a given distribution. Of course,
the numbers cannot be entirely random since all computer algorithms rely on a de-
terministic number generating mechanism. However, the numbers are drawn so as
to mimic a random process having some specified distribution. Usually, the num-
bers are designed to be normally distributed and serially uncorrelated. The idea is to
use these numbers to represent one replication of the entire {€,} sequence.

All major statistical packages have a built-in random number generator. An inter-
esting experiment is to use your software package to draw a set of 100 random
numbers and check for serial correlation. In almost all circumstances, they will be
highly correlated. In your own work, if you need to use serially uncorrelated num-
bers, you can model the computer generated numbers using the Box Jenkins
methodology. The residuals should approximate white noise.

The second step is to specify the parameters and initial conditions of the {y,} se-
quence. Using these parameters, initial conditions, and random numbers, the {y,}
can be constructed. Note that the simulated ARCH processes in Figure 3.9 and ran-
dom-walk process in Figure 4.1 were constructed in precisely this fashion.
Similarly, Dickey and Fuller (1979, 1981) obtained 100 values for (¢}, set a; = 1,
yo = 0, and calculated 100 values for {y,} according to (4.1). At this point, the para-
meters of interest (such as the estimate of a, or the in-sample variance of y,) can be
obtained.

The beauty of the method is that all important attributes of the constructed {y,}
sequence are known to the researcher. For this reason, a Monte Carlo simulation is
often referred to as an “experiment.” The only problem is that the set of random




numbers drawn is just one possible outcome. Obviously, the estimates in (4.3) and
(4.4) are dependent on the values of the simulated {€,]} sequence. Different out-
comes for {€,} will yield different values of the simulated {y,} sequence.

This is why the Monte Carlo studies perform many replications of the process
outlined above. The third step is to replicate steps 1 and 2 thousands of times. The
goal is to ensure that the statistical properties of the constructed {y,] sequence are
in accord with the true distribution. Thus, for each replication, the parameters of in-
terest are tabulated and critical values (or confidence intervals) obtained. As such,
the properties of your data set can be compared to the properties of the simulated
data so that hypothesis tests can be performed. This is the justification for using the
Dickey—Fuller critical values to test the hypothesis a; = 1.

One limitation of a Monte Carlo experiment is that it is specific to the assump-
tions used to generate the simulated data. If you change the sample size, include (or
delete) an additional parameter in the data generating process, or use alternative ini-
tial conditions an entirely new simulation needs to be performed. Nevertheless, you
should be able to envision many applications of Monte Carlo simulations. As dis-
cussed in Hendry, Neale, and Ericsson (1990), they are particularly useful for
studying the small sample properties of time-series data. As you will see shortly,
Monte Carlo simulations are the workhorse of unit root tests.

Unit Roots in a Regression Model

The unit root issue arises quite naturally in the context of the standard regression
model. Consider the regression equation:*

Ye=ap+az, te, g (4.5)

The assumptions of the classical regression model necessitate that both the {y,}
and {z,} sequences be stationary and the errors have a zero mean and finite vari-
ance. In the presence of nonstationary variables, there might be what Granger and
Newbold (1974) call a spurious regression. A spurious regression has a high R?,
t-statistics that appear to be significant, but the results are without any economic
meaning. The regression output “looks good” because the least-squares estimates
are not consistent and the customary tests of statistical inference do not hold.
Granger and Newbold (1974) provide a detailed examination of the consequences
of violating the stationarity assumption by generating two sequences, {y,} and {z,},
as independent random walks using the formulas:

Y=Yt eyl . T (4.6)
and
=2t €y ; Pl n U 4.7

where e;, and €= white-noise processes independent of each other

In their Monte Carlo analysis, Granger and Newbold generated many such sam-
ples and for each sample estimated a regression in the form of (4.5). Since the (y,}
and {z,} sequences are independent of each other, Equation (4.5) is necessarily
meaningless; any relationship between the two variables is spurious. Surprisingly,
at the 5% significance level, they were able to reject the null hypothesis a, = 0 in
approximately 75% of the time. Moreover, the regressions usually had very high R?
values and the estimated residuals exhibited a high degree of autocorrelation.

To explain the Granger and Newbold findings, note that the regression equation
(4.5) is necessarily meaningless if the residual series {e,} is nonstationary.
Obviously, if the {e,} sequence has a stochastic trend, any error in period r never
decays, so that the deviation from the model is permanent. It is hard to imagine at-
taching any importance to an economic model having permanent errors. The sim-
plest way to examine the properties of the {e,} sequence is to abstract from the in-
tercept term g, and rewrite (4.5) as

€ =Y — 4z,

If z, and y, are generated by (4.6) and (4.7), we can 1mpose the initial conditionis
Yo =X = 0, so that ’

€= 2.6~ 4 &y (4.8)

Clearly, the variance of the error becomes infinitely large as ¢ increases. More-
over, the error has a permanent component in that Ee,,, = ¢, for all i > 0. Hence, the
assumptions embedded in the usual hypothesis tests are violated, so that any #-test,
F-test, or R? values are unreliable. Itis easy to see why the estimated residuals from
a spurious regression will exhibit a “high degree of autocorrelation. Updating (4.8),

“you shiould be able to demonstrate that the theoretical value of the correlation coef-

ficient between e, and e,,; goes to unity as f increases.

The essence of the problem is that if a, = 0, the data generating process in (4.5)
is y, = ay + €, Given that {y,} is integrated of order one [i.e., I(1)], it follows that
{e,} is I(1) under the null hypothesis. However, the assumption that the error term
Is a unit root process is inconsistent with the distributional theory underlying the
use of OLS. This problem will not disappear in large samples. In fact, Phillips
(1986) proves that the larger the sample, the more likely you are to falsely conclude
thata, # 0.

Worksheet 4.1 illustrates the problem of spurious regressions. The top two
graphs show 100 realizations of the {y,} and {z,} sequences generated according to
(4.6) and (4.7). Although {e,} and {€,) are drawn from white-noise distributions,
the realizations of the two sequences are such that y,q is positive and z;4, negative,
You can see that the regression of y, on z, captures the within-sample tendency of
the sequences to move in opposite directions. The straight line shown in the scatter
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plot is the OLS regression line y, = —0.31 — 0.46z,. The correlation coefficient be-
tween {y,} and {z,} is —0.372. The residuals from this regression have a unit root;
as such, the coefficients —0.31 and —0.46 are spurious. Worksheet 4.2 illustrates the
same problem using two simulated random walk plus drift sequences: y, = 0.2 + y,_,
+€,and z,=-0.1 + z_, + €. The drift terms dominate, so that for small values of ¢,
it appears that y, = —2z,. As sample size increases, however, the cumulated sum of
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Consider the two random walk processes:
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Since the {e€,,} and {€,} sequences are independent, the regression of y, on z, is spu-
rious. Given the realizations of the random disturbances, it appears as if the two se-
quences are related. In the scatter plot of y, against z,, you can see that y, tends to
rise as z, decreases. The regression equation of y, on z, will capture this tendency.
The correlation coefficient between y, and z, is —0.372 and a linear regression yields

=-0.46z, — 0.31. However, the residuals from the regression equation are nonsta-
tionary.

Scatter plot of y,and g,

Regression residuals
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the errors (i.e., Xe,) will pull the relationship further and further from -2.0. The
scatter plot of the two sequences suggests that the R? statistic will be close to unity;
in fact, R? is almost 0.97. However, as you can see in the last graph of Worksheet
4.2, the residuals from the regression equation are nonstationary. All departures
from this relationship are necessarily permanent.

The point is that the econometrician has to be very careful in working with non-
stationary variables. In terms of (4.5), there are four cases to consider:

CASE 1

Both {y,} and {z,} are stationary. When both variables are stationary, the classical
regression model is appropriate. , e

CASE 2

The {y,} and {z,} sequences are integrated of different orders. Regression equations
using such variables are meaningless. For example, replace (4.7) by the stationary
process z, = pz,., + €,,, where \ pl < 1.Now (4.8) is replaced by ¢, = Ze,, — Zp'e,,_,.
Although the expression Zp'e,_; is convergent, the {€,} sequence still contains a
trend component.”

CASE 3

The nonstationary {y,} and {z,} sequences are integrated of the same order and the
residual sequence contains a stochastic trend. This is the case in which the regres-
sion is spurious. The results from such spurious regressions are meaningless in that

all errors are permanent. In this case, it is often recommended that the regression

equation be estimated in first differences. Consider the first difference of (4.5):
Ay, =a Az, + Ae,
Since y,, z,, and e, each contain unit roots, the first difference of each is stationary.

Hence, the usual asymptotic results apply. Of course, if one of the trends is deter-
ministic and the other is stochastic, first-differencing each is not appropriate.

: CASE 4

The nonstationary {y,} and {z,} sequences are integrated of the same order and the
residual sequence is stationary. In this circumstance, {y,} and {z} are cointe-
grated. A trivial example of a cointegrated system occurs if €, and €,, are perfectly
correlated. If €, = €, then (4.8) can be set equal to zero (which is stationary) by
setting a, = 1. To consider a more interesting example, suppose that both z, and y,
are the random walk plus noise processes:




yl:“1+€yl
ZI=HI+EZI

where €, and €, are white-noise processes and L, is the random walk process 1L, =
W, + €. Note that both {z,}) and {y,} are unit root processes, but y, — z, = €, ~ €, is
stationary.

All of Chapter 6 is devoted to the issue of cointegrated variables. For now, it is
sufficient to note that pretesting the variables in a regression for nonstationarity is
extremely important, Estimating a regression in the form of (4.5) is meaningless if
WORKSHEET 4.2 Spurious Regressions: Example 2

Constider the two random walk plus drift processes:
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Again, the {e,} and {e,} sequences are independent, so that the regression of y, on
z, is spurious, The scatter plot of y, against z, strongly suggests that the two series
are related. It is the deterministic time trend that causes the sustained increase in y,
and sustained decrease in z,. The residuals from the regression equation y, = ~2z, +
e, are nonstationary.

Scatter plot of y, and g, Regression residuals
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Cases 2 or 3 apply. If the vaniables are cointegrated, the results of Chapter 6 apply.
The remainder of this chapter considers the formal test procedures for the presence
of unit roots and/or deterministic time trends.

2. DICKEY-FULLER TESTS

The last section outlined a simple procedure to determine whether a, = | in the
model y, = a,y,, + €, Begin by subtracting y,_, from each side of the equation in
order to write the equivalent form: Ay, = yy,.| + €,, where Y= a, — 1. Of course, test-
ing the hypothesis a, = 1 is equivalent to testing the hypothesis y = 0. Dickey and
Fuller (1979) actually consider three different regression equations that can be used
to test for the presence of a unit root:

Ay, =Yy +€ - o 4.9)
By, =g+ YY1 t & s (4.10)
Ay, =ag + Yy,_; + ayl + €, ‘ ) (411

The difference between the three regressions concerns the presence of the deter-
ministic elements a, and a,r. The first is a pure random walk model, the second
adds an intercept or drift term, and the third includes both a drift and linear time
trend.

The parameter of interest in all the regression equations is ¥; if Y =0, the {y,} se-
quence contains a unit root. The test involves estimating one (or more) of the equa-
tions above using OLS in order to obtain the estimated value of y and associated
standard error. Comparing the resulting t-statistic with the appropriate value re-
ported in the Dickey-Fuller tables allows the researcher to determine whether to ac-
cept or reject the null hypothesis y= 0.

Recall that in (4.3), the estimate of y, = a,y,_, + €, was such that a, = 0.9546 with
a standard error of 0.030. Clearly, the OLS regression in the form Ay, = Yy,_, + €,
will yield an estimate of vy equal to —0.0454 with the same standard error of 0.030.
Hence, the associated f-statistic for the hypothesis y= 0 is —1.5133 (~0.0454/0.03 =
-1.5133).

The methodology is precisely the same, regardless of which of the three forms of
the equations is estimated. However, be aware that the critical values of the t-statis-
tics do depend on whether an intercept and/or time trend is included in the regres-
sion equation. In their Monte Carlo study, Dickey and Fuller (1979) found that the
critical values for y = 0 depend on the form of the regression and sample size. The
statistics labeled 1, 1, and 1, are the appropriate statistics to use for Equations
(4.9), (4.10), and (4.11), respectively.

Now, look at Table A at the end of this book. With 100 observations, there are
three different critical values for the t-statistic ¥ = 0. For a regression without the
intercept and trend terms (g, = a, = 0), use the section labeled 1. With 100 observa-
tions, the critical values for the r-statistic are —1.61, —~1.95 and -2.60 at the 10, 5,



~“and 1% significance levels, respectively. Thus, in the hypothetical example with y=
—0.0454 and a standard error of 0.03 (so that 7 = —1.5133), it is not possible to reject
the null of a unit root at conventional significance levels. Note that the appropriate
critical values depend on sample size. As in most hypothesis tests, for any given
level of significance, the critical values of the r-statistic decrease as sample size in-
creases.

Including an intercept term but not a trend term (only a, = 0) necessitates the use
of the critical values in the section labeled T,. Estimating (4.4) in the form Ay, =
ag + Yy,; + €, necessarily yields a value of y equal to (0.9247 — 1) = ~0.0753 with a
standard error of 0.037. The appropriate calculation for the 1, statistic yields
-0.0753/0.037 = -2.035. If we read from the appropriate row of Table A, with the
same 100 observations, the critical values are —2.58, —2.89, and —3.51 at the 10, 5,
and 1% significance levels, respectively. Again, the null of a unit root cannot be re-
Jected at conventional significance levels. Finally, with both intercept and trend,
use the critical values in the section labeled 1,; now the critical values are —3.45
and —4.04 at the 5 and 1% significance levels, respectively, The equation was not
estimated using a time trend; inspection of Figure 4.1 indicates there is little reason
to include a deterministic trend in the estimating equation.

As discussed in the next section, these critical values are unchanged if (4.9),
(4.10), and (4.11) are replaced by the autoregressive processes:®

P
Ay, =Yy + EB.'A)’:-M TE @12
I
Ay, =ag+Yy,_ + ZB:‘Ay/-m +€ (4.13)
i=2
p
Ay, =ay+Yy,_, +at+ ZB;‘A)’:—M e (4.14)

i=2

The same 1, 1,, and 1, statistics are all used to test the hypotheses y = 0. Dickey
and Fuller (1981) provide three additional F-statistics (called ¢,, ¢, and ¢5) to test
joint hypotheses on the coefficients. With (4.10) or (4.13), the null hypothesis y =
ag = 0 is tested using the ¢, statistic. Including a time trend in the regression—so
that (4.11) or (4.14) is estimated—the joint hypothesis a, =y =a, = 0 is tested us-
ing the ¢, statistic and the joint hypothesis y = a, = 0 is tested using the ¢, statistic.

The ¢, ¢,, and ¢, statistics are constructed in exactly the same way as ordinary
F-tests are:

[RSS(restricted) - RSS(unrestricted)}/r
RSS(unrestricted)/(T - k)

9; =

where RSS(restricted) and RSS(unrestricted) = the sums of the squared residuals
from the restricted and unrestricted models '

number of restrictions
number of usable observations
number of parameters estimated in the unrestricted model

r
T
k

Hence, T — k = degrees of freedom in the unrestricted model.

Comparing the calculated value of ¢, to the appropriate value reported in Dickey
and Fuller (1981) allows you to determine the significance level at which the re-
striction is binding. The null hypothesis is that the data are generated by the re-
stricted model and the alternative hypothesis is that the data are generated by the
unrestricted model. If the restriction is not binding, RSS(restricted) should be close
to RSS(unrestricted) and ¢; should be small; hence, large values of ¢, suggest a
binding restriction and rejection of the null hypothesis. Thus, if the calculated value
of ¢, is smaller than that reported by Dickey and Fuller, you can accept the re-
stricted model (i.e., you do not reject the null hypothesis that the restriction is not
binding). If the calculated value of ¢, is larger than reported by Dickey and Fuller,
you can reject the null hypothesis and conclude that the restriction is binding. The
critical values of the three ¢, statistics are reported in Table C at the end of this text.

Finally, it is possible to test hypotheses concerning the significance of the drift
term 4, and time trend a,. Under the null hypothesis y = 0, the test for the presence
of the time trend in (4.14) is given by the Ty, statistic, Thus, this statistic is the test
a, =0 given that y=0. To test the hypothesis a, = 0, use the 1, statistic if you esti-
mate (4.14) and the 1, statistic if you estimate (4.13). The complete set of test sta-
tistics and their critical values for a sample size of 100 are summarized in Table
4.1,

Table 4.1 Summary of the Dickey-Fuller Tests

Critical values for
95% and 99%

Model Hypothesis Test Statistic  Confidence Intervals
Ay, =ag+ Yy, +at+e,  y=0 T, -3.45 and -~ 4.04
a=0giveny=0 e, 3.11and3.78
a,=0giveny=0 Tae 2.79 and 3.53
Y=a,=0 o, ~ 6.492nd 8.73
G=Y=a;=0 0 4.8 and 6.50
Ay, =ag+ VY., + € =0 T -2.89 and -3.51
a,=0giveny=0 T 2.54 and 3.22
a,=y=0 0, 471 and 6.70
Ay, =Yy, + € y=0 T —1.95 and -2.60

Notes: Critical values are for a sample size of 100.




An Example

To illustrate the use of the various test statistics, Dickey and Fuller (1981) use quar-
terly values of the logarithm of the Federal Reserve Board’s Production Index over
the 1950:1 to 1977:1V period to estimate the following three equations:

Ay,=0.52 + 0.00120t — 0.119y,_, + 0.4984y,_, +€,  RSS =0.056448

(0.15) (0.00034) (0.033)  (0.081) (4.15)
Ay,=0.0054 + 0.447Ay,_, + €, RSS =0.063211

(0.0025)  (0.083) ‘ o (4.16)
Ay, =0511Ay,  +¢, = - RSS§ =0.065966

0.079) I A @.17)

where RSS = residual sum of squares, and standard errors are in parentheses.

To test the null hypothesis that the data are generated by (4.17) against the alter-
native that (4.15) is the “true” model, use the ¢, statistic. Dickey and Fuller test the
null hypothesis a, = a, = Y= 0 as follows. Note that the residual sums of squares of
the restricted and unrestricted models are 0.065966 and 0.056448 and the null hy-
pothesis entails three restrictions. With 110 usable observations and four estimated
parameters, the unrestricted model contains 106 degrees of freedom. Since
0.056448/106 = 0.000533, the ¢, statistic is given by

&, = (0.065966 — 0.056448)/ 3(0.000533) = 5.95

With 110 observations, the critical value of ¢, calculated by Dickey and Fuller is
5.59 at the 2.5% significance level. Hence, it is possible to reject the null hypothe-
sis of a random walk against the alternative that the data contain an intercept and/or
a unit root and/or a deterministic time trend (i.e., rejecting a, = a, = ¥ = 0 means
that one or more of these parameters does not equal zero).

Dickey and Fuller also test the null hypothesis a, = Y= 0 given the alternative of
(4.15). Now if we view (4.16) as the restricted model and (4.15) as the unrestricted
model, the ¢, statistic is calculated as

6, = (0.063211 — 0.056448)/ 2(0.000533) = 6.34
With 110 observations, the critical value of ¢, is 6.49 at the 5% significance

level and 5.47 at the 10% significance level.” At the 10% level, they reject the null
hypothesis. However, at the 5% level, the calculated value of ¢; is smaller than the

~ critical value; they do not reject the null hypothesis that the data contain a unit root

and/or deterministic time trend.
To compare with the T, test (i.e., the hypothesis that only Y= 0) note that

1, = ~0.119/0.033 = =3.61.

which rejects the null of a unit root at the 5% level.

3. EXTENSIONS OF THE DICKEY-FULLER TEST

Not all time-series processes can be well represented by the first-order autoregres-
sive process Ay, = aq + Yy,_, + a,f + €, It is possible to use the Dickey-Fuller tests

in higher-order equations such as (4.12), (4.13), and (4.14). Consider the pth-order
autoregressive process:

V=0t Q)Y+ QY ot a3y, + e+ ap—?.yl—-p+2 + ap—])}/~p+l +‘apy/—p + € (4.18)

To best understand the methodology of the augmented Dickey-Fuller test, add
and subtract a,y,_,. to obtain:

Yi=Qo+ @)Y+ QY at A3y, 3+ e + ap——ZyI—p+2 + (ap—l + ap))’/_;m - a,,Ay,_wl + €,

Next, add and subtract (a,, + a,)y,_,,, to obtain

V=gt Ayt 8yt @y st = (@, + ANy, — DY, tE
P P P P t—pt] t

Continuing in this fashion, we get

p
Ay, = g +Y Y, +ZBiAyr-i+l +€,
{ i

p E »“”,’ P z',‘“ﬂv‘
. zaj (4.19)

In (4.19), the coefficient of interest is y; if v = 0, the equation is entirely in first
differences and so has a unit root. We can test for the presence of a unit root using
the same Dickey-Fuller statistics discussed above. Again, the appropriate statistic
to use depends on the deterministic components included in the regression equa-
tion. Without an intercept or trend, use the 7T statistic; with only the intercept, use
the 1, statistic; and with both an intercept and trend, use the T, statistic. It is worth-
while pointing out that the results here are perfectly consistent with our study of
difference equations in Chapter 1. If the coefficients of a difference equation sum to
1, at least one characteristic root is unity. Here, if Za, = 1, v = 0 and the system has
a unit root.

Note that the Dickey-Fuller tests assume that the errors are independent and
have a constant variance. This raises four important problems related to the fact that
we do not know the true data-generating process. First, the true data-generating
process may contain both autoregressive and moving average components. We
need to know how to conduct the test if the order of the moving average terms (if
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mﬁ unknown. Second, we cannot properly estimate y and its standard error un-
less all the autoregressive terms are included in the estimating equation. Clearly,
the simple regression Ay, = a, + Yy, + €, is inadequate to this task if (4.18) is the
_ true data-generating process. However, the true order of the autoregressive process
is usually unknown to the researcher, so that the problem is to select the appropriate
lag length. The third problem stems from the fact that the Dickey-Fuller test con-
siders only a single unit root. However, a pth-order autoregression has p character-
istic roots; if there are m < p unit roots, the series needs to be differenced m times to
achieve stationarity. The fourth problem is that it may not be known whether an in-
tercept and/or time trend belongs in (4.18). We consider the first three problems be-
" low. Section 7 is concerned with the issue of the appropriate deterministic regres-
sors.
Since an invertible MA model can be transformed into an autoregressive model,
the procedure can be generalized to allow for moving average components. Let the
{y,} sequence be generated from the mixed autoregressive/moving average process:

A(L)y, = C(L)e,

where A(L) and C(L) = polynomials of orders p and g, respectively

If the roots of C(L) are outside the unit circle, we can write the {y,} sequence as
the autoregressive process:

A(L)y,IC(L)y =€,
or, defining D(L) = A(L)/C(L), we get
D(L)y, =€,

Even though D(L) will generally be an infinite-order polynomial, in principle we
can use the same technique as used to obtain (4.19) to form the infinite-order au-
toregressive model:

By, =Yyt EB;Ay,-M te (4.20)
i=2

As it stands, (4.20) is an infinite-order autoregression that cannot be estimated
using a finite data set. Fortunately, Said and Dickey (1984) have shown that an un-
known ARIMA(p, 1, g) process can be well approximated by an ARIMA(n, 1, 0)
autoregression of order no more than 7', Thus, we can solve the first problem by
using a finite-order autoregression to approximate (4.20). The test for y =0 can be
conducted using the aforementioned Dickey—Fuller 1, T, or 1, test statistics.

Now, the second problem concerning the appropriate lag length arises. Including
too many lags reduces the power of the test to reject the null of a unit.root since the

increased number of lags necessitates the estimation of additional parameters and a
loss of degrees of freedom. The degrees of freedom decrease since the number of
parameters estimated has increased and because the number of usable observations
has decreased. (We lose one observation for each additional lag included in the au-
toregression.) On the other hand, too few lags will not appropriately capture the ac-
tual error process, so that v and its standard error will not be well estimated.

How does the researcher select the appropriate lag length in such circumstances?
One approach is to start with a relatively long lag length and pare down the mode]
by the usual t-test and/or F-tests. For example, one could estimate Equation (4.20)
using a lag length of n*. If the t-statistic on lag n* is insignificant at some specified
critical value, reestimate the regression using a lag length of n* — 1. Repeat the
process until the lag is significantly different from zero. In the pure autoregressive
case, such a procedure will yield the true lag length with an asymptotic probability
of unity, provided that the initial choice of lag length includes the true length. With
seasonal data, the process is a bit different. For example, using quarterly data, one
could start with 3 years of lags (n = 12). If the s-statistic on lag 12 is insignificant at
some specified critical value and an F-test indicates that lags 9 to 12 are also in-
significant, move to lags 1 to 8. Repeat the process for lag 8 and lags 5 to 8 until a
reasonable lag length has been determined.

Once a tentative lag length has been determined, diagnostic checking should be
conducted. As always, plotiing the residuals is a most important diagnostic tool.
There should not appear to be any strong evidence of structural change or serial
correlation. Moreover, the correlogram of the residuals should appear to be white
noise. The Ljung-Box Q-statistic should not reveal any significant autocorrelations
among the residuals. It is inadvisable to use the alternative procedure of beginning
with the most parsimonious model and keep adding lags until a significant lag is
found. In Monte Carlo studies, this procedure is biased toward selecting a value of
n that is less than the true value.

Multiple Roots

Dickey and Pantula (1987) suggest a simple extension of the basic procedure if
more than one unit root is suspected. In essence, the methodology entails nothing
more than performing Dickey~Fuller tests on successive differences of {y,}. When
exactly one root is suspected, the Dickey—Fuller procedure is to estimate an equa-
tion such as Ay, = ay + Yy,_, + €, Instead, if two roots are suspected, estimate the
equation:

Ay, = a5+ BBy, + € 4.21)

Use the appropriate statistic (i.e., T, T, or T, depending on the deterministic ele-
ments actually included in the regression) to determine whether B, is significantly
different from zero. If you cannot reject the null hypothesis that f, = 0, conclude
that the {y,} sequence is I(2). If B, does differ from zero, go on to determine
whether there is a single unit root by estimating

§
|



A%y, =ag+ B Ay, + By + g “22)

Since there are not two unit roots, you should find that 8, and/or §, differ from
zero. Under the null hypothesis of a single unit root, B, < 0 and 3, = 0; under the al-
ternative hypothesis, {y,} is stationary, so that B, and [, are both negative. Thus,
estimate (4.22) and use the Dickey-Fuller critical values to test the null hypothesis
B, =0. If you reject this null hypothesis, conclude that {y,} is stationary.

As a rule of thumb, economic series do not need to be differenced more than two
times. However, in the odd case in which at most r unit roots are suspected, the
procedure is to first estimate

Ary[ =ag + B]Ar_]yz—l + €,

If A"y, is stationary, you should find that -2 < B, < 0. If the Dickey-Fuller critical
values for B, are such that it is not possible to reject the null of a unit root, you ac-
cept the hypothesis that {y,} contains r unit roots. If you reject this null of exactly
r unit roots, the next step is to test for r — 1 roots by estimating

Ay, =ag+BAy + BZA’_Z})I—I + €

If both B, and B, differ from zero, reject the null hypothesis of r ~ 1 unit roots.
You can use the Dickey—Fuller statistics to test the null of exactly » — 1 unit roots if
the 1 statistics for B, and B, are both statistically different from zero. If you can re-
ject this null, the next step is to form

Aryr =4y + BlAr—lyl—l + BZAr_zyt—l + B3Ar—3y1_1 + €,

As long as it is possible to reject the null hypothesis that the various values of the
B, are nonzero, continue toward the equation:

Ay, =ag+BA "y, + BoA 2y, + BaA Ty 4+ By €,

Continue in this fashion until it is not possible to reject the null of a unit root or
the y, series is shown to be stationary. Notice that this procedure is quite different
from the sequential testing for successively greater numbers of unit roots. It might
seem tempting to test for a single unit root and, if the null cannot be rejected, go on
to test for the presence of a second unit root. In repeated samples, this method tends
to select too few roots.

Seasonal Unit Roots

You will recall that the best-fitting model for the monthly Spanish tourism data
used in Chapter 2 had the form:

(1 =L = Ly, =1 +B,L)A + Bl e,

Aevemfluneiil Ly e s aC g 4 mbeus g e ———

Tourist visits to Spain have a unit root and seasonal unit root. Since seas‘onality
is a key feature of many economic series, a sizable literature has developed to test
for seasonal unit roots. Before proceeding, note that the first difference of a sea-

sonal unit root process will not be stationary. To keep matters simple, suppose that
the quarterly observations of {y,} are generated by :

yr:yr—d + Er

Here, the fourth difference of {y,} is stationary; using the notation of Chapter 2,
we can write Auy, = €,. Given the initial condition y, = y_, = . = 0, the solution for
y, is:

V=€ t+eE 4+ €. gt

50 that

/4 1/4

Yo=Yy = 264:‘ - 2641'-1
i=0 i=Q

Hence, Ay, equals the difference between two stochastic trends. Since the vari-
ance of Ay, increases without limit as ¢ increases, the {Ay,} sequence is not station-
ary. However, the seasonal difference of a unit root process may be stationary. For

‘example, if {y,} is generated by y, =y, , + €, the fourth difference (i.e., Ay, =€, +

€ + €., + €_3) is stationary. However, the variance of the fourth difference is
larger than the variance of the first difference. The point is that the Dickey-Fuller
procedure must be modified in order to test for seasonal unit roots and distinguish
between seasonal versus nonseasonal roots.

There are several alternative ways to treat seasonality in a nonstationary se-
quence. The most direct method occurs when the seasonal pattern is purely deter-
ministic. For example, let D), D,, and D, represent quarterly seasonal dummy vari-

ables such that the value of D, is unity in season i and zero otherwise. Estimate the
regression equation:

Y=o+ Dy + 0D, + 03D + 9, (4.23)

where y, is the regression residual, so that y, can be viewed as the deseasonalized
value of y,.

Next, use these regression residuals to estimate the regression:

R p
s Ay, = 'Y)A)/—l +ZBiA5)t—i+l +€ SRR
(=2



»/Fhe null hypothesis of a unit root (i.e., ¥y = 0) can be tested using the Dickey-
Fuller 1, statistic. Rejecting the null hypothesis is equivalent to accepting the alter-
native that the {y,} sequence is stationary. The test is possible as Dickey, Bell, and
Miller (1986) show that the limiting distribution for y is not affected by the removal
of the deterministic seasonal components. If you want to include a time trend in
(4.23), use the T, statistic.

If you suspect a seasonal unit root, it is necessary to use an alternative procedure.
To keep the notation simple, suppose you have quarterly observations on the {y,}
sequence and want to test for the presence of a seasonal unit root. To explain the
methodology, note that the polynomial (1 — vL*) can be factored, so that there are
four distinct characteristic roots:

(1 _ ,YLA) — (1 _ ,YIML)(l + ,YI/AL)(I _ I,Y]/‘iL)(l + l-,Yl/4L) (424)

If y, has a seasonal unit root, Y = 1. Equation (4.24) is a bit restrictive in that it
only allows for a unit root at an annual frequency. Hylleberg et al. (1990) develop a
clever technique that allows you to test for unit roots at various frequencies; you
can test for a unit root (i.e., a root at a zero frequency), unit root at a semiannual
frequency, or seasonal unit root. To understand the procedure, suppose y, is gener-
ated by

AlD)y, =&

where A(E}) 1§ a fourth-order polynomial such that
(1 —a, L)1 + a,L)(1 = a5il)(1 + a,il)y, =€, 4.25)
Now, if a, = a, = a3 = a, = 1, (4.25) is equivalent to setting vy = 1 in (4.24).

Hence, if a, = a, = a; = a4 = 1, there is a seasonal unit root. Consider some of the
other possible cases:

CASE 1

If a, = 1, one homogeneous solution to (4.25) is y, = y,.i- As such, the {y,} se-
quence tends to repeat itself each and every period. This is the case of a nonsea-
sonal unit root.

CASE 2

If a, = 1, one homogeneous solution to (4.25) is y, + y,.1 = 0. In this instance, the
sequence tends to replicate itself at 6-month intervals, so that there is a semiannual
unit root. For example, if y, = 1, it follows that y ., = -1, y,.» = +1, Y3 ==L Vs =
1, etc.

CASE 3

If eiFher as or a4 is equal to unity, the {y,} sequence has an annual cycle. For exam-
ple, if a; = 1, a homogeneous solution to (4.25) is y, = iy,_,. Thus, if y,= 1, y,,, = i

. 2 — . RS
Y2 =1 ==1,y,,3=—i,and y,, = =i’ = |, so that the sequence replicates itself every
fourth period.

To devel.op the test, view (4.25) as a function of a,, a,, a,, and a, and take a
Taylor series approximation of A(L) around the point a, = a, = a; = a, = 1.
Although the details of the expansion are messy, first take the partial derivative:

dA(LYda, = 3(1 - a,L)(1 + a;L)(1 — ajiL)(1 + a iL)/da,
= (1 + a,L)(1 — a5il)(1 + aiL)L

Evaluating this derivative at the point a, = a, =a; = a, = 1 yields
LI+ LA =-i)A +ily=~LA+ YA + L) =-L(A + L + LZ:‘{-‘;'Z,:’)

Next, form

dA(LY3ay = 3(1 — a,L)(1 + ayL)(1 = ayiL)(1 + a,iL)/3a,
= (1 —a,L)1 — ayiL)(1 + a L)L

Evaluating at the point a, = a, = a; = a, = 1 yields (1 — L + L? = L*)L. It should
not talfe too long to convince yourself that evaluating dA(L)/da; and dA(L)/da, at
the point a; = a, =a; =a, =1 yields

ALY day = ~(1 — L3)(1 + iL)iL
and

ALY da, = (1 — L3)(1 - iL)iL

Since A(L) evaluated at a, =a, =a; =a, = 1 is (1 = L*), it is possible t i
mate (4.25) by 3T e ) possible to approxi

[(A=-LH-LA+L+ L2+ L)a - )+ (1 =L+ 1>~ L)L(a, - 1)
= (1= L3 +iL)iL(a; — 1) + (1 = L¥(1 = iL)iL(a, - 1)]y, =

Define v, such that ¥, = (¢, — 1) and note that (1 + iL)i=i—Land (1 = iL)i=1{ +
L; hence,

(=LY, =y (1 +L+ L+ Ly, —-1,(1 -L+L*~ LYy,
+ (1= L0 = L) = Ya(i + Dy, +¢,
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so that

(1= L=y, (L + L L2+ Dy, —p( =L+ L= LYy,
F (1= (s~ )i~ (1 + YLl + € 426)

To purge the imaginary numbers from (4.26), define s and 7, such that 2y, =
Y, — 175 and 2y, = =Y, + ivs. Hence, (Y; — Ya)i = ¥s and Y3 + Y4 = Y. Substituting into
(4.26) yields

(1 =LYy, =L+ L+ L2+ L)y, =1l = L+ L2 = LYy,
+ (- LZ)(YS = Yol )Yy + &

Thus, to implement the procedure, use the following steps:
STEP 1. Form the following variables:

Yo =(I+L+ L+ L]))’/—l =yt Yot yoatye
Ya-1 = (1 L+ Lz - L3).yl‘l =Yy " Y2t Y3 T Vi
Yar = (1 = LYY, =Yy = Yia sothat ys =y, 2= Ya

STEP 2: Estimate the regression:
(1= LYy, = YiYim = YaYamr + YsYam ~YeYa2 + &

You might want to modify the form of the equation by including an in-
tercept, deterministic seasonal dummies, and a linear time trend. As in the
augmented form of the Dickey-Fuller test, lagged values of (1 — LYy,
may also be included. Perform the appropriate diagnostic checks to ensure
that the residuals from the regression equation approximate a white-noise
process.

STEP 3: Form the t-statistic for the null hypothesis v, = 0; the appropriate critical
©U™EC values are reported in Hylleberg et al. (1990). If you do not reject the hy-
pothesis 7, = 0, conclude that a, = 1, so there is a nonseasonal unit root.
Next, form the t-test for the hypothesis v, = 0. If you do not reject the null
hypothesis, conclude that a, = 1 and there is a unit root with a semiannual
frequency. Finally, perform the F-test for the hypothesis ys = Ys = 0. If the
calculated value is less than the critical value reported in Hylleberg et al.
(1990), conclude that ys and/or 7, is zero, so that there is a unit root with
an annual frequency. Be aware that the three null hypotheses are not alter-
natives; a series may have nonseasonal, semiannual, and annual unit roots.

At the 5% significance level, Hylleberg et al. (1990) report that the critical val-
ues using 100 observations are:

) u =0 Y.=0 Ys="Ys=0
Intercept ‘ -2.88 -1.95 3.08
Intercept plus seasonal dummies ~2.95 ~2.94 , 6.57
Intercept plus seasonal dummies -3.53 v =294 : s 6.60

plus time trend

;1_.ESE1)_(AMPLES OF THE AUGMENTED DICKEY-FULLER

The‘last chapter reviewed the evidence reported by Nelson and Plosser (1982) sug-
gesgng that macroeconomic variables are difference stationary rather than trend
stationary. We are now in a position to consider their formal tests of the hypothesis
For each series under study, Nelson and Plosser estimated the regression: ‘

14
Ay, =ag+ayt+yy,_, + ZBfA)’x—1+i e
i=2

‘ The chosen lag lengths are reported in the column labeled pin Table 4.2. The es-
timated values a,, a,, and 7y are reported in columns 3, 4, and 5, respectively.

Table 4.2 Nelson and Plosser’s Tests for Unit Roots

p a, a, Y Y+ 1

Real GNP 2 0.819 0.006 -0.175 0.82;
(3.03) (3.03) (-2.99)

Nominal 2 1.06 0.006 -0.101 0.899

GNP o (2.37) (234) (=232 -

tndustrial 6 0103 0007  -0165 0835

production - (4.32) (2.44) (=2.53)

Unemployment 4 C0s13 —0.000 —-0.294* 0.706

rate (2.81) (-0.23) (~3.55)

Notes: 1. p is the chosen lag length. Coefficients divided by their standard errors are in parentheses.

Thus, entries in parentheses represent the (-test for the null hypothesis that a coefficient is
equal to zero. Under the null of nonstationary, it is necessary to use the Dickey—-Fuller criti-
cal values. At the 0.05 significance level, the critical value for the t-statistic is -3.45,

2. An asterisk (*) denotes significance at the 0.05 level. For real and nominal GNP and indus-
trial production, it is not possible to reject the null y = 0 at the 0.05 level. Hence, the unem-
ployment rate appears to be stationary. ,

3. The expression y + 1 is the estimate of the partial autocorrelation between y, and y,_,.
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Recall that the traditional view of business cycles maimain; that the GNP and
production levels are trend stationary rather than difference stationary. An adherept
of this view must assert that ¥ is different from zero; if Y =0, the series has a unit
root and is difference stationary. Given the sample sizes used by Nelson and

" Plosser (1982), at the 0.05 level, the critical value of the r-statistic for the null hy-

pothesis Y = 0 is —3.45. Thus, only if the estimated value of ¥ is.more than 3.45
standard deviations from zero, is it possible to reject the hypothesis that y = 0. As
can be seen from inspection of Table 4.2, the estimated values .of vy for real GNP,
nominal GNP, and industrial production are not statistically dlffefeflt from zero.
Only the unemployment rate has an estimated value of v that is significanty differ-

ent from zero at the 0.05 level.

Unit Roots and Purchasing-Power Parity

Purchasing-power parity (PPP) is a simple relationship linking national price levels
and exchange rates. In its simplest form, PPP asserts that the rate of currency dep're-
ciation is approximately equal to the difference between the domcs‘tlc anq foreign
inflation rates. If p and p* denote the logarithms of the U.S. and forel.gn price levels
and ¢ the logarithm of the dollar price of foreign exchange, PPP implies

€ =p— .Dt* + d/

where d, represents the deviation from PPP in period ¢.

Figure 4.2 Real exchange rates.
1.6 T T ! |

1.4 —

1.2+

0.8

1973 1975 1977 197 1981 1983 198

—— Canada —— Germany —— Japan

. | .
5 1987 . 1989

(Jan. 1973 = 1.00)

In applied work, p, and p} usually refer to national price indices in f relative to a
base year, so that e, refers to an index of the domestic currency price of foreign ex-
change relative to a base year. For example, if the U.S. inflation rate is 10% while
the foreign inflation rate is 15%, the dollar price of foreign exchange should fall by
approximately 5%. The presence of the term d, allows for short-run deviations from
PPP.

Because of its simplicity and intuitive appeal, PPP has been used extensively in
theoretical models of exchange rate determination. However, as in the well-known
Dornbusch (1976) “overshooting” model, real economic shocks, such as productiv-
ity or demand shocks, can cause permanent deviations from PPP. For our purposes,
the theory of PPP serves as an excellent vehicle to illustrate many time-series test-
ing procedures. One test of long-run PPP is to determine whether d, is stationary.
After all, if the deviations from PPP are nonstationary (i.e., if the deviations are
permanent in nature), we can reject the theory. Note that PPP does allow for persis-
tent deviations; the autocorrelations of the {d,} sequence need not be zero. One
popular testing procedure is to define the “real” exchange rate in period  as

’:Eer*‘P,**P,

Long-run PPP is said to hold if the {r,} sequence is stationary. For example, in
Enders (1988), I constructed real exchange rates for three major U.S. trading part-
ners: Germany, Canada, and Japan. The data were divided into two periods:
January 1960 to April 1971 (representing the fixed exchange rate period) and
January 1973 to November 1986 (representing the flexible exchange rate period).
Each nation’s Wholesale Price Index (WPI) was multiplied by an index of the U.S.
dollar price of the foreign currency and then divided by the U.S. WPIL The log of
the constructed series is the {r,} sequence. Updated values of the real exchange rate
data used in the study are in the file REAL.PRN contained on the data disk. As an
exercise, you should use this data to verify the results reported below.

A critical first step in any econometric analysis is to visually inspect the data.
The plots of the three real exchange rate series during the flexible exchange rate pe-
riod are shown in Figure 4.2. Each series seems to meander in a fashion characteris-
tic of a random walk process. Notice that there is little visual evidence of explosive
behavior or a deterministic time trend. Consider Figure 4.3 that shows the autocor-
relation function of the Canadian real rate in levels, part (a), and first differences,
part (b). This autocorrelation pattern is typical of all the series in the analysis. The
autocorrelation function shows little tendency to decay, whereas the autocorrela-
tions of the first differences display the classic pattern of a stationary series. In
graph (b), all autocorrelations (with the possible exception of p,, that equals 0.18)
are not statistically different from zero at the usual significance levels.

To formally test for the presence of a unit root in the real exchange rates, aug-
mented Dickey-Fuller tests of the form given by (4.19) were conducted. The re-

gression Ar, = ag +Yr,_, + BoAr, + B3Ar,_, + - was estimated based on the follow-
ing considerations:
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Figure 4.3 ACF of Canada’s real exchange rate. ' .
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1. The theory of PPP does not allow for a deterministic time trend or multiple unit

~ roots. Any such findings would refute the theory as posited. Although all the se-

ries decline throughout the early 1980s and all rise during the mid to late 1980s,

there is no a priori reason to expect a structural change. Pretesting the data using

the Dickey-Pantula (1987) strategy showed no evidence of muitiple unit roots.

Moreover, there was no reason to entertain the notion of trend stationarity; the
expression a,t was not included in the estimating equation.

2. In both time periods, F-tests and the SBC indicated that B, through B4 could be
set equal to zero. For Germany and Japan during the flexible rate period, B, was
statistically different from zero; in the other four instances, B, could be set equal
to zero. In spite of these findings, with monthly data it is always important to
entertain the possibility of a lag length no shorter than 12 months. As such, tests
were conducted using the short lags selected by the F-tests and SBC and using a
lag length of 12 months.

For the Canadian case during the 1973 to 1986 period, the ¢-statistic for the null
hypothesis that v = 0 is —1.42 using no lags and ~1.51 using all 12 lags. Given the
critical value of the T, statistic, it is not possible to reject the null of a unit root in
the Canadian/U.S. real exchange rate series. Hence, PPP fails for these two nations.
In the 1960 to 1971 period, the calculated value of the t-statistic is —1.59; again, it
is possible to conclude that PPP fails.

Table 4.3 reports the results of all six estimations using the short lag lengths sug-
gested by the F-tests and SBC. Notice the following properties of the estimated
models:

1. For all six models, it is not possible to reject the null hypothesis that PPP fails.
As can be seen from the last column of Table 4.3, the absolute value of the t-sta-
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tistic for the null ¥ = 0 is never more than 1.59. The economic interpretation is

that real productivity and/or demand shocks have had a permanent influence on
real exchange rates.

. As measured by the sample standard deviation (SD), real exchange rates were

far more volatile in the 1973 to 1986 period than the 1960 to 1971 period.
Moreover, as measured by the standard error of the estimate (SEE), real ex-
change rate volatility is associated with unpredictability. The SEE during the
flexible exchange rate period is several hundred times that of the fixed rate pe-
riod. It seems reasonable to conclude that the change in the exchange rate

regime (i.e., the end of Bretton-Woods) affected the volatility of the real ex-
change rate.

. Care must be taken to keep the appropriate null hypothesis in mind. Under the

null of a unit root, classical test procedures are inappropriate and we resort to the
statistics tabulated by Dickey and Fuller. However, classical test procedures
(which assume stationary variables) are appropriate under the null that the real
rates are stationary. Thus, the following possibility arises. Suppose that the t-sta-
tistic in the Canadian case happened to be —2.16 instead of ~1.42. Using the
Dickey-Fuller critical values, you would not reject the null of a unit root; hence,
you could conclude that PPP fails. However, under the null of stationarity
(where we can use classical procedures), v is more than two standard deviations
from zero and you would conclude PPP holds since the usual s-test becomes ap-
plicable.

This apparent dilemma commonly occurs when analyzing series with roots
close to unity in absolute value. Unit root tests do not have much power in dis-
criminating between characteristic roots close to unity and actual unit roots. The
dilemma is only apparent since the two null hypotheses are quite different. It is
perfectly consistent to maintain a null that PPP holds and not be able to reject a
null that PPP fails! Notice that this dilemma does not actually arise for any of
the series reported in Table 4.3; for each, it is not possible to reject a null of
v =0 at conventional significance levels.

. Looking at some of the diagnostic statistics, we see that all the F-statistics indi-

cate that it is appropriate to exclude lags 2 (or 3) through 12 from the regression
equation. To reinforce the use of short lags, notice that the first-order correlation
coefficient of the residuals (p) is low and the Durbin-Watson statistic close to 2.
It is interesting that all the point estimates of the characteristic roots indicate that
real exchange rates are convergent. To obtain the characteristic roots, rewrite
the estimated equations in the autoregressive form r, = ay + a,r,_; or r, = aq +
a,r,._y + a,r,_,. For the four AR(1) models, the point estimates of the slope coef-
ficients are all less than unity. In the post-Bretton—-Woods period (1973-1986),
the point estimates of the characteristic roots of Japan's second-order process
are 0.931 and 0.319; for Germany, the roots are 0.964 and 0.256. However, this
is precisely what we would expect if PPP fails; under the null of a unit root, we
know that 7y is biased downward.
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Table 4.3 Real Exchange Rate Estimation

Hyy=0

SD/SEE

a, Mean p/DW

a,

1973-1986

Canada

~1.42

!

547
1.16

0.059 0.194
10.44

1.88
-0.007

1.05

0978

~-0.022

(0.0155)

~0.047

<

=-0.63

4

2.8
20.68

0.226

1.01

-0.297

1.25

Japan

2.0% -
~0.014

(0.074)
-0.027

—0.280

H

111 0.858

-0.247

1.22

Germany

3.71

2.004

(0.076)

19601971

-1.59

0.014 t=

0.434

-0.107

1.02

—0.031 0.969

Canada

0.004

0.017

2.21

(0.019)
-0.030

-1.04

0.330

0.046
1.98

0.005
0.026

0.004

0.980

0.970

Japan

(0.028)
-0.016

1=-1.23

0.097

0.038
1.93

1.0t

0.984

Germany

(0.012)

Standard errors are in parentheses
2. Mean is the estimated value of ay/(1 — a,

1.

Notes:

— a,), SD the standard deviation of the real exchange rate, SEE the estimated standard deviation of the residu-

gs 2 (or 3) through 12 can be excluded, DW the Durbin—Watson sta-

als (i.e., the standard error of the estimate). F the significance level of the test that la;

tistic for first-order serial correlation, and p the estimated autocorrelation coefficient.

=0.

3. Entries are the t-statistic for the hypothesis ¥

5. PHILLIPS-PERRON TESTS

The distribution theory supporting the Dickey-Fuller tests assumes that the errors
are statistically independent and have a constant variance. In using this methodol-
ogy, caré must be taken to ensure that the error terms are uncorrelated and have

- constant variance. Phillips and Perron (1988) developed a generalization of the

Dickey-Fuller procedure that allows for fairly mild assumptions concerning the
distribution of the errors.

To briefly explain the procedure, consider the following regression equations:

ye=af +afy._ +§, (4.27)

and
Ye=ag+d )y, + a4, -T2)+, (4.28)

where T = number of observations and the disturbance term (i, is such that
Ep, =0, but there is no requirement that the disturbance term is serially un-
correlated or homogeneous. Instead of the Dickey—Fuller assumptions of
independence and homogeneity, the Phillips—Perron test allows the distur-
bances to be weakly dependent and heterogeneously distributed.

Phillips and Perron characterize the distributions and derive test statistics that
can be used to test hypotheses about the coefficients af and 4, under the null hy-
pothesis that the data are generated by

Y=Y + I»L:

The Phillips—Perron test statistics are modifications of the Dickey—Fuller -statis-
tics that take into account the less restrictive nature of the error process. The ex-
pressions are extremely complex; to actually derive them would take us far beyond
the scope of this book. However, many statistical time-series software packages
now calculate these statistics, so that they are directly available. For the ambitious
reader, the formulas used to calculate these statistics are reported in the appendix to
this chapter. The most useful of the test statistics are as follows:

Z(ta¥): Used to test the hypothesis af = 1
Z(ta,): Used to test the hypothesis @, = 1
Z(1d,): Used to test the hypothesis 4, =0
Z($3): Used to test the hypotheses 4, = 1 and @, =0

The critical values for the Phillips—Perron statistics are precisely those given for
the Dickey—Fuller tests. For example, the critical values for Z(ta¥) and Z(¢d,) are
those given in the Dickey-Fuller tables under the headings 1, and 1., respectively.
The critical values of Z(¢,) are given by the Dickey~Fuller ¢, statistic.
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Do not be deceived by the apparent simplicity of Equations (4.27) and (4.28). In
reality, it is far more general than the type of data-generating process allowable by
the Dickey-Fuller procedure. For example, suppose that the {|,} sequence is gener-
ated by the autoregressive process y, = [C(L)/B(L)]e,, where B(L) and C(L) are
polynomials in the lag operator. Given this form of the error process, we can write
Equation (4.27) in the form used in the Dickey—~Fuller tests; that is,

B(L)y, = a3B(L) + afB(L)y,., + C(L),
or
(I =afD)B(L)y, = &+ C(L)e,

where a}B(L) =«

Thus, the Phillips—Perron procedure can be applied to mixed processes in the
same way as the Dickey-Fuller tests. '

Foreign Exchange Market Efficiency

Corbae and Ouliaris (1986) used Phillips—Perron tests to determine whether (1) ex-
change rates follow a random walk and (2) the return to forward exchange market
speculation contains a unit root. Denote the spot dollar price of foreign exchange on
day t as 5,. An individual at ¢ can also buy or sell foreign exchange forward. A 90-
day forward contract requires that on day ¢ + 90, the individual take delivery (or
make payment) of a specified amount of foreign exchange in return for a specified
amount of dollars. Let f, denote the 90-day forward market price of foreign ex-
change purchased on day t. On day ¢, suppose that an individual speculator buys
forward pounds at the price f, = $2.00/pound. Thus, in 90 days the individual is ob-
ligated to provide $200,000 in return for £100,000. Of course, the agent may
choose to immediately sell these pounds on the spot market. If on day ¢ + 90, the
spot price happens to be s,,40 = $2.01/pound, the individual can sell the £100,000
for $201,000; without transactions costs taken into account, the individual earns
a profit of $1000. In general, the profit on such a transaction will be 5,4, — f,
multiplied by the number of pounds transacted. (Note that profits will be negative if
Se00 < f,.) Of course, it is possible to speculate by selling forward pounds also. An
individual selling 90-day forward pounds on day ¢ will be able to buy them on the
spot market at s,,4o. Here, profits will be f, — s,,9o multiplied by the number of
pounds transacted. The efficient market hypothesis maintains that the expected
profit or loss from such speculative behavior must be zero. Let Es 4, denote the
expectation of the spot rate for day ¢ + 90 conditioned on the information avajlable
on day t. Since we actually know f, on day ¢, the efficient market hypothesis for
forward exchange market speculation can be written as

E!‘gl+90 = fp l

or

Sr+90"f1:pr

]

where p, per unit profit from speculation
Ep =0

Thus, the efficient market hypothesis requires that for any time period ¢, the 90-
day forward rate (i.e., f,) be an unbiased estimator of the spot rate 90 days from .
Suppose that a researcher collected weekly data of spot and forward exchange

rates. The data set would consist of the forward rates f,, f,.7, fria .. and spot
rates s, .., Sie140 - - - - By using these exchange rates, it is possible to construct the
SEqUeNnce S;,.q0 = ft =P Ster490 fn = Pres Sterae90 —~ fl+l4 Z Preras - oo Normalize

the time period to | week, so that y, = p,, ¥2 = P17y ¥3 = Preras - - - and consider the
regression equation (where ~ is dropped for simplicity):

Yi=agtay,  ta+,

The efficient market hypothesis asserts that ex ante expected profit must equal
zero; hence, with quarterly data, it should be the case that ay = a, = g, = 0.
However, the way that the data set was constructed means that the residuals will be
correlated. As Corbae and Ouliaris (1986) point out, suppose that there is relevant
exchange market “news” at date 7. Agents will incorporate this news into all for-
ward contracts signed in periods subsequent to 7. However, the realized returns for
all preexisting contracts will be affected by the news. Since there are approximately
13 weeks in a 90-day period, we can expect the I, sequence to be an MA(12)
process. Although ex ante expected returns may be zero, the ex post returns from
speculation at ¢ will be correlated with the returns from those engaging forward
contracts at weeks ¢ + 1 through ¢ + 12,

Meese and Singleton (1982) assumed white-noise disturbances in using a
Dickey—Fuller test to study the returns from forward market speculation. One sur-
prising result was that the return from forward speculation in the Swiss franc con-
tained a unit root. This finding contradicts the efficient market hypothesis since it
implies the existence of a permanent component in the sequence of returns.
However, the assumption of white-noise disturbances is inappropriate if the {|,)
sequence is an MA(12) process. Instead, Corbae and Ouliaris use the more appro-
priate Phillips—Perron procedure to analyze foreign exchange market efficiency;
some of their results are contained in Table 4.4.

First, consider the test for the unit root hypothesis (i.e., a;, = 1). All estimated
values of a; exceed 0.9; the first-order autocorrelation of the returns from specula-
tion appears to be quite high. However, given the small standard errors, all esti-
mated values are over four standard deviations from unity. At the 5% significance
level, the critical value for a test of a; = 1, is —=3.43. Note that this critical value is
the Dickey-Fuller 1, statistic with 250 observations. Hence, as opposed to Meese

S
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‘Table 4.4 Returns to Forward Speculation

ay a, a;
Switzerland ~0.117E-2 0.941 -0.111E-4
(0.106E-2) (0.159E-1) (0.834E-5)
s Z(tag) = —1.28 Z(ta,) = -4.06 G Z(ay) = -1.07
Canada 7 ~0.651E-3 0.907 0.116E-5
R (0.409E-3) (0.191E-1) (0.298E-5)
Z(tay) = -1.73 Z(ta,) = -5.45 Z(ta)) =—1.42
UK. A —0.779E-3 0.937 —0.132E-4
v (0.903E-3) (0.163E-1) (0.720E-5)
Z(tag) = —0.995 Z(ta,) = —4.69 Z(tay) = ~1.50

Notes: 1. Standard errors are in parentheses.
2. Z(tay) and Z(1a,) are the Phillips—Perron adjusted r-statistics for the hypotheses that ¢y = 0
and a, = 0, respectively. Z(ta,) is the Phillips—Perron adjusted -statistic for the hypothesis
thata, = 1.

and Singleton (1982), Corbae and Ouliaris are able to reject the null of a unit root
in all series examined. Thus, shocks to the return from forward exchange market
speculation do not have permanent effects.

A second necessary condition for the efficient market hypothesis to hold is that
the intercept term a, equal zero. A nonzero intercept term suggests a predictable
gap between the forward rate and spot rate in the future. If a, # 0, on average,
there are unexploited profit opportunities. It may be that agents are risk-averse or
profit-maximizing speculators are not fully utilizing all available information in de-
termining their forward exchange positions. In absolute value, all the Z(td,) statis-
tics are less than the critical value, so that Corbae and Quliaris cannot reject the
null g = 0. In the same way, they are not able to reject the null hypothesis of no de-
terministic time trend (i.e., that a, = 0). The calculated Z(14,) statistics indicate that
the estimated coefficients of the time trend are never more than 1.50 standard errors
from zero.

At this point, you might wonder whether it would be possible to perform the
same sort of analysis using an augmented Dickey~Fuller (ADF) test. After all, Said
and Dickey (1984) showed that the ADF test can be used when the error process is
a moving average. The desirable feature of the Phillips—Perron test is that it allows
for a weaker set of assumptions concerning the error process. Also, Monte Carlo
studies find that the Phillips—Perron test has greater power to reject a false null hy-
pothesis of a unit root. However, there is a cost entailed with the use of weaker as-
sumptions. Monte Carlo studies have also shown that in the presence of negative
moving average terms, the Phillips~Perron test tends to reject the null of a unit root
whether or not the actual data-generating process contains a negative unit root. It is
preferable to use the ADF test when the true model contains negative moving aver-
age terms and the Phillips—Perron test when the true model contains positive mov-
ing average terms.

In practice, the choice of the most appropriate test can be difficult since you
never know the true data-generating process. A safe choice is to use both types of
unit roots tests. If they reinforce each other, you can have confidence in the results.
Sometimes, economic theory will be helpful in that it suggests the most appropriate
test. In the Corbae and Ouliaris example, excess returns should be positively corre-
lated; hence, the Phillips—Perron test is a reasonable choice.

6. STRUCTURAL CHANGE

In performing unit root tests, special care must be taken if it is suspected that struc-
tural change has occurred. When there are structural breaks, the various Dickey—
Fuller and Phillips—Perron test statistics are biased toward the nonrejection of a unit
root. To explain, consider the situation in which there is a one-time change in the
mean of an otherwise stationary sequence. In the top graph (a) of Figure 4.4, the
{y:} sequence was constructed so as to be stationary around a mean of zero for ¢ =
0,..., 50 and then to fluctuate around a mean of 6 for r = 51, ..., 100. The se-
quence was formed by drawing 100 normally and independently distributed values

for the {¢,} sequence. By setting y, = 0, the next 100 values in the sequence were
generated using the formula:

% =05y +¢+D, (4.29)
where D, is a dummy variable such that D, =0 forr=1,...,50 and D, =3 fort =
5t,..., 100. The subscript L is designed to indicate that the level of the dummy

changes. At times, it will be convenient to refer to the value of the dummy variable
in period 1 as D,(t); in the example at hand, D,(50) = 0 and D,(51) = 3.

In practice, the structural change may not be as apparent as the break shown in
the figure. However, the large simulated break is useful for illustrating the problem
of using a Dickey-Fuller test in such circumstances. The straight line shown in the
figure highlights the fact that the series appears to have a deterministic trend. In
fact, the straight line is the best-fitting OLS equation:

y,:a0+a2[+e‘,
In the figure, you can see that the fitted value of a, is negative and the fitted
value of g, is positive. The proper way to estimate (4.29) is to fit a simple AR(1)

model and allow the intercept to change by including the dummy variable D, .
However, suppose that we unsuspectingly fit the regression equation:

Ye=agtay., +e (4.30)

As you can infer from Figure 4.4, the estimated value of a, is necessarily biased
toward unity. The reason for this upward bias is that the estimated value of a, cap-




Figure 4.4 Two models of structural change.
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tures the property that “low” values of y, (i.e., those fluctuating arou'nd zero) are
followed by other low values and “high” values (i.e., those ﬂuctanng around a
mean of 6) are followed by other high values. For a formal demonstration, note that
as a, approaches unity, (4.30) approaches a random walk plus drift. W‘e know
* that the solution to the random walk plus drift model includes a deterministic trend,
that is,

!
Y =Yg +a0t+Zei
i=1

Thus, the misspecified equation (4.30) will tend to mimic the trend line shown in
Figure 4.4 by biasing a, toward unity. This bias in a, means that the Dickey—Fuller
test is biased toward accepting the null hypothesis of a unit root, even though the
series is stationary within each of the subperiods.

Of course, a unit root process can exhibit a structural break also. The lower graph
(b) of Figure 4.4 simulates a random walk process with a structural change occus-
ring at ¢ = 51. This second simulation used the same 100 realizations for the {e,)

sequence and set y, = 2. The 100 realizations of the {y,} sequence were constructed
as

Y=Y+ €+ Dp

where Dp(51) =4 and all other values of D, =0.

Here, the subscript P refers to the fact that there is a single pulse in the dummy
variable. In a unit root process, a single pulse in the dummy will have a permanent
effect on the level of the {y,} sequence. In ¢ = 51, the pulse in the dummy is equiva-
lent to an €,,5; shock of four extra units. Hence, the one-time shock to Dp(51) has a
permanent effect on the mean value of the sequence for ¢t = 51. In the figure, you
can see that the level of the process takes a discrete jump in ¢ = 51, never exhibiting
any tendency to return to the prebreak level.

The bias in the Dickey-Fuller tests was confirmed in a Monte Carlo experiment.
Perron (1989) generated 10,000 replications of a stationary process like that of
(4.29). Each replication was formed by drawing 100 normally and independently
distributed values for the {¢,} sequence. For each of the 10,000 replicated series,
Perron used OLS to estimate a regression in the form of (4.30).% As could be antici-
pated from our earlier discussion, he found that the estimated values of a, were bi-
ased toward unity. Moreover, the bias became more pronounced as the magnitude
of the break increased.

Testing for Structural Change

Returning to the two graphs of Figure 4.4, we see that there may be instances in
which the unaided eye cannot easily detect the difference between the alternative
types of sequences. One econometric procedure to tests for unit roots in the pres-
ence of a structural break involves splitting the sample into two parts and using
Dickey-Fuller tests on each part. The problem with this procedure is that the de-
grees of freedom for each of the resulting regressions are diminished. It is prefer-
able to have a single test based on the full sample.

Perron (1989) goes on to develop a formal procedure to test for unit roots in the
presence of a structural change at time period ¢ = T + 1. Consider the null hypothe-
sis of a one-time jump in the level of a unit root process against the alternative of a
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one-time change in the intercept of a trend stationary process. Formally, let the null
and alternative hypotheses be

Hyy =apg+y .+ 1,Dp+e e 431
Apy,=ap+at+i,D +e oo : 432)

-where D, represents a pulse dummy variable such that D, = T if =1+ 1 and
zero otherwise, and D, represents a level dummy variable such that D, = 1
if t > 7 and zero otherwise.

Under the null hypothesis, {y,} is a unit root process with a one-time jump in the
level of the sequence in period ¢ = T + 1. Under the alternative hypothesis, {y,} is
trend stationary with a one-time jumgp in the intercept. Figure 4.5 can help you to
visualize the two hypotheses. Simulating (4.31) by setting a, = | and using 100 re-
alizations for the {€,} sequence, the erratic line in Figure 4.5 illustrates the time
path under the null hypothesis. You can see the one-time jump in the level of the
process occurring in period 51. Thereafter, the {y,} sequence continues the original
random walk plus drift process. The alternative hypothesis posits that the {y,} se-
quence is stationary around the broken trend line. Up to t = 1, {y,} is stationary
around a, + a,t and beginning T + 1, y, is stationary around aq + a,f + {,. As ilius-
trated by the broken line, there is a one-time increase in the intercept of the trend if
p, > 0.

The econometric problem is to determine whether an observed series is best
modeled by (4.31) or (4.32). The implementation of Perron’s {1989) technique is
straightforward:

Figure 4.5 :
Alternative representations of structural change.
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STEP 1: Detrend the data by estimating the alternative hypothesis and calling the
residuals y,.

Hence, each value of y, is the residual from the regression y, = a, + a,t +
KDy Y, :

STEP 2. Estimate the regression:

A

ylza1y1—1+er

Under the null hypothesis of a unit root, the theoretical value of a, is
unity. Perron (1989) shows that when the residuals are identically and
independently distributed, the distribution of @, depends on the proportion

of observations occurring prior to the break. Denote this proportion by:
A=vT

where T = total number of observations.

$1EP 3: Perform diagnostic checks to determine if the residuals from Step 2 are se-

rially uncorrelated. If there is serial correlation, use the augmented form of
the regression:

k
5’1 = alf’{—l + ZBIA)?I—i +€

i=]

where y,=is the detrended series.

STEP 4: Calculate the r-statistic for the null hypothesis a, = 1. This statistic can be

compared to the critical values calculated by Perron. Perron generated
5000 series according to H, using values of A ranging from 0 to 1 by
increments of 0.1. For each value of A, he estimated the regressions J,
= a,y,., + €, and calculated the sample distribution of a;. Naturally, the
critical values are identical to the Dickey—Fuller statistics when A = 0 and
A = 1; in effect, there is no structural change unless 0 < A < 1. The maxi-
mum difference between the two statistics occurs when A = 0.5. For A =
0.5, the critical value of the t-statistic at the 5% level of significance is
~3.76 (which is larger in absolute than the corresponding Dickey—Fuller
statistic of —=3.41). If you find a #-statistic greater than the critical value

calculated by Perron, it is possible to reject the null hypothesis of a unit
root.

Of course, it is possible to incorporate Step 1 directly into Steps 2 or 3. To com-
bine Steps 1 and 3, simply estimate the equation:

k
Y, =aytay,_ tayttu,D + zBiAyl_i +€,

i=1
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The t-statistic for the null @, = 1 can then be compared to the appropriate critical
value calculated by Perron. In addition, the methodology is quite general in that it
can also allow for a one-time change in the drift or one-time change in both the
mean and drift. For example, it is possible to test the null hypothesis of a permanent
change magnitude of the drift term versus the alternative of a change in the slope of
the trend. Here, the null hypothesis is :

Hyy,=ag+y, + LD, +¢€

where D, = 1 if t > T and zero otherwise. With this specification, the {y,} sequence
is generated by Ay, = a, + €, up to period 7 and Ay, = (ap + [L,) + €, thereafter. If {1, >
0, the slope coefficient of the deterministic trend increases for ¢ > 1. Similarly, a
slowdown in trend growth occurs if 1, < 0.

The alternative hypothesis posits a trend stationary series with a change in the
slope of the trend for ¢ > 1:

Ay, =apg+ay+ WD+ €

where D, =1t — 1 for 1 > T and zero otherwise. For example, suppose that the break
occurs in period 51 so that T = 50. Thus, D,{(1) through D{50) are all zero, so that
for the first 50 periods, {y,} evolves as y, = a, + a,t + €, Beginning with period 51,
DSy, =1,D(52);=2,...,s0 that for t > 1, {y,} evolves as y, = a5 + (a, + 1)t +
€,. Hence, D, changes the slope of the deterministic trend line. The slope of the
trend is a, fort < tand a, + p; for > 1.

To be even more general, it is possible to combine the two null hypotheses H,
and H,. A change in both the level and drift of a unit root process can be repre-
sented by ‘

Hyy=apg+y +Dp+ D, + ¢

where Dpand D, = the pulse and level dummies defined above

The appropriate alternative for this case is
Ay, =ag+a+ LD, + L3Dr+ €

Again, the procedure entails estimating the regression A, or Aj. Next, using the
residuals y,, estimate the regression:

yr:alyl—l + €,

If the errors from this second regression equation do not appear to be white-
noise, estimate the equation in the form of an augmented Dickey~Fuller test. The
t-statistic for the null hypothesis a; = 1 can be compared to the critical values calcu-
lated by Perron (1989). For A = 0.5, Perron reports the critical value of the 7-statistic
at the 5% significance level to be —3.96 for H, and —4.24 for H,.

Perron’s Test for Structural Change

Perron (1989) used his analysis of structural change to challenge the findings of
Nelson and Plosser (1982). With the very same variables used, his results indicate
that most macroeconomic variables are not characterized by unit root processes.
Instead, the variables appear to be TS processes coupled with structural breaks.
According to Perron (1989), the stock market crash of 1929 and dramatic oil price
increase of 1973 were exogenous shocks having permanent effects on the mean of
most macroeconomic variables. The crash induced a one-time fall in the mean.
Otherwise, macroeconomic variables appear to be trend stationary.

All variables in Perron’s study (except real wages, stock prices, and the station-
ary unemployment rate) appeared to have a trend with a constant slope and exhib-
ited a major change in the level around 1929. In order to entertain various hypothe-
ses concerning the effects of the stock market crash, consider the regression
equation:

k
Yo =g+ Dyt Dp +agt+ayy, +EB‘~Ay,_,. te
i=1

where Dp(1930)
Dy

1 and zero otherwise
1 for all ¢ beginning in 1930 and zero otherwise

Under the presumption of a one-time change in the mean of a unit root process,
a, =1, a, =0, and g, = 0. Under the alternative hypothesis of a permanent one-time
break in the trend stationary model, a, < 1 and p, = 0. Perron’s {1989) results using
real GNP, nominal GNP, and industrial production are reported in Table 4.5. Given
the length of each series, the 1929 crash means that A is 1/3 for both real and nomi-
nal GNP and equal to 2/3 for industrial production. Lag lengths (i.e., the values of
k) were determined using t-tests on the coefficients ;. The value k was selected if
the s-statistic on B, was greater than 1.60 in absolute value and the f-statistic on B,
for i > k was less than 1.60.

First, consider the results for real GNP. When we examine the last column of the
table, it is clear that there is little support for the unit root hypothesis; the estimated
value of a, = 0.282 is significantly different from unity at the 1% level. Instead,
real GNP appears to have a deterministic trend (a, is estimated to be over five stan-
dard deviations from zero). Also note that the point estimate i, = ~0.189 is signifi-
cantly different from zero at conventional levels. Thus, the stock market crash is es-
timated to have induced a permanent one-time decline in the intercept of real GNP,

These findings receive additional support since the estimated coefficients and
their t-statistics are quite similar across the three equations. All values of a, are
about five standard deviations from unity, whereas the coefficients of the determin-
istic trends (a,) are all over five standard deviations from zero. Since all estimated
values of y, are significant at the 1% level and negative, the data seem to support
the contention that real macroeconomic variables are TS, except for a structural
break resulting from the stock market crash.
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" Table 4.5 Retesting Nelson and Plosser’s Data for Structural Change

T A k a, ™ H a, a,

Real GNP 62 0.33 8 3.44 -0.189 -0.018 0.027 0.282
(5.07) (—4.28) (-0.30) (5.05) (-5.03)

Nominal 62 0.33 8 5.69 -3.60 0.100 0.036 0.471
GNP (5.44) (—4.77) (1.0%9) (544 (-542)
Industrial 111 0.66 8 0.120 -0.298 -0.095 0.032 0.322
production (4.37) (—4.56) (-095) (542) (-547)

Notes: 1.T = number of observations
A = proposition of observations occurring before the structurat change

k=lag length
2. The appropriate r-statistics are in parentheses. For ay, ;. W,, and a,, the null is that the coef-
ficient is equal to zero. For a,, the null hypothesis is a, = 1. Note that all estimated values of

a, are significantly different from unity at the 1% level.

Tests with Simulated Data
To further illustrate the procedure, 100 random numbers were drawn to represent

the {€,} sequence. By setting y, = 0, the next 100 values in the {y,} sequence were
drawn as

v, =05y +€+D,

Oforte=1,...,50
1fore=51,...,100

where D,
D,

Thus, the simulation is identical to (4.29), except that the magnitude of the struc-
tural break is diminished. This simulated series is on the data file labeled
BREAK.PRN; you should try to reproduce the following results. If you were to plot
the data, you would see the same pattern as in Figure 4.4. However, if you did not
plot the data or were otherwise unaware of the break, you might easily conclude
that the {y,} sequence has a unit root. The ACF of the {y,} sequence suggests a unit
root process; for example, the first six autocorrelations are

Lag: i 2 3 4 5 6
0.94 0.88 0.84 0.81 0.77 0.72

and the ACF of the first differences is:

Lag: 1 2 3 4 5 6
-0.002 -0.201 -0.112 0.079 -0.010 -0.061

Dickey~Fuller tests yield

Ay, =-0.0233y,_, +¢, t-statistic for Y= 0: —0.98495
Ay, =0.0661 — 0.0566y,_, + €, t-statistic for Y= 0: —1.70630
Ay, =-0.0488 - 0.1522y,_, + 0.004z + ¢, t-statistic for y=0: -2.73397

Diagnostic tests indicate that longer lags are not needed. Regardless of the pres-
ence of the constant or the trend, the {y,} sequence appears to be difference station-
ary. Of course, the problem is that the structural break biases the data toward sug-
gesting a unit root.

Now, with the Perron procedure, the first step is to estimate the model y, = a, +
axt + WD, + y,. The residuals from this equation are the detrended (J,} sequence.
The second step is to test for a unit root in the residuals by estimating §, = a, y,_, +
€,. The resulting regression is:

Y, =04843y,_ +¢,

In the third step, all the diagnostic statistics indicate that {€,} approximates a
white-noise process. Finally, the t-statistic for a, = 1 is 5.396. Hence, we can reject
the null of a unit root and conclude that the simulated data are stationary around a
breakpoint at r =51.

Some care must be used in using Perron’s procedure since it assumes that the
date of the structural break is known. In your own work, if the date of the break is
uncertain, you should consult Perron and Vogelsang (1992). In fact, entire issue of
the July 1992 Journal of Business and Economic Statistics is devoted to break-
points and unit roots.

7. PROBLEMS IN TESTING FOR UNIT ROOTS

There is a substantial literature concerning the appropriate use of the various
Dickey-Fuller test statistics. The focus of this ongoing research concerns the power
of the test and presence of the deterministic regressors in the estimating equations.
Although many details are beyond the level of this text, it is important to be aware
of some of the difficulties entailed in testing for the presence of a trend (either de-
terministic or stochastic) in the data-generating process.

- Power

Formally, the power of a test is equal to the probability of rejecting a false null hy-
pothesis (i.e., I minus the probability of a type 1I error). Monte Carlo simulations
have shown that the power of the various Dickey~Fuller and Phillips—Perron tests
is very low; unit root tests do not have the power to distinguish between a unit root
and near unit root process. Thus, these tests will too often indicate that a series con-
tains a unit root. Moreover, they have little power to distinguish between trend sta-




#rionary and drifting processes. In finite samples, any trend stationary process can be

arbitrarily well approximated by a unit root process, and a unit root process can be
arbitrarily well approximated by a trend stationary process. These results should not
be too surprising after examining Figure 4.6. The top graph (a) of the figure shows
a stationary process and unit root process. So as not to bias the results in any partic-
ular direction, the simulation uses the same 100 values of {€,} that were used in
Figure 4.4. Using these 100 realizations of {€}, we constructed two sequences as:

y, =11y, = 0.1y, +¢
z,= L1z, ~0.15z,., + €

The {y,} sequence has a unit root; the roots of the {z,} sequence are 0.9405 and
0.1595. Although {z,} is stationary, it can be called a near unit root process. If you
did not know the actual data-generating processes, it would be difficult to tell that
only {z,} is stationary.

Similarly, as illustrated in the lower graph (b) of Figure 4.6, it can be quite diffi-
cult to distinguish between a trend stationary and unit root plus drift process. Still
using the same 100 values of {€,}, we can construct two other sequences as:

w,=1+0.02t + ¢,
x,=002+x_, +¢€/3

where x,=1

Here, the trend and drift terms dominate the time paths of the two sequences.
Again, it is very difficult to distinguish between the sequences. This is especially
true since dividing each realization of €, by 3 acts to smooth out the {x,} sequence.
Just as it is difficult for the naked eye to perceive the differences in the sequences,
it is also difficult for the Dickey—Fuller and Phillips—Perron tests to select the cor-
rect specification.

It is easy to show that a trend stationary process can be made 1o mimic a unit root
process arbitrarily well. As discussed in Chapter 3, it is possible to write the ran-
dom walk plus noise mode! in the form:

y1=u1+ni
W=l + €

where T, and €, are both independent white-noise processes with variances of 62
and o2, respectively. Suppose that we can observe the {y,} sequence, but
cannot directly observe the separate shocks affecting y,. If the variance of
€, is not zero, {y,} is the unit root process:

!
Ye=Hot zei N, S (4.33)
i=l
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On the other hand, if ¢® = 0, then all values of {¢,} are constant, so that: € =
€, = - = &, To maintain the same notation as in previous chapters, define this ini-

tial value of €, as a,. It follows that i, = [, + agt, so {y,} is the trend stationary
process:

Y= Hot apt+ M, (4.34)

Thus, the difference between the difference stationary process of (4.33) and trend
process of (4.34) concerns the variance of €. Having observed the composite ef-
fects of the two shocks—but not the individual components 1, and €,—we see that
there is no simple way to determine whether 67 is exactly equal to zero. This is par-
ticularly true if the data-generating process is such that o7 is large relative to ¢*. In
a finite sample, arbitrarily increasing 62 will make it virtually impossible to distin-
guish between a TS and DS series.

It also follows that a trend stationary process can arbitrarily well approximate a
unit root process. If the stochastic portion of the trend stationary process has suffi-
cient variance, it will not be possible to distinguish between the unit root and trend
stationary hypotheses. For example, the random walk plus drift model (a difference
stationary process) can be arbitrarily well represented by the model y, = a, +
ayy,.; + €, by increasing ¢ and allowing a, to get sufficiently close to unity. Both
these models can be approximated by (4.34).

Does it matter that is often impossible to distinguish between borderline station-
ary, trend stationary, and unit root processes? The realistic answer is that it depends
on the question at hand. In borderline cases, the short-run forecasts from the alter-
native models may have nearly identical forecasting performance. In fact, Monte
Carlo studies indicate that when the true data-generating process is stationary but
has a root close to unity, the one-step ahead forecasts from a differenced model are
usually superior to the forecasts from a stationary model. However, the long-run

forecasts of a model with a deterministic trend will be quite different from those of
the other models.®

~—

Determination of the Deterministic Regressors

Unless the researcher knows the actual data-generating process, there is a question
concerning whether it is most appropriate to estimate (4.12), (4.13) or (4.14). It

might seem reasonable to test the hypothesis ¥ = O using the most general of the
models, that is,

Y4
Ay, =ay+vyy,_, ta,r+ EB;AM-M +e, 1 (4.35)
i=2 ’

After all, if the true process is a random walk process, this regression should find
that a5 =y = a, = 0. One problem with this line of reasoning is that the presence of
the additional estimated parameters reduces degrees of freedom and the power of

the test. Reduced power means that the researcher may conclude that the process
contains a unit root when, in fact, none is present. The second problem is that the
appropriate statistic (i.e., the T, 7, and 1) for testing y = 0 depends on which re-
gressors are included in the model. As you can see by examining the three Dickey-
Fuller tables, for a given significance level, the confidence intervals around y= 0
dramatically expand if a drift and time trend are included in the model. This is quite
different from the case in which {y,} is stationary. The distribution of the t-statistic
does not depend on the presence of the other regressors when stationary variables
are used.

The point is that it is important to use a regression equation that mimics the ac-
tual data-generating process. If we inappropriately omit the intercept or time trend,
the power of the test can go to zero.!® For example, if as in (4.35), the data-generat-
ing process includes a trend, omitting the term a,? imparts an upward bias in the es-
timated value of . On the other hand, extra regressors increase the absolute value
of the critical values so that you may fail to reject the null of a unit root.

To illustrate the problem, suppose that the time series {y,} is assumed to be gen-
erated by the random walk plus drift process:

y,=ay+ay._, +€  aq,#0anda =1 . (4.36)

where the initial condition y, is givenand¢t=1,2,..., T.

If there is no drift, it is inappropriate to include the intercept term since the
power of the Dickey—Fuller test is reduced. When the drift is actually in the data-
generating process, omitting a, from the estimating equation also reduces the power
of the test in finite samples. How do you know whether to include a drift or time
trend in performing the tests? The key problem is that the tests for unit roots are
conditional on the presence of the deterministic regressors and tests for the pres-
ence of the deterministic regressors are conditional on the presence of a unit root.

Campbell and Perron (1991) report the following results concerning unit root tests:

1. When the estimated regression includes ar least all the deterministic elements in
the actual data-generating process, the distribution of ¥ is nonnormal under the
null of a unit root. The distribution itself varies with the set of parameters in-
cluded in the estimating equation.

2. If the estimated regression includes deterministic regressors that are not in the
actual data-generating process, the power of the unit root test against a station-
ary alternative decreases as additional deterministic regressors are added.

3. If the estimated regression omits an important deterministic trending variable
present in the true data-generating process, such as the expression a,f in (4.35),
the power of the -statistic test goes to zero as the sample size increases. If the
estimated regression omits a nontrending variable (i.e., the mean or a change in
the mean), the t-statistic is consistent, but the finite sample power is adversely
affected and decreases as the magnitude of the coefficient on the omitted com-
ponent increases.




" Estimating (4.13) or (4.14), we observe that the 1, T, ¢,, ¢,, and ¢; statistics
have the asymptotic distributions tabulated by Dickey and Fuiler (1979, 1981).
The critical values of the various statistics depend on sample size. However, the
sample variance of {y,} will be dominated by the presence of a trend or drift.
We saw an example of this phenomenon in Figure 3.12 of Chapter 3. The time
path of the random walk plus drift model in graph (b) is swamped by the pres-
ence of the drift term. The fact that the stochastic trend is precisely the same as
in graph (a) has little effect on the overall appearance of the series. Although the

proof is beyond the scope of this text, the 1, and 1, statistics converge to the
standardized normal. Specifically,

T
ny =al T°[20 ifa, #0
=1
:>a§T3/3 ifag#0anda, =0

Only when both a, and a, equal zero in the regression equation and data-gen-
erating process do the nonstandard Dickey~Fuller distributions dominate. If the
data-generating process is known to contain a trend or drift, the null hypothesis
Y =0 can be tested using the standardized normal distribution.

The direct implication of these four findings is that the researcher may fail to re-
ject the null hypothesis of a unit root because of a misspecification concerning the
deterministic part of the regression. Too few or too many regressors may cause a
failure of the test to reject the null of a unit root. Although we can never be sure
that we are including the appropriate deterministic regressors in our econometric
model, there are some useful guidelines. Doldado, Jenkinson, and Sosvilla-Rivero
(1990) suggest the following procedure to test for a unit root when the form of the
data-generating process is unknown. The following is a straightforward modifica-
tion of their method:

STEP 1: As shown in Figure 4.7, start with the least restrictive of the plausible
models (which will generally include a trend and drift) and use the T, sta-
tistic to test the null hypothesis y = 0. Unit root tests have low power to re-
ject the null hypothesis; hence, if the null hypothesis of a unit root is re-
Jected, there is no need to proceed. Conclude that the {y,} sequence does
not contain a unit root.

STEP 2: If the null hypothesis is not rejected, it is necessary to determine whether
100 many deterministic regressors were included in Step 1 above.'! Test
for the significance of the trend term under the null of a unit root (e.g., use
the 7g, statistic to test the significance of a,). You should try to gain addi-
tional confirmation for this result by testing the hypothesis a, =y =0 using
the ¢, statistic. If the trend is not significant, proceed to Step 3. Otherwise,

if the trend is significant, retest for the presence of a unit root (i.e., y=0)
using the standardized normal distribution. After all, if a trend is inappro-
priately included in the estimating equation, the limiting distribution of a,
is the standardized normal. If the null of a unit root is rejected, proceed no
further; conclude that the {y,} sequence does not contain a unit root.
Otherwise, conclude that the {y,} sequence contains a unit root.

< gfEP3: Estimate (4.35) without the trend [i.e., estimate a model in the form of
e (4.13)]. Test for the presence of a unit root using the T, statistic. If the null
is rejected, conclude that the model does not contain a unit root. If the null
hypothesis of a unit root is not rejected, test for the significance of the
constant (e.g., use the T, statistic to test the significance of g, given ¥ =
0). Additional confirmation of this result can be obtained by testing the
hypothesis a, =y =0 using the ¢, statistic. If the drift is not significant, es-
timate an equation in the form of (4.12) and proceed to Step 4. If the drift
is significant, test for the presence of a unit root using the standardized

Figure 4.7 A procedure to test for unit roots.
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normal. If the null hypothesis of a unit root is rejected, conclude that the where LGDP, = log(GDP,), so that ALGDP, is the growth rate of real GDP, and

{y,} sequence does not contain a unit root. Otherwise, conclude that the standard errors are in parentheses.
{y,} sequence contains a unit root. The model is well estimated in that the residuals appear to be white-noise and all
coefficients are of high quality. For our purposes, the interesting point is that the
Estimate (4.35) without the trend or drift, that is, estimate a model in the . Alog(GDP,) series appears to be a stationary process. Integrating suggests that
form of (4.12). Use 7 to test for the presence of a unit root. If the null hy- -y, log(GDP)) has a stochastic and deterministic trend. The deterministic quarterly
pothesis of a unit root is rejected, conclude that the {y,} sequence does not S growth rate of 0.007018—close to a 3% annual rate—appears to be quite reason-
contain a unit root. Otherwise, conclude that the {y,} sequence contains a e i able. Now consider the three augmented Dickey-Fuller equations with ¢-statistics in
unit root. .. parentheses:
Remember, this procedure is not designed to be applied in a completely mechan- o
ical fashion. Plotting the data is usually an important indicator of the presence of w7 ALGDP,=0.79018 - 0.05409LGDP,_, +0.000348:
deterministic regressors. The data shown in Figure 4.1 could hardly be said to con- st (2.56548) (=2.54309) (2.27941)
tain a deterministic trend. Moreover, theoretical considerations might suggest the S +0.24961ALGDP, y + 0.17273ALGDP,, (437
appropriate regressors. The efficient market hypothesis is inconsistent with the (2.83349)  wi (1.94841)
presence of a deterministic trend in an asset market price. However, the procedure RSS =0.0089460783
is a sensible way to test for unit roots when the form of the data-generating process B AR ¥
is completely unknown. ALGDP, = 0.09600 — 0.00611LGDP,_; + 0.23613ALGDP,_,
(2.05219) (—=1.96196) (2.64113)
_ GDP and Unit Roots S +0.13535ALGDP,_, (4.38)
f Although the methodology outlined in Figure 4.7 can be very useful, it does have RSS = 0.0093334206 (1.52736)
2 its problems. Each step in the procedure involves a test that is conditioned on all o S
: the previous tests being correct; the significance level of each of the cascading tests o
{ is impossible to ascertain. - ALGDP,=0.000279LGDP,_, + 0.26331ALGDP,_, + 0.15443ALGDP,_, (4.39)
The procedure and its inherent dangers are nicely illustrated by trying to deter- o (3.82135) (2.93959) (1.72964)
mine if real gross domestic product (GDP) has a unit root. The data are contained in RSS =0.0096582756

{ the file entitled US.WKI1 on the data disk; it is a good idea to replicate the results
reported below. If we use quarterly data over the 1960:1 to 1991:4 period, the cor-
relogram of the logarithm of real GDP exhibits slow decay. However, the first 12
autocorrelations and partial autocorrelations of the logarithmic first difference are

From (4.37), the ¢-statistic for the null hypothesis v = 0 is ~2.54309. Critical val-
ues with 125 usable observations are not reported in the Dickey-Fuller table.'?
However, with 100 observations, the critical value of T, at the 5% significance level

. _ is ~3.45; hence, it is not possible to reject the null hypothesis of & unit root given
ACF of the logarithmic first difference of real GDP: !

] the presence of the drift term and time trend.
([ Lag 1 0.3093189 0.2316683 0.0572363 0.0556556 -0.0604932 0.0336679 The power of the test may have been reduced due to the presence of an unneces-

E 7: ~0.0476200 -0.1453376 -0.0461222 0.0600729 0.0101171 -0.1695323 sary time trend and/or drift term. In Step 2, you test for the presence of the time
1 trend given the presence of a unit root. In (4.37), the r-statistic for the null hypothe-
l PACF of the logarithmic first difference of real GDP: sis that a, = 0 is 2.2794]. Do not let this large value fool you into thinking that a, is
’< Lag 1: 03093189 0.1503780 —0.0567524 0.0220048 —0.0876589 0.0696282 significantly different from zero. Remember, in the presence of a unit root, you
7. —0.0507211 —0.1605942 0.0669240 0.1200468 ~0.0353431 —0.2423071 : cannot use the critical values of a t-table; instead, the appropriate critical values are
i ' given by the Dickey—Fuller 75, statistic. As you can see in Table 4.1, the critical
§ Despite the somewhat large partial correlation at lag 12, the Box—Jenkins proce- value of 14, at the 5% significance level is 2.79; hence, it is reasonable to conclude
’§ dure yields the ARIMA(O, 1, 2) model: that a, = 0. The ¢ statistic to test th§J01nt hypothesis a, =y=0 reconﬁrms this re-
lﬁf sult. If we view (4..3"/) as the unrestricted model and (4.39) as the restricted model,
i ALGDP, = 0.007018 + (1 + 0.262169L + 0.197547LY)¢, there are two restrictions and 120 degrees of freedom in the unrestricted model; the
(0.001144) (0.088250) (0.082663)  * 05 statistic 15
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i // ¢, = [(0.0096582756 — 0.0089460783)72] /(0.0089460783/120)

=4.7766 ’

Since the critical value of ¢, is 6.49, it is possible to conclude that the restriction
a, = v =0 is not binding. Thus, proceed to Step 3 where you estimate the model
without the trend. In (4.38), the ¢-statistic for the null hypothesis y =0 is -1.96196.
Since the critical value of the 1, statistic is —2.89 at the 5% significance level, the
null hypothesis of a unit root is not rejected at conventional significance levels.
Again, the power of this test will have been reduced if the drift term does not be-
long in the model. To test for the presence of the drift, use the 1, statistic. The cal-
culated t-statistic is 2.05219, whereas the critical value at the 5% significance level

. is 2.54. The ¢, statistic also suggests that the drift term is zero. Comparing (4.38)

and (4.39), we obtain

0, = (0.0096582756 — 0.0093334206)/(0.0093334206/121)
=4.21147365

Proceeding to Step 4 yields (4.39). The point is that the procedure has worked it-
self into an uncomfortable corner. The problem is that the positive coefficient for y
(i.e., the estimated value of v = 0.000279 is almost four standard deviations from
zero) suggests an explosive process. In Step 3, it was probably unwise to conclude
that the drift term is equal to zero. As you should verify in Exercise 4 at the end of
this chapter, the simple Box--Jenkins ARIMA(O, 1, 2) model with an intercept of
0.007018 performs better than any of the alternatives.

SUMMARY AND CONCLUSIONS

In finite samples, the correlogram of a unit root process will decay slowly. As such,
a slowly decaying ACF can be indicative of a unit root or near unit root process.
The issue is especially important since many economic time series appear to have a
nonstationary component. When you encounter such a time series, do you detrend,
do you first-difference, or do you do nothing since the series might be stationary?
Adherents of the Box-Jenkins methodology recommend differencing a nonsta-
tionary variable or variable with a near unit root. For very short-term forecasts, the
form of the trend is nonessential. Differencing also reveals the pattern of the other
autoregressive and moving average coefficients. However, as the forecast horizon
expands, the precise form of the trend becomes increasingly important. Stationarity

.implies the absence of a trend and long-run mean reversion. A deterministic trend

implies steady increases (or decreases) into the infinite future. Forecasts of a series
with a stochastic trend converge to a steady level. As illustrated by the distinction

between real business cycles and the more traditional formulations, the nature of
the trend may have important theoretical implications.

The usual t-statistics and F-statistics are not applicable to determine whether or
not a sequence has a unit root. Dickey and Fuller (1979, 1981) provide the appro-
priate test statistics to determine whether a series contains a unit root, unit root plus
drift, and/or unit root plus drift plus a time trend. The tests can also be medified to
account for seasonal unit roots. If the residuals of a unit root process are heteroge-
neous or weakly dependent, the alternative Phillips—Perron test can be used.

Structural breaks will bias the Dickey—Fuller and Phillips—Perron tests toward
the nonrejection of a unit root. Perron (1989) shows how it is possible to incorpo-
rate a known structural change into the tests for unit roots. Caution needs to be ex-
ercised since it is always possible to argue that structural change has occurred; each
year has something different about it than the previous year. In an interesting exten-
sion, Perron and Vogelsang (1992) show how to test for a unit root when the pre-
cise date of the structural break is unknown.

All the aforementioned tests have very low power to distinguish between a unit
root and near unit root process. A trend stationary process, can be arbitrarily well
approximated by a unit root process, and a unit root process can be arbitrarily well
approximated by a trend stationary process. Moreover, the testing procedure is con-
founded by the presence of the deterministic regressors (i.e., the intercept and de-
terministic trend). Too many or too few regressors reduce the power of the tests.

An alternative is to take a Bayesian approach and avoid specific hypothesis test-
ing altogether. West and Harrison (1989) provide an accessible introduction to
Bayesian analysis in the context of regression analysis. Zellner (1988) discusses
some of the philosophical underpinnings of the approach and Leamer (1986) pro-
vides a straightforward application to estimating the determinants of inflation. Sims
(1988) is the standard reference for the Bayesian approach to unit roots.

QUESTIONS AND EXERCISES

1. The columns in the file labeled REAL.PRN contain the logarithm of the real ex-
change rates for Canada, Japan, Germany, and the U.K. The four series are
called RCAN, RGER, RJAP, and RUK, respectively. As in Section 4, each se-
ries is constructed as r, = e, + pf — p,

- where r = log of the real exchange rate
e = log of the dollar price of foreign exchange
p* = log of the foreign wholesale price index
p = logof the U.S. wholesale price index

All series run from February 1973 through December 1989, and each is ex-
pressed as an index number such that February 1973 = 1.00.



You should find that the data have the following properties:

Observa- Standard
Series tions Mean Error Minimum Maximum
RCAN 203 0.93041911330 0.05685010789 0.83472000000 1.03930000000
RGER 203 1.07711822660 0.15732887872 0.64541000000 1.34005000000
RIAP 203 1.16689172414 0.13981473422 0.91620000000 1.50787000000
RUK 203 1.09026873892  0.14524762980 0.70991900000 1.38482000000

D. If your software package can perform Phillips-Perron tests, reestimate part C

using the Phillips—Perron rather than Dickey—Fuller procedure. You should

find that the #-statistics for y= 0 are

—

A. For each sequence, find the ACF and PACEF of (i) the level of the real ex-
change rate; (ii) the first difference of the real exchange rate; and (iii) the de-
trended real exchange rate. For example, for Canada you should find

ACF:
1:  0.95109959 0.91691527 0.89743824 0.86897993 0.84708012 0.81911904
7. 0.79706303 0.77888188 0.75410092 0.72946966 0.70020306 0.65782904

ACEF of the first difference:

1: -0.1562001 -0.1531103  0.0443029 -0.0152957  0.1053500 -0.0740475
7. ~0.0475489  0.0597755 -0.0255490 0.0142241  0.1810469 -0.1151413

B. Explain why it is not possible to determine whether the seqence is stationary
or nonstationary by the simple examination of the ACF and PACF.

C. Including a constant, use Dickey-Fuller and augmented Dickey-Fuller tests
(with 12 monthly lags) to test whether the series are unit root processes. You
should find that the z-statistics for y=0 are

Series No lags 12 lags Trend + 12 lags
RCAN ~1.81305 -1.50810 -0.85650
RJAP - -1.81978 » -2.30579 -2.61854
RGER —1.64297 -2.10719 -2.09955
RUK —1.55877 —2.51668 -2.57493

. The last entry in the table means that y is more than 2.57 standard deviations

from zero. A student’s t-table indicates that at the 95% significance level, the
critical value is about 1.96 standard deviations. Why is it incorrect to conclude
that the null hypothesis of a unit root can be rejected since the calculated t-sta-
tistic is more than 1.96 standard deviations from zero?

. For each entry reported in the table, what are the appropriate statistics to use (T,

T,, Or T,) in order to test the null hypothesis of a unit root?

Series No lags 12 lags Trend + 12 lags
RCAN ... —1.82209 -1.60022 -1.10882
RJAP —-1.82886 -2.03795 ~-2.19736
RGER s —=1.65117 -1.85319 ~1.88371
RUK - —~1.56654 ~-1.81530 -2.01424

E. Why do you suppose the results from parts C and D are so similar?

. Determine whether an intercept term belongs in the regression equations.
Determine whether the time trend should be included in the equations.
Determine whether the intercept and time trend belong in the equations.

G. Use the Japanese data to show that you can reject the null hypothesis of two
unit roots.

. The second column in the file labeled BREAK PRN contains the simulated data

used in Section 6. You should find:

Observa- Standard
Series tions Mean Error Minimum Maximum
Y1 100 0.98802 0.99373 -0.78719 2.654697

A. Plot the data to see if you can recognize the effects of the structural break.

B. Verify the results reported in Section 6.

. The third column in the file labeled BREAK.PRN contains another simulated

data set with a structural break at t = 51. You should find

Observa- Standard a
Series tions Mean Error Minimum Maximum .
Y2 100 2.21080 1.7816 -1.3413 5.1217

A. Plot the data. Compare your graph to those of Figures 4.4 and 4.5.

B. Obtain the ACF and PACF of the {Y2,} sequence and first difference of the
sequence. Do the data appear to be difference stationary?

C. If as in (4.11), a Dickey-Fuller test is performed including a constant and
trend, you should obtain
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Standard '
Coefficient Estimate Error ¢-Statistic ~ Significance
Constant 0.072445666 0.071447971 1.01396 0.31314869
TREND —0.000101438 0.002120465 -0.04784 0.96194514
Y2, —-0.022398360 0.034013944 -0.65851 0.51178974

i. In what ways is this regression equation inadequate?
ii. What diagnostic checks would you want to perform?

D. Estimate the equation Y2, = a, + a,t + [1,D, and save the residuals. You
should obtain ’

Standard
Coefficient Estimate Error t-Statistic  Significance
Constant 0.4185991020 0.1752103414 2.38912 0.01882282
DUMMY 2.8092054550 0.3097034669 9.07063 0.00000000
TREND 0.0076752509 0.0053644896 1.43075 0.15571516

E. Perform a Dickey—Fuller test on the saved residuals. You should find y, =
0.9652471y,_, + €, where the standard error of a; = 0.0372. Also perform the
appropriate diagnostic tests on this regression to ensure that the residuals ap-
proximate white noise. You should conclude that the series is a unit root
process with a one-time pulse at ¢ =51.

F. Return to part D but now eliminate the insignificant time trend. How is your
answer to part E affected?

. The sixth column in the file labeled US.WK1 contains the real GDP data used in
Section 7. The quarterly series runs from 1960:1 to 1991:4 and each entry is ex-
pressed in 1985 dollars. You should find that the properties of the series are such

that
Series Name Observations Mean
GDP85 128 3.220373E+12

A. Plot the logarithm of real GDP. Do the data suggest any particular form of
the trend?

B. Use the Box—Jenkins methodology to verify that an ARIMA(O, 1, 2) model
performs better than an ARIMA(2, 1, 0) model.

C. Calculate the various Dickey—Fuller statistics reported in Section 7. Are

there any indications that might be inappropriate to accept the hypothesis
ay,=0?

D. Repeat the procedure using the Phillips—Perron tests.
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ENDNOTES

1. Issues concerning the possibility of higher-order equations, longer lag lengths, serial
correlation in the residuals, structural change, and the presence of deterministic compo-
nents will be considered in due course.

2. The critical values are reported in Table A at the end of this text.

3. Suppose that the estimated value of yis —1.9 (so that the estimate of a, is ~0.9) with a
standard error of 0.04. Since the estimated value of 7 is 2.5 standard errors from -2 [(2 ~
1.9)/0.04 = 2.5}, the Dickey~Fuller statistics indicate that we cannot reject the null hy-
pothesis Y = ~2 at the 95% significance level. Unless stated otherwise, the discussion in
the text assumes that a, is positive. Also note that if there is no prior information con-
cerning the sign of a,, a two-tailed test can be conducted.

4. Here we use the notation e,, rather than €,, to highlight that the residuals from such a re-
gression will generally not be white-noise.

5. For the same reason, it is also inappropriate to use one variable that is trend stationary

and another that is difference stationary. In such instances, “time” can be included as a

so-called explanatory variable or the variable in question can be detrended.

6. Tests using lagged changes in the {Ay,} sequence are called augmented Dickey-Fuller
tests.

7. In their simulations, Dickey and Fuller (1981) found that 90% of the calculated ¢ statis-
tics were 5.47 or less and 95% were 6.49 or less when the actual data were generated ac-
cording to the null hypothesis.

8. Perron’s Monte Carlo study allows for a drift and deterministic trend. Nonetheless, the
value of a, is biased toward unity in the presence of the deterministic trend.

9, Moreover, Evans and Savin (1981) find that for an AR(1) model, the limiting distribu-
tion of the autoregressive parameter has a normal asymptotic distribution (for p < 1).
However, when the parameter is near 1, the unit root distribution is a better finite sample
approximation than the asymptotic correct distribution.

10. Campbell and Perron (1991) report that omitting a variable that is growing at least as
fast as any other of the appropriately included regressors causes the power of the tests to
approach zero.

11. Using the most general model in Step 1 is meant to address the problem of omitting im-
portant deterministic regressors.

12. The sample period 1960:1 to 1991:4 contains 128 total observations. Three observations

are lost by creating the two lagged changes.

APPENDIX: Phillips-Perron Test Statistics

Suppose that we observe observations 1, 2, ..., T of the {y;} sequence and esti-
mate the regression equation:

Y, =do+ A1y, + dx(t=TI2) + u,
In this appendix, we modify our notation slightly for those wishing to read the

work of Phillips and Perron. Fortunately, the changes are minor; simply replace 4,
with 41, @, with o, and @, with B. Thus, suppose we have estimated the regression:



Chapter 5

‘MULTIEQUATION o
TIME-SERIES MODELS

As we have seen in previous chapters, you can capture many interesting dynamic
relationships using single-equation time-series methods. In the recent past, many
time-series texts would end with nothing more than a brief discussion of multi-
equation models. However, one of the most fertile areas of contemporary time-
series research concerns multiequation models. The specific aims of this chapter are
to:

1. Introduce intervention analysis and transfer function analysis. These two
techniques generalize the univariate methodology by allowing the time path of
the “dependent” variable to be influenced by the time path of an “independent”
or “exogenous” variable. If it is known that there is no feedback, intervention
and transfer function analysis can be very effective tools for forecasting and hy-
pothesis testing.

2. Introduce the concept of a vector autoregression (VAR). The major limitation of
intervention and transfer function models is that many economic systems do ex-
hibit feedback. In practice, it is not always known if the time path of a series
designated to be the “independent” variable has been unaffected by the time
path of the so-called “dependent” variable. The most basic form of a VAR treats
all variables symmetrically without making reference to the issue of dependence
versus independence.

3. The tools employed by VAR analysis—Granger causality, impulse response
analysis, and variance decompositions—can be helpful in understanding the in-
terrelationships among economic variables and in the formulation of a more
structured economic model. These tools are illustrated using examples concern-
ing the fight against transnational terrorism.

4. Develop two new techniques, structural VARs and multivariate decomposi-
tions. that blend economic theory and multiple time-series analysis. Economic
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theories contain behavioral, structural, and/or reduced-form relationships that can
be incorporated into a VAR analysis. In a structural VAR, the restrictions of a par-
ticular economic model are imposed on the contemporaneous relationship among
the variables. The dynamic response of each variable to various economic shocks
can be obtained and the restrictions of the model tested. Similarly, long run neutral-
ity restrictions can aid in decomposing a series into its temporary and permanent
components. As opposed to the class of univariate decompositions considered in
Chapter 3, decompositions in a VAR framework can be exactly identified.

1. INTERVENTION ANALYSIS

Beginning in the late 1960s, the international community experienced a serious
threat from transnational terrorism, Terrorists engage in a wide variety of opera-
tions including assassinations, armed attacks, bombings, kidnappings, and skyjack-
ings. Such incidents are particularly heinous since they are often directed at inno-
cent victims who are not part of the decision-making apparatus that the terrorists
seek to influence. Although the downing of Pan Am flight 103 over Lockerbie,
Scotland on December 21, 1988 captured the attention of the international commu-
nity, skyjacking incidents are actually quite numerous.

A critical response to the rise in skyjackings occurred when the United States be-
gan to install metal detectors in all U.S, airports in January 1973. Other interna-
tional authorities followed shortly. The summation of all transnational plus U.S,
domestic skyjackings is shown in Figure 5.1. Although the number of skyjacking
incidents appears to take a sizable and permanent decline at this date, we might be
interested in actually measuring the effects of installing the metal detectors. If {y.}
represents the quarterly total of skyjackings, one might try to take the mean value
of {y,} forall t < 1973:1 and compare it to the mean value of {.} forall t > 1973:1.
However, such a test is probably inappropriate in time-series analysis. Since suc-
cessive values of y, are serially correlated, some of the effects of the premetal de-
tector regime could “carry over” to the postintervention date. For example, some
planned skyjacking incidents already in the pipeline might not be deterred as read-
ily as others.

Intervention analysis allows for a formal test of a change in the mean of a time
 series. Consider the model used in Enders, Sandler, and Cauley (1990) to study the
impact of the metal detector technology on the number of skyjacking incidents:

Ye=ap+ary. .y +cpz, + €, lall <1 (5.1)
where 7z, = the intervention (or dummy) variable that takes on the value of zero

prior to 1973:1 and unity beginning in 1973:1
is a white-noise disturbance

€,

To explain the nature of the model, notice that for r < 1973:1, the value 7, is
Zero.l As SUCh. the intercem term ig 7. and the lano.rmn mean Af tha caeine . 1
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Figure 5.1  Skyjackings.
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(1 - a,). Beginning in 1973, the intercept term jumps to a, + ¢, (sin;e 219734 jumps
to unity). Thus, the initial or impact effect of the metal detectors is given by the
magnitude of c,. The statistical significance of ¢, can be tested using a st.andgrd
t-test. We would conclude that metal detectors reduced the number of skyjacking
incidents if ¢, is negative and statistically different from zero. .

The long-run effect of the intervention, given by cy/(1 —‘a{), 1s equal to the new
long-run mean (ay + ¢o)/(1 ~ @,) minus the value of the original mean ay/(1 - le).
The various trapsitional effects can be obtained from the impulse response function.
Using lag operators, rewrite (5.1) as

(1 _alL)yz:aO + Co?, t €

so that
. ¥, =ap/(l=ag)+¢, Za{z,-[ + Zoa,'e,_i (5.2)
' j= i=

Equation (5.2) is an impulse response function; the interesting twist added by the
intervention variable is that we can obtain the responses of the {y,} sequence to the
interventions. To trace out the effects of metal detectors on skyjackings, suppose
that r = 1973:1 (so that £ + 1 = 1973:2, r + 2 = 1973:3, etc.). For time pen’od t, the
impact of z, on y, is given by the magnitude of the coefficient c,. The simplest way
to derive the remaining impulse responses is to recognize that (1) dyldz,_, =
dy,.Jdz, and (2) z,,,=z,= 1 forall i > 0. .

Hence, differentiate (5.2) with respect to z,_, and update by one period, so that

AYeildz, = ¢y + coa,

The presence of the term ¢, reflects the direct impact of z,,, on y,,,, and the sec-
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Yt (= @;). Continuing in this fashion, we can trace out the entire impulse (or im-
pact) response function as o

dyt+j/dzr = CO[1 +a;p+ -+ (al)j]

since z,,y =z,, = = 1.

Taking limits as j — co, we can reaffirm that the long-run impact is given by
Co/(1 ~ ay). If it is assumed that 0 < a, < 1, the absolute value of the magnitude of
the impacts is an increasing function of j. As we move further away from the date
in which the policy was introduced, the greater the absolute value of the magnitude
of the policy response. If —1 < a, < 0, the policy has a damped oscillating effect on
the {y,} sequence. After the initial jump of ¢, the successive values of {y,} oscillate
above and below the long-run level of ¢,/(1 - a,).

There are several important extensions to the intervention example provided
here. Of course, the model need not be a first-order autoregressive process. A more
general ARMAC(p, g) intervention model has the form:

y( = aO + A(L)}’H + C()Zr + B(L)ﬁ,

where A(L) and B(L) = polynomials in the lag operator L

Also, the intervention need not be the pure jump illustrated in the upper-left-hand
graph (a) of Figure 5.2. In our study, the value of the intervention sequence jumps
from zero to unity in 1973:1. However, there are several other possible ways to
model the intervention function:

1. Impulse function. As shown in the upper-right-hand graph (b) of the figure, the
function z, is zero for all periods except in one particular period in which gz, is
unity. This pulse function best characterizes a purely temporary intervention. Of
course, the effects of the single impulse may last many periods due to the au-
toregressive nature of the {y,} series.

2. Gradually changing function. An intervention may not reach its full force imme-
diately. Although the United States began installing metal detectors in airports
in January 1973, it took almost a full year for installations to be completed at
some major international airports. Our intervention study of the impact of metal
detectors on quarterly skyjackings also modeled the z, series as 1/4 in 1973:1,
1/2in 1973:2, 3/4 in 1973:3, and 1.0 in 1973:4 and all subsequent periods. This

type of intervention function is shown in the lower-left-hand graph (c) of the fig-
ure.

3. Prolonged impulse function. Rather than a single pulse, the intervention may re-
main in place for one or more periods and then begin to decay. For a short time,
sky marshals were put on many U.S. flights to deter skyjackings. Since the sky
marshal program was allowed to terminate, the {z,} sequence for sky marshals
might be represented by the decaying function shown in the lower-right-hand
graph (d) of Figure 5.2.
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Be aware that the effects of these interventions change if {y,} has a unit root.
From the discussion of Perron (1989) in Chapter 4, you should recall that a pulse
intervention will have a permanent effect on the level of a unit root process.
Similarly, if {y,} has a unit root, a pure jump intervention will act as a drift term.
As indicated in Question 1 at the end of this chapter, an intervention will have a
temporary effect on a unit root process if all values of {z,} sum to zero (e.g, z, = I,
2y = 0.5, z,,, =—0.5, and all other values of the intervention variable equal zero).

Often, the shape of the intervention function is clear from a priori reasoning.
When there is an ambiguity, estimate the plausible alternatives and then use the
standard Box-Jenkins model selection criteria to choose the most appropriate
model. The following two examples illustrate the general estimation procedure.

Estimating the Effect of Metal Detectors on Skyjackings

The linear form of the intervention model y, = ay + A(L)y,_, + coz, + B(L)e, assumes
that the coefficients are invariant to the intervention. A useful check of this assump-
tion is to pretest the data by estimating the most appropriate ARIMA(p, d, g) mod-
els for both the pre- and postintervention periods. If the two ARIMA model§ are
quite different, it is likely that the autoregressive and moving average coefﬁcx;ms
have changed. Usually, there are not enough pre- and postintervention observations
to estimate two separate models. In such instances, the researcher must be content
to proceed using the best-fitting ARIMA model over the l?ngest data span. The
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STEP 1:

STEP 2:

STEP 3:
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Use the longest data span (i.e., either the pre- or postintervention observa-
tions) to find a plausible set of ARIMA models.

You should be careful to ensure that the {y,} sequence is stationary. If
you suspect nonstationarity, you can perform unit root tests on the longest
span of data. Alternatively, you can use the Perron (1989) test for struc-
tural change discussed in Chapter 4. In the presence of d unit roots, esti-
mate the intervention model using the dth difference of y, (i.e.,, A%y).

In our study, we were interested in the effects of metal detectors on U.S.
domestic skyjackings, transnational skyjackings (including those involy-
ing the United States), and all other skyjackings. Call each of these time
series {DS,}, {7S,}, and (OS,} respectively. Since there are only 5 years
of data (i.e., 20 observations) for the preintervention period, we estimated
the best-fitting ARIMA model over the 1973:1 to 1988:4 period. Using the
various criteria discussed in Chapter 2 (including diagnostic checks of the
residuals), we selected an AR(1) model for the {TS,} and {0S} sequences
and a pure noise model (i.e., all autoregressive and moving average coeffi-
cients equal to zero) for the {DS,} sequence.

Estimate the various models over the entire sample period including the
effect of the intervention.

The installation of metal detectors was tentatively viewed as an immedi-
ate and permanent intervention. As such, we set z, = 0 for r < 1973:] and
z, = 1 beginning in 1973:1. The results of the estimations over the entire
sample period are reported in Table 5.1. As you can see, the installation of
metal detectors reduced each of the three types of skyjacking incidents.
The most pronounced effect was on U.S. domestic skyjackings that imme-
diately fell by over 5.6 incidents per quarter. All effects are immediate
since the estimate of a, is zero. The situation is somewhat different for the
{TS,} and {0S,} sequences since the estimated autoregressive coefficients
are different from zero. On impact, transnational skyjackings and other
types of skyjacking incidents fell by 1.29 and 3.9 incidents per quarter.
The long-run effects are estimated to be ~1.78 and -5.11 incidents per
quarter.

Perform diagnostic checks of the estimated equations.

Diagnostic checking is particularly important since we have merged the
observations from the pre- and postintervention periods. To reiterate the
discussion of ARIMA models, a well-estimated intervention model will
have the following characteristics:

1. The estimated coefficients should be of “high quality.” All coefficients
should be statistically significant at conventional levels. As in all
ARIMA modeling, we wish to use a parsimonious model. If any coeffi-
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cient is not significant, an alternative model should be considered.
Moreover, the autoregressive coefficients should imply that the (y,} se-
quence is convergent.

. The residuals should approximate white noise. If the residuals are seri-

ally correlated, the estimated model does not mimic the actual dgta—
generaling process. Forecasts from the estimated model cannot possibly
be making use of all available information. If the residuals do not ap-
proximate a normal distribution, the usual tests of statistical inferegce
are not valid. If the errors appear to be ARCH, the entire intervention
model can be reestimated as an ARCH process.

. The tentative model should outperform plausible alternatives. Of

course, no one model can be expected to dominate all others in all
possible criteria. However, it is good practice to compare the results
of the maintained model to those of reasonable rivals. In the skyjack-
ing example, a plausible alternative was to model the intervention as
a gradually increasing process. This is particularly true since the im-
pact effect was immediate for U.S. domestic flights and convergent
for transnational and other domestic flights. Our conjecture was that
metal detectors were gradually installed in non-U.S. airports and,
even when installed, the enforcement was sporadic. As a check, we

o modeled the intervention as gradually increasing over the year 197;5.
» . Although the coefficients were nearly identical to those reported in

Table 5.1, the AIC and SBC were slightly lower (indicating a better
fit) using the gradually increasing process. Hence, it is reasonable to
conclude that metal detector adoption was more gradual outside of

~ the United States.

Table 5.1 Metal Detectors and Skyjackings

Preintervention Impact Effect Long-Run

Mean a, (co) Effect

Transnational {7S,} 3.032 0.276 -1.29 -1.78
(5.96) (2.51) (=2.21)

U.S. domestic {DS,} 670 ~5.62 s -5.62
©(12.02) C(-8.73)

Other skyjackings {OS,} 6.80 0.237 -3.90 , -5.11
(7.93) (2.14) (-3.95)

Notes:

1. t-statistics are in parentheses

2. The long—run effect is calculated as

o

I~a
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Estimating the Effect of the Libyan Bombing

We also considered the effects of the U.S. bombing of Libya on the morning of
April 15, 1986. The stated reason for the attack was Libya’s alleged involvement in
the terrorist bombing of the La Belle Discotheque in West Berlin. Since 18 of the
F-111 fighter-bombers were deployed from British bases at Lakenheath and Upper
Heyford, England, the U.K. implicitly assisted in the raid. The remaining U.S.
planes were deployed from aircraft carriers in the Mediterranean Sea. Now let y,
denote all transnational terrorist incidents directed against the United States and
UK. during month r. A plot of the {y,} sequence exhibited a large positive spike
immediately after the bombing; the immediate effect seemed to be a wave of
anti-U.S. and anti-U.K. attacks to protest the retaliatory strike,

Preliminary estimates of the monthly data from January 1968 to March 1986 in-
dicated that the { ¥:} sequence could be estimated as a purely autoregressive model
with significant coefficients at lags I and 5. We were surprised by a significant co-
efficient at lag 5, but both the AIC and SBC indicate that the fifth lag is important.
Nevertheless, we estimated versions of the model with and without the fifth lag. In
addition, we considered two possible patterns for the intervention series. For the
first, {z,} was modeled as zero until April 1986 and 1 in all subsequent periods.

Using this specification, we obtained the following estimates (with t-statistics in
parentheses):

¥i=5.58 + 0336y, , +0.123y,_, + 2.65,
(556)  (326) (0.84)

AIC =1656.03, SBC = 1669.95

Note that the coefficient of z, has a r-statistic of 0.84 (which is not significant at

the 0.05 level). Alternatively, when z, was allowed to be 1 only in the month of the
attack, we obtained

Ye=3.79+0.327y,_, +0.157y,_ + 38.9,

(5.53) (2.59)  (6.09)

AlC = 1608.68, SBC = 1626.06

In comparing the two estimates, it is clear that magnitudes of the autoregressive
coefficients are similar. Although Q-tests indicated that the residuals from both
models approximate white noise, the pulse specification is preferable. The coeffi-
cient on the pulse term is highly significant and both the AIC and SBC select the
second specification. Our conclusion was that the Libyan bombing did not have the
desired effect of reducing terrorist attacks against the United States and the U.K.
Instead, the bombing caused an immediate increase of over 38 attacks. Subsequent-
ly, the number of attacks declined; 32.7% of these attacks are estimated to persist
for one period (0.327 x 38.9 = 12.7). Since the autoregressive coefficients imply
convergence, the long-run consequences of the raid were estimated to be zero.
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2. TRANSFER FUNCTION MODELS

A natural extension of the intervention model is to allow the {z,} sequence to be
something other than a deterministic dummy variable. Consider the following gen- R
eralization of the intervention model:

Y= ao+ Ay + Clyg, + Bllye, (53

where A(L), B(L) and C(L) = polynomials in the lag operator L

In a typical transfer function analysis, the researcher will cgllect da.ta otn tgz ez:
dogenous variable {y,} and exogenous vaqable {z,}. The goal is t0 eflfilma et é)if_
rameter a, and parameters of the polynomials A(L)j B(L), and .C(L)‘ e maj'ord [
ference between (5.3) and the intervention model is th‘at {z,} is noF constraldne bo
have a particular deterministic time path. The in'terventxc‘)n variable is allov;/e ftons
any exogenous stochastic process. The polynomial C(L) is cglled the trans e; u i
tion in that it shows how a movement in the exogenous variable z, affect§ t. e umf
path of (i.e., is transferred to) the endogenou§ varlaple {v]. The coefficients o
C(L), denoted by c,, are called transfer function weights. The {mpglse Lespgr}‘s)e/
function showing the effects of a z, shock on the {y,} sequence is given by C(

! It i(lc‘zi]t'ical to note that transfer function analysis assumes that {z,} is an exoge-
nous process that evolves independently of the {y,} sequence. Innovauon?lm I{y,}
are assumed to have no effect on the {z,} sequence, so thaF Fze, =0 for. all values
of s and . Since z, can be observed and is uncorrelated with the current mnov;mon
in y, (i.e., the disturbance term €,), the current aznd lagged values t?f zZ, a{e exgr::_
tory variables for y,. Let C(L) be ¢ + ¢\L + ¢,L° + -~ . .If co=0, the c?n e'mg' e
ous value of z, does not directly affect y,. As such, {z, }. is call§d a leading in I1ca\ i
in that the observations z,, z,_|, Z,_,, - . . can be used in predicting future values o

ence.’

thelt{iys')ezzguto conceptualize numerous applications for (i.B). After %1’1'1, a ‘l‘z'ir{ée parf
of dynamic economic analysis concerns the effects of an “exogenous I;)r in epelr;
dent” sequence {z,} on the time path of an endogenogs sequence {y,}. c;r exarr;pth ,
much of the current research in agricultural economics concerns the effects ° fe
macroeconomy on the agricultural sector. If we use (5.3), farm output {y,} is af-
‘fected by its own past, as well as the currept and past state of the rr;acroecor:[):;();
{z,}. The effects of macroeconomic fluctuations on farm outqu cz;n e 1.'epr(e)sf e
by the coefficients of C(L). Here, B(L)g, .represents the unexplal'ne pomolrll 1\,_
output. Alternatively, the level of ozone in the gtmc?sphere {»})isa nat;Jdra y fcv[o[he
ing process; hence, in the absence of other outside influences, we shou ex}i)ec ©
ozone level to be well represented by an ARIMA model. However, many av’e a

gued that the use of fluorocarbons has damaged the ozone layer. Because 9( a cuf—
mulative effect, it is argued that current and past values of ﬂgorocgrpon usggf af-
fect the value of v.. By letting z, denote fluorocarbon usage in 7. it is possible to
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model the effects of the fluorcarbon usage on the ozone layer using a model in the
form of (5.3). The natural dissipation of ozone is captured through the coefficients
of A(L). Stochastic shocks to the ozone layer, possibly due to electrical storms and
the presence of measurement errors, are captured by B(L)e,. The contemporaneous
effect of fluorocarbons on the ozone layer is captured by the coefficient ¢, and the
lagged effects by the other transfer function weights (i.e., the values of the various
c)).

In contrast to the pure intervention model, there is no preintervention versus
postintervention period, so that we cannot estimate a transfer function in the same
fashion that we estimated an intervention model. However, the methods are very
similar in that the goal is to estimate a parsimonious model. The procedure in-
volved in fitting a transfer function model is easiest to explain by considering a
simple case of (5.3). To begin, suppose {z,} is generated by a white-noise process
that is uncorrelated with €, at all leads and lags. Also suppose that the realization of
z, affects the {y,} sequence with a lag of unknown duration. Specifically, let

Vi

Y=Y+ CZ gt € (5.4)

where {z,} and {e,} are white-noise processes such that E(z€,;) = 0; a, and ¢, are
unknown coefficients, and d is the “delay” or lag duration to be determined by the
econometrician.

Since {z,} and {e€,} are assumed to be independent white-noise processes, it is
possible to separately model the effects of each type shock. Since we can observe
the various z, values, the first step is to calculate the cross-correlations between y,
and the various z,_,. The cross-correlation between y, and z,_; is defined to be

p,.(i) = cov(y,, z.)/0,0, (5.5)

where G, and G, = the standard deviations of y, and z, respectively

Notice that the standard deviation of each sequence is assumed to be time-indepen-
dent.

Plotting each value of p (i) yields the cross-autocorrelation function (CACF) ot
cross-correlogram. In practice, we must use the cross-correlations calculated using
sample data since we do not know the true covariances and standard deviations.
The key point is that the sample cross-correlations provide the same type of infor-
mation as the ACF in an ARMA model. To explain, solve (5.4) to obtain:

Y= Cdzr—d/(l - alL) + 6,/(1 - alL)
Use the properties of lag operators to expand the expression ¢,z,,/(1 — a,L):

3
Y= ChZa ¥ A2y + BiZigg + A\Zigy + ) + €1~ ayL)
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Analogously to our derivation of the Yule-Walker equations, we can obtain the
cross-covariances by the successive multiplication of y, by z,, z,_,, . . . to form

— - 2, . 3
Vit = CAZZ g ¥ W22 gy F ATy + AL Zgy + ) + 26 /(1 = a(L)
_ . 2 3
V2ot T ChZr g + Q2 2y + ATy Zgn + A2 Zgoz + o) + 2 € /(1 — a (L)

YiZid = ClZaliog * iZedledor ¥ O 2dligr + O glimamy + ) + 2g€J(1 — a,L)
Vet = ColZtrZima ¥ Ot Zimay + Q12 giZgn + a?zhd—lzr—d—3 + )
+2,_4.€/(1 —a,L)
VZimder T ClZmgorZia + O Zpg2Zigey + D2 g aZig s + a?zt—dﬂzzr'd-:! +e)
+ 2,406/ —a,L)

Now take the expected value of each of the above equations. If we continue to
assume that {z,} and {€,} are independent white-noise disturbances, it follows that

Eyz,=0
Eyz._,=0

_ 2
Ey,z,_4= ¢407,
_ 2
Eyz 4 =cqa,0;
2.2
Ey 240 = €4a10,

50 that in compact form,

. Eyz_ =0foralli<d .
=cqai o fori>d (5.6)

Dividing each value of Eyz,_, = cov(y, z._;) by 6,0, yields the cross-correlogram.
Note that the cross-correlogram consists of zeroes until lag ¢. The absolute value of
height of the first nonzero cross-correlation is positively related to the magnitudes
of ¢, and a,. Thereafter, the cross-correlations decay at the rate a,. The decay of the
correlogram matches the autoregressive patterns of the {y,} sequence.

The pattern exhibited by (5.6) is easily generalized. Suppose we allow both z,_,
and z,_,_, to directly affect y,:

Y=y, + Cdzr-«d"' Cd+lzr-d~l + €,
Solving for y,, we obtain
Y ={Ca2eq + Can1Z—g1 )1 —a,L) + /(1 —a,L)

— 2 3
=CAZq t N Zpg Y Qg + A2y ny + )
2 3
+ Coat(Zicamt + A1Zmqr + AL gy + A2 g g + ) + €/(1 —a)L)
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so that

Ve =CaZig ¥ (Ca@y + Cau1)2ogr + A {Caly + CnidTni "'“»ﬂ%(cddl + Cae)2md3 :
Cel ++el(l—al)y 6D

Forming the standardized cross-covariances reveals the following pattern:

Cov(yl’ Z,_i)/0'§:0 ) ) fori<d
=0y ' fori=d
=Cyly + Chuy fori=d+ 1

=a{ ' (c a, + Cgp1) fori=d+j (j>0)

The upper-left-hand graph (a) of Figure 5.3 shows the shape of the standardized
cross-correlogram for d = 3, ¢, = 1, ¢4, = 1.5, and a; = 0.8. Note that there are dis-
tinct spikes at lags 3 and 4 corresponding to the nonzero values of ¢y and c,.
Thereafter, the cross-correlations decay at the rate a,. The upper-right-hand graph
(b) of the figure replaces ¢, with the value —-1.5. Again, all cross-correlations are
zero until lag 3; since ¢, = 1, the standardized value of p,(3) = 1. To find the stan-
dardized value of p,(4) form: p,(4) = 0.8 — 1.5 = ~0.7. The subsequent values of
p,.(i) decay at the rate 0.8. The pattern illustrated by these two examples general-
izes to any intervention model of the form:

Y=o+ ayy,_, + C(L)z, + B(L), (5.8)

The theoretical cross-correlogram has a shape with the following characteristics:

1. All p,, (i) will be zero until the first nonzero element of the polynomial C(L).

2. The form of B(L) is immaterial to the theorerical cross-correlogram. Since z, is
uncorrelated with €, at all leads and lags, the form of the polynomial B(L) will
not affect any of the theoretical cross-correlations p,.(i). Obviously, the intercept
term a, does not affect any of the cross-covariances or cross-correlations.

3. A spike in the CACF indicates a nonzero element of C(L). Thus, a spike at lag d
indicates that z,_, directly affects y,.

4. All spikes decay at the rate a,; convergence implies that the absolute value of a,
is less than unity. If 0 < g; < I, decay in the cross-correlations will be direct,
whereas if -1 < a, <0, the decay pattern will be oscillatory.

Only the nature of the decay process changes if we generalize Equation (5.8) to
include additional lags of y, ;. In the general case of (5.3), the decay pattern in the
cross-correlations is determined by the characteristic roots of the polynomial A(L);
the shape is precisely that suggested by the autocorrelations of a pure ARMA
model. This should not come as a surprise; in the examples of (5.4) and (5.8), the

Transfer Function Models 281

Figure 5.3 Standardized cross-correlograms.
y=08y_1+z.3+ 15z 4+¢& ye=08y,_1+27_3-1bz_4+¢,.
| 1 T 2 1 T 1

E N 0 »
0.5 _l JJJJ”’—J—’_’

0 Hﬂﬂﬂﬂﬂﬂnnm ! | 1 !

0 5 10 15 20 0 5 10 15 20
(a) (b)
¥1=08y, 1~-08y _,+z,_3+¢&. ) y1=08y.4+0.2y 24z.3+&
‘ T T T x i ™
1.5 —
1- =
1 — —
0
0.5 1~ -
» | | | o | L !
0 5 10 15 20 0 5 10 15 20
{c) (d)

decay factor was simply the first-order autocorrelation coefficient a,. We know that
there will be decay since all characteristic roots of 1 — A(L) must be outside of the
unit circle for the process to be stationary. Convergence will be direct if the roots
are positive and will tend to oscillate if a root is negative. Imaginary roots impart a
sine-wave pattern to the decay process.

The Cross-Covariances of a Second-Order Process

To use another example, consider the transfer function:

Ye=a1Y + a3Yr2 + CaZia + €,
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Using lag operators to solve for y, is inconvenient since we do not know the fiu-

merical values of g, and a,. Instead, use the method of undetermined coefficients
and form the challenge solution:

<
]
gl
=
Ks
L
+
g
=<
am
4

=0 i=0

You should be able to verify that the values of W, are given by

Wy=0
Wd= Cq
* Waa = cqa,

_ 2
Wi = c lai + ay)
Wos=a Wy, +a,W,,,
P Waa=a W + W,

Thus, for all i > d + 1, the successive coefficients satisfy the difference equation
W, =a,W_, + a,W_,. At this stage, we are not interested in the values of the vari-
ous V,, so that it is sufficient to write the solution for y, as

_ 2 3
Ye=Calpat CalZygy + CAA + Q)2 yp + €A1 + 20, 0))2, 4 5 + - + ZVe,

Next, use this solution for y, to form all autocovariances using the Yule—Walker
equations. Forming the expressions for Ey,z,_,, we get

Eylzt‘i = 0

Ey,z,_d = Cdcz
Eyz 4= alcdcf
Eyz_q0=cda} + a,)0}

fori<d (since Ez,z,_;=0fori<d)

Thus, there is an initial spike at lag d reflecting the nonzero value of c,. After
one period, a, percent of the value ¢, remains. After two periods—the number of
autocorrelations in the transfer function—the decay pattern in the cross-covariances
begins to satisfy the difference equation:

pyz(i) = alpyz(i - 1) + a2pyz(i - 2)

The lower-left-hand graph (c) of Figure 5.3 shows the shape of the CACF for the
case of d=3,¢c,=1,a,=0.8, and a, = —0.6. The oscillatory pattern reflects the fact
that the characteristic roots of the process are imaginary. For purposes of compari-
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son, the lower-right-hand graph (d) shows the standardized CACF of a unit root
process. The fact that one of the characteristic roots is equal to unity means that a
2,5 shock has a permanent effect on the {y,} sequence.*

The econometrician will rarely be so fortunate to work with a {z,} series that is
white-noise. We need to further generalize our discussion of transfer functions to
consider the case in which the {z,} sequence is a stationary ARMA process. Let the
model for the {z,} sequence be an ARMA process such that

D(L)z, = E{L)e,,

where D(L) and E(L), = polynomials in the lag operator L

€, = white-noise

At this point, we can use the methodology developed in Chapter 2 to estimate the
ARMA process generating the {z,} sequence. The residuals from such a model, de-
noted by {€,,}, should be white-noise. The idea is to estimate the innovations in the
{z,} sequence even though the sequence itself is not a white-noise process. At this
point, it is tempting to think that we should form the cross-correlations between the
{v,} sequence and {€,_;}. However, this procedure would be inconsistent with the
maintained hypothesis that the structure of the transfer function is given by (5.3).
Reproducing (5.3) for your convenience, we get

yi=ag+A(L)y,. + C(D)z, + B(L)e,

Here, z,, 2,_,, 2, - - - (and not simply the innovations) directly affect the value of
y,. Cross-correlations between y, and the various €,,_; would not reveal the pattern
of the coefficients in C(L). The appropriate methodology is to filter the {y,} se-
quence by multiplying (5.3) by the previously estimated polynomial D(L)Y/E(L). As
such, the filtered value of y, is D(L)y,/E(L) and denoted by y,. Consider

D(L)y/JE(L) = D(L)ao/E(L) + D(LYA(L)y,_,/EXL) + C(L)YD{L)z/E(L)
+ BIL)D(LYe,/E(L)  (5.9)

Given that D(L)y/E(L) = y,, D(L)y, ,/E(L) = y;,_, and D(L)z,/E(L) = €,,, (5.9) is
equivalent to

Vp = D(L)ay/E(L) + A(L)ys + C(L)e, + BIL)D(L)e,/E(L) (5.10)

Although you can construct the sequence D(L}y/E(L), most software packages
can make the appropriate transformations automatically. Now compare (5.3) and
(5.10). You can see that y, and C(L)z, will have the same correlogram as y, and
C(L)e,,. Thus, when we form the cross-correlations between y,, and €,,_;, the cross-
correlations will be the same as those from (5.3). As in the case in which {z,} was
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originally white-noise, we can inspect these cross-correlations for spikes and the
decay pattern. In summary, the full procedure for fitting a transfer function entails:

' STEP 1: Fit a ARMA model to the {z,} sequence. The technique used at this stage
is precisely that for estimating any ARMA model. A properly estimated
ARMA model should approximate the data-generating process for the {z,}
sequence. The calculated residuals {€_} are called the filtered values of
the {z,} series. These filtered values can be interpreted as the pure innova-

tions in the {z,} sequence. Calculate and store the {€_,} sequence.

STEP 2: Obtain the filtered {y,} sequence by applying the filter D(L)/E(L) to each
value of {y,}; that is, use the results of Step 1 to obtain D{(L)/E(L)y, = y,.
Form the cross-correlogram between y,, and €,,_.. Of course, these sample
correlations will not precisely conform to their theoretical values. Under
the null hypothesis that the cross-correlations are all zero, the sample
variance of cross-correlation coefficient i asymptotically converges to
(T - iy™', where T = number of usable observations. Let r, (i) denote the
sample cross-correlation coefficient between y, and z,,. Under the null hy-
pothesis that all the true values of p,.(i) are equal to zero, the variance of
r, (i) converges to

Var[r, (D] =(T- i)™

For example, with 100 usable observations, the standard deviation of
the cross-correlation coefficient between y, and z,_, is the square root of 99
(approximately equal to 0.10). If the calculated value of r, (1) exceeds 0.2
(or is less than —~0.2), the null hypothesis can be rejected. Significant
cross-correlations at lag i indicate that an innovation in z, affects the value
of y,,.. To test the significance of the first k cross-correlations, use the sta-
tistic:

k
Q=T(T+2)Y s T~k

i=0

Asymptotically, Q has a x° distribution with (k — p, = p,) degrees of
freedom, where p, and p, denote the number of nonzero coefficients in
A(L) and C(L), respectively.

STEP 3: Examine the pattern of the cross-correlogram. Just as the ACF can be used
as a guide in identifying an ARMA model, the CACF can help identify the
form of A(L) and C(L). Spikes in the cross-correlogram indicate nonzero
values of ¢, The decay pattern of the cross-correlations suggests plausible
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candidates for coefficients of A(L). This decay pattern is perfectly analo-
gous to the ACF in a traditional ARMA model. In practice, examination of
the cross-correlogram will suggest several plausible transfer functions.
Estimate each of these plausible models and select the “best-fitting”
model. At this point, you will have selected a model of the form:

(I-AD)]y, = C(L)z, + e,

where ¢, denotes the error term that is not necessarily white-noise.

STEP 4: The {¢,} sequence obtained in Step 3 is an approximation of B(L)e,. As

such, the ACF of these residuals can suggest the appropriate form for the
B(L) function. If the {e,} sequence appears to be white-noise, your task is
complete. However, the correlogram of the {e,} sequence will usually sug-
gest a number of plausible forms for B(L). Use the {e,} sequence to esti-
mate the various forms of B(L) and select the “best” model for the B(L)e,.

STEP“'S: Combine the results of Steps 3 and 4 to estimate the full equation. At this

stage, you will estimate A(L), B(L), and C(L) simultaneously. The proper-
ties of a well-estimated model are such that the coefficients are of high
quality, the model is parsimonious, the residuals conform to a white-noise
process, and the forecast errors are small. You should compare your esti-
mated model to the other plausible candidates from Steps 3 and 4.

There is no doubt that estimating a transfer function involves judgment on the

part of the researcher. Experienced econometricians would agree that the procedure
is a blend of skill, art, and perseverance that is developed through practice.
Nevertheless, there are some hints that can be quite helpful.

1.

After we estimate the full model in Step 5, any remaining autocorrelation in the
residuals probably means that B(L) is misspecified. Return to Step 4 and refor-
mulate the form of B(L) so as to capture the remaining explanatory power of the
residuals.

. After we estimate the full model in Step S, if the residuals are correlated with

{z,}, the C(L) function is probably misspecified. Return to Step 3 and reformu-
late the specifications of A(L) and C(L).

. Instead of estimating {€,} as a pure autoregressive process, you can estimate

B(L) as an ARMA process. Thus, ¢, = B(L)¢, is allowed to have the form
e, = G(L)e,/H(L). Here, G(L) and H(L) are low-order polynomials in the lag op-
erator L. The benefit is that a high-order autoregressive process can often be ap-
proximated by a low-order ARMA model.

The sample cross-correlations are not meaningful if {y,} and/or {z,} are not sta-
tionary. You can test each for a unit root using the procedures discussed in
Chapter 4. In the presence of unit roots, Box and Jenkins (1976) recommend dif-



286 Multiequation Time-Series Models

ferencing each variable until it is stationary. The next chapter considers unit roots
in a multivariate context. For now, it is sufficient to note that this recommendation
can lead to overdifferencing.

The interpretation of the transfer function depends on the type of differencing
performed. Consider the following three specifications and assume that 1a, <1

Y= a Y 6o, + € . o [GRES)
Ay, =a,Ay, . + coz, + € (5.12)
Ay, =a\By, +codz, +€, S (53

In (5.11), a one unit shock in z, has the initial effect of increasing y, by ¢, units.
This initial effect decays at the rate a,. In (5.12), a one-unit shock in z, has the ini-
tial effect of increasing the change in y, by c, units. The effect on the change de-
cays at the rate a,, but the effect on the leve! of the {y,} sequence never decays. In
(5.13), the change in z, affects the change in y,. Here, a pulse in the {z,} sequence
will have a temporary effect on the level of {y,}. Questions 1 and 2 at the end of
this chapter are intended to help you gain familiarity with the different specifica-
tions.

3. ESTIMATING A TRANSFER FUNCTION

High-profile terrorist events (e.g., the hijacking of TWA flight 847 on June 14,
1985; the hijacking of the Achille Lauro cruise ship on October 7, 1985; and the
Abu Nidal attacks on the Vienna and Rome airports on December 27, 1985) caused
much speculation in the press about tourists changing their travel plans. Although
opinion polls of prospective tourists suggest that terrorism affects tourism, the true
impact, if any, can best be discovered through the application of statistical tech-
niques. Polls conducted in the aftermath of significant incidents cannot indicate
whether respondents rebooked trips. Moreover, polls cannot account for tourists not
surveyed who may be induced by lower prices to take advantage of offers designed
to entice tourists back to a troubled spot.

To measure the impact of terrorism on tourism, in Enders, Sandler, and Parise
(1992), we constructed the quarterly values of total receipts from tourism for 12
countries.® The logarithmic share of each nation’s revenues was treated as the de-
pendent variable {y,} and the number of transnational terrorist incidents occurring
within each nation as the independent variable {z,}. The crucial assumption for the
use of intervention analysis is that there be no feedback from tourism to terrorism.
This assumption would be violated if changes in tourism induced terrorists to
change their activities.

Consider a transfer function in the form of (5.3):

yi=a0+A(L)y, + C(L)z, + B(L)e,
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where y, = the logarithmic share of a nation’s tourism revenues in quarter ¢

z, = is the number of transnational terrorist incidents within that country
during quarter ¢ .°

If we use the methodology developed in the previous section, the first step in fit-
ting a transfer function is to fit an ARMA model to the {z,} sequence. For illustra-
tive purposes, it is helpful to consider the Italian case since terrorism in Italy ap-
peared to be white-noise (with a constant mean of 4.20 incidents per quarter). Let
p.(i) denote the autocorrelations between z, and z,_,. The correlogram for terrorist
attacks in Italy is:

Correlogram for Terrorist Attacks in Italy
p0)  p(l)  p2)  p.3) P4 pLS)  pL6)  p(T) pAB)
1 0.13 002 -0.06 -0.04 0.1 -0.01 0.00 -0.13

Each value of p,(i) is less than two standard deviations from unity. The

B Ljung-Box Q-statistics for the significance of the first 4, 8, 12, and 16 lags are

Q4) =2.06, significance level = 0.725
Q(8)=4.52, significance level = 0.807
Q(12)=7.02, significance level = 0.855
Q(16) = 8.06, significance level = 0.947

Since terrorist incidents appear to be a white-noise process, we can skip Step 1,
there is no need to fit an ARMA model to the series or filter the {y,} sequence for

- Italy. At this point, we conclude that terrorists randomize their acts, so that the

number of incidents in quarter ¢ is uncorrelated with the number of incidents in pre-

, vious periods.

Step 2 calls for obtaining the cross-correlogram between tourism and terrorism.
The cross-correlogram is

Cross-Correlogram Between Terrorism and Tourism in Italy
P0)  P(D) P2 pB) P P P(6) () pu(8)
-0.18 -0.23 024 005 0.04 0.13 0.04 0.00 0.10

There are several interesting features of the cross-correlogram:

1. With T observations and i lags, the theoretical value of the standard deviation of
each value of p,(i) is (T — i)™""*. With 73 observations, 7~"* is approximately
equal to 0.117. At the 5% significance level (i.e., two standard deviations), the
sample value of p,(0) is not significantly different from zero and p,,(1) and
P,2) are just on the margin. However, the Q-statistic for p,,(0) = p,.(1) = p,.(2)
=0 is significant at the 0.01 level. Thus, there appears to be a strong negative re-
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lationship between terrorism and tourism beginning at lag 1 or 2. The key issue
is to find the most appropriate model of the cross-correlations.

2. It is good practice to examine the cross-correlations between y, and leading val-
ues of z,,;. If the current value of y, tends to be correlated with future values of
Z,.»» it might be that the assumption of no feedback is violated. The presence of a
significant cross-correlation between y, and leads of z, might be due to the effect
of the current realization of y, on future values of the {z,} sequence.

3. Since p,,(0) is not significantly different from zero at the 5% level, it is likely
that the delay factor is one quarter; it takes at least one quarter for tourists to sig-
nificantly revise their travel plans. However, there is no obvious pattern to the
cross-correlation function. It is wise to entertain the possibility of several plausi-
ble models at this point in the process.

Step 3 entails examining the cross-correlogram and estimating each of the plausi-
ble models. Based on the ambiguous evidence of the cross-correlogram, several dif-
ferent models for the transfer function were estimated. We experimented using de-
lay factors of zero, one, and two quarters. Since the decay pattern of the
cross-correlogram is also ambiguous, we allowed A(L) to have the form: a,y,_, and
a,y,_, + a,y,_,. Some of our estimates are reported in Table 5.2.

Model 1 has the form y, = ag + a,y,., + a,¥,.» + ¢,2,_; + ¢,. The problem with this
specification is that the intercept term g, is not significantly different from zero.
Eliminating this coefficient yields model 2. Notice that all coefficients in model 2
are significant at conventional levels and that the magnitude of each is quite reason-
able. The estimated value of ¢, is such that a terrorist incident reduces the logarith-
mic share of Italy’s tourism by 0.003 in the following period. The point estimates
of the autoregressive coefficients imply imaginary characteristic roots (the roots are

Table 5.2 Terrorism and Tourism in Italy: Estimates from Step 2

a, a, a, Co ¢, c, AIC/SBC
Model 1 0.0249 0.795  —0.469 —-0.0046 -5.09/4.01
(1.25) (74 (-1.63) (-2.34)
Model 2 0.868  —0.696 -0.0030 -5.54/1.28
(4.52) (-3.44) (-2.23)
Model 3 1.09 -0.683 -0.0025 —4.94/1.89
(4.51) (-2.96) (-2.10)
Model 4 -0.0025 -0.0019 —4.84/3.27
‘ (-1.15)  (-0.945)
Model 5 -0.217 -0.0025 -0.0027 -2.93/3.89
(-0.221) (-1.16)  (-0.080)

Note: The numbers in parentheses are the ¢-statistics for the nuil hypothesis of a zero coefficient.
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0.434 + 0.69i). Since these roots lie inside the unit circle, the effect of any incident
decays in a sine-wave pattern.

Model 3 changes the delay so as to allow z, to have a contemporaneous effect on
¥, The point estimates of the coefficients are reasonable and all are more than two
standard deviations from zero. However, both the AIC and SBC select model 2
over model 3. The appropriate delay seems to be one quarter.

Since the cross-correlogram seems to have two spikes and exhibits little decay,
we allowed both z,_, and z,_, to directly affect y,. You can see that models 4 and 5
are inadequate in nearly all respects. Thus, we tentatively select model 2 as the
“best” model.

For Step 4, we obtained the {e,} sequence from the residuals of model 2. Hence,

e, =y, — [~0.003z,_/(1 - 0.868L + 0.676L2)] (5.14)

The correlogram of these residuals is:

p0)  ph P pA) p4)  p3) p(6) p(M) ()
1.0 0.621 0.554 0431 0.419 0.150 0066 0021 -0.00

The residuals were then estimated as an ARMA process using standard Box—
Jenkins methods. Without going into details, we found that the best-fitting ARMA
model of the residuals is

e,=0.485¢,_, +0.295¢,, + (1 + 0.238L%)¢, (5.15)

where the t-statistics for the coefficients = 4,08, 2.33, and 1.83 (significant at the
0.000, 0.023, and 0.071 levels), respectively

At this point, our tentative transfer function is

y, = [-0.003z,_,/(1 — 0.868L + 0.676L%)) ’
+[(1 +0.293L%e /(1 — 0.485L — 0.246L%)]  (5.16)

The problem with (5.16) is that the coefficients in the first expression were
estimated separately from the coefficients in the second expression. In Step 5, we es-
timated all coefficients simultaneously and obtained

y, = [-0.0022z,_,/(1 — 0.876L + 0.749L%)
+[(1 +0.293L%e /(1 — 0.504L = 0.245L%)]  (5.17)

Note that the coefficients of (5.17) are similar to those of (5.16). The ¢-statistics
for the two numerator coefficients are ~2.17 and 2.27, and the ¢-statistiCs for the
four denominator coefficients are =7.78, 5.20, —4.31, and —1.94, respectively. The
roots of the inverse characteristic equation for z,_, are imaginary and outside the
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:1;:2 cr:)rgise gt;eolzgzrie ghzirgf:)te:sti.c roots are 0.585 + 0.996i, so that the character-
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Figure 54 Italy’s share of tourism (impulse response analysis).
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4. LIMITS TO STRUCTURAL MULTIVARIATE ESTIMATION

There are two important difficulties involved in fitting a multivariate equation such
as a transfer function. The first concerns the goal of fitting a parsimonious model.
Obviously, a parsimonious model is preferable to an overparameterized model. In
the relatively small samples usually encountered in economic data, estimating an
unrestricted model may so severely limit degrees of freedom as to render forecasts
useless. Moreover, the possible inclusion of large but insignificant coefficients will
add variability to the model’s forecasts. However, in paring down the form of the
model, two equally skilled researchers will likely arrive at two different transfer
functions. Although one model may have a better “fit” (in terms of the AIC or
SBC), the residuals of the other may have better diagnostic properties. There is sub-
stantial truth to the consensus opinion that fitting a transfer function model has
many characteristics of an “art form.” There is a potential cost to using a parsimo-
nious model. Suppose you simply estimate the equation y, = A(L)y._, + C(L)z, +
B(L)e, using long lags for A(L), B(L) and C(L). As long as {z,} is exogenous. the es-
timated coefficients and forecasts are unbiased even though the model is overpara-
meterized. Such is not the case if the researcher improperly imposes zero restric-
tions on any of the polynomials in the model.
The second problem concerns the assumption of no feedback from the {y,} se-
quence to the {z,} sequence. For the coefficients of C(L) to be unbiased estimates
of the impact effects of {z,} on the {y,} sequence, z, must be uncorrelated with {e,}
at all leads and lags. Although certain economic models may assert that policy vari-
ables (such as the money supply or government spending) are exogenous, there
may be feedback such that the policy variables are set with specific reference to the
state of other variables in the system. To understand the problem of feedback, sup-
pose that you were trying to keep a constant 70° temperature inside your apartment
by turning up or down the thermostat. Of course, the “true” model is that turning up
the heat (the intervention variable z,) warms up your apartment (the {y,} sequence).
However, intervention analysis cannot adequately capture the true relationship in
the presence of feedback. Clearly, if you perfectly controlled the inside tempera-
ture, there would be no correlation between the constant value of the inside temper-
ature and the movement of the thermostat. Alternatively, you might listen to the
weather forecast and turn up the thermostat whenever you expected it to be cold. If
you underreact by not turning up the heat high enough, the cross-correlogram be-
tween the two variables would tend to show a negative spike reflecting the drop in
room temperature with the upward movement in the thermostat setting. Instead, if
you overreact by greatly increasing the thermostat setting, both the room tempera-
ture and the thermostat setting will rise together. However, the movement in room
temperature will not be as great as the movement in the thermostat. Only if you
moved the thermostat setting without reference to room temperature, would we ex-
pect to uncover the actual model.
The need to restrict the form of the transfer function and the problem of feedback
or “reverse causality” led Sims (1980) to propose a nonstructural estimation strat-
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egy. To best understand the vector autoregression approach, it is useful to consider
the state of macroeconometric modeling that led Sims to his then radical ideas.

Multivariate Macroeconometric Models:
Some Historical Background

Traditionally, macroeconometric hypothesis tests and forecasts were conducted us-
ing large-scale macroeconometric models. Usually, a complete set of structural
equations was estimated one equation at a time. Then, all equations were aggre-
gated in order to form overall macroeconomic forecasts. Consider two of the equa-
tions from the Brookings quarterly econometric model of the United States as re-
ported by Suits and Sparks (1965, p. 208):

Cur = 0.0656Y, — 10.93(P /P, + 0.1889(N + Nyyp),.,
(0.0165) (2.49) (0.0522)
Cer = 42712 + 0.1691Y,, — 0.0743(ALOD /P o).,
0.0127)  (0.0213)

where Cyr = personal consumption expenditures on food
Y, = disposable personal income
Penr = implicit price deflator for personal consumption expenditures
5 on food
Pc . = implicit price deflator for personal consumption expenditures
N " = civilian population
Ny = military population including armed forces overseas
Crer = personal consumption expenditures for nondurables other than
food

ALQDyy, = end-of-quarter stock of liquid assets held by households

and standard errors are in parentheses.

The remaining portions of the model contain estimates for the other components
of aggregate consumption, investment spending, government spending, exports,
imports, for the financial sector, various price determination equations, etc. Note
that food expenditures, but not expenditures on other nondurables, are assumed to
depend on relative price and population. However, expenditures for other non-
durables are assumed to depend on real liquid assets held by households in the pre-
vious quarter.

Are such ad hoc behavioral assumptions consistent with economic theory? Sims
(1980, p. 3), considers such multiequation models and argues that

... What “economic theory” tells us about them is mainly that any vari-
able that appears on the right-hand side of one of these equations be-
longs in principle on the right-hand side of all of them. To the extent

-, that models end up with very different sets of variables on the right-
hand side of these equations, they do so not by invoking economic the- /
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ory, but (in the case of demand equations) by invoking an intuitive
econometrician’s version of psychological and sociological theory,
since constraining utility functions are what is involved here.
Furthermore, unless these sets of equations are considered as a system
in the process of specification, the behavioral implications of the re-
strictions on all equations taken together may be less reasonable than
the restrictions on any one equation taken by itself.

On the other hand, many of the monetarists used reduced-form equations to as-
certain the effects of government policy on the macroeconomy. As an example,
consider the following form of the so-called “St. Louis model” estimated by
Anderson and Jordan (1968). Using U.S. quarterly data from 1952 to 1968, they es-
timated the following reduced-form GNP determination equation:

AY, =228 + 1.S4AM, + 1.56AM,_, + 1 44AM, , + 1.29AM, ,

+ 0.40AE, + 0.54AFE ., — 0.03AF,, - 0.74AF, (5.18)
where AY = change in nominal GNP
AM = change in the monetary base
AE = change in “high employment” budget deficit

In their analysis, Anderson and Jordan used base money and the high employ-
ment budget deficit since these are the variables under the control of the monetary
and fiscal authorities, respectively. The St. Louis model was an attempt to demon-
strate the monetarist policy recommendations that changes in the money supply,
but not changes in government spending or taxation, affected GNP. r-tests for the
individual coefficients are misleading because of the substantial multicolinearity
between each variable and its lags. However, testing whether the sum of the mone-
tary base coefficients (i.e., 1.54 + 1.56 + 1.44 + 1.29 = 5.83) differs from zero
yields a t-value of 7.25. Hence, Anderson and Jordan concluded that changes in the
money base translate into changes in nominal GNP. Since all the coefficients are
positive, the effects of monetary policy are cumulative. On the other hand, the test
that the sum of the fiscal coefficients (0.40 + 0.54 - 0.03 ~- 0.74 = 0.17) equals zero
yields a t-value of 0.54. According to Anderson and Jordan, the results support
“lagged crowding out” in the sense that an increase in the budget deficit initially
stimulates the economy. Over time, however, changes in interest rates and other
macroeconomic variables lead to reductions in private sector expenditures. The cu-
mulated effects of the fiscal stimulus are not statistically different from zero.

Sims (1980) also points out several problems with this type of analysis. Sims’
criticisms are easily understood by recognizing that (5.18) is a transfer function
with two independent variables {M,} and {E,} and no lags of the dependent vari-
able. As with any type of transfer function analysis, we must be concerned with:

1. Ensuring that lag lengths are appropriate. Serially correlated residuals in the
presence of lagged dependent variables lead to biased coefficient estimates.




294 Multiequation Time-Series Models

2. Ensuring that there is no feedback between GNP and the money base or the bud-

: get deficit. However, the assumption of no feedback is unreasonable since if the

monetary authorities (or the fiscal authorities) deliberately attempt to alter nomi-

nal GNP, there is feedback. As in the thermostat example, if the monetary au-

thority attempts to control the economy by changing the money base, we could

not identify the “true” model. In the jargon of time-series econometrics, changes

in GNP would “cause” changes in the money supply. One appropriate strategy

would be to simultaneously estimate the GNP determination equation arnd
money supply feedback rule.

© -Comparing the two types of models, Sims (1980, pp. 14~15) states:

Because existing large models contain too many incredible restrictions,
empirical research aimed at testing competing macroeconomic theories
too often proceeds in a single- or few-equation framework. For this rea-
son alone, it appears worthwhile to investigate the possibility of build-
ing large models in a style which does not tend to accumulate restric-

tions so haphazardly. ... It should be feasible to estimate large-scale
macromodels as unrestricted reduced forms, treating all variables as en-
dogenous. :

5. INTRODUCTION TO VAR ANALYSIS

When we are not confident that a variable is actually exogenous, a natural exten-
sion of transfer function analysis is to treat each variable symmetrically. In the two-
variable case, we can let the time path of {y,} be affected by current and past real-
izations of the {z,} sequence and let the time path of the {z,} sequence be affected
by current and past realizations of the {y,} sequence. Consider, the simple bivariate
system:

Yi=bio= b1z + Y11 Yimr  Yi2%oy + €y (5.19)
2= bag ~ b)Y, + Yoot + YooZ t €y (5.20)

where it is assumed (1) that both y, and z, are stationary; (2) €,, and €_, are white-
noise disturbances with standard deviations of 6, and o, respectively; and (3) {e,,}
and {¢,,} are uncorrelated white-noise disturbances.

Equations (5.19) and (5.20) constitute a first-order vector autoregression (VAR)
since the longest lag length is unity. This simple two-variable first-order VAR is
useful for illustrating the multivariate higher-order systems that are introduced in
Section 8. The structure of the system incorporates feedback since y, and z, are al-
lowed to affect each other. For example, —b,, is the contemporaneous effect of a
unit change of z, on y, and 7,, the effect of a unit change in y,_, on z,. Note that the
terms €,, and €,, are pure innovations (or shocks) in y, and z,, respectively. Of
course, if b, is not equal to zero, €,, has an indirect contemporaneous effect on z,,

. i l blz
e ’ - b21 | s

Introduction to VAR Analysis 295

and if b, is not equal to zero, €,, has an indirect contemporaneous effect on y,.
Such a system could be used to capture the feedback effects in our temperature-
thermostat example. The first equation allows current and past values of the ther-
mostat setting to affect the time path of the temperature; the second allows for feed-
back between current and past values of the temperature and the thermostat
setting.”

Equations (5.19) and (5.20) are not reduced-form equations since y, has a con-
temporaneous effect on z, and z, has a contemporaneous effect on y,. Fortunately, it
is possible to transform the system of equations into a more usable form. Using ma-
trix algebra, we can write the system in the compact form:

{ 1 b12H}’r}:[b1oj+P’n MMMA}{%:}
by 1% b | Y21 Yaollz-1] L&«
or

Bx,=Ty+T\x_, +¢

Y blO
x, = A I, =
’ Lr} ° libm}
,] . €, .
r :‘:Yll Yn} e, ={ ,z}
Yo Yl €u &

Premultiplication by B™' allows us to obtain the vector autoregressive (VAR)
mode! in standard form:

where

X, =Ag+Ax._ +e (5.21)
where A, = B™'T,
A, = B'T,
e, = B'e,

For notational purposes, we can define g, as element i of the vector A, a; as the
element in row i and column j of the matrix A|, and e, as the element i of the vector
e,. Using this new notation, we can rewrite (5.21) in the equivalent form:

Ye=aQptdpy., Y ani. ey, (5.222)
3=yt QY T A% €y (5.22b)

To distinguish between the systems represented by (5.19) and (5.20) versus
(5.22a) and (5.22b), the first is called a structural VAR or the primitive system and
the second is called a VAR in standard form. It is important to note that the error
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terms (i.e., e,, and e,,) are composites of the two shocks €, and €. Since ¢, = B¢
we can compute e, and e,, as ,

€, =€, — b€ (1 —b,b,) (5.23)
€= (€, bZleyr)/(l —by20y) (5.24)
Since €,, and €, are white-noise processes, it follows that both e,, and e,, have
zero means, copstant variances, and are individually serially uncorrelated. To de-
rive the properties of {e,,}, first take the expected value of (5.23):
Ee, = E(ﬁyr = b€, )1~ byyb,)) =0.

The variance of e, is given by

Ee?: = E[(Eyr = b€, (1 = b3, ))?
= (Gyz + b%ch)/(l - bl2b21)2

Thus, the variance of e, is time-independent. The autocovariances of e, and e,
are =i

Eeye,, ;= E[(€y, — by3€,)(€,; — b1y, )1~ b3by )2 =0 fori # 0

Similarly, (5.24) can be used to demonstrate that e,, is a stationary process with a
Zero rpean, constant variance, and having all autocovariances equal to zero. A criti-
cal point to note is that ¢,, and e,, are correlated. The covariance of the two terms is

Ee e, = E[(eyt _2 b€, ), - bzleyr)]/(l - blzbzl)2
=_(b210y+b120§)/(1 —by,by))? (5.25)

In ger}eral, (5.25) will not be zero, so that the two shocks will be correlated. In
the special case where b,, = b,, = 0 (i.e., if there are no contemporaneous effects of
Y. on z, and z, on y,), the shocks will be uncorrelated. It is useful to define the vari-
ance/covariance matrix of the e, and e,, shocks as

Z_[ var(e,)  covie,,e,,)
coviey,ey)  var(e,,)
Since all elements of T are time-independent, we can use the more compact form:

2
_ G, 012] T
2 l>rv N r\-? (5‘29 ¥

where var (e,) = &

G, = Oy = cov(e,, €;)

Stability and Stationarity

In the first-order autoregressive model y, = a, + a,y,., + €, the stability condition is
that a, be less than unity in absolute value. There is a direct analogue between this
stability condition and the matrix A, in the first-order VAR model of (5.21). Using
the brute force method to solve the system, iterate (5.21) backward to obtain

x,=Ag+A (A, +Ax,+e ) te
=([+ADA+ A, ,+Ae, te

where =2 % 2 identity matrix.

After n iterations,

n
x, =(I+A+ - +ANAG+ ZA{e,_,- +AM X,

. B i=0
As we continue to iterate backward, it is clear that convergence requires the ex-
pression A" vanish as n approaches infinity. As is shown below, stability requires
that the roots of (1 —a,,L) (1 — axL) - (a,,a,,L?) lie outside the unit circle (the sta-
bility condition for higher-order systems is derived in the appendix to the next
chapter). For the time being, assume the stability condition is met, so that we can

write the particular solution for x, as

[

X;=H+2A1’€z—z SRS (527
i=0

,Q/,f 5

¥ = [aio(1 = az) + appayl/A, 7 ={ax(l —a,) +aya,0)/A

A=(1~a; X1 =ay)—a,a,

If we take take the expected value of (5.27), the unconditional mean of x, is |
hence, the unconditional means of y, and z, are y and 7, respectively. The variances
and covariances of y, and z, can be obtained as follows. First, form the variance/co-
variance matrix as

2
E(x, =W’ =E {2"{6“’}
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Next, using (5.26), note that

Ee,2 = E{::“ } [e“ f—’z:]

2t
=X

Since Bge,; =0 for i # 0, it follows that

E(,— 2= +A}+ AT+ A%+ .0)T
=(-AY'Z

where it is assumed that the stability condition holds, so that A7 approaches zero
as n approaches infinity.

If we can abstract from an initial condition, the {y,} and {z,} sequences will be
jointly covariance stationary if the stability condition holds. Each sequence has a fi-
nite and time-invariant mean, and a finite and time-invariant variance.

In order to get another perspective on the stability condition, use lag operators to
rewrite the VAR model of (5.22a) and (5.22b) as

Ye=ap+a;ly +aplz +e,
2=y + Ay Ly, + aplz, + ey,

or

(1 =a, L)y, =ajo+a,lz, +e,

(1 —axl)z,=ay, + ay Ly, + ey

If we use this last equation to solve for z,, it follows that Lz, is

Lz,= L(ayo + ay,Ly, + e,)/(1 = ay,l)

so that

(1 ~ay L)y, =ay o+ a;Ll(ay + ay Ly, + e,)/(1 — a,l)] + e,

Notice that we have transformed the first-crder VAR in the {y,} and {z,} se-

quences into a second-order stochastic difference equation in the {y,} sequence.
Explicitly solving for y,, we get

= 4(d~ay)+apay +(1-aylle, +ape,,

5.28 )
’ (-ay, L) - ap L)~ ayay, [ 629
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{n the same fashion, you should be able to demonstrate that the solution for z, is

o Gn(~ay)+ayag+U-a,Liey +aye,., 5.29)
’ (I—a,, L)1 —ay L)~ ayay, L '

Both (5.28) and (5.29) have the same characteristic equation; convergence re-
quires that the roots of the polynomial (1 — a,,L)(1 — ayL) - a,,a,,L? lie outside
the unit circle. (If you have forgotten the stability conditions for second-order dif-
ference equations, you might want to refresh your memory by reexamining Chapter
1.) As in any second-order difference equation, the roots may be real or complex
and convergent or divergent. Notice that both y, and z, have the same characteristic
equation; as long as both a,, and a,, do not equal zero, the solutions for the two se-
quences have the same characteristic roots. Hence, both will exhibit similar time
paths.

Dynamics of a VAR Model

Figure 5.5 shows the time paths of four simple systems. For each system, 100 sets
of normally distributed random numbers representing the {e;,} and {e,,} sequences
were drawn. The initial values of y, and z, were set equal to zero, and the {y,} and
{z,) sequences were constructed as in (5.22a) and (5.22b). The graph (a) uses the
values:

Ao =ay =0, a, =a,,=07, anda,;=a, =02

When we substitute these values into (5.27), it is clear that the mean of each se-
ries is zero. From the quadratic formula, the two roots of the inverse characteristic
equation (1 — a,,L)(1 — a,L) - a,,ay, L* are 1.111 and 2.0. Since both are outside
the unit circle, the system is stationary; the two characteristic roots of the solution
for {y,} and {z,} are 0.9 and 0.5. Since these roots are positive, real, and less than
unity, convergence will be direct. As you can see in the figure, there is a tendency
for the sequences to move together. Since a,, is positive, a large realization in y, in-
duces a large realization of z,,,; since a,, is positive, a large realization of z, induces
a large realization of y,,,. The cross-correlations between the two series are posi-
tive.

The second graph (b) illustrates a stationary process with a g = a,0 =0, a;, = a»,
= (.5, and a,, = a,, = —0.2. Again, the mean of each series is zero and the charac-
teristic roots are 0.7 and 0.3. However, in contrast to the previous case, both a,, and
a,, are negative, so that positive realizations of y, can be associated with negative
realizations of z,,, and vice versa. As can be seen from comparing the second
graph, the two series appear to be negatively correlated.

In contrast, graph (c) shows a process possessing a unit root; here, a,; = a,, = a,;
= a,, = 0.5. You should take a moment to find the characteristic roots. Undoubted-
ly, there is little tendency for either of the series to revert to a constant long-run
value. Here, the intercept terms a,, and a,, are equal to zero, so that graph (c) rep-
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Figure 5.5 Four VAR processes.

Stationary process 1. - Stationary process 2. -
9 | 9 . L ,

0 o 50 100 . : 0 50 100
(a) (b)

Random walk process. Random walk plus drift.

-10 —
0 50 100 0 50 100

{c) (d)

resents a multivariate generalization of the random walk model. You can see how
the series seem to meander together. In the fourth graph (d), the VAR process of
graph (c) also contains a nonzero intercept term (a,o = 0.5 and a,, = 0) that takes
the role of a “drift.” As you can see from graph (d), the two series appear to move
closely together. The drift term adds a deterministic time trend to the nonstationary
behavior of the two series. Combined with the unit characteristic root, the {y,} and
{z,} sequences are joint random walk plus drift processes. Notice that the drift dom-
inates the long-run behavior of the series.

6. ESTIMATION AND IDENTIFICATION

One explicit aim of the Box-Jenkins approach is to provide a methodology that
leads to parsimonious models. The ultimate objective of making accurate short-
term forecasts is best served by purging insignificant parameter estimates from the

I

Lsumation and idenujication Wi

model. Sims’ (1980) criticisms of the “incredible identification restrictions” inher-
ent in structural models argue for an alternative estimation strategy. Consider the
following multivariate generalization of (5.21):

X =Apg+Ax_ +Ax A X +e, 630
where x, = an {n X 1) vector containing each of the n variables in;:tuéieid in the
VAR Rt
Ao = an (n % 1) vector of intercept terms
A; = (nxn) matrices of coefficients
and e, = an (n X 1) vector of error terms

Sims’ methodology entails little more than a determination of the appropriate
variables to include in the VAR and a determination of the appropriate lag length.
The variables to be included in the VAR are selected according to the relevant eco-
nomic model. Lag-length tests (to be discussed below) select the appropriate lag
length. Otherwise, no explicit attempt is made to “pare down” the number of para-
meter estimates. The matrix A, contains # intercept terms and each matrix A, con-
tains n? coefficients; hence, n + pn’® terms need to be estimated. Unquestionably, a
VAR will be overparameterized in that many of these coefficient estimates can be
properly excluded from the model. However, the goal is to find the important inter-
relationships among the variables and not make short-term forecasts. Improperly
imposing zero restrictions may waste important information. Moreover, the regres-
sors are likely to be highly colinear, so that the s-tests on individual coefficients
may not be reliable guides for paring down the model.

Note that the right-hand side of (5.30) contains only predetermined variables and
the error terms are assumed to be serially uncorrelated with constant variance.
Hence, each equation in the system can be estimated using OLS. Moreover, OLS
estimates are consistent and asymptotically efficient. Even though the errors are
correlated across equations, seemingly unrelated regressions (SUR) do not add to
the efficiency of the estimation procedure since both regressions have identical
right-hand-side variables.

The issue of whether the variables in a VAR need to be stationary exists. Sims
(1980) and others, such as Doan (1992), recommend against differencing even if the
variables contain a unit root. They argue that the goal of VAR analysis is to deter-
mine the interrelationships among the variables, nor the parameter estimates. The
main argument against differencing is that it “throws away” information concerning
the comovements in the data (such as the possibility of cointegrating relationships).
Similarly, it is argued that the data need not be detrended. In a VAR, a trending
variable will be well approximated by a unit root plus drift. However, the majority
view is that the form of the variables in the VAR should mimic the true data-gener-
ating process. This is particularly true if the aim is to estimate a structural model.
We return to these issues in the next chapter; for now, it is assumed that all vari-
ables are stationary. Two sets of questions at the end of this chapter ask you to
compare a VAR in levels to a VAR in first differences.
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Identification

To illustrate the identification procedure, return to the structural two-variable/first-
order VAR represented by (5.19) and (5.20). Due to the feedback inherent in the
system, these equations cannot be estimated directly. The reason is that z, is corre-
lated with the error term €, and y, with the error term €,,. Standard estimation tech-
niques require that the regressors be uncorrelated with the error term. Note there is
no such problem in estimating the VAR system in standard form [i.e., in the form
of (5.22a) and (5.22b)]. OLS can provide estimates of the two elements of A, and
four elements of A;. Moreover, by obtaining the residuals from the two regressions,
it is possible to calculate estimates of the variance of e,,, e,, and of the covariance
between e,, and e,,. The issue is whether it is possible to recover all the information
present in the primitive system from the estimated system (5.19) and (5.20). In
other words, is the primative form identifiable given the OLS estimates of the VAR
model in the form of (5.22a) and (5.22b)?

The answer to this question is “No, unless we are willing to appropriately restrict
the primitive system.” The reason is clear if we compare the number of parameters
in the structural VAR with the number of parameters recovered from the standard
form VAR model. Estimating (5.22a) and (5.22b) yields six coefficient estimates
(a0, Qy, a1y, Ay Gy, and ay,) and the calculated values of var(e,,), var(e,,), and
cov(e,, e,,). However, the primitive system (5.19) and (5.20) contains 10 parame-
ters. In addition to the two intercept coefficients b,, and b,, the four autoregressive
coefficients v,,, Y12, Y21, and Y., and the two feedback coefficients b,, and b,,, there
are the two standard deviations o, and G,. In all, the primitive system contains 10
parameters, whereas the VAR estimation yields only nine parameters. Unless one is
willing to restrict one of the parameters, it is not possible to identify the primitive
system; Equations (5.19) and (5.20) are underidentified. If exactly one parameter of
the primitive system is restricted, the system is exactly identified, and if more than
one parameter is restricted, the system is overidentified.

One way to identify the model is to use the type of recursive system proposed
by Sims (1980). Suppose that you are willing to impose a restriction on the primi-
tive system such that the coefficient b,, equals zero. Writing (5.19) and (5.20) with
the constraint imposed yields

Y= b0 bz YY1 + Yi2Zet + €y ; (5.31)
7, = by + V21Vt + Y22Zay + €y F (53

Given the restriction (which might be suggested by a particular economic

model), it is clear that z, has a contemporaneous effect on y,, but y, affects the {z,}
sequence with a one-period lag. Imposing the restriction b,, = O means that B™' is

given by:
I -b
B—l= 12
o
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Now, premultiplication of the primitive system by B! yields:

Yol L =byy || bo . 1 ‘blz} Y YnMY:q}{l ‘b\z]rw:\
Z, 0 1 Jlby! 10 1 | Yor Y2 lZm- (U €
or
Yol byy —biaby . Yi = biaYa le_bszzz}\:)’m}_rw”blZG:I} 33
4 by Y2 Y22 24y €,

Estimating the system using OLS yields the theoretical parameter estimates:

Y= apt Y t a2y ey
2= gy + Qg Yy Al + €y

wheére a,,=b— b12byg

ay, =Y, = biaYa - »

a; =Y 2~ bi¥n Cd b

a0 = by ¢

ay =Y ’

3 ="Yn ; »

Since e,, = €,, - bq€,, and ey, = &,, we can calculate the parameters of ﬁthe vari-
ance/covariance matrix as < 1 T :

Var(e,) = 62 + b},07 (5.34a)
Var(e,) = 62 (5.34b)
Cov(e,, ;) = —b,,0 (5.34¢)

Thus, we have nine parameter estimates a,o, @1, dy2, 20, Q215 22 va‘r(el),
var(e,), and cov(e,, ;) that can be substituted into the nine equatloni above in or-
der to simuitaneously solve for by, b1, Vi1 Yi2s b20: Yar: Yoor 62, and 07

Note also that the estimates of the {e,} and {€,} sequences can be recovered.
The residuals from the second equation (i.e., the {e,} sequence) are estimates of
the {e,} sequence. Combining these estimates along with the solutiop forAb|2 al-
lows us to calculate the estimates of the {e,,) sequence using the relationship ¢,, =
€, — b€, .

" Take a minute to examine the restriction. In (5.32). the assumption by, = 0 means
that y, does not have a contemporaneous effect on z,. In (5.33), the restriction mani-
fests itself such that both €, and €, shocks affect the contemporaneous value of y,,
but only €,, shocks affect the contemporaneous value of z,. The observed va.lues of
e,, are completely attributed to pure shocks to the {z,} sequence.Pecomposmg the
residuals in this triangular fashion is called a Choleski decomposition.
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Examples of Overidentified Systems

The interesting feature of overidentifying restrictions is that they can be tested.
Suppose you wanted to further restrict (5.33) such that vy,, = 0. Such a restriction
can have important economic implications; if b,, = 0 and vy,, = 0, contemporaneous
€,, shocks and lagged values of y,_; have no effect on z,. Hence, the null hypothesis
by, = Y5, = 0 is equivalent to the hypothesis that {z,} is exogenous in that the {z,}
sequence evolves independently of {y,}. Given the form of (5.33), the test that y,, =
0 is the test that a,, in the VAR model is zero. To perform this test, simply estimate
(5.33) and use a t-test to test whether a,, = 0.

Not all testable restrictions are this straightforward. Consider another version of
(5.19) and (5.20) such thaty,, =v,, = 0:

Vi =bio+ Y11y + biaz + €y,
2= bog + by, + Yarz + €,

To write the system in standard VAR form, we can use direct substitution:

Ye=big+ Yy + b1abag + b1y + Yarzig + €,) + €,
2= by + by (bro+ Vi1Vt + D122+ €) + Vo2 + €,

It follows that

Y= At any 1 t+ant. tey,
3, =yt Ay Y T A% + ey

where a o= (b,g+ b2by0)/ (1 — byyby))
ay =Y/l = b3by)
a1 = byY2l(1 — b13byy)
Ay0 = (byo + b21010)/(1 = b13071)
ayy = by /(1 = b1obyy)
Ay =Yoo/ (1 = bi3by))

Since e, = (€, + b€, )/(1 ~ bpyby,) and ey, = (by€,, + €,)/(1 — by,by)), it follows
that

Var(e,,) = (0'5 + b3,0D/(1 = byyby,)?
Var(e,,) = (0'12 + bzzlci)/(l - blzbzl)2
- Covie,, €)= (b216§ + b, 00/(1 = boby,)?

OLS provides estimates of the six values of the a@; and var(e,,), var(e,,), and
cov(e,,, ¢,). These nine estimated values can be used with any eight of the nine
equations above to solve for b4, byg, D12, b215 Y11, Ya2e G, and ©,. Since there is an
_extra equation, the system is overidentified. Unfortunately, the overidentifying re-
striction here leads to nonlinear restrictions on the various a;. Nevertheless, many

software packages can test such nonlinear restrictions using the methodology dis-
cussed in Section 8.

7. THE IMPULSE RESPONSE FUNCTION

Just as an autoregression has a moving average representation, a vector autoregreg
sion can be written as a vector moving average (VMA). In fact, Equation (5.27) 1s
the VMA representation of (5.21) in that the variables (i.e., y, and z,) are expressed
in terms of the current and past values of the two types of shocks (i.e., e;, and ez{)-
The VMA representation is an essential feature of Sims’ (1980) methodolo.gy in
that it allows you to trace out the time path of the various shocks on the variables
contained in the VAR system. For illustrative purposes, continue to use the two-
variable/first-order model analyzed in the previous two sections. Writing (5.22a)
and (5.22b) in matrix form, we get

e
Y _ a0 + ayy au“i)’l-l}{ n} 535)
% a0 Ay Gy || % €2

" or, using (5.27), we obtain

— o i
| Ve _ y +2 a alZ}\:elt—i} (5.36)
% ] Sl Al

Equation (5.36) expresses y, and z, in terms of the {e,} and {e;} sequences.

' However, it is insightful to rewrite (5.36) in terms of the {€,} and {e,} sequences.

From (5.23) and (5.24), the vector of errors can be written as

1 -b €
€y 12 yt .
={1/(1—byy05;) M } (5.37)
Lz'] [/( 12921 ][—bm | , |

so that (5.36) and (5.37) can be combined to form

Y i o | ay an i\: 1 ‘blzi\\:ew}
= —b,b
Lr} &}[1/(1 e 21)]2)'[“2! ‘122} —by 1 Jle&

Since the notation is getting unwieldy, we can simplify by defining the 2 X 2 ma-
trix ¢, with elements ¢;():

. 1 -5
;i =[A11 /(1“b12b21)]{i_b2] 112}
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Hence, the moving average representation of (5.36) and (5.37) can be written in
terms of the {e,,} and {e,,} sequences: )

Y Y 00 0,0 e,
- + yi—i
; LJ [ZJ ;[%1(0 ¢22(0M€n_,]
“mwnwﬁy
HEUEY G s
i=0

The moving average representation is an especially useful tool to examine the in-
teraction between the {y,} and {z,) sequences. The coefficients of ¢, can be used to
generate the effects of €, and €, shocks on the entire time paths of the {y,} and {z,}
sequences. If you understand the notation, it should be clear that the four elemen{ts
$(0) are impact multipliers. For example, the coefficient ¢,,(0) is the instanta-

neous impact of a one-unit change in €, on y,. In the same way, the elements ¢, ,(1)

and 1 i i :
$,2(1) are the one period responses of unit changes in €, and €, , on y,, re-

spectively. Updating by one period indicates that ¢,,(1) and 0,,(1) also represent
the effects of unit changes in €,and e, ony,,.

The accumulated effects of unit impulses in e, and/or €, can be obtained by the
appropriate summation of the coefficients of the impulse response functions. For
example, note that after n periods, the effect of €, on the value of y,,, is ¢,,(n).
Thus, after n periods, the cumulated sum of the effects of € y o

i%m
i=0

Letting n approach infinity yields the long-run multiplier. Since the {y,) and
{z,} sequences are assumed to be stationary, it must be the case that for all Jjandk,

. 0n the {y,} sequence is

D 04 is finite.

=0

The four sets of coefficients 011(D), 012(0), 05,(i) and 0,,(i) are called the impulse
response functions. Plotting the impulse response functions [i.e., plotting the coef-
ficients of ¢,(i) against /] is a practical way to visually represent the behavior of the
{».} and {z,} series in response to the various shocks. In principle, it might be pos-
sible to know all the parameters of the primitive system (5.19) and (5.20). With
such knowledge, it would be possible to trace out the time paths of the effects of

the mpuise Kespotise o wiciion du

pure €,, or €, shocks. However, this methodology is not available to the researcher

since an estimated VAR is underidentified. As explained in the previous section,

knowledge of the various a;; and variance/covariance matrix £ is not sufficient to
identify the primitive system. Hence, the econometrician must impose an additional
restriction on the two-variable VAR system in order to identify the impulse re-
sponses.

One possible identification restriction is to use Choleski decomposition. For ex-
ample, it is possible to constrain the system such that the contemporaneous value of
¥, does not have a contemporaneous effect on z,. Formally, this restriction is repre-
sented by setting b,, = 0 in the primitive system. In terms of (5.37), the error terms
can be decomposed as follows:

e, =¢€,—bne, _ (5.39)
€y =€, (5.40)

Thus, if we use (5.40), all the observed errors from the {e,,} sequence are attrib-
uted to €, shocks. Given the calculated {¢,,} sequence, knowledge of the values of
the {e,,} sequence and the correlation coefficient between e, and e,,, allows for the
calculation of the {e,} sequence using (5.39). Although this Choleski decomposi-
tion constrains the system such that an €, shock has no direct effect z,, there is an
indirect effect in that lagged values of y, affect the contemporaneous value of z,.
The key point is that the decomposition forces a potentially important asymmetry
on the system since an €, shock has contemporaneous effects on both y, and z,. For
this reason (5.39) and (5.40) are said to imply an ordering of the variables. An €,
shock directly affects e, and e,, but on €, shock does not affect e,,. Hence, z, is
“prior” to y,.

Suppose that estimates of equations (5.22a) and (5.22b) yield the values a,, = a,
=0, a;, =a, =07, and a,, = a,; = 0.2. You will recall that this is precisely the
model used in the simulation reported in graph (a) of Figure 5.5. Also suppose that
the elements of the X matrix are such that 67 = 63 and cov(e,, e,,) is such that the
correlation. coefficient between e,, and e,, (denoted by p,,) is 0.8. Hence, the de-
composed errors can be represented by®

e, =€, +0.8¢, (5.41)
€y =€, (5.42)

The top half of Figure 5.6, parts (a) and (b), traces out the effects of one-unit
shocks to €, and €, on the time paths of the {y,} and {z,} sequences. As shown in

- the upper left-hand graph (a), a one unit-shock in e, causes z, to jump by one unit
. and y, to jump by 0.8 units. [From (5.41), 80% of the €, shock has a contemporane-

ous effect on e,.] In the next period, e,,,, returns to zero, but the autoregressive na-
ture of the system is such that y,,, and z,,, do not immediately return to their long-

. run values. Since z,,, = 0.2y, + 0.7z, + ¢,,,,, it follows that z,,, = 0.86 [0.2(0.8) +

0.7(1) = 0.86]. Similarly, y,., = 0.7y, + 0.2z, = 0.76. As you can see from the figure,
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The effects of a one-unit shock in €,, are shown in the upper-right-hand graph (b)
f’f the figure. The asymmetry of the decomposition is immediately seen by compar-
ing the twp upper graphs. A one-unit shock in €, causes the value of y, to increase
by one unit; however, there is no contemporaneous effect on the value Iof z,, 50 that
¥:=1and z,= 0. In the subsequent period, €., returns to zero. The autore(éressive
nature of the system is such that y,,, = 0.7y, +0.2z,=07and z., =0 2y, + 0.7z
0.2. The remaining points in the figure are the impul ses for periods s,

} sequences converge to their long-run lev-
stability of the system; as found earlier, the

se responses for periods y,,,

Ihe (mpuise Kesponse Funcuon 30y

through y,,,0. Since the system is stationary, the impulse responses ultimately de-

~cay.

Can you figure out the consequences of reversing the Choleski decomposition in
such a way that b,,, rather than b,,, is constrained to equal zero? Since matrix 4, is
symmetrical (i.e., a;; = a,; and a,, = a,,), the impulse responses of an €, shock

~ would be similar to those in graph (a) and the impulse responses of an €, would be

similar to those in graph (b). The only difference would be that the solid line repre-
sents the time path of the {z,} sequence and the hatched line the time path of the
{y,} sequence.

As a practical matter, how does the researcher decide which of the alternative de-
compositions is most appropriate? In some instances, there might be a theoretical
reason to suppose that one variable has no contemporaneous effect on the other. In
the terrorism/tourism example, knowledge that terrorist incidents affect tourism
with a lag suggests that terrorism does not have a contemporancous effect on
tourism. Usually, there is no such a priori knowledge. Moreover, the very idea of

: ~ imposing a structure on a2 VAR system seems contrary to the spirit of Sims’ argu-

ment against “incredible identifying restrictions.” Unfortunately, there is no simple
way to circumvent the problem; identification necessitates imposing some structure
on the system. The Choleski decomposition provides a minimal set of assumptions
that can be used to identify the primitive model.’

It is crucial to note that the importance of the ordering depends on the magnitude
of the correlation coefficient between ¢,, and e,,. Let this correlation coefficient be
denoted by p,, so that p,, = 0,,/5,0,. Now suppose that the estimated model yields
a value of X such that p,, is found to be equal to zero. In this circumstance, the or-
dering is immaterial. Formally, (5.41) and (5.42) become ¢,, = €, and ¢,, = €,, when
p,. = 0. Thus, if there is no correlation across equations, the residuals from the y,
and z, equations are necessarily equivalent to the €, and €, shocks, respectively. At
the other extreme, if p,, is found to be unity, there is a single shock in the system
that contemporarily affects both variables. Under the assumption b,, = 0, (5.41) and
(5.42) become e,, = €, and e,, = €,; instead, under the assumption
bi;=0,(5.41) and (5.42) become ¢, = € , and e,, = €,,. Usually, the researcher will
want to test the significance of p,,; as a rule of thumb, if ‘ P21 > 0.2, the correla-

“ tion is deemed to be significant. If | P12 | > 0.2, the usual procedure is to obtain the

impulse response function using a particular ordering. Compare the results to the
impulse response function obtained by reversing the ordering. If the implications
are quite different, additional investigation into the relationships between the vari-
ables is necessary.

The lower half of Figure 5.6, parts (¢) and (d), presents the impulse response
functions for a second model; the sole difference between models 1 and 2 is the
change in the values of a,, and a,, to —~0.2. Model 2 was used in the simulation re-

. ported in graph (b) of Figure 5.5. The negative off-diagonal elements of A, weaken

the tendency for the two series to move together. Using the impulse responses rep-

., resented by (5.41) and (5.42) (d) shows that, y,,, = 0.7y, = 0.2z, = 0.7 and z,,, =
. =02y, + 0.7z,,, = =0.2. Tracing out the entire time path yields the lower-right-hand

Ok i I . LS
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graph (d) of the figure. Since the system is stable, both sequences eventually con-
verge to zero.

The lower-left-hand graph (c) traces out the effect of a one-unit €,, shock. In pe-
riod 1, z, rises by one unit and y, by 0.8 units. In period (¢ + 1), €,,,, returns to zero,
but the value of y,,, is 0.7y, — 0.2z, = 0.36 and the value of Zyy 18 0.2y, 4+ 0.7z, =
0.54. The points represented by ¢ = 2 through 20 show that the impulse responses

. converge to zero.

- Variance Decomposition

Since unrestricted VARs are overparameterized, they are not particularly useful for
short-term forecasts. However, understanding the properties of the forecast errors is
exceedingly helpful in uncovering interrelationships among the variables in the Sys-
tem. Suppose that we knew the coefficients of Apand A, and wanted to forecast the
various values of x,,; conditional on the observed value of x,. Updating (5.21) one

period (i.e., x,,, =A, + A,x, + ¢,,,) and taking the conditional expectation of X1, WE
obtain

Erx/+l = AO +A 1%

Note that the one-step ahead forecast error is X = Ex,. = e,,,. Similarly, updat-
ing two periods, we get

xr+2 :AO + AIxH-l + €2
=Ap+AAg+A i, +e, D +e

=2
If we take conditional expectations, the two-step ahead forecast of x,., is

E1x1+2 = ([ + AI)AO + A%X,

The two-step ahead forecast error (i.e., the difference between the realization of
X,z and the forecast) is e,,, + A,e,,,. More generally, it is easily verified that the
n-step ahead forecast is

Exo,=(U+A +A7+ . + ATNA, + Arx,
and the associated forecast error is
Crant Al + ATl o+ + AT e, (5.43)

We can also consider these forecast errors in terms of (5.38) (i.e., the VMA form
of the model). Of course, the VMA and VAR models contain exactly the same in-
formation, but it is convenient (and a good exercise) to describe the properties of

¥

The Impulse Response Function 3

the forecast errors in terms of the {¢,} sequence. If we use (5.38) to conditionaily
forecast x,, ,, the one-step ahead forecast error is dq€,, ;. In general,

Xpan = W+ zq)iﬁwn—i

i=0
so that the n-period forecasterror x,,,, — Ex,,,, is

n—1

Xt4n — EIxH-n = Z ¢f€“‘"“‘
i=0 -

Foéusing solely on the {y,} sequence, we see that the n-step ahead forecast error
is S

Vien = EYein = 001(0)e i + 0 (D€ g + o + 0, (0 =~ e,
+ q)l2(o)€u+n + ¢12(1)€zz+n4 + e+ q)lz(n - l)ezu»l

. 2
Denote the variance of the n-step ahead forecast error variance of y,,,, as 6,(n)

2= 620010 + 6311 + -+ 61,(n = 1)7]
O,(m)"= 5101 (0" + duy G007+ G+ + bl — 1)

Since all values of (1)1.,((1‘)2 are necessarily nonnegative, the variance gf the forecast
error increases as the forecast horizon n increases. Note that it is possible to decom-
pose the n-step ahead forecast error variance due to each one of the shocks.
Respectively, the proportions of oy(n)2 due to shocks in the {¢,} and {e,} se-
quences are

| G§[¢11(0)2+¢11(1)2+ +¢11(”'—1)2]
o, (n)’
020102 +0, (NP + - +0,(n-1)?)

and Gy(n)z

The forecast error variance decomposition tells us the proportion of the move-
ments in a sequence due to its “own” shocks versus shocks to the other variable. If
€,, shocks explain none of the forecast error variance of [y, at qll forecast hori-
zons, we can say that the [y,] sequence is exogenous. In such a circumstance, the
{y,} sequence would evolve independently of the €,, shocks and (z‘,} sequence. At
the other extreme, €,, shocks could explain all the forecast error variance in the {y,}
sequence at all forecast horizons, so that {y,} wquld be entxrel.y endogenous. In ap-
plied research, it is typical for a variable to explain almost all its forecast error vari-
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ance at short horizons and smaller proportions at longer horizons. We would expect
this pattern if €, shocks had little contemporaneous effect on y,, but acted to affect
the {y,} sequence with a lag. '

Note that the variance decomposition contains the same problem inherent in im-
pullse response function analysis. In order to identify the {e,} and {€,} sequences
it is necessary to restrict the B matrix. The Choleski decompostion lZJSCd in (S 39;
and (5.40) necessitates that all the one-period forecast error variance of z, is du;: to
€,,. If we use the alternative ordering, all the one-period forecast error vari’ance of y
would be due to €,,. The dramatic effects of these alternative assumptions are re-’
duced at longer forecasting horizons. In practice, it is useful to examine the vari-
ance decomposition at various forecast horizons. As n increases, the variance de-
c.om'positions should converge. Moreover, if the correlation coefficient p,, is
s.lgmﬁcantly different from zero, it is customary to obtain the variance decom[;ési-
tions under various orderings.

Nevertheless, impulse response analysis and variance decompositions (together
called innovation accounting) can be useful tools to examine the relationships
among economic variables. If the correlations among the various innovations are
small, the identification problem is not likely to be especially important. The alter-
qative orderings should yield similar impulse responses and variance decomposi-
tlpns. Of course, the contemporaneous movements of many economic variables are
highly correlated. Sections 10 through 13 consider two attractive methods that can
be used to identify the structural innovations. Before examining these techniques
we con_§ider hypothesis testing in a VAR framework and reexamine the intcrrela:
tionships between terrorism and tourism.

8. HYPOTHESIS TESTING

In principle, there is nothing to prevent you from incorporating a large number of
vanal?les in the VAR. It is possible to construct an n-equation VAR with each
equation containing p lags of all n variables in the system. You will want to include
those variables that have important economic effects on each other. As a practical
matter, degrees of freedom are quickly eroded as more variables are included. For
example, with monthly data with 12 lags, the inclusion of one additional variable
uses an additional 12 degrees of freedom. A careful examination of the relevant
the(;reltical model will help you to select the set of variables to include in your VAR
model.

An n-equation VAR can be represented by

Xyt Ay ALy Ap(L) . AR(L) || Xy €y
Xy Ay + Ay (L) An(l) Ay, (D) || X9 €2
+

>

nt AnO Anl(L) An2(L) Ann(L) Xnr-1 € (5.44)

where A, = the parameters representing intercept terms
A/L) = the polynomials in the lag operator L.
The individual coefficients of A, (L) are denoted by ai(1), a;(2), .. .. Since all

equations have the same lag length, all the polynomials A (L) are of the same de-
gree. The terms e;, are white-noise disturbances that may be correlated. Again, des-
ignate the variance/covariance matrix by Z, where the dimension of T is (n x n).

In addition to the determination of the set of variables to include in the VAR, it
is important to determine the appropriate lag length. One possible procedure is to
allow for different lag lengths for each variable in each equation. However, in or-
der to preserve the symmetry of the system (and to be able to use OLS efficiently),
it is common to use the same lag length for all equations. As indicated in Section
6, as long as there are identical regressors in each equation, OLS estimates are
consistent and asymptotically efficient. If some of the VAR equations have regres-
sors not included in the others, seemingly unrelated regressions (SUR) provide ef-
ficient estimates of the VAR coefficients. Hence, when there is a good reason o
let lag lengths differ across equations, estimate the so-called near VAR using
SUR.

In a VAR, long lag lengths quickly consume degrees of freedom. If lag length is
p, each of the n equations contains np coefficients plus the intercept term.
Appropriate lag-length selection can be critical. If p is too small, the model is mis-
specified; if p is too large, degrees of freedom are wasted. To check lag length, be-
gin with the longest plausible length or longest feasible length given degrees-of-
freedom considerations. Estimate the VAR and form the variance/covariance
matrix of the residuals. Using quarterly data, you might start with a lag length of 12
quarters based on the a priori notion that 3 years is sufficiently long to capture the
system’s dynamics. Call the variance/covariance matrix of the residuals from the
12-lag model Z,,. Now suppose you want to determine whether eight lags are ap-
propriate. After all, restricting the model from 12 to eight lags would reduce the
number of estimated parameters by 47 in each equation.

Since the goal is to determine whether lag 8 is appropriate for all equations, an
equation by equation F-test on lags 9 through 12 is not appropriate. Instead, the
proper test for this cross-equation restriction is a likelihood ratio test. Reestimate
the VAR over the same sample period using eight lags and obtain the variance/co-
variance matrix of the residuals Zg. Note that Zg pertains to a system of n equations
with 4n restrictions in each equation for a total of 4n? restrictions. The likelihood
ratio statistic is

(Mlog | 5| —1og |22 D)

However, given the sample sizes usually found in economic analysis, Sims
(1980) recommends using

(T-c)log | 5| —log 12, D)
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where T = number of usable observations
¢ = number of parameters estimated in each equation of the unre-
stricted system
log I z, | = is the natural logarithm of the determinant of ..

In the example at hand, ¢ = 12n + 1 since each equation of the unrestricted model
has 12 lags for each variable term plus an intercept.

This statistic has the asymptotic x* distribution with degrees of freedom equal to
the number of restrictions in the system. In the example under consideration, there
are 4n restrictions in each equation, for a total of 4n® restrictions in the system.
Clearly, if the restriction of a reduced number of lags is not binding, we would ex-
pect log ! Zg | to be equal to log l Z [ Large values of this sample statistic indicate
that only eight lags is a binding restriction; hence, a rejection of the null hypothesis
that lag length = 8. If the calculated value of the statistic is less than y? at a prespec-
ified significance level, we would not be able to reject the null of only eight lags.
At that point, we could seek to determine whether four lags were appropriate by
constructing

(T-o)log|=,| ~loglZ, )

Considerable care should be taken in paring down lag length in this fashion.
Often, this procedure will not reject the null hypotheses of eight versus 12 lags and
four versus 8 lags, although it will reject a null of four versus 12 lags. The problem
with paring down the model is that you may lose a small amount of explanatory
power at each stage. Overall, the total loss in explanatory power can be significant.
In such circumstances, it is best to use the longer lag lengths,

This type of likelihood ratio test is applicable to any type of cross-equation re-
striction. Let Z, and X, be the variance/covariance matrices of the unrestriced and
restricted systems, respectively. If the equations of the unrestricted model contain
different regressors, let ¢ denote the maximum number of regressors contained in
the longest equation. Asymptotically, the test statistic:

(T-c)log |2 | ~10g 2,1 (5.45)
has a x? distribution with degrees of freedom equal to the number of restrictions in
the system.

To take another example, suppose you wanted to capture seasonal effects by in-
cluding three seasonal dummies in each of the n equations of a VAR. Estimate the
unrestricted model by including the dummy variables and estimate the restricted
model by excluding the dummies. The total number of restrictions in the system is
3n. If lag length is p, the equations -of the unrestricted model have np + 4 parame-
ters (np lagged variables, the intercept, and the three seasonals). For T usable obser-
vations, set ¢ = np + 4 and calculate the value of (5.45). If for some prespecified
significance level, this calculated value %? (with 3n degrees of freedom) exceeds
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the critical value, the restriction of no secasonal effects can be rejected. Equation
(5.45) can also be used to test the type of nonlinear restriction mentioned in Section
6. Estimate the restricted and unrestricted systems. Then compare the calculated
value of (5.45) to the critical value found in a % table.

The likelihood ratio test is based on asymptotic theory that may not be very use-
ful in the small samples available to time-series econometricians. Moreover, the
likelihood ratio test is only applicable when one model is a restricted version of the
other. Alternative test criteria to determine appropniate lag lengths and/or seasonal-
ity are the multivariate generalizations of the AIC and SBC:

AIC=Tlog|x| +2 N
SBC=Tlog|Z| + Nlog(T)

determinant of the variance/covariance matrix of the residuals
total number of parameters estimated in all equations.

where | z ]
N

1

]

Thus, if each equation in an n-variable VAR has p lags and an intercept, N = n’p +
n; each of the n equations has np lagged regressors and an intercept.

Adding additional regressors will reduce log |2| at the expense of increasing V.
As in the univariate case, select the model having the lowest AIC or SBC value.
Make sure that you adequately compare the models by using the same sample pe-
riod. Note that these statistics are not based on any distributional theory; as such
they are not used in festing the type of cross—equation restrictions discussed in
Section 6.

Granger Causality

A test of causality is whether the lags of one variable enter into the equation for
another variable. Recall that in (5.33), it was possible to test the hypotheses that
a,, = 0 using a t-test. In a two-equation model with p lags, {y,} does not Granger
cause {z,} if and only if all the coefficients of A,,(L) are equal to zero. Thus, if {y,}
does not improve the forecasting performance of {z,}, then {y,} does not Granger
cause {z,}. The direct way to determine Granger causality is to use a standard F-test
to test the restriction:

a2l(1) = 021(2) 2021(3) == O

In the n variable case in which A (L) represents the coefficients of lagged values
of variable j on variable i, variable j does not Granger cause variable i if all coeffi-
cients of the polynomial A (L) can be set equal to zero.

Note that Granger causality is a weaker condition than the condition for exogene-
ity. A necessary condition for the exogeneity of {z,} is for current and past values

“of {,} to not affect {z,}. To explain, reconsider the VMA model. In our previous
example of the two-variable VMA model, {y,} does not Granger cause {z,) if and
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only if.all coefficients of ¢,,(7) = 0 for i > 0. To sketch the proof, suppose that all
coefficients of ¢,,(/) are zero for i > 0. Hence, z,,, is given by

a1 =2+ 07 (0)ey,,y + Z P22 (1€

i=0

If we forecast z,,, conditional on the value of 2,, we obtain the forecast error
$21(0)€,1 + 025(0)e,,,,. Given the past value of z,, information concerning past val-
ues of y, does not aid in forecasting z,. In other words, for the VAR(1) model under
consideration, Er(zt+l , Zt) = EI(ZH-I l 2 yt)

The only additional information contained in ¥; are the past values of {e,}.
However, such values do not affect z, and so cannot improve on the forecasting pyér-
formance of the ¢, sequence. Thus, {y,} does not Granger cause {z,}). However, if
9,,(0) is not equal to zero, {z,} is not exogenous to {y,}. If ¢,,(0) is not zero pl’lre
shocks to y,,, (i.e., €,..1) affect the value of z,,, even though the {y,) sequence’ does
not Granger cause the {z,} sequence.

. A block exogeneity test is useful for detecting whether to incorporate a variable
¥nto a VAR. Given the aforementioned distinction between causality and exogene-
ity, this multivariate generalization of the Granger causality test should actually be
called a “block causality” test. In any event, the issue is to determine whether lags
of one variable—say, w,—Granger cause any other of the variables in the system.
In the three-variable case with Wp ¥ and z, the test is whether lags of w, Granger
cause either y, or z,. In essence, the block exogeneity restricts all lags of w, in the Y,
and z, equations to be equal to zero. This cross-equation restriction is properly
tf:sted using the likelihood ratio test given by (5.45). Estimate the y, and Z, equa-
tions. using p lagged values of {y,}, {z,}, and {w,} and calculate %,. Reestimate the

two equations excluding the lagged values of {w,} and calculate T, Next, find the
likelihood ratio statistic:

(T-c)loglz,| = 1oglz,|)

As‘ in (5.45), this statistic has a x? distribution with degrees of freedom equal to
2p (since p lagged values of {w,} are excluded from each equation). Here, ¢ = 3p

+ 1 since the two unrestricted y, and Z, equations contain p lags of {y,}, { Z,), and
{w,) plus a constant.

9. EXAMPLE OF A SIMPLE VAR: TERRORISM AND
TOURISM IN SPAIN

In Enders and Sandler (1991), we used the VAR methodology to estimate the im-
pact of Ferron’sm on tourism in Spain during the period from 1970 to 1988. Most
transnational terrorist incidents in Spain during this neriad were nematratad hu Tafr.
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wing groups, which included the Anti-Fascist Resistance Group of October |
(GRAPO), the ETA, the now defunct International Revolutionary Armed Front
(FRAP), and Iraultza. Most incidents are attributed to the ETA (Basque Fatherland
and Liberty) and its splinter groups, such as the Autonomous Anti-Capitalist
Commandos (CAA). Right-wing terrorist groups included the Anti-Terrorist Liber-
ation Group (GAL), Anti-Terrorism ETA, and Warriors of Christ the King. Catalan
independence groups, such as Free Land (Terra Lliure) and Catalan Socialist Party
for National Liberation, have been active in the late 1980s and often target U.S.
businesses.

The transfer function model of Section 3 may not be appropriate because of feed-
back between terrorism and tourism. If high levels of tourism induce terrorist activ-
ities, the basic assumption of the transfer function methodology is violated. In fact,
there is some evidence that the terrorist organizations in Spain target tourist hotels
in the summer season. Since increases in tourism may genérate terrorist acts, the
VAR methodology allows us to examine the reactions of tourists to terrorism and
those of terrorists to tourism. We can gain some additional insights into the interre-
lation between the two series by performing causality tests of terrorism on tourism
and of tourism on terrorism. Impulse response analysis can quantify and graphically
depict the time path of the effects of a typical terrorist incident on tourism.

We assembled a time series of all publicly available transnational terrorists inci-
dents that took place in Spain from 1970 through 1988. In total, there are 228
months of observation in the time series; each observation is the number of terrorist
incidents occurring that month. The tourism data are taken from various issues of
the National Statistics Institute’s (Estadistic Institute Nacional) quarterly reports. In
particular, we assembled a time series of the number of foreign tourists per month
in Spain for the 1970 to 1988 period.

Empirical Methodology

Our basic methodology involves estimating tourism and terrorism in a vector au-
toregression (VAR) framework. Consider the following system of equations:

ne=0o+A(Dn_ + AL, +e, (5.46)
= O+ Ay (L)n_y + Agy(L)i_| + €y, (5.47)

where n, = the number of tourists visiting Spain during time period ¢

the number of transnational terrorist incidents in Spain during ¢

are the 1 X 13 vectors containing a constant, 11 seasonal (monthly)
dummy variables, and a time trend

A,; = the polynomials in the lag operator L

independent and identically distributed disturbance terms such that
E(e,,e,,) is not necessarily zero
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several alternative ways to model the series; the model including the time trend had
yielded the best diagnostic statistics. Other variants included differencing (5.46)
and (5.47) and simply eliminating the trend and letting the random walk plus drift
terms capture any nonstationary behavior. Questions S and 6 at the end of this
chapter ask you to compare these alternative ways of estimating a VAR.

The polynomials A,,(L) and A,,(L) in (5.46) and (5.47) are of particular interest.
If all the coefficients of A,, are zero, then knowledge of the tourism series does not

reduce the forecast error variance of terrorist incidents. Formally, tourism would -

not Granger cause terrorism. Unless there is a contemporaneous response of terror-
ism to tourism, the terrorism series evolves independently of tourism. In the same
way, if all the coefficients of A,,(L) are zero, then terrorism does not Granger cause
tourism. The absence of a statistically significant contemporaneous correlation of

the error terms would then imply that terrorism cannot affect tourism. If, instead, k

any of the coefficients in these polynomials differ from zero, there are interactions
between the two series. In case of negative coefficients of A,,(L), terrorism would
have a negative effect on the number of foreign tourist visits to Spain.

Each equation was estimated using lag lengths of 24, 12, 6, and 3 months (i.e.,
for four estimations, we set L =24, 12, 6, and 3). Because each equation has identi-
cal right-hand-side variables, ordinary least squares (OLS) is an efficient estimation
technique. Using ¥ tests, we determined that a lag length of 12 months was most
appropriate (reducing the length from 24 to 12 months had a x* value that was sig-
nificant at the 0.56 level, whereas reducing the lag length to 6 months had a y?
value that was significant at the 0.049 level). The AIC indicated that 12 lags were
appropriate, whereas the SBC suggested we could use only six lags. Since we were
using monthly data, we decided to use the 12 lags.

To ascertain the importance of the interactions between the two series, we ob-
tained the variance decompositions. The moving average representations of Equa-
tions (5.46) and (5.47) express n, and i, as dependent on the current and past values
of both {e,,} and {e,,} sequences:

n =CO+Z(CU€11—/'+C2j82t—j)+eh (5.48)
j=1

i =d0+z(dljelr—j +tdyjey_;)tey, (5.49)
i=t

where ¢, and d;, are vectors containing constants, the 11 seasonal dummies, and a
trend; and ¢y, ¢,;, d,;, and d,; are parameters.

Because we cannot estimate (5.48) and (5.49) directly, we used the residuals of
(5.46) and (5.47) and then decomposed the variances of n, and i, into the percent-
ages attributable to each type of innovation. We used the orthogonalized innova-
tions obtained from a Choleski decomposition; the order of the variables in the fac-
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torization had no qualitative effects on our results (the contemporaneous correlation
between e, and e,, was —0.0176).

Empirical Results

With a 24-month forecasting horizon used, the variance decompositions are re-
ported in Table 5.3, in which the significance levels are in parentheses. As ex-
pected, each time series explains the preponderance of its own past values; n, ex-
plains over 91% of its forecast error variance, whereas i, explains nearly 98% of its
forecast error variance. It is interesting that terrorist incidents explain 8.7% of the
forecast error variance of Spain’s tourism, whereas tourism explains only 2.2% of
the forecast error variance of terrorist incidents. More important, Granger causality
tests indicate that the effects of terrorism on tourism are significant at the 0.006
level, whereas the effects of tourism on terrorism are not significant at conventional
levels. Thus, causality is unidirectional: Terrorism affects tourism but not the re-
verse. We also note that the terrorism series appears to be autonomous in the sense
that neither series Granger causes i, at conventional levels. This result is consistent
with the notion that terrorists randomize their incidents, so that any one incident is
not predictable on a month-to-month basis.

Forecasts from an unrestricted VAR are known to suffer from overparameteriza-
tion. Given the results of the variance decompositions and Granger causality tests,
we reestimated (5.46) and (5.47) restricting all the coefficients of A, (L) to zero.
Because the right-hand variables were no longer identical, we reestimated the equa-
tions with seemingly unrelated regressions (SUR). With the resulting coefficients
from the SUR estimates, the effects of a typical terrorist incident on Spain’s
tourism can be depicted. In terms of the restricted version of (5.49), we set all e,
and e,,_; equal to zero for j > 0. We then simulated the time paths resulting from
the effects of a one-unit shock to e,,. The time path is shown in Figure 5.7, where
the vertical axis measures the monthly impact on the number of foreign tourists
and the horizontal axis the months following the shock. To smooth out the series,

Table 5.3 Variance Decomposition Percentage of 24-

Month Error Variance Lt
Percent of forecast Typical shock in
error variance in n, {,
n, 91.3 8.7
- : (3 x E-15) (0.006)
! i, 2.2 97.8
(17.2) (93.9)

Néie.‘ The numbers in parentheses indicate the significance level for the
joint hypothesis that all lagged coefficients of the variable in ques-
tion can be set equal to zero.
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Figure 5.7 Tourism response to a terrorist incident.
(3 month moving average)
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we present the time path of a 3-month moving average of the simulated tourism re-
sponse function. ‘ '

After a “typical” terrorist incident, tourism to Spain begins to decline in the third
month. After the sixth month, tourism begins to revert to its original level. There
does appear to be a rebound in months 8 and 9. There follows another drop in
tourism in month 9, reaching the maximum decline about 1 year after the original
incident. Obviously, some of this pattern is due to the seasonality in the series.
However, tourism slowly recovers and generally remains below its preincident
level for a substantial period of time. Aggregating all 36 monthly impacts, we esti-
mate that the combined effects of a typical transnational terrorist incident in Spain
is to decrease the total number of foreign visits by 140,847 people. By comparison,
a total of 5,392,000 tourists visited Spain in 1988 alone.

10. STRUCTURAL VARs

Sims’ (1980) VAR approach has the desirable property that all variables are treated
symmetrically, so that the econometrician does not rely on any “incredible identifi-
cation restrictions.” A VAR can be quite helpful in examining the relationships
among a set of economic variables. Moreover, the resulting estimates can be used
for forecasting purposes. Consider a first-order VAR system of the type represented
by (5.21):

x,=Ag+Ax,_ +¢

Although the VAR approach yields only estimated values of A, and A, for expo-
sition purposes, it is useful to treat each as being known. As we saw in (5.43), the
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n-step ahead forecast error is
2 - .
Xevn — Erx/+n =€unt Alez+n—l + Alet+n—2 toet A’ll leml v (5.50)

“ Even though the model is underidentified, an appropriately specified model will
have forecasts that are unbiased and have minimum variance. Of course, if we had
a priori information concerning any of the coefficients, it would be possible to im-
prove the precision of the estimates and reduce the forecast-error variance. A re-
searcher interested only in forecasting might want to trim down the overparameter-
ized VAR model. Nonetheless, it should be clear that forecasting with a VAR is a
multivariate extension of forecasting using a simple autoregression.

The VAR approach has been criticized as being devoid of any economic content.
The sole role of the economist is to suggest the appropriate variables to include in
the VAR. From that point on, the procedure is almost mechanical. Since there is so
little economic input in a VAR, it should not be surprising that there is little eco-
nomic content in the results. Of course, innovation accounting does require an or-
dering of the variables, but the selection of the ordering is generally ad hoc.

Unless the underlying structural model can be identified from the reduced-form
VAR model, the innovations in a Choleski decomposition do not have a direct eco-
nomic interpretation. Reconsider the two-variable VAR of (5.19) and (5.20):

Yt blzzf = b!O VY Y28 Ey,
by + 2,= bag + Y211 + Va2l + &

so that it is possible to write the model in the form of (5.22a) and (5.22b):

Y=+ a) Y tapi e,
2, = Qoo+ Qg Yy + A%y + €y

where the various a, are defined as in (5.21). For our purposes, the important point
to note is that the two error terms e, and e,, are actually composites of the underly-
ing shocks €, and €,,. From (5.23) and (5.24),

€y 1 “blzﬂew}
= (1 =by,byy)
Lﬂ} / ! Lbﬂ 1 €

Although these composite shocks are the one-step ahead forecast errors in y, and
z,, they do not have a structural interpretation. Hence, there is an important differ-
ence between using VARSs for forecasting and using them for economic analysis. In
(5.50), e,, and e,, are forecast errors. If we are interested only in forecasting, the
components of the forecast errors are unimportant. Given the economic model of
(5.19) and (5.20), €, and €, are the autonomous changes in y, and z, in period ¢, re-
spectively. If we want to obtain an impulse response function or a variance decom-
position to trace out the effects of an innovation in y, or z,, it is necessary to use the
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structural shocks (i.e., €, and ¢,,), not the forecast errors. The aim of a structural
VAR is to use economic theory (rather than the Choleski decomposition) to recover
the structural innovations from the residuals {e,,} and {e,,}.

The Choleski decomposition actually makes a strong assumption about the
underlying structural errors. Suppose, as in (5.32), we select an ordering such that
b,, = 0. With this assumption, the two pure innovations can be recovered as

52,262,
and 7
Eyrzelx_bllelr

Forcing b,, =0 is equivalent to assuming that an innovation in y, does not have a
contemporaneous effect on z,. Unless there is a theoretical foundation for this as-
sumption, the underlying shocks are improperly identified. As such, the impulse re-
sponses and variance decompositions resulting from this improper identification
can be quite misleading.

If the correlation coefficient between e, and e, is low, the ordering is not likely
to be important. However, in a VAR with several variables, it is improbable that all
correlations will be small. After all, in selecting the variables to include in a model,
you are likely to choose variables that exhibit strong comovements, When the
residuals of a VAR are correlated, it is not practical to try all alternative orderings.
With a four-variable model, there are 24 (i.e., 4!) possible orderings.

Sims (1986) and Bernanke (1986) propose modeling the innovations using eco-
‘nomic analysis. To understand the procedure, it is useful to examine the relation-
ship between the forecast errors and structural innovations in an n-variable VAR,
Since this relationship is invariant to lag length, consider the first-order model with
n variables:

L by by o by, |3 by
by 1 by .o by | xy _ by
bnl bn2 bn3 1 Xnt bnO

Yoo Y2 Yz Y || Xuat €

N Yar Y22 Y23 oo Yau || X2u + €

Yn] Yn2 Yn?a Yrm K- €nl

or in compact form,

Bx,=T,+T\x_, +¢€
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Equation (5.21) is obtained by premultiplying by B~' to obtain
X, =B 'Ty+B'Tx,_, + B¢,

Defining A, = B™'T,, A, = B™'T',, and ¢, = B™'¢, yields the multivariate general-
ization of (5.21). The problem, then, is to take the observed values of e, and restrict
the system so as to recover g, as €, = Be,. However, the selection of the various b
cannot be completely arbitrary. The issue is to restrict the system so as to (1) re-
cover the various {¢,} and (2) preserve the assumed error structure concerning the
independence of the various {€,) shocks. To solve this identification problem, sim-
ply count equations and unknowns. Using OLS, we can obtain the variance/covari-
ance matrix X

2
6; O; ... Oy

2
Z: Oy Oy ..o Oy
2
G, Ou, ... O

where each element of Z is ¢onstructed as the sum:

.
oy =(YT)Y ey
t=]

Since  is symmetric, it contains only (n? + n)/2 distinct elements. There are n el-
ements along the principal diagonal, (n — 1) along the first off-diagonal, n — 2 along
the next off-diagonal, . . ., and one corner element for a total of (n*> + n)/2 free ele-
ments.

Given that the diagonal elements of B are all unity, B contains n* = n unknown
values. In addition, there are the n unknown values var(e,) for a total of n? un-
known values in the structural model (i.e., the n* — n values of B plus the n values
var(¢,)]. Now, the answer to the identification problem is simple; in order to iden-
tify the #* unknowns from the known (n* + n)/2 independent elements of I, it is
necessary to impose an additional n? — [(n* + n)/2] = (n* — n)/2 restrictions on the
system. This result generalizes to a model with p lags: To identify the structural
model from an estimated VAR, it is necessary 1o impose (n* — n)/2 restrictions on
the structural model.

Take a moment to count the number of restrictions in a Choleski decomposition.
In the system above, the Choleski decomposition requires all elements above the
principal diagonal to be zero:

ke
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bia=biz=by=-=5b,=0
byy=by=w-=by, =0
byy=-=by, =0

bn—ln=0

Hence, there are a tota] of (n? — n)/2 restrictions; the system is exactly identified.
To take a specific example, consider the following Choleski decomposition in a
3 variable VAR:

ellzel!
‘32: = C2l€lr + e21
€3, = C31€, + C30€, T &,

From the previous discussion, you should be able to demonstrate that €, ,, €,,, and
€5, can be identified from the estimates of ¢,,, €,,, ¢;,, and variance/covariance ma-
trix Z. In terms of our previous notation, define matrix C = B™' with elements c;,.
Hence, ¢, = Ce,. An alternative way to model the relationship between the forecast
errors and the structural innovations is ‘

€1, =€, + €36y,
ezr = 021511 + €
€3, = C316, + €,

Notice the absence of a triangular structure. Here, the forecast error of each vari-
able is affected by its own structural innovation and the structural innovation in one
other variable. Given the (9 — 3)/2 = 3 restrictions on C, the necessary condition for
the exact identification of B and e, is satisfied. However, as illustrated in the next
section, imposing (n* — n)/2 restrictions is not a sufficient condition for exact iden-
tification. Unfortunately, the presence of non-linearities means there are no simple
rules that guarantee exact identification.

11. EXAMPLES OF STRUCTURAL DECOMPOSITIONS

To illustrate a Sims—Bernanke decomposition, suppose there are five residuals for
e, and e,,. Although a usable sample size of 5 is unacceptable for estimation pur-
poses, it does allow us to do the necessary calculations in a simple fashion. Thus,
suppose that the five error terms are

t €4 €y,

1 1.0 0.5
2 05 ° -10
3 00 0.0
4 ~1.0 0.5
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Since the (e} and {e,,} are regression residuals, their sums are zero. It is simple
to verify that 67 = 0.5, 6,, = 0,, = 0.4, and 62 = ().5; hence, the variance/covariance

matrix Z 1s
2_ 05 04
104 05

Although the covariance between €, and €,, is zero, the variances of ¢,, and e,
are presumably unknown. Let the variance/covariance matrix of these structural
shocks be denoted by Z, so that

z | var(g)) 0
- 0 var(e, )

The reason that the covariance terms are equal to zero is that €, and ¢,, are
deemed to be pure structural shocks. Moreover, the variance of each shock is time-
invariant. For notational convenience, the time subscript can be dropped; for exam-
ple? var(e,,) = VaI(E‘,-l) == Var(el)~

The relationship between the variance/covariance matrix of the forecast errors
(i.e., X) and variance/covariance matrix of the pure shocks (i.e., £.) is such that Z_=
BZB’. Recall that ¢, and €, are the column vectors (e, e,,)" and (e, €,,)’, respec-
tively. Hence,

80 that

(5.51)

S =)

IS
\fb
o
-~

Similarly, T, is

Zf (1 T)i €€ (5.52)
=1

To link the two variance/covariance matrices, note that the relationship between
€ and e, is such that €, = Be,. Substitute this relationship into (5.52) and recall that the
transpose of a product is the product of the transposes {i.e., (Be,)’ = e/B/], so that

T
A (iKY
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Hence, using (5.51), we obtain
L =BIB
By using the specific numbers in the example, it follows that
Var(e,) 0 | 1 b,|[05 04} 1 bz,}
0  var(e,)| |by 1 /|04 05]|b, 1

Since both sides of this equation are equivalent, they must be the same ‘element

by element. Carry out the indicated multiplication of BZB’ to obtain

var(e,) = 0.5 + 0.8b,, + 0.5b7, sy
0=0.5by, + 0.4by1b,, +04+05b, = (554)
0=0.5b,, +04b,b,, +0.4+05b, .. . . (559)
var(e,) = 0.5b,,% + 0.8b,, + 0.5 (5.56)

As you can see, Equations (5.54) and (5.55) are identical. There are three inde-
pendent equations to solve for the four unknowns b,5, b,,, var(g,), and var(e,). As
we saw in the last section, in a two-variable system, one restriction needs to be im-
posed if the structural model is to be identified. Now consider the Choleski decom-
position one more time. If b,, = 0, we find

Var(e;) = 0.5 ‘
0=0.5b,, +04 ‘ so that by, =-0.8
0=0.5b,, +04 so that again we find, b,, = 0.8

var(e,) = 0.5(b,,)* + 0.8b,, + 0.5 so that var(e,) = 0.5(0.64) — 0.64 + 0.5 =0.18
Using this decomposition, we can recover each {e,,} and {€,} as ¢ = Be,:
€, =€y,
and
&, =-0.8¢, + ey

Thus, the mﬁw structurll shocks are

t €/ 621 g
o 10 =03 .o

2 0.5 0.6 i

3 0.0 0.0

4 10 0.3

5 0.5 0.6

LAUILIED U] Dbt bidd et as CLUTT U U6 Skt

If you want to take the time, you can verify that var(e,) = Z(€,,)%/5 = 0.5, var(e,,)
= 2(€,)*/5 = 0.18, and cov(e,, €,) = Z¢,6,/5 = 0. Instead, if we impose the alterna-
tive restriction of a Choleski decomposition and set b,, = 0, from (5.53) through
(5.56), we obtain

Var(e,) = 0.5 + 0.8b,, + 0.5b,
0=04+0.5b, sothat b, =-0.8
0=04+0.5b,, so again b,, =—-0.8

Var(e,) = 0.5

Since b,, = 0.8, var(e)) = 0.5 + 0.8(-0.8) + 0.5(0.64) = 0.18. Now, B is identi-

fied as
[l —0.8}
B=
0 1

If we use the identified values of B, the structural innovations are such that €,, =
e, — 0.8¢,, and ,, = ¢,,. Hence, we have the structural innovations:

! € €

I 0.6 0.5
2 0.3 -1.0-
3 0.0 0.0
4 0.6 -0.5
5 -0.3 1.0

In this example, the ordering used in the Choleski decomposition is very impor-
tant. This should not be too surprising since the correlation coefficient between e,,
and e,, is 0.8. The point is that the ordering will have important implications for the
resulting variance decompositions and impulse response functions. Selecting the
first ordering (i.e., setting b, = 0) gives more importance to innovations in e,,
shocks. The assumed timing is such that €,, can have a contemporaneous effect on
x,, and x,,, whereas ¢€,, shocks can affect x;, only with a one-period lag. Moreover,
the amplitude of the impulse responses attributable to €, shocks will be increased
since the ordering affects the magnitude of a “typical” (i.e., one standard deviation)
shock in €, and decreases the magnitude of a “typical” ,, shock.

The important point to note is that the Choleski decomposition is only one type of
identification restriction. With three independent equations among the four un-
knowns b,,, by, var(g,,), and var(e,,), any other linearly independent restriction will
allow for the identification of the structural model. Consider some of the other al-
ternatives:

I. A Coefficient Restriction. Suppose that we know that a one-unit innovation
€, has a one-unit effect on x,,; hence, suppose we know that b, = 1. By using
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the other three independent equationx,,it‘folibws that var(e,) = 18, by, = ~1,
var(e,,) = 0.2
Given that €, = Be,, we obtain

€, 1 1}]e,

€, Tl-1 1 €,
s0 tht €, = e, + e, and €, = —¢,, + e,,. If we use the five hypothatigal regres-
‘'sion residuals, the dééomposed innovations become: o

t €, €2
1 1.5 -0.5
2 -1.5 05
i 4 _15 S e 05
. 5

1.5 0.5

2. A Variance Restriction. Given the relationship between X, and I (i.e., I, =
‘BLB’), a restriction on the variances contained within X, will.always imply mul-
tiple solutions for coefficients of B. To keep the arithmetic smple,. suppose that
we know var(e,,) = 1.8. The first equation yields two possible solutions for b, =
1 and b,, = —2.6; unless we have a theoretical reason to discard one of.these
magnitudes, there are two solutions to the model. Thus, even in a simple
2-variable case, unique identification is not always possible. If b,, = 1,. the re-

" maining solutions are b,, = -1 and var(e,) = 0.2. If b,, = 2.6, the solutions are
b, =-1% 5 and var(e,) = 0.556.
The two solutions can be used to identify two different {¢,,} and {e,,} se-
quences and innovation accounting can be performed using botb s.olutions. EYen
though there are two solutions, both satisfy the theoretical restriction concerning

var(e,,). '

3. Symmetry Restrictions. A linear combination of the coefficients and vari‘an‘ces
can be used for identification purposes. For example, the symmetry restriction
b\, = b,, can be used for identification. If we use Equation (5.54),'there are two

* solutions: by, = by, = 0.5 or by, = by, = -2.0. For the first solution, var(e,,) =

" 0.225, and using the second solution, we get var(e,,) = 0.9."°

i Nevertheless, for the first solution,

2l les VL
€] |05 1 ||ey
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50 that
L Ell e2r
1 0.75 0
2 0 -0.75
3 0 0
4 -0.75 0
5 0 0.75

Overidentified Systems

It may be that economic theory suggests more than (n? — n)/2 restrictions. If 80, it is

necessary to modify the method above. The procedure for identifying an overidenti-
fied system entails the following steps:

STEP 1: The restrictions on B or var(e,) do not affect the estimation of VAR coeffi-

cients. Hence, estimate the unrestricted VAR: X, =Ag+Ax_, ++ Apx,,

+ ¢, Use the standard lag length and block causality tests to help deter-
mine the form of the VAR.

STEP 2: Obtain the unrestricted variance/covariance matrix X, The determinant of
this matrix is an indjcator of the overall fit of the model.

STEP 3: Restricting B and/or X, will affect the estimate of X Select the appropriate
restrictions and maximize the likelihood function with respect to the free
parameters of B and Z,. This will lead to an estimate of the restricted vari-
ance/covariance matrix. Denote this second estimate by Zg.

For those wanting a more technical explanation, note that the log likeli-
hood function is

T
~(T/2)10[Z] - (1/2) D (/2 e,) L

Fix each element of e, (and ¢) at the level obtained using OLS; call
these estimated OLS residuals &, Now use the relationship T, = BSB’ so
that the log likelihood function can be written as

.
~(1/2)In|B"'5 (B! F012)Y @Bes Be,)
t=]
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Now select the restrictions on B8 and Z, and maximize with respect to
the remaining free elements of these two matrices. The resulting estimates
of B and Z, imply a value of X that we have dubbed Z,.

STEP 4: If the restrictions are not binding, £ and X will be equivalent. Let R = the
number of overidentifying restrictions; that is, R = number of restrictions
exceeding (n* — n)/2. Then, the ? test statistic:

=2l - [ 2]

with R degrees of freedom can be used to test the restricted system.' If the
calculated value of y? exceeds that in a ? table, the restrictions can be
rejected. Now allow for two sets of overidentifying restrictions such that
- the number of restrictions in R, exceeds that in R|. In fact, if R, > R, 2
(n* — n)/2, the significance of the extra R, — R, restrictions can be tested as

= loml - |50 | with R, ~ R, degrees of freedom

Similarly, in an overidentified system, the -statistics for the individual
coefficients can be obtained. Sims wamns that the calculated standard er-
rors may not be very accurate.

Sims’ Structural VAR

Sims (1986) uses a six-variable VAR of quarterly data over the period 1948:1.to
1979:3. The variables included in the study are real GNP (y), real business fixed in-
vestment (i), the GNP deflator ( p), the money supply as measured by M1 (’f”‘)’ un-
employment (u), and the treasury bill rate (r). An unrestricted VAR was es.tlmated
with four lags of each variable and a constant term. Sims obtained the 36 impulse
response functions using a Choleski decomposition with the ordering y—i— p=
m — u — r. Some of the impulse response functions had reasonable interpretations.
However, the response of real variables to a money supply shock seemed.unreason—
able. The impulse responses suggested that a money supply shock had little 'effegt
on prices, output, or the interest rate. Given a standard money demand function, it
is hard to explain why the public would be willing to hold the expande.d money
supply. Sims’ proposes an alternative to the Choleski decomposition that is consis-
tent with money market equilibrium. Sims restricts the B matrix such that

1 b, O 0 0 071 1r] le,]
by 1 by by 0 0| [m| e,
by 0 1 0 0 byl [y| |,
by 0 by 1 0 by Py ) €pr
by 0 by by 1 by i €
L O 0 0 0 0 1] [i] {e€]

R R R
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Notice that there are 17 zero restrictions on the by, the system is overidentified:
with six variables, exact identification requires only (6% - 6)/2 = 15 restrictions.
Imposing these 16 restrictions, Sims’ identifies the following six relationships
among the contemporaneous innovations:

r,=T71.20m, + ¢, (5.57)
m,=0.283y,+0.224p, - 0.0081r, + ¢,,, (5.58
¥, =-0.00135r, + 0.132i, + ¢, (5.59)
p,==0.0010r, + 0.045y, — 0.00364i, + € (5.60)
u,==0.116r,~20.1y, — 1.48i,— 8.98p, + ¢, (5.61)
i=¢, s (5.62)

Sims views (5.57) and (5.58) as money supply and demand functions, respec-
tively. In (5.57), the money supply rises as the interest rate increases. The demand
for money in (5.58) is positively related to income and the price level and nega-
tively related to the interest rate. Investment innovations in (5.62) are completely
autonomous. Otherwise, Sims sees no reason o restrict the other equations at any
particular fashion. For simplicity, he chooses a Choleski-type block structure for
GNP, the price level, and the unemployment rate. The impulse response functions
appear to be consistent with the notion that money supply shocks affect prices, in-
come, and the interest rate.

12. THE BLANCHARD AND QUAH DECOMPOSITION

Blanchard and Quah (1989) provide an alternative way to obtain a structural identi-
fication. Their aim is to reconsider the Beveridge and Nelson (1981) decomposition
of real GNP into its temporary and permanent components. Toward this end, they
develop a macroeconomic model such that real GNP is affected by demand-side
and supply-side disturbances. In accord with the natural rate hypothesis, demand-
side disturbances have no long-run affect on real GNP. On the supply side, produc-
tivity shocks are assumed to have permanent affects on output. In.a univariate
model, there is no unique way to decompose a variable into its temporary and per-
manent components. However, using a bivariate VAR, Blanchard and Quah show
how to decompose real GNP and recover the two pure shocks.

To take a general example, suppose we are interested in decomposing an /(1) se-
quence—say, {y,}—into its temporary and permanent components. In a univariate
framework [recall the discussion concerning Beveridge and Nelson (1981)], there is
no unique way to perform the decomposition. However, let there be a second vari-
able {z,} that is affected by the same two shocks. For the time being, suppose that
{2z} is stationary. If we ignore the intercept terms, the bivariate moving average

(BMA) representation of the {y,} and {z,} sequences will have the form:
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Ayt = z 97! (*) ‘if—k + 2 C12 (k} EZ:-—I: E . : (5.63)
k=0 k=0
4= 2 Oy (k) &gy + Z (k) €y (5.64)
k=0 ) k=0
or in a more compact form,

oAy | [ G Cl2(L)} {e“} »
L4 Cu(L) Cp(L) || ey
where €, and €,, = independent white-noise disturbances, each having a constant
variance

and the Ci(L) are polynomials in the lag operator L such that the individual coeffi-
cients of C;(L) are denoted by c;(k). For example, the third coefficient of C,,(L) is
¢,,(3). For convenience, the time subscripts on the variances and covariance terms
are dropped and shocks normalized so that var(e;) = 1 and var(e,) = 1. If we call X,
the variance/covariance matrix of the innovations, it follows that

var(e COV(EL, €90 ) o i wwn g
262[ (&) 1 2}

cov(g, &)  var(e,)

i

In order to use the Blanchard and Quah technique, both variables must be in a
stationary form. Since {y,} is I(1), (5.63) uses the first difference of the series. Note
that (5.64) implies that the {z,} sequence is I(0); if in your own work you find that
{z,} is also I(1), use its first difference.

In contrast to the Sims~Bernanke procedure, Blanchard and Quah do not directly
associate the {¢,,} and {e,} shocks with the {y,} and {z,} sequences. Instead, the
{y,} and {z,} sequences are the endogenous variables, and the {¢,} and (e} se-
quences represent what an economic theorist would call the exogenous variables. In
their example, y, is the logarithm of real GNP, z, unemployment, €, an aggregate
demand shock, and €,, an aggregate supply shock. The coefficients of C, (L), for
example, represent the impulse responses of an aggregate demand shock on the
time path of change in the log of real GNP.'2

The key to decomposing the {y,} sequence into its trend and irregular compo-
nents is to assume that one of the shocks has a temporary effect on the {y,} se-
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VAR. For example, Blanchard and Quah assume that an aggregate demand shock
has no long-run effect on real GNP. In the long run, if real GNP is to be unaffected
by the demand shock, it must be the case that the cumulated effect of an ¢,, shock

on the Ay, sequence must be equal to zero. Hence, the coefficients c,,(k) in (5.63)
must be such that

oo

zc“(k)e‘,_k =0 enogs (5.65)
k=0 el
Since the demand-side and supply-side shocks are not observed, the problem is

to recover them from a VAR estimation. Given that the variables are stationary, we
know there exists a VAR representation of the form:

{Ay,}[AII(L) A,Z(L):{ [Ay,_l}L e
& Ap(L) Ap(D)j{ 2, €,

Of tO use a more compact notation,

(5.66)

x,=AlL)x_, +e,

where x, = the column vector (Ay, z,)’
e, = the column vector (e,,, €,,)
A(L) = the 2 X 2 matrix with elements equal to the polynomials A L)

and the coefficients of A,(L) are denoted by a,(k).'*

The critical insight is that the VAR residuals are composites of the pure innova-
tions €;, and e,,. For example, e, is the one-step ahead forecast error of y,; that is,
e, = Ay, — E_,Ay,. From the BMA, the one-step ahead forecast error is ¢,,(0)e,, +
¢12(0)¢,,. Since the two representations are equivalent, it must be the case that

e, = ¢ (0)ey, + ¢5(0)ey, ) (5.67)
Similarly, since e,, is the one-step ahead forecast error of z,

ey, = C45,(0)e), + ¢;5(0)e,, - (5.68)

or, combining (5.67) and (5.68), we get

[e“}z{c“(O) sz(o)} lien}
€y €1(0) ¢(0)] | &,
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relationship between (5.66) and the BMA model plus the long-run restriction of
(5.65) provide exactly four restrictions that can be used to identify these four coef-
ficients. The VAR residuals can be used to construct estimates of var(e,), var(e,)
and cov(e,, €,)." Hence, there are the following three restrictions:

RESTRICTION 1

Given (5.67) and noting that Ee, ¢, = 0, we see that the normalization var(e) =
var(e,) = | means that the variance of e,, is

Var(e,) = ¢,1(0) +¢;,(0* (5.69)
RESTRICTION 2
Similarly, if we use (5.68), the variance of e,, is related to ¢,,(0) and ¢,,(0)
as
Var(e,) = C21(0)2 + 022(0)2 . . (5.70)
RESTRICTION 3 :
—

The product of e, and e,, is
122, = [c11(0)€;, + €12(0)& ) [c2, ()¢, + €22(Der ]
If we take the expectation, the covariance of the VAR residuals is
Ee, &5, = ¢11(0)c2;(0) + ¢12(0)c22(0) (5.7
Thus, equations (5.69), (5.70), and (5.71) can be viewed as three equations in the
four unknowns c,;(0), c¢,5(0), ¢,,(0), and ¢,,(0). The fourth restriction is embedded
in assumption that the {e,,} has no long-run effect on the {y,} sequence. The prob-
lem is to transform the restriction (5.65) into its VAR representation. Since the al-
gebra is a bit messy, it is helpful rewrite (5.66) as
x,=A(L)Lx, + e,
so that
U-ALLD)]x =e,
and by premultiplying by [/ = A(L)L]"', we obtain

x.=[I=AL)L) e, (5.72)
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Denote the determinant of [I — A(L)L] by the expression D. It should not take too
long to convince yourself that (5.72) can be written as:

Ay, 1-A,(LYL A, (L)L e,
MR Dot [
% (DL 1-AL (L)L ]| ey,

or using the definitions of the A;(L), we get

Ay, _(yD) 1=-Zan (L Za, k)L (e,
Z Lay (L 1-Za, ()L ||y
where the summations run from & = 0 to infinity.

Thus, the solution for Ay, in terms of the current and lagged values of {e,,} and
{ea} is

Ay, = (/D) {[1 - 2a22 (k)LF*! }e,, + z ay, (k)L e, } (5.73)

k=0 k=0

Now, ¢, and e,, can be replaced by (5.67) and (5.68). If we make these substitu-

" tions, the restriction that the {€,;,} sequence has no long-run effect on y, is

k=0 k=0

{1 - Zazz(k)Lk“}cl 10, + Y ap ()L ey (O)ey, =0

RESTRICTION 4

For all possible realizations of the {¢,,} sequence, €, shocks will have only
temporary effects on the Ay, sequence (and y, itself) if

{1—Zan(k)}c,,(0)+2a12(k)c21(0) =0

k=0 k=0

With this fourth restriction, there are four equations that can be used to identify

the unknown values ¢,(0), ¢;,(0), ¢,,(0), and ¢,,(0). To summarize, the steps in the
procedure are as follows.

STEP 1: Begin by pretesting the two variables for time trends and unit roots. If {y,}
does not have a unit root, there is no reason to proceed with the decompo-
sition. Appropriately transform the two variables, so that the resulting se-
quences are both /(0). Perform lag-length tests to find a reasonable ap-
proximation to the infinite-order VAR. The residuals of the estimated
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STEP 2:
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VAR should pass the standard diagnostic checks for white-noise processes
(of course, e,, and e,, can be correlated with each other).

Using the residuals of the estimated VAR, calculate the variance/covari-
ance matrix; that is, calculate var(e,), var(e,), and cov(e,, e,). Also calcu-
late the sums:

14

Zalz(k)

k=0

p
y 1-za22(k) and
k=0

where p =lag length used to estimate the VAR ‘
Use these values to solve the following four equations fﬁf’é-‘, (03, :tf,*g"((}),

" ¢4,(0), and ¢,,(0): '

STEP 3:

Var(e,) = 511(0)2 +¢(0)?

Var(e,) = (0 + 2,(0)?

Cov(ey, €;) = ¢11(0)c2,(0) + ¢12(0)c2,(0) ‘
0=c,,(0)[1 - Zan(k)] + c1(0)Za,,(k)

Given these four values ¢;{0) and the residuals of the VAR {e,,) and
{e4}, the entire {€,} and {e,} sequences can be identified using the for-
mulas:*®

i = 11 (0)€;,; + c12(0)er;

and

i = €21 (0)€),; + €22(0)&y;

As in a traditional VAR, the identified {€,,} and (e} sequences can be
used to obtain impulse response functions and variance decompositions.
The difference is that the interpretation of the impulses is straightforward.
For example, Blanchard and Quah are able to obtain the impulsg responses
of the change in the log of real GNP to a typical supply-side shock.
Moreover, it is possible to obtain the historical decomposition of each se-
ries. For example, set all {€;,} shocks equal to zero and use the actual {e,,}
series (i.e., use the identified values of €,,) to obtain the permanent
changes in {y,} as'®

R

oo

Ay, = chz(k)ezx—k

k=0
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The Blanchard and Quah Results

" In their study, Blanchard and Quah (1989) use the first difference of the logarithm

of real GNP and the level of unemployment. They note that unemployment exhibits
an apparent time trend and that there is a slowdown in real growth beginning in the
mid-~1970s. Since there is no obvious way to address these difficult issues, they es-
timate four different VARs. Two include a dummy allowing for the change in the
rate of growth in output and two include a deterministic time trend in unemploy-
ment. Using quarterly GNP and unemployment data over the period 1950:2 through
1987:4, they estimated a VAR with eight lags.

Imposing the restriction that demand-side shocks have no long-run effect on real
GNP, Blanchard and Quah identify the two types of shocks. The impulse response
functions for the four VARs are quite similar:

1. The time paths of demand-side disturbances on output and unemployment are

hump-shaped. The impulse responses are mirror images of each other; initially
output increases while unemployment decreases. The effects peak after four
quarters; afterward they converge to their original levels.

2. Supply-side disturbances have a cumulative effect on output. A supply distur-
bance having a positive effect on output also has a small positive initial effect on
unemployment. After this initial increase, unemployment steadily decreases and
the cumulated change becomes negative after four quarters. Unemployment re-
mains below its long-run level for nearly 5 years.

Blanchard and Quah find that the alternative methods of treating the slowdown
in output growth and the trend in unemployment affect the variance decomposi-
tions. Since the goal here is to illustrate the technique, consider only the variance
decomposition using a dummy variable for the decline in output growth and de-
trended unemployment.

Percent of Forecast Error Variance due to Demand-Side Shocks

Forecasting
Horizon (Quarters) Output Unemployment
1 99.0 519
4 e e 979 80.2
12 67.6 86.2
40 39.3 85.6

At short-run horizons, the huge preponderance of the variation in output is due to
demand-side innovations. Demand shocks account for almost all the movement in
GNP at short horizons. Since demand shock effects are necessarily temporary, the
findings contradict those of Beveridge and Nelson. The proportion of the forecast
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error variance falls steadily as the forecast horizon increases; the proportion con-
verges to zero since these effects are temporary. Consequently, the contribution of
supply-side innovations to real GNP movements increases at longer forecasting
horizons. On the other hand, demand-side shocks generally account for increasing
proportions of the variation in unemployment at longer forecasting horizons.

13. DECOMPOSING REAL AND NOMINAL EXCHANGE
RATE MOVEMENTS: AN EXAMPLE

In Lee and Enders (1993), we decompose real and nominal exchange rate move-
ments into the components induced by real and nominal factors. This section pre-
sents a small portion of the paper in order to further illustrate the methodology of
the Blanchard and Quah technique. One aim of the study is to explain the devia-
tions from purchasing power parity. As in Chapter 4, the real exchange rate (r,) can
be defined as'’

r,=e,+p;“—p,

where p¥* and p, refer to the logarithms of U.S. and Canadian wholesale price in-
dices and e, is the logarithm of the Canadian dollar/U.S. dollar nominal exchange
rate.

To explain the deviations from PPP, we suppose there are two types of shocks: a
real shock and nominal shock. The theory suggests that real shocks can cause per-
manent changes in the real exchange rate, but nominal shocks can cause only tem-
porary movements in the real rate. For example, in the long run, if Canada doubles
its nominal money supply, the Canadian price level will double and the Canadian
dollar price of U.S. dollars will halve. Hence, in the long run, the real exchange rate
remains invariant to a money supply shock.

For Step 1, we perform various unit root tests on the monthly Canadian/U.S. dol-
lar real and nominal exchange rates over the 1973:1 to 1989:12 period. Consistent
with other studies focusing on the post-Bretton Woods period, it is clear that real
and nominal rates can be characterized by non-stationary processes. We use the
first difference of the logarithm of each in the decomposition. Our BMA model has

the form:

Ay [Gil) GuD) {e}

Ae, Cy(L)y Cyu(l)]|e,
where €, and ¢, represent the zero-mean mutually uncorrelated real and nominal
shocks, respectively.

The restriction that the nominal shocks have no long-run effect on the real ex-
change rate is represented by the restriction that the coefficients in C,,(L) sum to
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zero; thus, if ¢ (k) is the kth coefficient in C;,(L), as in (5.65), the restriction is

oo

ch(k) =0 o (5.74)

k=0

The restriction in (5.74) implies that the cumulative effect of €, on Ar, is zero,
and consequently, the long-run effect of €, on the level of r, itself is zero. Put an-
other way, the nominal shock €, has only short-run effects on the real exchange
rate. Note that there is no restriction on the effects of a real shock on the real rate or
on the effects of either real or nominal shocks on the nominal exchange rate.

For Step 2, we estimate a bivariate VAR model for several lag lengths. At con-
ventional significance levels, formal tests indicate that one lag is sufficient.
However, to avoid the possibility of omitting important effects at longer lags, we
performed the entire analysis using lag lengths of 1 month, 6 months, and 12
months.

The variance decomposition using the actual {¢,,} and {€,} sequences allows us
to assess the relative contributions of the real and nominal shocks to forecast error
variance of the real and nominal exchange rate series.

Percent of Forecast Error Variance Accounted for by Real Shocks

Horizon Ar, Ae,
1 month 100% 81.5%
3 months 99.9 ‘ 79.2
12 months 7" 98.5 78.1
36 months 98.5 78.1

As is immediately evident, real shocks explain almost all the forecast error vari-
ance of the real exchange rate at any forecast horizon. Nominal shocks accounted
for approximately 20% of the forecast error variance of the nominal exchange rate.
Qur interpretation is that real shocks are responsible for movements in real and
nominal exchange rates. Hence, we should expect them to display sizable comove-

"~ ments.

Figure 5.8 shows the impulse response functions of the real and nominal ex-

- change rates to both types of shocks. For clarity, the results are shown for the levels

of exchange rates (as opposed to first differences) measured in terms of standard
deviations. For real shocks:

1. The effect of a “real” shock is to cause an immediate increase in the real and
nominal exchange rate. It is interesting to note that the jump in the real value of
the dollar is nearly the same as that of the nominal dollar. Moreover, these
changes are all of a permanent nature. Real and nominal rates converge to their
new long-run levels in about 9 months.
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Figure 5.8
Response of real exchange rate.
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initially moves in the same direction as the U.S. nominal dollar.

It is instructive to examine the hypothetical time paths of the nominal rate that
result from the decomposition. Normalize both rates such that January 1973 = 1.0.
Figure 5.9 shows that if all shocks had been nominal shocks, the Canadian dollar
would have declined (i.e., the U.S. dollar would have appreciated) rather steadily
throughout the entire period; it appears that the rate of depreciation would have ac-
celerated beginning in the early 1980s and continuing throughout 1989. The role of
the “real” shock was generally reinforcing that of the nominal shock. It is particu-
larly interesting to note that the real shock captures the major turning points of ac-
tual rates. The sharp depreciation beginning in 1978 and the sharp appreciation be-
ginning around 1986 are the result of real, as opposed to nominal, factors.

Limitations of the Technique

A problem with this type of decomposition is that there are many types of shocks.
As recognized by Blanchard and Quah (1989), the approach is limited by its ability
to identify at most only as many types of distinct shocks as there are variables.

Figure 5.9 Decomposed real canadian dollars.
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2. The movement in the real rate to its long-run level is almost immediate, whereas
the nominal value of the U.S. dollar generally rises over time (i.e., the U.S. dol-
lar price of the Canadian dollar falls). There is little evidence of exchange rate
overshooting.

3. Long-run changes in the two rates are almost identical, but surprisingly, the
long-run real rate jumps more rapidly than the nominal rate.

As required by our identification restriction, the effect of a nominal shock on the
real exchange rate is necessarily temporary. Notice that the effects of typical “nom-
inal” shocks of one standard deviation are all significantly smaller than the effects
of typical “real” shocks. A typical nominal shock causes a rise in the nominal value
of the U.S. dollar with no evidence of overshooting. Finally, the real U.S. dollar
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Blanchard and Quah prove several propositions that are somewhat helpful when the

presence of three or more structural shocks is suspected. Suppose that there are sev-

eral disturbances having permanent effects, but only one having a temporary effect

on {y,}. If the variance of one type of permanent disturbance grows “arbitrarily”
small relative to the other, then the decomposition scheme approaches the correct
decomposition. The second proposition they prove is that if there are multiple per-
manent disturbances (temporary disturbances), the correct decomposition is possi-
ble if and only if the individual distributed lag responses in the real and nominal ex-
change rate are sufficiently similar across equations. By “sufficiently similar,”

Blanchard and Quah mean that the coefficients may differ up to a scalar lag distrib-

ution. However, both propositions essentially imply that there are only two types of
disturbances. For the first proposition, the third disturbance must be arbitrarily

small. For the second proposition, the third disturbance must have a sufficiently
similar path as one of the others. It is wise to avoid such a decomposition when the
presence of three or more important disturbances is suspected.

SUMMARY AND CONCLUSIONS

Intervention analysis was used to determine the effects of installing metal detectors

in airports. More generally, intervention analysis can be used to ascertain how any
deterministic function affects an economic time series. Usually, the shape of the in-
tervention function is clear as in the metal detector example. However, there is a
wide variety of possible intervention functions. If there is an ambiguity, the shape

of the intervention functionscan.to determined using the standard Box-Jenkins cri-
teria for model selection. The crucial assumption in intervention analysis is that the

intervention function has only deterministic components.
Transfer function analysis is appropnate if the “intervention” sequence is sto-
chastic. If {y,} is endogenous and {z,} exogenous, a transfer function can 1 fit us.

ing a five-step procedure discussed in Section 2. The procedure is a straightforward e «mmmme...... Pulse: 2, = 1 and all other z,= 0

modification of the standard Box~Jenkins methodology. The resulting impulse re-
sponse function traces out the time path of (z,} realizations on the {y,} sequence.
The technique was illustrated by a study showing that terrorist attacks caused

Ttaly’s tourism rgre7“cs to decline by a total 600 milli SIS
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ficulty with VAR analysis is that the underlying structural model cannot be recov-
ered from estimated VAR. An arbitrary Choleski decomposition provides an extra
equation necessary for identification of the structural model. For each variable in
the system, innovation accounting techniques can be used to ascertain (1) the per-
centage of the forecast error variance attributable to each of the other variables and
(2) the impulse responses to the various innovations. The technique was illustrated
by examining the relationship between terrorism and tourism in Spain.

Another difficulty of VAR analysis is that the system of equations is overpara-
meterized. The Bayesian approach combines a set of prior beliefs with the tradi-
tional VAR methods presented in the text. West and Harrison (1989) provides an
approachable introduction to the Bayesian approach. Litterman (1981) proposed a
sensible set of Bayesian priors that have become the standard in Bayesian VAR
models. Todd (1984) and Leamer (1986) provide very accessible applications of the
Bayesian approach.

An important development is the convergence of traditional economic theory and
the VAR framework. Structural VARs impose an economic model on the contem-
poraneous movements of the variables. As such, they allow for the identification of
the parameters of the economic model and the structural stocks. The
Bernanke-Sims procedure can be used to identify (or overidentify) the structural
innovations. The Blanchard and Quah methodology imposes long-run restrictions
on the impulse response functions to exactly identify the structural innovations. An
especially useful feature of the technique is that it provides a unique decomposition

of an economic time series into its temporary and permanent components.

QUESTIONS AND EXERCISES

1. Consider three forms of the intervention variable:
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C. Show that an intervention variable will not have a permanent effect on a
unit root process if all values of z; sum to zero.
D. Discuss the plausible models you might choose if the {y,} sequence is

i. Stationary and you suspect that the intervention has a permanent effect
on Ey,.

. ii. Stationary and you suspect that the intervention has a growing and then
a diminishing effect.
ifi. Nonstationary and you suspect that the intervention has a permanent ef-
fect on the level of {y,}.

iv. Nonstationary and you suspect that the intervention has a temporary ef-
fect on the level of the (y,}.

. v. Nonstationary and you suspect that the intervention increases the trend
growth of {y,}.

.. 2. Let the realized value of the {z,} sequence be such that z; = 1 and all other val-

ues of z,=0.

A. Use Equation (5.11) to trace out the effects of the {z,} sequence on the time
path of y,.

B. Use Equation (5.12) to trace out the effects of the {z,} sequence on the time
paths of y, and Ay,.

C. Use Equation (5.13) to trace out the effects of the {z,} sequence on the time
paths of y, and Ay,.

D. Would your answers to parts A through C change if {z,] was assumed to be
a white-noise process and you were asked to trace out the effects of a z,
shock of the various {y,} sequences?

E. Assume that {z,} is a white-noise process with a variance equal to unity.

#u 1. Use (5.11) to derive the cross-correlogram between {z,} and {y,}.

ii. Use (5.12) to derive the cross-correlogram between {z,} and {Ay,}.
iii. Use (5.13) to derive the cross-correlogram between {z,} and {Ay,}.

iv. Now suppose that z, is the random walk process z, = z,_, + €,,. Trace out
the effects of an €, shock on the Ay, sequence.

. Consider the transfer function model y, = 0.5y,_; + z, + €,, where gz, is the au-

toregressive process z, = 0.5z,_; + €,.

‘A. Derive the CACF between the filtered {y,} sequence and {€,} sequence.

B. Now suppose y, = 0.5y,_, + z, + 0.5z,_, + € and z, = 0.5z,_, + ¢,,. Derive the
cross-autocovariances between the filtered {y,} sequence and €,. Show that
the first two cross-autocovariances are proportional to the transfer function

= coefficients. Show that the cross-covariances decay at the rate 0.5.

et s st T
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4. Use (5.28) to find the appropriate second-order stochastic difference equation

for y,:

yo| (08 02y, e
Z 02 08}z, €y,

A. Determine whether the {y,} sequence is stationary.

B. Discuss the shape of the impulse response function of y, to a one-tnit shock
in ¢,, and a one-unit shock in e,,. R

C. Suppose ¢, = €, + 0.5¢,, and that ¢,, = €. Discuss the shape of the impulse
response function of y, to a one-unit shock in €,. Repeat for a one-unit
shock in €.

D. Suppose ¢, = €,, and that e,, = 0.5¢ , + €. Discuss the shape of the impulse
response function of y, to a one unit shock in €, Repeat for a one-unit
shock in €.

E. Use your answers to C and D to explain why the ordering in a Choleski de-
composition is important.

F. Using the notation in (5.21), find A? and A}. Does A% appear to approach
zero (i.e., the null matrix)?

. Using the notation of (5.21) suppose a,, =0, a,,=0,a,,=0.8,a,,=02,a,, =

0.4, and a,, =0.1.

A. Find the appropnate second-order stochastic difference equation for y,.
Determine whether the {y,} sequence is stationary.

B. Answer parts B through F of Question 4 using these new values of a;;.

C. How would the solution for y, change if a,, = 0.27?

. Suppose the residuals of a VAR are such that var(e,) = 0.75, var(e;) = 0.5, and

cov{e,, e,,) =0.25.

A. Using (5.53) through (5.56) as guides, show that it is not possible to iden-
tify the structural VAR.

B. Using Choleski decomposition such that b,, = 0, find the identified values
of b,,, var(e,), and var(e,).

C. Using Choleski decomposition such that b, = 0, find the identified values
of b,, var(e,}, and var(e,).

D. Using a Sims—Bernanke decomposition such that &,, = 0.5, find the identi-
fied values of b,,, var(e,), and Var(e,).



E. Using a Sims-Bemanke decomposition such that by, = 0.5, find the identi-
fied values of b,,, var(e,), and var(e,).

F. Suppose that the first three values of e, are estimated to be 1, 0, and —1 and
the first three values of e,, are estimated to be —1, 0, and 1. Find the first

three values of €,, and €,, using each of the decompositions in parts B
through E.

7. This set of exercises uses data from the file entitled US.WK1. The first column
contains the U.S. money supply (as measured by M1) and fifth column the
U.S. GDP Deflator (1985 = 100) for the period 1960:Q1 through 1991:Q4.
These two variables are labeled M1 and GDPDEF on the data disk, In

. Questions 7 through 10, your task is to uncover the relationship between the in-

' _ flation rate and rate of growth of the money supply.

Economic theory suggests that many variables influence inflation and
money growth. Some of these variables are included in the file US.WK].
Respectively, columns 2, 3, and 4 hold the Treasury bill rate (denoted by
TBILL), 3-year government bond yield (denoted by R3), and 10-year govern-
ment bond yield (denoted by R10). Column 6 contains real GDP in 1985 prices
(denoted by GDP85) and column 7 nominal government purchases (denoted by
GOVT). To keep the issues as simple as possible, consider only a bivariate

.- VAR between money and inflation.

~ A. Construct the rate of growth of the money supply (GM1) and inflation rate
(INF) as the following logarithmic changes:

GM1, =logM1)) - logMI1,_))
INF, = log(GDPDEF,) - log(GDPDEF,_,)

You should find that the constructed variables have the following properties:

Observa- Standard
Series tions Mean Error Minimum Maximum
INF 127 0.0119070404  0.0066458391  —0.0039847906 0.0296770174
GM1 127 0.0149101522  0.0295263232  —0.0471790362 0.0781839833

B. The bivariate VAR might have the form given by (5.44). One problem
with this specification is that GM1, has a strong seasonal component. In
Exercise 5 of Chapter 2, you were asked to model the {M1} series using
univariate methods. Recall that seasonal differencing was necessary. In
VAR analysis, it is common practice to include seasonal dummy vari-

ables to capture the seasonality. Construct the dummy variables D,, D,,
and D,

where D, =1 in the ith quarter of each year and zero otherwise.

Interpret the effects of the seasonal dummies in the following bivariate VAR:

GMI1,=A o+ A, (1)D; + A o(2)D; + A x,(3)D; + A (LYGMT
+AL(DINF_ +¢,

INF, = A, + Aso{1)D| + Aq(2)D, + A,(3)D4 + A, (LYGM,_,
+ A (LD)INF,_| + ey,

C. Consider the bivariate VAR above using 12 lags of each variable and save
the residuals.

i.  Explain why the estimation cannot begin earlier than 1963:Q2.

ii. Estimate the model (with the seasonal dummies) using 12 lags of each
variable and save the residuals. You should find that log( | 2z, ]) =
-20.56126

iii. Estimate the same model over the same sample period now using only
using eight lags of each variable. You should find log( | pa ‘) =
-20.42120

iv. Use (5.45) to construct the likelihood ratio test for the null hypothesis
of eight lags. How many restrictions are there in the system? How
many regressors are there in each of the unrestricted equations? If you
answer correctly, you should find that the calculated value ¥* with 16
degrees of freedom is 12.184668 with a significance level 0.73117262.
Hence, it is not possible to reject the null of eight lags.

D. Repeat the procedure in part C in order to show that it is possible to further
restrict the system to four lags of each variable. Now estimate models with
eight and four lags over the sample period 1962:Q2 to 1991:Q4. (Note that
the number of regressors in the unrestricted model is now 12.) You should

* find

log(| =5 |) =-20.42791e
log(| £, ) = =20.30502
Y36 = 12.165234 with significance level 0.73252907

~B. Show that it is inappropriate to restrict the system such that there is only

one lag of each variable. Estimating the two models over the 1961:Q2 to
1991:Q4 period, you should find

log(|Z, ) = =20.32279
log(| %, |) =~19.89689
x2, = 47.274603 with significance level 0.00000418
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Question 7 suggested using a bivariate VAR with four lags. Explain how it is .
possible to modify the procedure to in order to test for the presence of the sea-
sonal dummy variables. Show that you can reject the restriction:

Ao()D, = A1o(2)D; = A 4(3)D5 = A,o(1)D) = Ay(2)D, = A303)D;=0

i. How does this procedure differ from the following test?

Ayo(1)D) = Ayy(2)D; = Ayy(3)D5 =0

. Keep the seasonal dummies in both equations and estimate the bivariate VAR

with four lags over the 1961:Q2 to 1991:Q4 period.
A. How would you test to determine whether INF Granger causes GM 1?7

B. Perform each of the indicated causality tests.

i.  Verify that money growth Granger causes itself. The F-test for the re-
striction that all the coefficients of A,,(L) = 0 yields a value of 3.3602
with a significance level of 0.0122948.

ii. Verify that inflation Granger causes money growth. The F-test for the
restriction all A,,(L) = 0 yields a value of 2.1472 with a significance
level of 0.0796779.

" fii. Verify that the F-test for the restriction all coefficients of A,,(L) = 0
yields a value of 0.7670 with a significance level of 0.5489179.

iv. Verify that the F-test for the restriction all coefficients of A,,(L) = 0
yields a value of 56.1908 with a significance level of 0.0000000.

C. The Granger causality test indicates that inflation Granger causes money
growth and Granger causes itself. Money growth, however, only Granger
causes itself. Explain why it is not appropriate to conclude that money
growth has no affect on inflation! What if you knew that the correlation co-
efficient between innovations in money growth (i.e., e,,) and inflation (i.e.,
e,,) was identically equal to zero? Why might these results change in the
presence of a third variable (such as GDP85)?

Consider a Choleski decomposition such that innovations in inflation (denoted
by €,) do not have a contemporaneous effect on money growth, but money
growth innovations (denoted by €,,) have a contemporaneous effect on infla-
tion. Represent the relationship between the regression equation errors and
pure money growth and inflation innovations in terms of (5.39) and (5.40).

A. If you are using a software package capable of calculating variance decom-
positions, verify:

L
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Percent of forecast error variance
due to money shock

Steps ahead GM1 INF
1 100.00 0.1794
4 94.58 0.4632
12 .. 9324 ... 20339 o
24 92.85 - 2.3442

Interpret the figures in the table.

B. Reverse the ordering of the Choleski decomposition, so that money growth
innovations do not have a contemporaneous effect on inflation. Represent
the relationship between the regression equation errors and pure money
growth and inflation innovations in terms of (5.39) and (5.40).

C. Verify:

Percent of forecast error variance
due to money shock

Steps ahead GM1 INF
1 99.82 0.0000
4 94.22 1.7180
12 93.15 2.3341
24 92.78 3.1891

Explain why this alternative ordering is nearly the same as that found in
part A. What is the correlation coefficient between the regression error terms?

D. What are the major weaknesses of this bivariate VAR study? Comment on
the following issues:
i. The treatment of seasonality.

ii. Other variables that may affect the relationship between money growth
and inflation. You may want to expand the VAR by including other
variables in the file US.WKI.

iit. Changes in the conduct of monetary policy.

In the next set of questions, you are asked to analyze the relationship between
short- and long-term interest rates. The data file US.WKI contains some of the
relevant variables for the period 1960:Q! through 1991:Q4. Respectively,

~ columns 2, 3, and 4 hold the Treasury bill rate (denoted by TBILL), 3-year

government bond yield (denoted by R3), and 10-year government bond yield




(denoted by R10). Column 6 contains the U.S. GDP Deflator (denoted by

GDPDEF, where 1985=100) and column 7 nominal government purchases (de-
noted by GOVT).

A. Certain economic theories suggest a relationship between real interest rates
and real government spending. It seems sensible to analyze a trivariate
VAR using TBILL, R10, and a measure of real government purchases of
goods and services. Toward this end, construct the variable RGOVT as the
ratio GOVT/GDPDEF. You should find

Observa- Standard
Series tions Mean Error Minimum Maximum
RGOVT 128 6255.9 1438.69 3511.256 8868.6
TBILL 128 6.3959 2.7915105% 2.32000000 15.0900
R10 128 7.6299 2.76273472 3.79000000 14.8500

B. Pretest the variables for the presence of unit roots using Dickey-Fuller
tests. Using four lags and a constant, you should find the t-statistics on the
lagged level of each variable to be

RGOVT =-0.97872
TBILL =-2.21122
R10=-1.90275

C. Estimate the trivariate VAR in levels including three seasonal dummy vari-
ables (see part B of Question 7 concerning the creation of the dummy vari-
ables). Construct a likelihood ratio test to determine whether it is possible
to restrict the number of lags from 12 to eight. You should find:

log(1Z,,1)=3.867667,  log(|%,|)=4.700780
X (36 degrees of freedom) = 63.316597 with significance level 0.00327933

Hence, reject the hypothesis that eight lags are sufficient to capture the dynamic
relationships in the data. (Note: For this test to be meaningful, the residuals of the
regression equations used to construct £,, should be stationary.)

D. Using the model with 12 lags:

i. Find the correlations between the innovations. Since the Correlation be-
tween the innovations in TBILL and R10 is 0.808, explain why the or-
dering in a Choleski decomposition is likely to be important.

ii. Show that each variable Granger causes the other variables at conven-
tional significance levels.

E. Consider the variance decompositions using a Choleski decomposition such
that RGOVT innovations contemporaneously affect themselves variables,

TBILL innovations contemporaneously affect themselves and R10, and R10
innovations contemporaneously affect only R10. Write down this structgre
in terms of a general form of (5.39) and (5.40). Using this ordering, verify
that the proportions of 24-step ahead forecast error variance of RGOVT,
TBILL, and R10 due to RGOVT, TBILL, and R10 innovations are

RGOVT = 89.07528, 9.21137, and 1.71335%, respectively
TBILL = 13.77804, 84.67659, and 1.54537%, respectively
R10 = 17.37698, 78.13322, and 4.48980%, respectively

Thus, TBILL innovations “explain” 78.13322% of the forecast error vari-
ance in R10, and R10 innovations explain only 1.54537% of the forecast error
variance in TBILL.

F. Use the reverse ordering such that R10 innovations affect all variables con-
temporaneously, TBILL innovations contemporaneously affect TBILL and
RGOVT, and RGOVT innovations contemporaneously affect only
RGOVT. Compare your results to those in part E.

12. The results from Question 11B suggest that all variables are nonstationary.
Now estimate the same trivariate VAR (including seasonals), but use first dif-
ferences instead of levels.

A. Verify the following:
i. The lag-length tests for eight versus 12 lags yields

log(1Z,,1)=4.108633,  log(|Z4|) =4.700780 |
x? (36 degrees of freedom) = 58.544793 with significance level 0.01017107

ii. If we use 12 lags, the correlation between TBILL and R10 innovations
is 0.7776.

iii. The change in RGOVT, (i.e., ARGOVT,) does not Granger cause itself
or AR10,, but does Grange cause ATBILL, at the 0.016 significance
level.

B. Use the same ordering as in Question 11E. Verify that the proportions of
24-step ahead forecast error variance of ARGOVT,, ATBILL,, and AR10,
" due to ARGOVT,, ATBILL,, and AR10, innovations are

ARGOVT =71.54324, 18.22792, and 10.22885%, respectively
ATBILL = 19.02489, 70.99188, and 9.98323%, respectively
AR10 = 15.79140, 50.05796, and 34.15065%, respectively

C. Perform a block exogenity test to determine whether RGOVT helps to “‘ex-
plain” the movements in interest rates.
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D. Overall, compare the results of using the varfables iti levels to those using
the variables in first differences. S

ENDNOTES

12.

. In terms of the notation of the previous chapter, z, is equivalent to the level dummy vari-

able D,.

- In other words, if ¢, # 0, predicting y,,, necessitates predicting the value of z,,,.
- In the identification process, we are primarily interested in the shape, not the height, of

the cross-correlation function. It is useful to standardize the covariance by dividing
through by ¢2; the shape of the correlogram is proportional to this standardized covari-
ance. Hence, if of = 1, the two are equivalent. The benefit of this procedure is that we
can obtain the CACF from the transfer function.

- In such circumstances, Box and Jenkins (1976) recommend differencing y, and/or z,, so

that the resulting series are both stationary. The modern view cautions against this ap-
proach; as shown in the next chapter, a linear combination of nonstationary variables
may be stationary. In such circumstances, the Box—Jenkins recommendation leads to
overdifferencing. For the time being, it is assumed that both {».} and {z,} are stationary
processes.

- We were able to obtain quarterly data from 1970:I to 1988:1V for Austria, Canada,

Denmark, Finland, France, West Germany, Greece, Italy, the Netherlands, Norway, the
U. K. and the United States. The International Monetary Fund’s Balance of Payments
Statistics reports all data in special drawing rights (SDR). Our dependent variable is the
logarithm of nation’s revenues divided by the sum of the revenues for all 12 countries.

. Tourism is highly seasonal; we tried several alternative deseasonalization techniques.

The results reported here were obtained using seasonal dummy variables. Hence, ¥, rep-
resents the deseasonalized logarithmic share of tourism receipts. The published paper re-
ports results using quarterly differencing. When either type of deseasonalization was
used, the final results were similar.

. Expectations of the future can also be included in this framework. If the temperature

{y.} is an autoregressive process, the expected value of next period’s temperature (i.e.,
Yir1) Will depend on the current and past values. In (5.20), the presence of the terms y,
and y,_; can represent how predictions regarding next period’s temperature affect the
current thermostat setting.

- It is easily verified that this representation implies that p,, = 0.8. By definition, the cor-

relation coefficient p, is defined to be G1,/(0,0,) and the covariance is Ee,e,, = G,,. If
we use the numbers in the example, Ee, e, = Ele, (e, + 0.8¢,)] = 0.86% Since the de-
composition equates var(e,,) with o, it follows that p, = 0.8 if 62 = ..

- Other types of identification restrictions are included in Sections 10 through 13,
. In the example under consideration, the symmetry restriction on the coefficients means

that var(e,,) is equal to var(e,,). This result does not generalize; it holds in the example
because of the assumed equality var(e,,) = var(e,,).

. The value IER| -zl is asymptotically distributed as a % distribution with R degrees

of freedom.

Since a key assumption of the technique is that E(e;,e,,) = 0, you might wonder how it is
possible to assume that aggregate demand and supply shocks are independent. After all,
if the stabilization authorities follow a feedback rule, aggregate demand will change in

13.
14.

16.
17.
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response to aggregate supply shocks. The key to understanding this apparent contradilc—
tion is that €, is intended to be the orthogonalized portion of the demand shock, that is,
the portion of the demand shock that does not change in response to aggregate supply.

= DL+ -
For example, A, (L) = a,,(0) + a,(1)L + a;,( ‘ ‘ ‘
The VAR residuals also have a constant variance/covariance matrix. Hence, the time
subscripts can be dropped.

Since two of the restrictions contain squared terms, there will be a positive value and an

equal but opposite negative value for some of the coefficients. T}Be set of coefﬁcienés Fo
use is simply a matter of interpretation. In Blanchard and Quah’s example, if ‘f”( ) is
positive, positive demand shocks have a positive effect of output, and if ¢,,(0) is nega-
tive, the positive shock has a negative effect on output. .

In doing so, it will be necessary to treat all €,,_; = 0 for ¢ - <1. . . .
Here, Canada is treated as the home country, so that ¢, is the Canadian dollar price o

U.S. dollars and p* refers to the U.S. price level.




Chapter 6

COINTEGRATION AND E‘ﬁmﬁ: it
CORRECTION MODELS

This chapter explores an exciting new development in econometrics: the estima-
tion of a structural equation or VAR containing nonstationary variables. In univari-
ate models, we have seen that a stochastic trend can be removed by differencing.
The resulting stationary series can be estimated using univariate Box-Jenkins tech-
niques. At one time, the conventional wisdom was to generalize this idea and dif-
ference all nonstationary variables used in a regression analysis. However, it is now
recognized that the appropriate way to treat nonstationary variables is not so
straightforward in a multivariate context. It is quite possible for there to be a linear
combination of integrated variables that is stationary; such variables are said to be
cointegrated. Many economic models entail such cointegrating relationships. The
aims of this chapter are to:

1. Introduce the basic concept of cointegration and show that i{ applies in a variety
of economic models. Any equilibrium relationship among a set of nonstationary
variables implies that their stochastic trends must be linked. After all, the equi-
librium relationship means that the variables cannot move independently of each
other. This linkage among the stochastic trends necessitates that the variables be
cointegrated.

2. Consider the dynamic paths of cointegrated variables. Since the trends of cointe-

grated variables are linked, the dynamic paths of such variables must bear some
relation to the current deviation from the equilibrium relationship. This connec-
tion between the change in a variable and the deviation from equilibrium is ex-
amined in detail. It is shown that the dynamics of a cointegrated system are such
that the conventional wisdom was incorrect. After all, if the linear relationship 1s
already stationary, differencing the relationship entails a misspecification error.

» 3. Study the alternative ways to test for cointegration. The econometric methods

underlying the test procedures stem from the theory of simultaneous difference
equations. The theory is explained and used to develop the two most popular
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Cointc?gration tests. The proper way to estimate a system of cointegrated variables is
examined. Several illustrations of each methodology are provided. Moreover, the
two methods are compared by applying each to the same data set.

1. LINEAR COMBINATIONS OF INTEGRATED VARIABLES

Sin§e money demand studies stimulated much of the cointegration literature, we
bfagm by considering a simple model of money demand. Theory suggests that indi-
v1du.als want to hold a real quantity of money balances, so that the demand for
normpal money holdings should be proportional to the price level. Moreover, as
real income and the associated number of transactions increase, individuals will
wagt to hold increased money balances. Finally, since the interest rate is the oppor-
tunity cost of holding money, money demand should be negatively related to the in-

tergst rate. In logarithms, an econometric specification for such an equation can be
written as

m1=BO+Blpr+B2yr+BBrr+er R 6.1

where m, = long-run money demand

p, = price level
y, = real income
r, = interest rate
e, = stationary disturbance term

B; = parameters to be estimated

and all variables but the interest rate are expressed in logarithms.

‘ The hypothesis that the money market clears allows the researcher to collect
time-series data of the money supply (= money demand if the money market al-
ways clears), the price level, real income (possibly measured using real GNP), and
an appropriate short-term interest rate. The behavioral assumptions require that 3, =
1, B, >0, and B, < 0; a researcher conducting such a study would certainly want to
test these parameter restrictions. Be aware that the properties of the unexplained
portion of the demand for money (i.e., the {e,} sequence) are an integral part of the
theory. If the theory is to make any sense at all, any deviation in the demand for
money must necessarily be temporary in nature. Clearly, if e, has a stochastic trend,
the errors in the model will be cumulative so that deviations from money market

. equilibrium will not be eliminated. Hence, a key assumption of the theory is that
. the {e,} sequence is stationary.

.The problem confronting the researcher is that real GNP, the money supply,
price level, and interest rate can all be characterized as nonstationary /(1) variables.
As such, each variable can meander without any tendency to return to a long-run
lgvel. However, the theory expressed in (6.1) asserts that there exists a linear com-
bination of these nonstationary variables that is stationary! Solving for the error
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term, we can rewtite (6.1) as

e, =m - BO— Blpr— B?.yz— B3r[ 6.2)

Since {e,} must be stationary, it follows that the linear combination of integrated
variables given by the right-hand side of (6.2) must also be stationary. Thus, the
theory necessitates that the time paths of the four nonstationary variables (m,},
{p.}, {y,}, and {r,} be linked. This example illustrates the crucial insight that has
dominated much of the macroeconometric literature in recent years: Equilibrium
theories involving nonstationary variables require the existence of a combination
of the variables that is stationary.

The money demand function is just one example of a stationary combination of
nonstationary variables. Within any equilibrium framework, the deviations from
equilibrium must be temporary. Other important economic examples involving sta-
tionary combinations of nonstationary vanables include:

1. Consumption Function Theory. A simple version of the permanent income
hypothesis maintains that total consumption (¢} is the sum of permanent con-
sumption (c7) and transitory consumption {(¢;). Since permanent consumption is
proportional to permanent income (y/), we can let B be the constant of propor-
tionality and write ¢, = By/ + ¢! Transitory consumption is necessarily a station-
ary variable, and consumption and permanent income are reasonably character-
ized as /(1) variables. As such, the permanent income hypothesis requires that
the linear combination of two I(1) variables given by ¢, — By? be stationary.

2. Unbiased Forward Market Hypothesis. One form of the efficient market hypoth-
esis asserts that the forward (or futures) price of an asset should equal the ex-
pected value of that asset’s spot price in the future. If you recall the discussion
of Corbae and Ouliaris (1986) in Chapter 4, you will remember that foreign ex-
change market efficiency requires the one-period forward exchange rate to equal
the expectation of the spot rate in the next period. If we let f, denote the log of
the one-period price of forward exchange in 1, and s, the log of the spot price of
foreign exchange in ¢, the theory asserts that E.s,,, = f,. If this relationship fails,
speculators can expect to make a pure profit on their trades in the foreign ex-
change market. If the agent’s expectations are rational, the forecast error for the
spot rate in ¢ + | will have a conditional mean equal to zero, so that 5., — Ess,.,
=¢,,,, where Ee,,, = 0. Combining the two equations yields s,,, = f, + €.
Since {s,} and {f,} are (1) variables, the unbiased forward market hypothe-
sis necessitates that there be a linear combination of nonstationary spot and for-
ward exchange rates that is stationary.

3. Commodity Market Arbitrage and Purchasing-Power Parity. Theories of spatial
competition suggest that in the short run, prices of similar products in varied
markets might differ. However, arbiters will prevent the various prices from
moving too far apart even if the prices are nonstationary. Similarly, the prices of
Apple computers and PCs have exhibited sustained declines. Economic theory
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suggests that these simultaneous declines are related to each other since prices
of these differentiated products cannot continually widen.

Also, as we saw in Chapter 4, purchasing-power parity places restrictions on
the movements of nonstationary price levels and exchange rates. If ¢, denotes
the log of the price of foreign exchange and p, and p*, denote respectively, the
logs of the domestic and foreign price levels, long-run PPP requires that the lin-
ear combination e, + p* — p, be stationary.

All these examples illustrate the concept of cointegration as introduced by
Engle and Granger (1987). Their formal analysis begins by considering a set of
economic variables in long-run equilibrium when

lelr + BZth +oee Brrxnl =0

If we let B and x, denote the vectors (By, B,, ..., B,) and (x,,, Xop vy XY, the

system is in long-run equilibrium when Bx, = 0. The deviation from long-run equi-
librium—called the equilibrium error—is e, so that

€= er

If the equilibrium is meaningful, it must be the case that the equilibrium( ’e’rArvor

process is stationary. Engle and Granger (1987) provide the following definition of
cointegration.

The components of the vector x, = (x;,, X,, . .

- X,)" are said to be cointegrated
of order d, b, denoted by x, ~ CI(d, b) if

1. All components of x, are integrated of order d.

2. There exists a vector B = (B, B,, ..., B,) such that linear combination Bx, =
Bixi, + Boxy, + - + Bx,, is integrated of order (d — b), where b > 0.

The vector B is called the cointegrating vector.'

In terms of equation (6.1), if the money supply, price level, real income, and in-
terest rate are all /(1) and the linear combination m, — B, - B,p, - B,y, - Bsr,=e,is
stationary, then the variables are cointegrated of order (1, 1). The vector x,is (m,, 1,
P» ¥» 1)’ and the cointegrating vector B is (1, —P,, —B., =B,, —B3). The deviation
from long-run money market equilibrium is e,; since {e,} is stationary, this devia-
tion is temporary in nature.

There are four very important points to note about the definition:

l. Cointegration refers to a linear combination of nonstationary variables.
Theoretically, it is quite possible that nonlinear long-run relationships exist
among a set of integrated variables. However, the current state of econometric
practice is not able to test for nonlinear cointegrating relationships. Also note
that the cointegrating vector is not unique. If (B,, Ba ..., B,) is a cointegrating
vector, then for any nonzero value of A, (AB,, AB,, .., AB,) is also a cointegrat-
ing vector. Typically, one of the variables is used to normalize the cointegrating
vector by fixing its coefficient at unity. To normalize the cointegrating vector

with racnent tn v cimnlyv calant 3 — 1/R
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2. All variables must be integrated of the same order.” Of course, this does not im-
ply that all similarly integrated variables are cointegrated; u.suauy, a set of I(d)
variables is nor cointegrated. Such a lack of cointegration implies no long-run
equilibrium among the variables, so that they can wander arbitrarily far frqm

. each other. If the variables are integrated of different orders, they cannot be coin-
- tegrated. Suppose xy, is I(d,) and X,, is I(d;) where d, > 4,. Question 6 at Fhe end
- of this chapter asks you to prove that any linear combination of x;, :and X5, 18 I(dz').
In a sense, the use of the term “equilibrium” is unfortunate since economic
theorists and econometricians use the term in different ways. Economic theorists
usually employ the term to refer to an equality between desired and actual trans-
actions. The econometric use of the term makes reference to any long-mn rela-
tionship among nonstationary variables. Cointegration does not require that the
long-run (i.e., equilibrium) relationship be generated by market forces or the bej-
havioral rules of individuals. In Engle and Granger’s use of the term, the equi-
librium relationship may be causal, behavioral, or simply a reduced-form rela-
tionship among similarly trending variables.

3. If x, has n components, there may be as many as n — 1 linearly independent coin-
tegrating vectors. Clearly, if x, contains only two variables: there can be at m0:§‘t
one independent cointegrating vector. The number of cointegrating vectors 1s
called the cointegrating rank of x,. For example, suppose that the monetary au-
thorities followed a feedback rule such that they decreased the money supply
when nominal GNP was high and increased the nominal money supply when
nominal GNP was low. This feedback rule might be represented by

m,=" — Yl(yr +.Dr) + ey,
=Yoo~V — VPt e . (6.3)

where {e,,} = a stationary error in the money supply feedback rule

Given the money demand function in (6.1), there are two cointegrating vec-
tors for the money supply, price level, real income, and interest rate. Let B be the
(5 x 2) matrix:

B 1 =By B B —Ba}
I =v¢ 1 ™ 0

The two linear combinations given by Px, are stationary. As such, the cointe-
grating rank of x, is 2. As a practical matter, if multiple cointc?gratipg vectors are
found, it may not be possible to identify the behavioral relationships from what
may be reduced-form relationships.

4. Most of the cointegration literature focuses on the case in which each varial?le
contains a single unit root. The reason is that traditional regression or time-series
analysis applies when variables are 1(0) and few economic variables are inte-

grated of an order higher than unity.> When it is unambiguous, many authors use
- i iitas? tn anfae tn tha maca in which variahles are CI(1. 1). The
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remainder of the text follows this convention. Of course, many other possibilities
arise. For example, a set of 1(2) variables may be cointegrated of order CI(2, 1), so
that there exists a linear combination that is /(1).

Worksheet 6.1 illustrates some of the important properties of cointegration rela-
tionships. In Case 1, both the {y,} and {z,} sequences were constructed so as to be
random walk plus noise processes. Although the 20 realizations shown generally de-
cline, extending the sample would eliminate this tendency. In any event, neither se-
ries shows any tendency to return to a long-run level, and formal Dickey-Fuller tests
are not able to reject the null hypothesis of a unit root in either series. Although each
series is nonstationary, you can see that they do move together. In fact, the differ-
ence between the series (y, — z,)—shown in the second graph-—is stationary; the
“equilibrium error” term e, = (y, — z,) has a zero mean and constant variance.

CASE1 The {y,} and {z,} sequences are both random walk plus noise processes.
Although each is nonstationary, the two sequences have the same stochas-
tic trend; hence, they are cointegrated such that the linear combination
(y, — z,) is stationary. The equilibrium error term is an /(0) process.

Ye=Het &y = [yt £y The equilibrium error: y,~z,

0 T T T T T |
1+ -4
—_Y
—z 2 N
-3 = — -~
s, 1 | [ 1 l !
1o o 5 10 15 20 5 10 15 20

CASE 2 All three sequences are random walk plus noise processes. As constructed,
no two are cointegrated. However, the linear combination (y, + z, — w,) is
stationary; hence, the three are cointegrated. The equilibrium error is an

1(0) process.
 VTHyt Ey 4= Myt £ W= et Ew The equilibrium error: v+ z,~w,
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1 T ] T T w
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Case 2 illustrates cointegration among three random walk plus noise processes.
As in Case 1, no series exhibits a tendency to return to a long-run level, and formal
Dickey-Fuller tests are not able to reject the null hypothesis of a unit root in any of
the three. In contrast to the previous case, no two of the series appear to be cointe-
grated; each series seems to “meander” away from the other two. However, as
shown in the second graph, there exists a stationary linear combination of the three:
e, =y, + z,— w, Thus, it follows that the dynamic behavior of at least one variable
must be restricted by the values of the other variables in the system.

Figure 6.1 displays the information of Case 1 in a scatter plot of {y,} against the
associated value of {z,}; each of the 20 points represents the ordered pairs (y,, z,),
(Vas Z2)s « - - » (Pags Zo0)- Comparing Worksheet 6.1 and Figure 6.1, you can see that
low values in the {y,} sequence are associated with low values in the {z,} sequence
and values near zero in one series are associated with values near zero in the other.

~ Since both series move together over time, there is a positive relationship between

the two. The least-squares line in the scatter plot reveals this strong positive associ-
ation. In fact, this line is the “long-run” equilibrium relationship between the series,
and the deviations from the line are the stationary deviations from long-run equilib-
rium.

For comparison purposes, graph (a) in Worksheet 6.2 shows 100 realizations of

- two random walk plus noise processes that are not cointegrated. Each seems to me-

Figure 6.1 Scatter plot of cointegrated variables.
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The scatter plot was drawn using the {y} and {z} sequences from
Case 1 of Worksheet 6.1. Since both series decline over time,
there appears to be a positive refationship between the two.
The equilibrium regression fine is shown.




ander without any tendency to approach the other. The scatter plot shown in graph
(b) confirms the impression of no long-run relationship between the variables. The
deviations from the straight line showing the regression of z, on y, are substantial.
Plotting the regression residuals against time [see graph (c)] suggests that the re-
gression residuals are not stationary. '

The {y,} and {z,} sequences are constructed to independent random walk plus noise
processes. There is no cointegrating relationship between the two variables. As
shown in (a), both seem to meander without any tendency to come together. Graph
(b) shows the scatter plot of the two sequences and the regression line z, = By + By,
However, this regression line is spurious. As shown in graph (c), the regression
residuals are nonstationary.

V= Hyt €y 4=yt Ey Regression of z,0on y;
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- 2. COINTEGRATION AND COMMON TRENDS

Stock and Watson’s (1988) observation that cointegrated variables share common
stochastic trends provides a very useful way to understand cointegration relation-
ships.* For ease of exposition, return to the case in which the vector x, contains only
two variables, so that x, = (y,, z,)’. Ignoring cyclical and seasonal terms, we can de-

- compose each variable into a random walk plus an irregular (but not necessarily

- white-noise) component.” Hence, we can write

y1=“y1+€yl ' ‘ (64)

L=t e, R [t : (6.5)
_ where y, = is a random walk process representing the trend in variable 7 in period
: €, = the stationary (irregular) component of variable { in period 1.

If {y,} and {z,} are cointegrated of order (1, 1), there must be nonzero values of
B, and B, for which the linear combination B,y, + B,z, is stationary; that is,

ﬁlyr + Bzzt = Bl(}‘lyf + €y1) + BZ(HU + ezz)

= (Bl“yr + Bzuu) + (Bleyl + B2ezf) (6'6)

i For Byy, + Pz, to be stationary, the term (B,p,, + B,lL,) must vanish. After all, if
* either of the two trends appears in (6.6), the linear combination B,y, + B,z, will also

have a trend. Since the second term in parenthesis is stationary, the necessary and

~ sufficient condition for {y,} and {z,} to be CI(1, 1) is

By, + Bout, =0 6.7)

Clearly, i1,, and L, are variables whose realized values will be continually chang-
ing over time. Since we preclude both B, and B, from being equal to zero, it follows
that (6.7) holds for all ¢ if and only if

My = —Bou, /B,

For nonzero values of , and 3,, the only way to ensure equality is for the sto-
chastic trends to be identical up to a scalar. Thus, up to the scalar —B,/B,, two I(1)
stochastic processes {y,} and {z,} must have the same stochastic trend if they are
cointegrated of order (1, 1).

Return your attention to Worksheet 6.1. In Case 1, the {y,} and {z,} sequences
were constructed so as to satisfy

Y= H: + eyr
ZI = )*iz + E:l
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.and

ur = p"r—l + €

where €, €, and €, = independently distributed white-noise disturbances.

By construction, L, is a pure random walk process representing the same stochas-
tic trend for both the {y,} and {z,} sequences. The value of [, was initialized to
zero and three sets of 20 random numbers were drawn to represent the {€,}, {€,},
and {¢,} sequences. Using these realizations and the initial value of W, we con-
structed the {y,}, {z,}, and {},} sequences. As you can clearly determine, subtract-
ing the realized value of z, from y, results in a stationary sequence:

z,= (1, + ey!) (e = &, -

To state the point using Engle and Granger’s terminology, premultiplying the
vector x, = (y,, )’ by the cointegrating vector f§ = (1, —1) yields the stationary se-
quence €, = €,, — €,,. Indeed, the equilibrium error term shown in the second graph
of Worksheet 6.1 has all the hallmarks of a stationary process. The essential insight
of Stock and Watson (1988) is that the parameters of the cointegrating vector must
be such that they purge the trend from the linear combination. Any other linear
combination of the two variables contains a trend, so that the cointegrating vector is
unique up to a normalizing scalar. For example, By, + Baz, is not stationary unless
Ba/Ba=B:/Ba.

Recall that Case 2 illustrates cointegration between three random walk plus noise
processes. As in Case 1, each process is I(1), and Dickey—Fuller unit root tests
would not be able to reject the null hypothesis that each contains a unit root. As you
can see in the lower portion of Worksheet 6.1, no pairwise combination of the se-
ries appears to be cointegrated. Each series seems to meander but, as opposed to
Case 1, no one single series appears to remain close to any other series. However,
by construction, the trend in w, is the simple summation of the trends in y, and z:

Wy = uyx + Uy

Here, the vector x, = (y,, z,, w,)” has the cointegrating vector (1, 1, —1), so that the
linear combination y, + z, — w, is stationary. Consider:

Yotz —w=(Uy, +€) + (W + € — (W + €, N " )
=€, t€,—€, Lo

The example illustrates the general point that cointegration will occur whenever
the trend in one variable can be expressed as a linear combination of the trends in
the other variable(s). In such circumstances, it is always possible to find a vector
such that the linear combination B,y, + B,z, + B;w, does not contain a trend. The re-

Cointegration and Error Correction 365

sult easily generalizes to the case of n variables. Consider the vector representation:

X, =, +¢€ T 6.8)
- where x, = the vector (X,,, Xy, . .., X,,)
W, = the vector of stochastic trends (W,,, Wy, . . ., WY
€, = an n X | vector of irregular components

If one trend can be expressed as a linear combination of the other trends in the

‘4 system, it means that there exists a vector B such that

& R

Blulr + 62“21 +oet Bn“n/ =0

Premultiply (6.8) by this set of 3,’s to obtain

Bxl = B“I + Bel

Since By, = 0, it follows that Bx, = fe,. Hence, the linear combination Px, is sta-
tionary. The argument easily generalizes to the case in which there are multiple lin-
ear relationships among the trends. If the cointegrating rank is r, there are r < n lin-
ear relationships among the trends, so that we can write

Bu,=0
where = arxn matrix consisting of elements B,

For example, if there are two cointegrating vectors among n variables, there are
two independent cointegrating vectors of the form:

I:Bn B - B
le [322 an

Notice that it is possible to subtract §,/B,; times row 2 from row 1 to yield an-
other linear combination of the x; that is stationary. However, there will be only

n — 1 nonzero coefficients of the x; in this combination. More generally, if there are

r cointegrating vectors among n variables, there exists a cointegrating vector for
each subset of (n — r) variables.

3. COINTEGRATION AND ERROR CORRECTION

A principal feature of cointegrated variables is that their time paths are influenced
by the extent of any deviation from long-run equilibrium. After all, if the system is
to return to the long-run equilibrium, the movements of at least some of the vari-
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ables must respond to the magnitude of the disequilibrium. For example, theories of
" the term structure of interest rates imply a long-run relationship between long- and
short-term rates. If the gap between the long- and short-term rates is “large” relative
to the long-run relationship, the short-term rate must ultimately rise relative to the
long-term rate. Of course, the gap can be closed by (1) an increase in the short-term
rate and/or a decrease in the long-term rate, (2) an increase in the long-term rate but
a commensurately larger rise in the short-term rate, or'(3) a fall in the long-term
rate but a smaller fall in the short-term rate. Without a full dynamic specification of
the model, it is not possible to determine which of the possibilities will occur.
Nevertheless, the short-run dynamics must be influenced by the deviation from the
long-run relationship.

The dynamic model implied by this discussion is one of error correction. In an
error-correction model, the short-term dynamics of the variables in the system are
influenced by the deviation from equilibrium. If we assume that both interest rates
are (1), a simple error-correction model that could apply to the term structure of
interest rates is®

Arg = Og(rpey = Proi) + €gn Os>0 o T i (69)
Ary == (rp = Brs_) + €, 0,>0 i - (6.10)

where r;, and rg, are the long- and short-term interest rates, respectively.

The two terms represented by €, and ¢, are white-noise disturbance terms that may
be correlated and o, @, and [ are positive parameters.

As specified, the short- and long-term interest rates change in response to sto-
chastic shocks (represented by €5, and €,,) and to the previous period’s deviation
from long-run equilibrium. Everything else equal, if this deviation happened to be
positive (so that r,,_, — PBry,_, > 0), the short-term interest rate would rise and the
long-term rate would fall. Long-run equilibrium is attained when r,, = B,

Here you can see the relationship between error-correcting models and cointe-
grated variables. By assumption, Arg, is stationary, so that the left-hand side of (6.9)
is 1(0). For (6.9) to be sensible, the right-hand side must be /(0) as well. Given that
€5, is stationary, it follows that the linear combination r,,_; — Prs,_, must also be sta-
tionary; hence, the two interest rates must be cointegrated with the cointegrating
vector (1, —B). Of course, the identical argument-applies to (6.10). The essential
point to note is that the error-correction representation necessitates the two vari-
ables be cointegrated of order CI(1, 1). This result is unaltered if we formulate a

more general model by introducing the lagged changes of each rate into both equa-
tions:’

Ars,= a0+ Os(ryeey = Bro-y) + Zay (DArs,_; + Za,()Ar,, ; + €, (6.11)
Arp =y — 0y (rpny = Bre) + Zay (DArs, + Zayp(DAr,  + €, (6.12)

Again, €, €, and all terms involving Arg,_; and Ar,_, are stationary. Fhus, the
linear combination of interest rates (r,_, — Prs,_;) must also be stationary.

Inspection of (6.11) and (6.12) reveals a striking similarity to the VAR models of
the previous chapter. This two-variable error-correction model is a bivariate VAR
in first differences augmented by the error-correction terms O(r;,., ~ Prs,.,) and
0, (1) ~ Brs.;). Notice that o5 and o, have the interpretation of speed of adjust-
ment parameters. The larger o is, the greater the response of r, to the previous pe-
riod’s deviation from long-run equilibrium. At the opposite extreme, very small
values of g imply that the short-term interest rate is unresponsive to last period’s
equilibrium error. For the {Arg,} sequence to be unaffected by the long-term inter-
est rate sequence, 0; and all the a,,(i) coefficients must be equal to zero. Thus, the
absence of Granger causality for cointegrated variables requires the additional
condition that the speed of adjustment coefficient be equal to zero. Of course, at
least one of the speed of adjustment terms in ¢6.11) and (6.12) must be nonzero. If
both ¢ and @, are equal to zero, the long-run equilibrium relationship does not ap-
pear and the model is not one of error correction or cointegration.

The result is easily generalized to the n-variable model. Formally, the (n x 1)
vector x, = (X, X5 - . . » X)) has an error-correction representation if it can be ex-
pressed in the form:

Ax, =g+ X,y + TAX_ + THAX, 5 + - + R,AX, + € : (6.13)
where T, = an (nx 1) vector of intercept terms with elements 7,
7, = (n X n) coefficient matrices with elements 7;(:)
7 = is a matrix with elements 7, such that one or more of the t;, # 0
€, = an (n X 1) vector with elements ¢,

Note that the disturbance terms are such that €, may be correlated with ¢,

Let all variables in x, be I(1). Now, if there is an error-correction representation
of these variables as in (6.13), there is necessarily a linear combination of the I(1)
variables that is stationary. Solving (6.13) for nx,_; yields

T, = Ax, — Ty — ZrAx,_, — €

Since each expression on the right-hand side is stationary, 7x,_, must also be sta-
tionary. Since 7 contains only constants, each row of = is a cointegrating vector of x,.
For example, the first row can be written as (%0, . x,,-; + T 2% + - + T X,-1). Since
each series x,,_, is I(1), (%;,, %y, . . ., T,,,) mMust be a cointegrating vector for x,.

The key feature in (6.13) is the presence of the matrix 7. There are two important
points to note:

1. If all elements of 7t equal zero, (6.13) is a traditional VAR in first differences. In
such circumstances, there is no error-correction representation since Ax, does not
respond to the previous period’s deviation from long-run equilibrium.

2. If one or more of the m; differs from zero, Ax, responds to the previous period’s
deviation from long-run equilibrium. Hence, estimating x, as a VAR in first dif-
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ferences'is inappropriate if x, has an error-correction representation. The omis-
sion of the expression 7x,_, entails a misspecification error if x, has an error-cor-
rection representation as in (6.13).

A good way to examine the relationship between cointegration and error correc-
tion is to study the properties of the simple VAR model:

V=AY Y A122 + €y pon 6.14)
=AY t At t €y wins (6.15)

where €, and €, are white-noise disturbances that may be correlated with each
other and, for simplicity, intercept terms have been ignored. Using lag op-

erators, we can write (6.14) and (6.15) as

(1 - allL)yl - al2LZr = eyr
—GZILYr + (1 - azzL)Zr =€,

The next step is to solve for y, and z,. Writing the system in matrix form, we ob-

tain
" [(t-ayLl) -a,L “:y,]_[ey,:l
_(121L (1 _‘azzL) Zt Ezt

Using Cramer’s rule or matrix inversion, we can obtain the solutions for y, and z, -

as
_ (-anl)y, +a,le, ,
g (-a,L)(1-apl)-apayl? oo (618
GZ,Ley, +(1 -a“L)eu
Z

" (1-ay LY(1- aypL)-apay 6.17)

We have converted the two-variable first-order system represented by (6.14) and
(6.15) into two univariate second-order difference equations of the type examined
in chapter 1. Note that both variables have the same inverse characteristic equation
(1 = a;;LY(1 = apl) — ay,a,, L2 Setting (1 — a,, L)(1 - axL) - a,,8,,L* = 0 and
solving for L yield the two roots of the inverse characteristic equation. In order to
work with the characteristic roots (as opposed to the inverse characteristic roots),
define A = 1/L and write the characteristic equation as

A? = (ay; + )\ + (@118 — a12051) =0 (6.18)

Since the two variables have the same characteristic equation, the characteristic
roots of (6.18) determine the time paths of both variables. The following remarks

xR Y e
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summarize the time paths of {y,} and {z,}:

1. If both characteristic roots (A,, A,) lie inside the unit circle, (6.16) and (6.17)
yield stable solutions for {y,} and {z). If ¢ is sufficiently large or the initial con-
ditions are such that the homogenous solution is zero, the stability condition
guarantees that the variables are stationary. The variables cannot be cointegrated
of order (1, 1) since each will be stationary.

2. If either root lies outside the unit circle, the solutions are explosive. Neither vari-
able is difference stationary, so that they cannot be CI(1, 1). In the same way, if
both characteristic roots are unity, the second difference of each variable will be
stationary. Since each is /(2), the variables cannot be CI(1, 1).

3. As you can see from (6.14) and (6.15), if a;, = a,, = 0, the solution is trivial. For
{y,} and {z,} to be unit root processes, it is necessary for a,, = a,, = 1. It follows
that &, = &, = | and the two variables evolve without any long-run equilibrium
relationship; hence, the variables cannot be cointegrated.

4. For {y,} and {z;} to be CI(1, 1), it is necessary for one characteristic root to be
unity and the other less than unity in absolute value. In this instance, each vari-
able will have the same stochastic trend and the first difference of each variable
will be stationary. For example, if A, = 1, (6.16) will have the form:

Y= [(1 - a22L)€y1 + alZLezl]/[(l - L)(l - )‘/ZL)]
or multiplying by (1 — L), we get
(1 =Ly, =Ay,=[(1 = aple,, + a,le /(1 = A,L)

which is stationary if | A, ] < 1.

Thus, to ensure that the variables are CI(1, 1), we must set one of the characteris-
tic roots equal to unity and the other to a value that is less than unity in absolute
value. For the larger of the two roots to equal unity, it must be the case that

0.5 % (ay, + ayy) + 0.5 % (@3, + aZ,) - 2a,,a,, + 4ayay = 1
so that after some simplification, the coefficients are seen to satisfy®
ay =1 - ap) ~-a;; ay)/(1 ~ay) s (6.19)

Now consider the second characteristic root. Since a,, and/or a,, must differ
from zero if the variables are cointegrated, the condition | k2| < 1 requires

az > -1 (6.20)



and

128y, + (ay)* < 1 ‘ ‘ (6.21)

Equations (6.19), (6.20), and (6.21) are restrictions we must place on the coeffi-
cients of (6.14) and (6.15) if we want to ensure that the variables are cointegrated
of order (1, 1). To see how these coefficient restrictions bear on the nature of the
solution, write (6.14) and (6.15) as

[Ayt-]_[all LCP M)’:—l} Iiﬁyr}
= +
AZ:J ay  an-—ljiz €
Now, (6.19) imples that a,, — 1 = —a,,a,,/(1 — a,,), so that after a bit of manipu-
lation, (6.22) can be written in the form:

(6.22)

Ay, = —{a,a, /(1 — ap)ly, + a2z, + €y ’ r (6.23)
Az, =any, - (1 —ay)z, . + €, (6.24)

Equations (6.23) and (6.24) comprise an error-correction model. If both a,, and
ay, differ from zero, we can normalize the cointegrating vector with respect to ei-
ther variable. Normalizing with respect to y,, we get

A}’, = ay(yt—l - le—l) +€, -
AZI = az(yl-l - Bzr-l) +€, )

where 0, =—ay,a,/(1 — az)
B =(1-ay)ay

Q, =ay

You can see that y, and z, change in response to the previous period’s deviation
from long-run equilibrium: y,_, — Bz,_,. If y._, = Bz._;, y, and z, change only in re-
sponse to €,, and €, shocks. Moreover, if &, < 0 and @, > 0, y, decreases and z, in-
creases in response to a positive deviation from long-run equilibrium.

You can easily convince yourself that conditions (6.20) and (6.21) ensure that B
# 0 and at least one of the speed of adjustment parameters (i.e., o, and o) is not
equal to zero. Now, refer to (6.9) and (6.10); you can see this model is in exactly
the same form as the interest rate example presented in the beginning of this sec-
tion.

Although both a,, and a,, cannot equal zero, an interesting special case arises if
one of these coefficients is zero. For example, if we set a,, = 0, the speed of adjust-
ment coefficient o, = 0. In this case, y, changes only in response to €,as Ay, =¢,.’
The {z,} sequence does all the correction to eliminate any deviation from long-run
equilibrium.

To highlight some of the important implications of this simple model, we have
shown:

s

1. The restrictions necessary to ensure that the variables are CI(1, 1) guarantee
that an error-correction model exists. In our example, both {y,} and {z,} are unit
root processes but the linear combination y, — Bz, is stationary; the normalized
cointegrating vector is 1, —(1 — a,,)/a,,]. The variables have an error-correction
representation with speed of adjustment coefficients &, = ~a,,a,,/(1 — ay,) and
o, = a,,. It was also shown that an error-correction model for /(1) variables nec-
essarily implies cointegration. This finding illustrates the Granger representa-
tion theorem stating that for any set of /(1) variables, error correction and coin-
tegration are equivalent representations.

2. Cointegration necessitates coefficient restrictions in a VAR model. Let x, =
(Vo 2) and €, = (€, , €,), 50 that we can write (6.22) in the form:

AX,:TCX,A, + €, e R (6.25)

Clearly, it is inappropriate to estimate a VAR of cointegrated variables using
only first differences. Estimating (6.25) without the expression mx,_, would
eliminate the error—correction portion of the model. It is also important to note
that the rows of m are not linearly independent if the variables are cointegrated.
Multiplying each element in row | by —(1 = ay,)/a,, yields the corresponding el-
ement in row 2. Thus, the determinant of &t is equal to zero and ¥, and z, have the
error-correction representation given by (6.23) and (6.24).

This two-variable example illustrates the very important insights of Johansen
(1988) and Stock and Watson (1988) that we can use the rank of 7 to determine
whether or not two variables {y,} and {z,} are cointegrated. Compare the deter-
minant of & to the characteristic equation given by (6.18). If the largest charac-
teristic root equals unity (A, = 1), it follows that the determinant of 7t is zero and
7 has a rank equal to unity. If ® were to have a rank of zero, it would be neces-
sary fora,; =1, a,, = 1, and a,, = a,, = 0. The VAR represented by (6.14) and
(6.15) would be nothing more than Ay, = €,, and Az, = €,,. In this case, both the
{y,} and {z,} sequences are unit root processes without any cointegrating vector.
Finally, if the rank of m is full, then neither characteristic root can be unity, so

_that the {y,} and {z,} sequences are jointly stationary.

3.'In general, both variables in a cointegrated system will respond to a deviation
from long-run equilibrium. However, it is possible that one (but not both) of the
speed of adjustment parameters is zero. In this circumstance, that variable does
not respond to the discrepancy from long-run equilibrium and the other variable
does all the adjustment. Hence, it is necessary to reinterprete Granger causality
in a cointegrated system. In a cointegrated system, {z,} does not Granger cause
{y,} if lagged values Az, do not enter the Ay, equation and if y, does not re-
spond to the deviation from long-run equilibrium. For example, in the cointe-
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grated system of (6.11) and (6.12), {r,} does not Granger cause {ry,} if all
a,,(i) =0 and 0 = 0.

The n-Variable Case

Little is altered in the n-variable case. The relationship between cointegration, error
correction, and the rank of the matrix 7t is invariant to adding variables to the sys-
tem. The interesting feature introduced in the n-variable case is the possibility of
multiple cointegrating vectors. Now consider a more general version of (6.25):

X, =A X, +¢ o O 620)
where x, = the (nx 1) vector (x;,, Xop, . . . , X))
€, = the (nx 1) vector (e, €5, . . . » €,,)
A, = an (n X n) matrix of parameters

Subtracting x,_, from each side of (6.26) and letting / be an (n x n) identity ma-
trix, we get o

Ag=—(-A)x +¢
=7, + € [ (6.27)
where T is the (n X n) matrix ~(/ — A;) and ®; denotes the element in row i and

column j of ®. As you can see, (6.27) is a special case of (6.13) such that
allt,=0.

Again, the crucial issue for cointegration concerns the rank of the (n X n) matrix
n. If the rank of this matrix is zero, each element of © must equal zero. In this in-
stance, (6.27) is equivalent to an n-variable VAR in first differences:

Ax, =€,

Here, each Ax,, = €, so that the first difference of each variable in the vector x, is
I(0). Since each x, = x,._, + €,, all the {x;} sequences are unit root processes and
there is no linear combination of the variables that is stationary.

At the other extreme, suppose that 7 is of full rank. The long-run solution to
(6.27) is given by the n independent equations:

Xy, + TyaXy, + TyaXy, + o0+ Ty, X, = 0
To1Xy, + RopXy, + MpgXa, + o + MpX,, = 0

Ty 1 Xy, + TppXy, + TMppXa, + 00 + TpX,, = 0 (6.28)
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Each of these n equations is an independent restriction on the long-run solution
of the variables; the n variables in the system face n long-run constraints. In this
case, each of the n variables contained in the vector x, must be stationary with the
long-run values given by (6.28).

In intermediate cases, in which the rank of 1t is equal to r, there are r cointegrat-
ing vectors. If r = 1, there is a single cointegrating vector given by any row of the
matrix 7. Each {x,} sequence can be written in error-correction form. For example,
we can write Ax,, as

AX) =T Xy + TypXg g + o 4 X, + €,

or, normalizing with respect to x,,_,, we can set &, =7, and B, = n,/%;, to obtain

Axy, = 04 (xyy = Bioxa, ot Brxas) + g, e (6.29) st

In the long-run, the {x,,} will satisfy the relationship:

X+ Braxy, 4+ Bty =0

Hence, the normalized cointegrating vector is (1, B2, B3, - - . » Bi.) and the speed
of adjustment parameter «,. In the same way, with two cointegration vectors the
long-run values of the variables will satisfy the two relationships:

Ty Xy, + RyoXp, + o0+ Ty X, = 0
T Xy, 4 Mok + 0+ My X, =0
which can be appropriately normalized.

The main point here is that there are two important ways to test for cointegration.
The Engle-Granger methodology seeks to determine whether the residuals of the
equilibrium relationship are stationary. The Johansen (1988) and Stock-Watson
(1988) methodologies determine the rank of . The Engle—~Granger approach is the
subject of the next three sections. Sections 7 through 10 examine the Johansen
(1988) and Stock-Watson (1988) methodologies.

—c

4. TESTING FOR COINTEGRATION: THE
ENGLE-GRANGER METHODOLOGY

To explain the Engle~Granger testing procedure, let us begin with the type of prob-
lem likely to be encountered in applied studies. Suppose that two variables—say, y,
and z—are believed to be integrated of order 1 and we want to determine whether
there exists an equilibrium relationship between the two. Engle and Granger (1987)
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propose a stréightforward test whether two /(1) variables are cointegrated of order
CI(1, 1).

STEP 1: Pretest the variables for their order of integration. By definition, cointegra-
tion necessitates that the variables be integrated of the same order. Thus,
the first step in the analysis is to pretest each variable to determine its or-
der of integration. The Dickey—Fuller, augmented Dickey-Fuller, and/or
Phillips-Perron tests discussed in Chapter 4 can be used to infer the num-
ber of unit roots (if any) in each of the variables. If both variables are sta-
tionary, it is not necessary to proceed since standard time-series methods
apply to stationary variables. If the variables are integrated of different or-
ders, it is possible to conclude that they are not cointegrated.'®

STEP 2. Estimate the long-run equilibrium relationship. If the results of Step 1 in-
: dicate that both {y,} and {z,} are I(1), the next step is to estimate the long-
run equilibrium relationship in the form:

y=Bo+Piz+e (6.30)

If the variables are cointegrated, an OLS regression yields a “super-con-
sistent” estimator of the cointegrating parameters B, and B,. Stock (1987)
proves that the OLS estimates of B, and 3, converge faster than in OLS
models using stationary variables. To explain, reexamine the scatter plot
shown in Figure 6.1. You can see that the effect of the common trend
dominates the effect of the stationary component; both variables seem to
rise and fall in tandem. Hence, there is a strong linear relationship as
shown by the regression line drawn in the figure.

In order to determine if the variables are actually cointegrated, denote
the residual sequence from this equation by {¢é,}. Thus, {,} is the series of
the estimated residuals of the long-run relationship. If these deviations
from long-run equilibrium are found to be stationary, the {y,} and {z,} se-
quences are cointegrated of order (1, 1). It would be convenient if we
could perform a Dickey—Fuller test on these residuals to determine their
order of integration. Consider the autoregression of the residuals:

Aé,=a,é, ,+¢ (6.31)

Since the {é,} sequence is a residual from a regression equation, there is
no need to include an intercept term; the parameter of interest in (6.31) is
a,. If we cannot reject the null hypothesis a; = 0, we can conclude that the
residual series contains a unit root. Hence, we conclude that the {y,} and
{z,} sequences are not cointegrated. The more precise wording is awkward
because of a triple negative, but to be technically correct, if it is not possi-
ble to reject the null hypothesis [a ; | =0, we cannot reject the hypothesis

st 3

that the variables are not cointegrated. Instead, the rejection of the null
hypothesis implies that the residual sequence is stationary.!' Given that
both {y,} and {z,} were found to be /(1} and the residuals are stationary,
we can conclude that the series are cointegrated of order (1, 1).

In most applied studies, it is not possible to use the Dickey—Fuller tables
themselves. The problem is that the {¢,} sequence is generated from a re-
gression equation; the researcher does not know the actual error é, only
the estimate of the error é,. The methodology of fitting the regression in
(6.30) selects values of By and B, that minimize the sum of squared residu-
als. Since the residual variance is made as small as possible, the procedure
is prejudiced toward finding a stationary error process in (6.31). Hence,
the test statistic used to test the magnitude of a, must reflect this fact. Only
if By and B, were known in advance and used to construct the true {e,} se-
quence would an ordinary Dickey—Fuller table be appropriate. Fortunately,
Engle and Granger provide test statistics that can be used to test the hy-
pothesis @, = 0. When more than two variables appear in the equilibrium
relationship, the appropriate tables are provided by Engle and Yoo (1987).

If the residuals of (6.31) do not appear to be white-noise, an augmented
Dickey—Fuller test can be used instead of (6.31). Suppose that diagnostic
checks indicate that the {€,} sequence of (6.31) exhibits serial correlation.
Instead of using the results from (6.31), estimate the autoregression:

Ae, =aje, 1+2a,+x46 \ 4 (6.32)

Again, if -2 < a, < 0, we can conclude that the residual sequence is sta-
tionary and (y,} and {z,} are Ci(1, 1).

Estimate the error-correction model. If the variables are cointegrated (i.e.,
if the null hypothesis of no cointegration is rejected), the residuals from
the equilibrium regression can be used to estimate the error-correction
model. If {y,} and {z,} are CI(1, 1), the variables have the error-correction
form:

Ay, =0 +a, (Yz 1~ Biz +20‘11(1)A}’: :+20‘12(1)AZ - tey, (633)

=] ) i=]

Az, =0ty +°‘z()’r~1 =812, ) + 20‘21 DAy, + Z Oy (Az,; +€, (6.34)

i=] i=]

3
i
3
3
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.. - where B, = the parameter of the cointegrating vector given by
(6.30)
€, and €, = white-noise disturbances (which may be correlated
with each other)

- and 0y, Oy, O, O, 0 (D), 0y5(0), O, (0), and 0,,(i) are all parameters.

Engle and Granger (1987) propose a clever way to circumvent the
cross-equation restrictions involved in the direct estimation of (6.33) and
(6.34). The value of the residual é,_, estimates the deviation from long-run
equilibrium in period (¢t — 1). Hence, it is possible to use the saved residu-
als {é,.,} obtained in Step 2 as an instrument for the expression y,_, —
Biz,-; in (6.33) and (6.34). Thus, using the saved residuals from the esti-
mation of the long-run equilibrium relationship, we can estimate the error-
correcting model as

Ay,=a1+onyé,_l+Za“(i)Ay,_,.+2a12(i)AzH.+ey, 635

i=1 i=1

Bz, =0, +0L €, + Z 0, (DAY, + Z 0y DAz, +€, 6.36)

i=] i=]

Other than the error-correction term 2,_,, € Equations (6.35) and (6.36)
constitute VAR in first differences. This near VAR can be estimated using
the same methodology developed in Chapter 5. All the procedures devel-
oped for a VAR apply to the near VAR. Notably:

1. OLS is an efficient estimation strategy since each equation contains the
same set of regressors.

2. Since all terms in (6.35) and (6.36) are stationary [i.e., Ay, and its lags,
Az, and its lags, and é,_, are [(0)], the test statistics used in traditional
VAR analysis are appropriate for (6.35) and (6.36). For example, lag
lengths can be determined using a ? test and the restriction that all
a,, (i) = 0 can be checked using an F-test. If there is a single cointegrat-
ing vector, restrictions concering o, or ¢, can be conducted using a
t-test. Asymptotic theory indicates o, and o, converge to a t-distribu-
tion as sample size increases.

STEP 4: Assess model adequacy. There are several procedures that can help deter-

mine whether the estimated error-correction model is appropriate.

1. You should be careful to assess the adequacy of the model by perform-
ing diagnostic checks to determine whether the residuals of the near

[llustrating the Engle-Granger Methodology n

VAR approximate white noise. If the residuals are serially correlated,
lag lengths may be too short. Reestimate the model using lag lengths
that yield serially uncorrelated errors. It may be that you need to allow
longer lags of some variables than on others,

.. 2. The speed of adjustment coefficients a,, and o, are of particular interest
in that they have important implications for the dynamics of the sys-
tem.'? If we focus on (6.36), it is clear that for any given value of &,_,, a
large value of a, is associated with a large value of Az,. If «, is zero,
the change in z, does not at all respond to the deviation from long-run
equilibrium in (¢ — 1). If &, is zero and all ,,(i) = O, then it can be said
that {Ay,} does not Granger cause {Az,}. We know that one or both of
these coefficients should be significantly different from zero if the vari-
ables are cointegrated. After all, if both o, and o, are zero, there is no
error correction and (6.35) and (6.36) comprise nothing more than a
VAR in first differences. Moreover, the absolute values of these speed
of adjustment coefficients must not be too large. The point estimates
should imply that Ay, and Az, converge to the long-run equilibrium rela-
tionship.'?

~73. As in a traditional VAR analysis, Lutkepohl and Reimers (1992) show
that innovation accounting (i.e., impulse responses and variance de-
composition analysis) can be used to obtain information concerning the
interactions among the variables. As a practical matter, the two innova-
tions €, and €, may be contemporaneously correlated if y, has a con-
temporaneous effect on z, and/or z, has a contemporaneous effect on y,.
In obtaining impulse response functions and variance decompositions,
some method—such as Choleski decomposition-—can be used to or-
thogonalize the innovations.

The shape of the impulse response functions and results of the variance
decompositions can indicate whether the dynamic responses of the vari-
ables conform to theory. Since all variables in (6.35) and (6.36) are 1(0),
the impulse responses should converge to zero. You should reexamine
your results from each step if you obtain a nondecaying or explosive im-
pulse response function.

5. ILLUSTRATING THE ENGLE-GRANGER
METHODOLOGY

Figure 6.2 shows three simulated variables that can be used to illustrate the Engle-
Granger procedure. Inspection of the figure suggests that each is nonstationary and
there is no visual evidence that any pair is cointegrated. As detailed in Table 6.1,
each series is constructed as the sum of a stochastic trend component plus an au-
toregressive irregular component.
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The first column of the table contains the formulas used to construct the {y,} se-
quence. First, 150 realizations of a white-noise process were drawn to represent the
{€,} sequence. Initializing p, = 0, we constructed 150 values of the random walk
process (L.} using the formula W, =y, , + €, (see the first cell of the table).
Another 150 realizations of a white-noise process were drawn to represent the {n,,}
sequence; given the initial condition d,, = 0, these realizations were used to con-
struct {3,,} as &, = 0.55,,_, + 1, (see the next lower cell). Adding the two con-
structed series yields 150 realizations for {y,}. To help ensure randomness, only the
last 100 observations are used in the simulated study.

The (z,} sequence was constructed in a similar fashion; the {€,} and {n,} se-
quences are each represented by two different sets of 150 random numbers. The
trend {|t,,} and autoregressive irregular term {5,,} were constructed as shown in the
second column of the table. The {§,,} sequence can be thought of as a pure irregu-
lar component in the {z,} sequence. In order to introduce correlation between the

Table 6.1 The Simulated Series

b} {z} {w}
Trend My = Hyey + €y My =H; + €, Mo =My + Uy
Pure Iregular  §,,=0.53,,_, +n,, 8,=0.55,, +1, 8., =058, +1.,

Series =W, +5, =W, +0,+058, w=uw,+95,,+0.55,+0.5%,

st

{v,} and {z,} sequences, the irregular component in {z,} was constructed as the sum
3, + 0.55,. In the third column, you can see that the trend in {w,} is the simple
summation of the trends in the other two series. As such, the three series have the
cointegrating vector (1, 1, —1). The irregular component in {w,} is the sum of pure
innovation J,,, and 50% of the innovations 8, and 3.

Now pretend that we do not know the data-generating process. The issue is
whether the Engle-Granger methodology can uncover the essential details of the
data-generating process. The first step is to pretest the variables in order to deter-
mine their order of integration. Consider the augmented Dickey-Fuller regression
equation for {y,}:

n
Ay, =0 + 04y, +Zai+lAyr—i +e,

i=1

If the data happened to be quarterly, it would be natural to perform the aug-
mented Dickey-Fuller tests using lag lengths that are multiples of 4 (i.e., n = 4, §,
...). For each series, the results of the Dickey—Fuller test and augmented test using
four lags are reported in Table 6.2.

With 100 observations and a constant, the 95% critical value of the Dickey-
Fuller test is —2.89. Since, in absolute value, all -statistics are well below this criti-
cal value, we cannot reject the null hypothesis of a unit root in any of the series. Of
course, if there was any serious doubt about the presence of a unit root, we could
use the procedures in Chapter 4 to (1) test for the presence of the constant term, (2)
test for the presence of a deterministic trend, and/or (3) perform Phillips—Perron
tests if the errors do not appear to be white-noise. If various lag lengths yield differ-
ent results, we would want to test for the most appropriate lag length.

The luxury of using simulated data is that we can avoid these potentially sticky
problems and move on to Step 2.'* Since all three variables are presumed to be
jointly determined, the long-run equilibrium regression can be estimated using ei-
ther y,, z, or w, as the “left-hand-side” variable. The three estimates of the long-run

Table 6.2 Estimated «, and the Associated t-statistic

No lags 4 Lags

Ay, —0.01995 -0.02691 L
(-0.74157) (~1.0465)
Az, ; : -0.02069 —0.25841
(-0.99213) (-1.1437)
Aw, -0.03501 —0.03747
(-1.9078) (-1.9335)




380 Mudtiequation Time-Series Models
relationship (with -values in parentheses) are

¥, =—0.4843 — 0.9273z, + 0.9768Tw, + ¢,, 63
(~0.5751) (=38.095) (53.462) :

z,=—0.0589 — 1.0108y, + 1.02549w, + e_, (6.38)

(-0.6709) (-38.095) (65.323) SR
w,=—0.0852 + 0.9901y, + 0.95347z, + ¢,,, , (6.39)
(—1.0089) (52.462) (65.462) o

where e, e,, and e,, = the residuals from the three equilibrium regressions

The essence of the test is to determine whether the residuals from the equilibrium
regression are stationary. Again, in performing the test, there is no presumption that
any one of the three residual series is preferable to any of the others. If we use each
of the three series to estimate an equation in the form of (6.31) and (6.32), the esti-
mated values of a, are as given in Table 6.3.

Engle and Yoo (1987) report the critical values of the r-statistic as ~3.93. Hence,
using any one of the three equilibruim regressions, we can conclude that the series
are cointegrated of order (1, 1). Fortunately, all three equilibrium regressions yield
this same conclusion. We should be very wary of a result indicating that the vari-
ables are cointegrated using one variable for the normalization, but are not cointe-
grated using another variable for the normalization. This possible ambiguity is a
weakness of the test; other methods can be tried if mixed results are found.

Avoid the temptation to conduct significance tests in (6.37) through (6.39). The
coefficients do not have asymptotic r-distributions unless the right hand side vari-
ables are actually independent and there exists a single cointegrating vector.

Step 3 entails estimating the error-correction model. Consider the first-order sys-
tem shown with t-statistics in parentheses:

Ay, =0.009 + 0.441e,,, + 0.190Ay,_, + 0.3324z,_, ~ 0.380Aw,_, + €, (6.40)
0.291) (2949 (1.15) (2.05) (-2.35)
Az, =—0.042 + 0.054e,,,; + 0.139Ay,_, + 0.253Az,_, — 0.304Aw,_, + €, (6.41)
(-1.11)  (0.304) 0.711) (1.32) (-1.59)
Aw, =-0.041 — 0.065e,,,_; + 0.157Ay,_, + 0.302Az,_, — 0.421Aw,_, + €, (6.42)
(-0.31) (-0.907) = (0.688) (1.35) (-1.88)

where e, ., =w,_; +0.0852 -0.9901y,_, — 0.95347z,_,

That is, e,,,_, is the lagged value of the residual from (6.39).

Equations (6.40) through (6.42) comprise a first-order VAR augmented with
the single error-correction term e,,,_,. Again, there is an area of ambiguity since the
residuals from any of the “equilibrium” relationships could have been used in
the estimation. The signs of the speed of adjustment coefficients are in accord with
convergence toward the long-run equilibrium. In response to a positive discrepancy
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Table 6.3 Estimated a, and the Associated ¢-statistic

No lags 4 Lags
Ae,, -0.44301 ~0.59525
(=5.17489) (—4.0741)
Ae,, ~0.45195 -0.59344
(=5.37882) (—4.2263)
Ae,, -0.45525 ' -0.60711
(~5.3896) (~4.2247)

in e,,_;, both y, and z, tend to increase while w, tends to decrease. The error-correc-
tion term, however, is significant only in (6.40).

Finally, the diagnostic methods discussed in the last section should be applied to
(6.40) through (6.42) in order to assess the model’s adequacy. If you use actual
data, lag-length tests and the properties of the residuals need to be considered.
Moreover, innovation accounting could help determine whether the model is ade-
quate. These tests are not performed here since there is no economic theory associ-
ated with the simulated data.

6. COINTEGRATION AND PURCHASING-POWER PARITY

Unfortunately, the simplicity of simulated data is rarely encountered in applied
econometrics. To illustrate the Engle-Granger methodology using “real world”
data, reconsider the theory of purchasing-power parity (PPP). Respectively, if e,, p¥,
and p, denote the logarithms of the price of foreign exchange, foreign price level,
and domestic price level, long-run PPP requires that ¢, + p* ~ p, be stationary. The
unit root tests reported in Chapter 4 indicate that real exchange rates—defined as r,
= e, + p} — p—appear to be nonstationary. Cointegration offers an alterna-
tive method to check the theory; if PPP holds, the sequence formed by the sum
{e, + p*} should be cointegrated with the {p,} sequence. Call the constructed dollar
value of the foreign price level f,; that is, f, = ¢, + p*. Long-run PPP asserts that
there exists a linear combination of the form f, = 3, + B,p, + i, such that {y,} is sta-
tionary and the cointegrating vector is such that §, = 1.

As reported in Chapter 4, in Enders (1988), I used price and exchange rate data
for Germany, Japan, Canada, and the United States for both the Bretton Woods
(1960-1971) and post-Bretton Woods (1973-1988) periods.'” Pretesting the data
indicated that for each period, both the U.S. price level {p,} and dollar values of the
foreign price levels {e, + p¥} both contained a single unit root. With differing or-
ders of integration, it would have been possible to immediately conclude that long-
run PPP failed.
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The next step was to estimate the long-run equilibrium relation by regressing
each f,=e¢,+pfonp;

fi=PBo+ B+t oo L (643)

Absolute PPP asserts that f, = p,, so that this version of the theory re(%lgres BQ = 0
A . . . . . nng
i tent with the relative version of PPP requi

and B, = 1. The intercept {3, is consis ' of PP requiting
i i ice levels move proportionately to .

only that domestic and foreign pri : ach other

i to omit the constant, the recomme p
Unless there are compelling reasons the !
tice is to include an intercept term in the equilibrium regression. In fact, Engle and
Granger’s (1987) Monte Carlo simulations all include intercept terms. i
The estimated values of B, and their associated standard errors are repo bel
Table 6.4. Note that five of the six values are estimated to bp qulte.a bit be o(\)v
unity. Be especially careful not to make too much of these ﬁndm%s. Itis {10t a‘pprly
i « . . . ty Slmp
i significantly different from uni
riate to conclude that each value of f; is m /
gecause the values of (1 — B,) exceed two or three standard deviations. Tbebz;s
sumptions underlying this type of t-test are not appll({able lllézre unless the variables
are actually cointegrated and p, is the indepefldant vlalm;b{lg.} were checked for un
i i tion, calle .3
The residuals from each regression equation, } i 3 for unit
i ightforward since the residuals from a reg
roots. The unit root tests are straig i © 2 regression
i t have a time trend. The following two eq

equation have a zero mean and do no owir jua-
tic(l)ns were estimated using the residuals from each long-run equilibrium relation

ship:

~ ~ 44
AH, = all‘lr-—l + 61 (6 )

and

Af‘l’l = alﬂr—l + zaHlAl:lt—i +€ . (6.45)

Table 6.4 The Equilibrium Regressions

Germany Japan Canada
1973-1986
Estimated B, 0.5374 0.8938 | 2;’(7;3)
Standard error (0.0415) (0.0316) (0.
1960-1971
Estimated B, 0.6660 0.7361 (1)(())2(())3)
Standard Error (0.0262) (0.0154) (.

Table 6.5 reports the estimated values of a, from (6.44) and (6.45) using a lag
length of four. It bears repeating that failure to reject the null hypothesis a, = 0
means we cannot reject the null of no cointegration. Alternatively, if -2 < a, <0, it
is possible to conclude that the {{1,} sequence does not have a unit root and the {f,}
and {p,} sequences are cointegrated. Also note that it is not appropriate to use ei-
ther of the confidence intervals reported in Dickey and Fuller. The Dickey—Fuller
statistics are inappropriate because the residuals used in (6.44) and (6.45) are not
the actual error terms. Rather, these residuals are estimated error terms that are ob-
tained from the estimate of the equilibrium regression. If we knew the magnitudes
of the actual errors in each period, we could use the Dickey—-Fuller tables.

Engle and Granger (1987) perform their own set of Monte Carlo experiments to
construct confidence intervals for a, in (6.44) and (6.45). Under the null hypothesis
hypothesis a, = 0, the critical values for the t-statistic depend on whether or not

lags are appropriately included.'” The critical values at the 1, 5, and 10% signifi-
cance levels are given by

Critical Values for the Null of No Cointegration

1% 5% 10%
No lags —4.07 -3.37 -3.03
Lags -3.73 -3.17 -291

Comparing the results of Table 6.5 with the critical values provided by Engle
and Granger indicates that for only Japan during the fixed exchange rate period is it
possible to reject the null hypothesis of no cointegration. By using four lags, the
t-statistic for the null a, = 0 is calculated to be ~3.437. At the 5% significance level,
the critical value of r is —3.17. Hence, at the 5% significance level, we can reject the
null of no cointegration (i.e., accept the alternative that the variables are cointe-
grated) and find in favor of PPP. For the other countries in each time period, we
cannot reject the null hypothesis of no cointegration and must conclude that PPP
generally failed.

The third step in the methodology entails estimation of the error-correction
model. Only the Japan/U.S. model needs estimation since it is the sole case for
which cointegration holds. The final error-correction models for Japanese and U.S.
price levels during the 1960 to 1971 period were estimated to be

Af,=0.00119 - 0.10548,_, (6.46)
(0.00044) (0.04184)
Ap,=0.00156 + 0.01114{,_, (6.47)

(0.00033) (0.03175)

where i, is the lagged residual from the long-run equilibrium regression

That is, fi,_, is the estimated value of f,_,

— Bo — Buwp.-, and standard errors are in
parentheses. ,



384 Multiequation Time-Series Models

Table 6.5 Dickey-Fuller Tests of the Residuals

Germany Japan Canada

1973-1986

no lags B
Estimated a, T R 0,0225 ' -.0151 » -0.1001
Standard error SO (0.0169) ©(0.0236) ' (0.0360)
+-Statistic for a, =0 Yo -1331 - ~0.640 S

4 lags R
Estimated a, S ~00316 -0.0522 ~ —0.0983
Standard error U 00170) T (00236 (0.0388)
t-Statistic fora, =0 - -1.859 = -2.212 © -2.533
19601971 e '

no lags o
Estimated a, -0.0189 -0.1137 -0.0528
Standard error (0.0196) (0.0449) (0.0286)
t-Statistic fora, =0 oo, 0966 7 i 2535 ~1.846

4lags St _
Estimated a, V , -0.0294 ' -0.1821 -0.0509
Standard error (0.0198) (0.0530) (0.0306)
t-Statistic for a, =0 -1.468 —3.437 ~1.663

Lag-length tests (see the discussion of %> and F-tests for lag lengths in the previ-
ous chapter) indicated that lagged values of Af,_; or Ap,; did not need to be in-
cluded in the error-correction equations. Note that the point estimates in (6.46) and
(6.47) indicate a direct convergence to long-run equilibrium. For example, in the
presence of a one-unit deviation from long-run PPP in period 1 — 1, the Japanese
price level falls by 0.10548 units and the U.S. price level rises by 0.01114 units.
Both these price changes in period ¢ act to eliminate the positive discrepancy from
long-run PPP present in period ¢ - 1.

Notice the discrepancy between the magnitudes of the two speed of adjustment
coefficients; in absolute value, the Japanese coefficient is approximately 10 times
that of the U.S. coefficient. As compared to the Japanese price level, the U.S. price
level responded only slightly to a deviation from PPP. Moreover, the error-correc-
tion term is about} of a standard deviation from zero for the United States
(0.01114/0.03175 = 0.3509) and approximately 2.5 standard deviations from zero
for Japan (0.10548/0.04184 = 2.5210). Hence, at the 5% significance level, we can
conclude thaf the speed of adjustment term is insignificantly different from zero for
the United States but not for Japan. This result is consistent with the idea that the
United States was a large country relative to Japan—movements in U.S. prices
evolved independently of events in Japan, but movements in exchange rate adjusted
Japanese prices responded to events in the United States.
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7. CHARACTERISTIC ROOTS, RANK, AND
COINTEGRATION

Although the Engle and Granger (1987) procedure is easily implemented, it does
have several important defects. The estimation of the long-run equilibrium regres-

~ sion requires that the researcher place one variable on the left-hand side and use the
- others as regressors. For example, in the case of two variables, it is possible to run

the Engle—Granger test for cointegration by using the residuals from either of the
following two “equilibrium” regressions:

Ay

Sy =B+ Buzte, - (6.48)

S or

2 z,= By + By + €2 . (6.49)

As the sample size grows infinitely large, asymptotic theory indicates that the
test for a unit root in the {e,,} sequence becomes equivalent to the test for a unit
root in the {e, ) sequence. Unfortunately, the large sample properties on which this
result is derived may not be applicable to the sample sizes usually available to

" economists. In practice, it is possible to find that one regression indicates the vari-
" ables are cointegrated, whereas reversing the order indicates no cointegration. This

is a very undesirable feature of the procedure since the test for cointegration should

. be invariant to the choice of the variable selected for normalization. The problem is
~ obviously compounded using three or more variables since any of the variables can

be selected as the left-hand-side variable. Moreover, in tests using three or more
variables, we know that there may be more than one cointegrating vector. The
method has no systematic procedure for the separate estimation of the multiple

o cointegrating vectors.

Another serious defect of the Engle—Granger procedure is that it relies on a rwo-
step estimator. The first step is to generate the error series {&,} and the second step
uses these generated errors to estimate a regression of the form Aé, = a,é,_, + - .
Thus, the coefficient a, is obtained by estimating a regression using the residuals
from another regression. Hence, any error introduced by the researcher in Step | is
carried into Step 2. Fortunately, several methods have been developed that avoid
these problems. The Johansen (1988) and Stock and Watson (1988) maximum like-
lihood estimators circumvent the use of two-step estimators and can estimate and
test for the presence of muitiple cointegrating vectors. Moreover, these tests allow
the researcher to test restricted versions of the cointegrating vector(s) and speed of
adjustment parameters. Often, we want to test a theory by drawing statistical infer-
ences concerming the magnitudes of the estimated coefficients.

Both the Johansen (1988) and Stock and Watson (1988) procedures rely heavily
on relationship between the rank of a matrix and its characteristic roots. The



Appendix to this chapter reviews the essentials of these concepts; those of you

_ wanting more details should review this appendix. For those wanting an intuitive

explanation, notice that the Johansen procedure is nothing more than a multivariate
generalization of the Dickey—Fuller test. In the univariate case, it is possible to
view the stationarity of {y,} as being dependent on the magnitude (a, - 1), that is,

Ye=ay, . te
or
Ay,=(a,— Dy, +€

If (a, — 1) =0, the {y,} process has a unit root. Ruling out the case in which {y,}
is explosive, if (@, — 1) # 0 we can conclude that the {y,} sequence is stationary.
The Dickey-Fuller tables provide the appropriate statistics to formally test the null
hypothesis (a, — 1) = 0. Now consider the simple generalization to n variables; as in
(6.26), let

X =Ax €
so that

Axl = Alxt—l — X €
=A,-Dx,_, +¢€
=mx,_ +€, (6.50)

where x,and ¢, are (n X 1) vectors
A, = an (n X n) matrix of parameters
I = an (nx n) identity matrix
and wis defined tobe (4, - 1).

As indicated in the discussion surrounding (6.27), the rank of (A, — I) equals the
number of cointegrating vectors. By analogy to the univariate case, if (4, ~ ) con-
sists of all zeros, so that rank(n) = 0, all the {Ax,} sequences are unit root
processes. Since there is no linear combination of the {x,} processes that is station-
ary, the variables are not cointegrated. If we rule out characteristic roots that are
greater than unity, if rank(r) = n, (6.50) represents a convergent system of differ-
ence equations, so that all variables are stationary.

There are several ways to generalize (6.50). The equation is easily modified to
allow for the presence of a drift term; simply let

Ax,=Ay+ Tx,_, + € (6.51)

where Ay =a (n X 1) vector of constants (dqy, @y, - - - Gon)’

yy e g

The effect of including the various ay, is to allow for the possibility of a linear
time trend in the data-generating process. You would want to include the drift term
if the variables exhibited a decided tendency to increase or decrease. Here, the rank
of ® can be viewed as the number of cointegrating relationships existing in the “de-
trended” data. In the long run, mtx,_; = O so that each {Ax,} sequence has an ex-
pected value of a,,. Aggregating all such changes over t yields the deterministic ex-
pression a,y!.

Figure 6.3 illustrates the effects of including a drift in the data-generating
process. Two random sequences with 100 observations each were generated; de-
note these sequences as {€,} and {€,}. Initializing y, = z, = 0, we constructed the
next 100 values of the {y,} and {z,} sequences as

Ay, 02 02 ||y €,
= + 7
Az, 02 02z |&,

so that the cointegrating relationship is
~02y,_,+02z_, =0

In the top graph (a) of Figure 6.3, you can see that each sequence resembles a
random walk process and ncither wanders too far from the other. The next graph
(b) adds drift coefficients such that a,; = a5, = 0.1; now, each series tends to in-
crease by 0.1 in each period. In addition to the fact that each sequence shares the
same stochastic trend, note that each has the same deterministic time trend also.
The fact that each has the same deterministic trend is not a result of the equivalence
between a,, and a,;; the general solution to (6.51) necessitates that each have the
same linear trend. For verification, the next graph (c) of Figure 6.3 sets a,, = 0.1
and a,, = 0.4. Again, the sequences have the same stochastic and deterministic
trends. As an aside, note that increasing a,, and decreasing a,, would have an am-
biguous effect on the slope of the deterministic trend. This point will be important
in a moment; by appropriately manipulating the elements of A, it is possible to in-
clude a constant in the cointegrating vector(s) without imparting a deterministic
time trend to the system.

One way to include a constant in the cointegrating relationships is to restrict the
values of the various a,,. For example, if © has a rank(n) = 1, the rows of = can dif-
fer only by a scalar, so that it is possible to write each {Ax,} sequence in (6.51) as

Ax|, =T X oy + Tk + o + T, +a + €,
Ay, = S(T0y gy + Ty + 0+ T X)) + Qg + €,

Ax = 8,(T X o+ Tk + o + X, + a0 + €,
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where  s;= scalars such that s;t,; =70,

If the a,, can be restricted such that a, = 5,a,0, it follows that all the Ax,, can be
written with the constant included in the cointegrating vector:

Ay, = (T Xy + TpXpey + 00+ T X, +agg) + €,
Axy, = 5 T X ey + Xy + 0+ T X+ A1) + €y

Axy, = 85, (T Xy oy + Xy + 0 + X, + ay0) + €,

or in epmpact form,

Ax=m*xfet & o o (65D

where = x, = (X, X35 v, X))
’
x‘r‘—] = (‘xll—hle—h ceey xn/-lv 1)
Ty Ty Tn G
s s n a
% 21 2 27 Q20
Ty Tpp Tan Qo

The interesting feature of (6.52) is that the linear trend is purged from the sys-
tem. In essence, the various a;, have been altered in such a way that the general so-
lution for each {x,} does not contain a time trend. The solution to the set of differ-
ence equations represented by {6.52) is such that all Ax,, are expected to equal zero
when 7ty oy, + Xy + o+ Ty Xy + a0 =0.

To highlight the difference between (6.51) and (6.52), the last graph (d) of
Figure 6.3 illustrates the consequences of setting a,, = 0.1 and a, = -0.1. You can
see that neither sequence contains a deterministic trend. In fact, for the data shown
in the figure, the trend will vanish so long as we select values of the drift terms
maintaining the relationship a,, = ~a,o. (You are asked to demonstrate this result in
the Questions and Exercises section at the end of this chapter.)

As with the augmented Dickey—Fuller test, the multivariate model can also be
generalized to allow for a higher-order autoregressive process. Consider

X =AX F A+ HAX e (6.53)

pa

F“igure 6.3 Drifts and intercepts in cointegrating relationships. (a) No drift or intercept. (b)
and (c) Drifts in the cointegrating relationship. (d) Intercept in the cointegrating
vector.



where  x, = the (n X 1) vector (x,,, Xp, . . ., Xn)’
€, = is an independently and identically distributed n-dimensional vector
with zero mean and variance matrix Z,'®

Equation (6.53) can be put in a more usable form by subtracting x,., from each
side to obtain

Ax,=(A, = Dx,y +Axx, 5 + A, 3+~ + A X, +€
Now add and subtract (A, — I)x,_, to obtain
Ax,= (A, —DAx_ + (A + A~ Dx o+ Agx 3+ +A X, + €
Next add and subtract (A, + A, — I)x,_; to obtain
Ax,=(A, —DAx,_, + (A + A —DAx, , + (A3 + Ay + A = DXy + - + A, + €

Continuing in this fashion, we obtain

p-l
Ax, - E‘R,-Ax,_i +7'Cx,_P +€’

i= 3 ~ (6.54)

. ,
where = —(1-— Z Ai]

Again, the key feature to note in (6.54) is the rank of the matrix 7; the rank of T

is equal to the number of independent cointegrating vectors. Clearly, if rank(w) =0,
the matrix is null and (6.54) is the usual VAR model in first differences. Instead, if
7 is of rank n, the vector process is stationary. In intermediate cases, if rank(rnt) = 1,
there is a single cointegrating vector and the expression 7tx,_, is the error-correction
factor. For other cases in which 1 < rank(r) < n, there are multiple cointegrating
Vectors.

As detailed in the appendix, the number of distinct cointegrating vectors can be
obtained by checking the significance of the characteristic roots of ©. We know that
the rank of a matrix is equal to the number of its characteristic roots that differ from
zero. Suppose we obtained the matrix 7 and ordered the n characteristic roots such
that A, > A, > - > A,,. If the variables in x, are not cointegrated, the rank of 7 is zero
and all these characteristic roots will equal zero. Since In(1) = 0, each of the expres-

“sions In(1 — A,) will equal zero if the variables are not cointegrated. Similarly, if the
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rank of 7 is unity, 0 < X, < 1 so that the first expression In(1 - A,) will be negative
and all the other 4, =0 so that In(1 - X)) =In(1 = Ay) = =In(1 = A,) = 0.

In practice, we can obtain only estimates of 1 and the characteristic roots. The
test for the number of characteristic roots that are insignificantly different from -
unity can be conducted using the following two test statistics:

s e (M) ==T Zln(l—ii) : (6.55)

i=r+l

>“max (r,r+1) :_Tln(l—}:’rﬂ) (6.56)

~

where A, = the estimated values of the characteristic roots (also called eigenval-
ues) obtained from the estimated 1 matrix
T = the number of usable observations

When the appropriate values of r are clear, these statistics are simply referred to as
)\'lrace and x‘max'

The first statistic tests the null hypothesis that the number of distinct cointegrat-
ing vectors is less than or equal to r against a general alternative. From the previous
discussion, it should be clear that A, equals zero when all A, = 0. The further the
estimated characteristic roots are from zero, the more negative is In(1 — A,) and the
larger the A, statistic. The second statistic tests the null that the number of cointe-
grating vectors is r against the alternative of r + 1 cointegrating vectors. Again, if
the estimated value of the characteristic root is close to zero, A,,, will be small.

Johansen and Juselius (1990) provide the critical values of the A, . and A, sta-
tistics obtained using simulation studies. The critical values are reproduced in Table
B at the end of this text. The distribution of these statistics depends on:

1. The number of nonstationary components under the null hypothesis (i.e., n — r).

2. The form of the vector A,. Use the middle portion of Table B if you do not in-
clude a constant in the cointegrating vector or a drift term. Use the top portion of
the table if you include the drift term A,. Use the bottom portion of the table if
you include a constant in the cointegrating vector.

Using quarterly data for Denmark over the sample period 1974:1 to 1987:3,
Johansen and Juselius (1990) et the x, vector be represented by

— d b\’
X, = (mzn Yo lis

where m2 = log of the real money supply as measured by M2 deflated by a price
index

= log of real income
deposit rate on money representing a direct return on money holding
= bond rate representing the opportunity cost of holding money

<
I

o~ o~
)
|
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Including a constant in the cointegrating relationship (i.e., augmenting x,_, with a
constant), they report that the residuals from (6.54) appear to be serially uncorre-
lated. The four characteristic roots of the estimated 7 matrix are given in the first
column below. '

Ay ==TIn(1=4,.)) Myrace=—TZ In(1 =4

A, =0.4332 30.09 49.14
- X,=0.1776 10.36 : 1905
A,=0.1128 6.34 8.69
Ay =0.0434 2.35 : , 2.35

The second column reports the various )\1,,“ statistics as the number of usable ob-
servations (T = 53) multiplied by In(1 — A,). For example, =53 In(1 — 0.0434) =
2.35 and =53 In(1 — 0.1128) = 6.34. The last column reports the Aace Statistics as
the summation of the A, statistics. Simple arithmetic reveals that 8.69 =235 +
6.34 and 19.05 = 2.35 + 6.34 + 10.36.

To test the null hypothesis r = 0 against the general alternative r=1, 2, 3, or 4,
use the Ay, Statistic. Since the null hypothesis is r = 0 and thére are four variables
(i.e., n = 4), the summation in (6.55) runs from 1 to 4. If we sum over the four val-
ues, the calculated value of A, is 49.14. Since Johansen and Juselius (1990) in-
clude the constant in the cointegrating vector, this calculated value of 49.14 is com-
pared to the critical values reported in the bottom portion of Table B. Forn —r= 4,
the critical values of A, are 49.925, 53.347, and 60.054 at the 90, 95, and 99%
levels, respectively. Thus, at the 90% level, the restriction is not binding, so that the
variables are not cointegrated using this test.

To make a point and give you practice in using the table, suppose you want to
test the null hypothesis 7 < 1 against the alternative r = 2, 3, or 4. Under this null
hypothesis, the summation in (6.55) runs from 2 to 4, so that the calculated value of
Aerace is 19.05. For n — r = 3, the critical values of Ayace are 32.093, 35.068, and
40.198 at the 90, 95, and 99% levels, respectively. The restriction r=0Q or r=11s
not binding.

In contrast to the A, statistic, the A, statistic has a specific alternative hy-
pothesis. To test the null hypothesis r =0 against the specific alternative r = 1, use
Equation (6.56). The calculated value of the A,..(0, 1) statistic is ~53 In(l -
0.4332) = 30.09. For n — r = 4, the critical values of A, are 25.611, 28.167,
30.262, and 33.121 at the 90, 95, 97.5, and 99% levels, respectively. Hence, it is
possible to reject the null hypothesis r = 0 at the 95% level (but not the 97.5%
level) and. conclude that there is only one cointegrating vector (i.e., r = 1). Before
reading on, you should take a moment to examine the data and convince yourself
that the null hypothesis r = 1 against the alternative 7 = 2 cannot be rejected at con-

ventional levels. You should find that the calculated value of the Amax Statistic for r
=1is 10.36 and the critical value at the 90% level 19.796. Hence, there is no sig-
nificant evidence of more than one cointegrating vector.
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The example illustrates the important point that the results of the A,,, and A
; ma trace
tests can conﬂlc‘t. The A, test has the sharper alternative hypothesis. It is usually
preferred for trying to pin down the number of cointegrating vectors.

8. HYPOTHESIS TESTING IN A COINTEGRATION
FRAMEWORK

In the Dickey-Fuller tests discussed in Chapter 4, it was important to correctly as-
certain the form of the deterministic regressors. A similar situation applies in the
Johansen procedure. As you can see in Table B, the critical values of the A,,., and
Amax Statistics are smallest with a drift term and largest with an intercept t:rcr; in-
cluded in the cointegrating vector. Instead of cavalierly positing the form of A,, it is
possible to test restricted forms of the vector. "

Qne of the most interesting aspects of the Johansen procedure is that it allows for
testing restricted forms of the cointegrating vector(s). In a money demand study
you might want to test restrictions concerning the long-run proportionality betweer;
money and prices, the size of the income and interest rate elasticities of demand for
money. In terms of Equation (6.1) (i.e., m, = B4 + Bp, + By, + Bsr, + €,), the restric-
tions of interest are: B, =1, B, > 0, and B, < 0.

The key insight to all such hypothesis tests is that if there are r cointegrating
v.ectors, only these r linear combinations of the variables are stationary. All other
11nf3ar combinations are nonstationary. Thus, suppose you reestimate the model re-
stricting the parameters of . If the restrictions are not binding, you should find that
the number of cointegrating vectors has not diminished.

To test for the presence of an intercept in the cointegrating vector as opposed to
the unrestricted drift A,, estimate the two forms of the model. Denote the ordered
characteristic roots of unrestricted © matrix by 5\1, 5»2, RN 5\,1 and the characteristic
roots of the model with the intercept(s) in the cointegrating vector(s) by Ax Ax
RRE A¥. Suppose that the unrestricted form of the model has r non-zero char:a;:ter:
istic roots. Asymptotically, the statistic:

=T Y [In(l=4%) ~ In(1- %)) (6.57)

{=r+]

has a x” distribution with (n - r) degrees of freedom.

The intuition behind the test is that all values of In(1 — 5\’}‘) and In(l - 5\») should
b.e c?quivalent if the restriction is not binding. Hence, small values for the te'st statis-
tic imply that it is permissible to include the intercept in the cointegrating vector.
However, the likelihood of finding a stationary linear combination of the n vari-
ables is greater with the intercept in the cointegrating vector than if the intercept is
absent from the cointegrating vector. Thus, a large value of A*. [and a correspond-

r+1

ing large value of ~T In(1 — A}, ,)], implies that the restriction artifically inflates the



number of cointegrating vectors. Thus, as proven by Johansen (1991), if the test
- statistic is sufficiently large, it is possible to reject the null hypothesis of an inter-
cept in the cointegrating vector(s) and conclude that there is a linear tre.nd in the
variables. This is precisely the case represented by the middle portion of Figure 6.3.

Johansen and Juselius (1990) test the restriction that their estimated Danish
money demand function does not have a drift. Since they found only one cointe-
grating vector among m2, y, i°, and i®, set n =4 and r = 1. The calculgteq vglue of
the x* statistic in (6.57) is 1.99. With three degrees of freedom, this is insignificant
at conventional levels; they conclude that the data do not have a linear time trend,
and find it appropriate to include the constant in the cointegrating vector.

In order to test restrictions on the cointegrating vector, Johansen defines the two
matrices ¢ and B, both of dimension (n x r), where r is the rank of 7. The properties
of o and [ are such that v '

T=oaf

The matrix [ is the matrix of cointegrating parameters, and the ma[rix. o the ma-
trix of weights with which each cointegrating vector enters the n equations of the
VAR. In a sense, a can be viewed as the matrix of the speed of adjustment parame-
ters. Due to the cross-equation restrictions, it is not possible to estimate o and B us-
ing OLS.?° However, with maximum likelihood estimation, it is possible to (1) esti-
mate (6.53) as an error-correction model; (2) determine the rank of 7T, (3) use the r
most significant cointegrating vectors to form B’; and (4) select o such that TE = OLB".
Question § at the end of this chapter asks you to find several such o and B’ matri-
ces. .

It is easy to understand the process in the case of a single cointegrating vector.
Given that rank(r) = 1, the rows of & are all linear multiples of each other. Hence,
the equations in (6.54) have the form:

Ax“ =+ Ty Xyp + WXy p + o+ Ty Xnr—p T €1,
szl =+ SZ(T[“xl,_p + T Xy p t e + Tclnxnt—p) + €,

Ax, = + sn(m, Xi—p + WipXgp + o + nl'txnl—p) + €,

where the s, are scalars

and for notational simplicity, the matrices T,Ax, ; have not been written out.
Now define o, = (s;;), so that each equation can be written as

AX,', =+ ai(xll—p + B2x21—p +oe Brfrm-—p) + € (l = 1’ ce n)

or in matrix form,

p-1
Ax, = ZniAx,_,. +0oB’x,

i=1

» T E : (6.58)

where  the single cointegrating vector is B=(18, B ....B,) and the speed of
adjustment parameters are givenby o= (o, o1y, . . ., a,).

Once o and B’ are determined, testing various restrictions on ¢, and B’ is straight-
forward if you remember the fundamental point that if there are r cointegrating vec-
tors, only these r linear combinations of the variables are stationary. Thus, the test
statistics involve comparing the number of cointegrating vectors under the null and
alternative hypotheses. Again, let i,, 5»2, ce 5\,, and 5\}*, X:f Ce 5\: denote the or-
dered characteristic roots of the unrestricted and restricted models, respectively. To
test restrictions on P, form the test statistic:

Ti Un(1-2) = In(1=14,)] (6.59)

i=]

Asymptotically, this statistic has a x* distribution with degrees of freedom equal
to the number of restrictions placed on B. Small values of ij* relative to 5\, (fori<r)
imply a reduced number of cointegrating vectors. Hence, the restriction embedded
in the null hypothesis is binding if the calculated value of the test statistic exceeds
that in a x? table.

For example, Johansen and Juselius test the restriction that money and income
move proportionally. Their estimated long-run equilibrium relationship is:

M2, =103y, , =521 i, + 4.22i¢_ + 6.06

They restrict the coefficient of income to be unity and find the restricted values
of the A% to be such that

Ax Tln(l - %)
i=1 0.433 -30.04
i=2 0.172 -10.01
i=3 0.044 -2.36
i=4 0.006 -0.32

Given that the unrestricted model has r = land —T In(l - 5\1) = 30.09, (6.59) be-
comes: ~30.04 + 30.09 = 0.05. Since there is only [ restriction imposed on B, the
test statistic has a x? distribution with 1 degree of freedom. A ¥ table indicates that
0.05 is not significant; hence, they conclude that the restriction is not binding.

Restrictions on a can be tested in the same way. The procedure is to restrict o
and compare the r most significant characteristic roots for the restricted and unre-
stricted models using (6.59). If the calculated value of (6.59) exceeds that from a x2
table, with degrees of freedom equal to the number of restrictions placed on ¢, the
restrictions can be rejected. For example, Johansen and Juselius (1990) test the re-
striction that only money demand (i.e., m2,) responds to the deviation from long
run equilibrium. Formally, they test the restriction that O = 03 = o, = 0. Restricting
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the three values of a; to equal zero, they find the largest characteristic root in the
restricted model is such that T In(1 — A*) = —23.42. Since the unrestricted model is
such that T In(1 - il) = -30.09, equation (6.59) becomes —23.42 - (-30.09) = 7.67.
The %? statistic with 3 degrees of freedom is 7.81 at the 5% significance level.
Hence, they find mild support for the hypothesis that the restriction is not binding.

If there is a single cointegrating vector, the Engle-Granger and Johansen meth-
ods have the same asymptotic distribution. If it can be determined that only one
cointegrating vector exists, it is common to rely on the estimated error-correction
model to test restrictions on o If r = 1, and a single value of « is being tested, the
usual ¢-statistic is asymptotically equivalent to the Johansen test.

9. ILLUSTRATING THE JOHANSEN METHODOLOGY

An interesting way to illustrate the Johansen methodology is to use exactly the
same data shown in Figure 6.2. Although the Engle~Granger technique did find
that the simulated data were cointegrated, a comparison of the two procedures is
useful. Use the following four steps when implementing the Johansen procedure.

STEP 1: Pretests and lag length. It is good practice to pretest all variables to assess
their order of integration. Plot the data to see if a linear time trend is likely
to be present in the data-generating process. Although forms of the
Johansen tests can detect differing orders of integration, it is wise not to
mix variables with different orders of integration.

The results of the test can be quite sensitive to the lag length so it is im-

- portant to be careful. The most common procedure is to estimate a vector

autoregression using the undifferenced data. Then use the same lag-iength

tests as in a traditional VAR. Begin with the longest lag length deemed

reasonable and test whether the lag length can be shortened. For example,

if we want to test whether lags 2 through 4 are important, we can estimate
the following two VARs:

X =Ag+ Ay + Ay A s HAX Lt € (6.60)
X, =Ag+Ax,_ +ey (6.61)

‘where  x, = the (n X 1) vector of variables
Ao = (n x 1) matrix of intercept terms
A; = (n x n) matrices of coefficients

e, and e,, = (nx 1) vector of error terms

Estimate (6.60) with four lags of each variable in each equation and call
the variance/covariance matrix of residuals X,. Now estimate (6.61) using
only one lag of each variable in each equation and call the variance/covari-
ance matrix of residuals X,. Even though we are working with nonstation-
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ary variables, the likelihood ratio test statistic recommended by Sims-
(1980) 1s the same as that reported in Chapter 5: '

(T-c)logl %, | - log|Z,])

where T = number of observations
c = number of parameters in the unrestricted system
log | Z,.| = natural logarithm of the determinant of Z.,.

Following Sims, use the x* distrubution with degrees of freedom equal
to the number of coefficient restrictions. Since each 4, has n? coefficients,
constraining A, = A; = A, = 0 entails 3n® restrictions. Alternately, you can
select lag length p using the multivariate generalizations of the AIC or
SBC.

Estimate the model and determine the rank of 7. Many time-series statisti-
cal software packages contain a routine to estimate the model. Here, it suf-
fices to say that OLS is not appropriate since it is necessary to impose
cross-equation restrictions on the m matrix. You may choose to estimate
the model in three forms: (1) with all elements of A, set equal to zero, (2)
with a drift, or (3) with a constant term in the cointegrating vector.

With the simulated data in Figure 6.2 such that x, = (y,, z, w,)’, an inter-
cept term in the cointegrating vector(s) was inctuded even though the data-
generating process did not contain an intercept. As we saw in the last sec-
tion, it is possible to test for the presence of the intercept. Lag-length tests
indicate setting p = 2, so that the estimated form of the model is

Ax,=Ap+ T Ax,_ +Tix,_, + e, (6.62)

where the drift term A, was constrained so as to force the intercept to ap-
pear in the cointegrating vector.

As always, carefully analyze the properties of the residuals of the esti-
mated model. Any evidence that the errors are not white-noise usually
means that lag lengths are too short. Figure 6.4 shows the deviations of y,
from the long run equilibrium relationship (i, = ~0.01331 ~ 1.0000y, —
1.0350z, + 1.0162w,) and one of the short-run error sequences [i.e., the
{e,} sequence that equals the residuals from the y, equation in (6.62)].
Both sequences conform to their theoretical properties in that the residuals
from the long-run equilibrium relationship appear to be stationary and the
estimated values of the {€,]} sequence approximate a white-noise process.

The estimated values of the characteristic roots of the m matrix in (6.62)
are

A, =0.32600, A,=0.14032, and A, =0.033168
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Since T =98 (100 observations less the two lost as a result of using two
lags), the calculated values of A, and A, for the various possible val-
ues of r are reported in the center column of Table 6.6.

Consider the hypothesis that the variables are not-cointegrated (so that
the rank 7 = 0). Depending on the alternative hypothesis, there are two
possible test statistics to use. If we are simply interested in the hypothesis
that the variables are not cointegrated (r = 0) against the alternative of one
or more cointegrating vectors (r > 0), we can calculate the A, .(0) statis-
tic:

Mcace(0) = =TlIn(1

~A) +1In(1 =2) +In(1 = Ay))

=-98 [In(1 — 0.326) + In(1 — 0.14032) + In(1 — 0.033168)]

=56.786

Table 6.6 Thel,,,, and A, Tests

Null Alternative 95% 90%
Hypothesis Hypothesis Critical Value Critical Value
Arrace t€SLS Arrace Value -

r=0 r>0 56.786 35.068 32.093

r<i r>1 18.123 20.168 17.957

r<2 r>2 3.306 9.094 7.563
Aiax 1€SLS Apnax value

r=0 r=1 38.663 21.894 19.796

r=1 r=2 14.817 15.252 13.781

r=2 r=3 3.306 9.094 7.563

Since 56.786 exceeds the 95% critical value of the A,,,.. statistic (in the
bottom portion of Table B, the critical value is 35.068), it is possible to re-
ject the null hypothesis of no cointegrating vectors and accept the alterna-
tive of one or more cointegrating vectors. Next, we can use the A,..(1)
statistic to test the null of r < I against the alternative of two or three coin-
tegrating vectors. In this case, the A,,..(1) statistic is

Lo

i )\’!racc(l)- T[ln(l —)\,2)+ ln(] - A )]
~ =-98 [In (1 - 0.14032) + In(1 ~ 0. 033168)]
=18.123

Since 18.123 is less than the 95% critical value of 20.168, we cannot re-
ject the null hypothesis at this significance level. However, 18.123 does
exceed the 90% critical value of 17.957; some researchers might reject the
null and accept the alternative of two or three cointegrating vectors. The
Arace(2) statistic indicates no more than two cointegrating vectors at the
90% level significance level.

The A, statistic does not help to clarify the issue. The null hypothesis
of no cointegrating vectors (r = 0) against the specific alternative r = 1 is
clearly rejected. The calculated value A, (0, 1) = -98 In(1 - 0.326) =
38.663 exceeds the 95% critical value of 21.894. Note that the test of the
null hypothesis » = | against the specific alternative r = 2 cannot be re-

. jected at the 95% level, but can be rejected at the 90% level. The calcu-

lated value of A, (1, 2) is =98 In(1 — 0.14032) = 14.817, whereas the crit-
ical values at the 95 and 90% significance levels are 15.752 and 13.781,
respectively. Even though the actual data-generating process contains only

© one cointegrating vector, the realizations are such that researchers willing

STEP 3:

to use the 90% significance level would incorrectly conclude that there are

* two cointegrating vectors. Failing to reject an incorrect null hypothesis is
" always a danger of using wide confidence intervals.

Analyze the normalized cointegrating vector(s) and speed of adjustment
cocfficients. If we select r = 1, the estimated cointegrating vector (B, B, B,

By) is
B =(0.00553 0.41532 0.42988 —0.42207)

If we normalize with respect to B, the normalized cointegrating vector

" and speed of adjustment parameters are

B = (=0.01331 =1.0000 —1.0350 1.0162)
o, = 0.54627

o, =0.16578
,, =0.21895
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Recall that the data were constructed imposing the long-run relationship
w, =y, + z;, so that the estimated coefficients of the normalized [ vector
are close to their theoretical values of (0, —1, -1, 1). Consider the follow-
ing tests:

1. The test that B, = O entails one restriction on one cointegrating vector;
hence, the likelihood ratio test has a ¥ distribution with one degree of
- freedom. The calculated value of ¥ = 0.011234 is not significant at
conventional levels. Hence, we cannot reject the null hypothesis that 3,
= 0. Thus, it is possible to use the form of the model in which there is
neither a drift nor an intercept in the cointegrating vector. Thus, to clar-
ify the issue concerning the number of cointegrating vectors, it would
be wise to reestimate the model excluding the constant from the cointe-
grating vector.

2. To restrict the normalized cointegrating vector such that 8, = —1 and 3,
= 1 entails two restrictions on one cointegrating vector; hence, the like-
lihood ratio test has a %2 distribution with two degrees of freedom. The
calculated value of %? = 0.55350 is not significant at conventional lev-
els. Hence, we cannot reject the null hypothesis that B, =1 and B; = 1.

. 3. To test the joint restriction B = (0, —1, —1, 1) entails the three restric-

" tions By =0, B, =1, and B; = 1. The calculated value of x> with three
degrees of freedom is 1.8128, so that the significance level is 0.612.
Hence, we cannot reject the null hypothesis that the cointegrating vec-
tor is = (0, -1, -1, 1).

STEP 4: Innovation accounting. Finally, innovation accounting and causality tests
on the error-correction model of (6.62) could help to identify a structural
model and determine whether the estimated model appears to be reason-
able. Since the simulated data have no economic meaning, innovation ac-
counting is not performed here.

10. GENERALIZED PURCHASING-POWER PARITY

Most studies of purchasing-power parity (PPP) find the theory inadequate to ex-
plain price and exchange rate movements for low inflation countries during t.he
post-World War II period. The theory of generalized purchasing-power parity
(G-PPP) was developed in Enders and Hurn (1994) to explain the observed nonsta-
tionarity of real exchange rate behavior. The idea is that traditional PPP can fail be-
cause the fundamental macroeconomic variables that determine real exchange
rates—such as real output levels and expenditure patterns—are nonstationary; thus,
the real rates themselves will tend to be nonstationary.?! Although bilateral real ex-
change rates are generally nonstationary, G-PPP hypothesizes that they will exhibit
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common stochastic trends if the fundamental variables (i.e, the forcing variables)
are sufficiently interrelated.

G-PPP can be interpreted in terms of optimum currency areas. In the two-country
case, the real exchange rate between the two countries comprising the domain of a
currency area should be stationary. In a multicountry setting, within an appropri-
ately defined currency area, the forcing variables will be sufficiently interrelated, so
that the real exchange rates themselves will share common trends. Hence, within a
currency area we would expect there to be at least one linear combination of the
various bilateral real exchange rates that is stationary.

To test the theory, we obtained wholesale prices and exchange rates from the
IMF data tapes over the period January 1973 to December 1989 for Australia,
Germany, India, Indonesia, Japan, Korea, Philippines, Singapore, Thailand, the
U.K,, and the United States.” The real exchange rate series were constructed using
Japan as the base country; for each country, we defined the real bilateral exchange
rate with Japan to be the log of the domestic WPI plus the log of the domestic cur-
rency price of the yen minus the log of the Japanese WPI. All were then normal-
ized, so that the real rates in January 1973 are all equal to zero (for Indonesia,
January 1974 = 0). If we use augmented Dickey—Fuller (1979, 1981) and Phillips—
Perron (1988) tests with 12 lags (since monthly data are used), it is not possible to
reject a null of a unit root at conventional significance levels for any of the series.
These findings are hardly surprising; they simply confirm what other studies have
concluded about the nonstationarity of real exchange rates in the post-Bretton
Woods period. You can use the data contained in the file REALRATE.PRN along
with the discussion below.

In accord with G-PPP, suppose that m of the countries in an n-country world
comprise the domain of a currency area; for these m countries, there exists a long-
run equilibrium relationship between the m — 1 bilateral real rates such that:

120 = Bo + Bt + Buaria + - + Bl i + € (6.63)

where the ), = the bilateral real exchange rates in period ¢ between country 1
(Japan in our empirical estimations) and country i

Bo = an intercept term
B = the parameters of the cointegrating vector
e, = a stationary stochastic disturbance term

For the special case in which all the B, are zero, Equation (6.63) becomes the fa-
miliar PPP relationship between domestic prices, foreign prices, and the exchange
rate.

Empirical Tests

Our first step is to consider whether there exists a cointegrating vector between the
three real rates for Germany, the U.K., and the United States. Using Japan as the
base country, we calculate the following values for the A, and A,,,, tests:
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) H,y Avace Amax
r=2 3.32 3.32
r=1 12.74 ., 9.42
r=0 2895 16.21

Using the A, test, we cannot reject the null hypothesis that r = 0. The calcu-
lated value of 28.95 is less than the 90% critical value of 32.093. If we use the more

specific A.,,,, test, a null of 7 = 0 against the alternative of r = 1 cannot be rejected at

the 80% level of significance (the critical value being 17.474 at the 80% signifi-
cance level). Thus, the three real exchange rates are not cointegrated; G-PPP does -
not hold among these countries, so it is possible to conclude that these four coun-
tries do not comprise a currency area. .

Still using Japan as the base country, we next examine whether there exist coin-
tegrating relationships among the German, U.K., and U.S. rates with the rates of
other Pacific Rim nations. Consider the following four-variable equation:

1o = Bo+ Bisria + Braria + Pisnisi t e, (6.64)

where 1y, ris, ' and rys, refer respectively, to the logarithms of the bilateral real
exchange rates of country i, the United States, Germany, and the U.K.*

For each of the seven countries listed in Table 6.7,.the A,,..(0) statistic is re-
ported in column 2. With 4 variables, at the 95% level, the critical value of A, is
53.347. For all countries except India, we can reject a null of no cointegration. If -
we examine India in more detail, the A, statistic for the null of r = 0 against the -
alternative r = 1 cannot be rejected at the 90% level. Therefore, we conclude that -
G-PPP does not hold for India. However, G-PPP does hold for each of the other -
Pacific Rim countries with Germany, Japan, the U.K., and the United States. Since »;
G-PPP does not hold between Japan, the United States, Germany, and the UK. ;
alone, the natural interpretation is that the real exchange rate of each of the smaller ,
Pacific Rim nations (except India) follows a time path dictated by events in the !
larger countries.

Table 6.7 Values of A, forr=0

Arace Bis Bia Bis o
Australia 60.35 0.202 0.586 -0.549 -0.07
India 46.49 1.436 0.985 1.302 0.02
Indonesia 56.93 1.513 1.390 1.750 -0.04
Korea 63.11 -0.497 1.443 —0.995 -0.05
Philippines 56.91 0.720 -0.352 0.253 —0.47
Thailand 64.25 0.986 0.893 0.383 0.04
Singapore 55.44 1.173 0.681 0.638 0.066

The interrelationships among the various real exchange rates are reflected by the
coefficients of the equilibrium relationship reported in columns 3 to 5 of Table 6.7.

The straightforward interpretation of the various 3,; are as long-run elasticities. For -,

example, the Australian bilateral real rate with Japan changes by 0.202% in re-
sponse to a 1% change in the U.S./Japanese bilateral real exchange rate. Notice that
the absolute values of the B,; are generally quite large; only five of the 21 estimated
coefficients are less than 0.5 in absolute value.

The sixth column of Table 6.7 reports the weights or “speed of adjustment” coef-
ficients with which a discrepancy from G-PPP affects the real rate between country
i and Japan. The speed of adjustment coefficients for the large countries are not sig-
nificant and not shown in the table. Note that for all countries except the Phil-
ippines, the speed of adjustment coefficients are rather small; thus, any deviation
from G-PPP can be expected to persist for a relatively long period of time.?*

The Australia, Korea, Philippines Group

Since we had reason to believe that the rates for Australia, Korea, and the
Philippines are interrelated, it is interesting to examine this group in greater detail.
Letting rau, rko, and rph denote the logs of the Australian, Korean, and Philippine
real bilateral exchange rates with Japan, we estimated the following long-run equi-
librium relation:

11.62 rau — 6.65 rko ~ 9.58 rph + 3.152 =0 (6.65)
or normalizing with respect to the Austrialian real rate, we get
rau, = 0.572 rko, + 0.825 rph, — 0.271 (6.66)

In the formal tests for cointegration, the calculated A,,,.. test statistic for the null
r =0 equals 39.95; this null can be strongly rejected at the 99% significance level.
Moreover, both the A, and A, tests indicate that this cointegrating vector is
unique (so that r = 1).

The Johansen procedure allows us to test restrictions on the cointegrating vector.
We tested the following restrictions on equation (6.66):

H,: The coefficients on rko and rph sum to unity

If the sum of these two coefficients is equal to unity, (6.66) can be rewritten solely
in terms of the Australian bilateral rate with Korea and Korean bilateral rate with
the Philippines. The calculated ¥? statistic is 11.36; with one degree of freedom
(since r=1and n —s = 1), Y30, = 6.63 and we reject the restriction; thus, we can re-
ject the hypothesis that the Japanese price level does not enter into Equation (6.65).

H,: Zero restrictions

Restricting the coefficient on rko to equal zero yields a ¥? value of 7.90; restricting
for the coefficient on rph yields a x* value of 12.94. Again, with one degree of free-
dom, we reject the restriction at the 1% significance level.
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H,: Equality restrictions

-Restricting the coefficients on rko and rph to be equal yields a y” statistic of 4.83.
We can reject the restriction at the 5% (but not the 1%) significance level since
Y305 = 3.84. The restricted cointegration vector becomes:

rau = 0.653(rko + rph) - 0.271 6.67)

Certainly, there is strong evidence that G-PPP holds among this subset of coun-
tries. The question is whether Australia, Korea, and the Philippines as a group form
their own currency area with Japan. Next, we compare the residual variances of rau,
rko, and rph when estimated in the system given by (6.64) versus the residual vari-
ances when the rates are estimated by Equation (6.65).

Variances of Residuals

Equation 6.64 Equation 6.65
rau 0.00105 0.00114
rko 0.00066 0.00073
rph i 0.00087 « 0.00105

Notice that for each of the three real rates, the residuals have the smallest vari-
ance when estimated as in Equation (6.64). Thus, for Australia, Korea, and the
Philippines, real exchange rate movements are more heavily influenced by
Germany, Japan, the U.K., and the United States than each other. Since these three
countries are the most likely of the Pacific Rim nations to constitute a currency
area, there is little evidence that any subgroup of Pacific Rim nations constitutes a
currency area. Rather, each Pacific nation has its own real rate influenced by the set
of the larger nations.

SUMMARY AND CONCLUSIONS

Many economic theories imply that a linear combination of certain nonstationary
variables must be stationary. For example, if the variables {x,,}, {x,}, and {x;,} are
I(1) and the linear combination e, = Bo + B1x;, + Baxy + Baxy, is stationary, the vari-
ables are said to be cointegrated of order (1, 1). The vector (B, By, Ba, B5) is called
the cointegrating vector. Cointegrated variables have the same stochastic trends and
$o cannot drift too far apart. Cointegrated variables have an error-correction repre-
sentation such that each responds to the deviation from “long-run equilibrinm.”
One way to check for cointegration is to examine the residuals from the long-run
equilibrium relationship. If these residuals have a unit root, the variables cannot be
cointegrated of order (1, 1). Another way to check for cointegration among I(1)
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variables is to estimate a VAR in first differences and include the lagged level of
the variables in some period ¢ — p. If we use a multivariate generalization of the
Dickey-Fuller test, the vector can be checked for the presence of unit roots. In an n
equation system, n minus the number of unit roots equals the number of cointegrat-
ing vectors.

The Ayace and A, test statistics can be used to help determine the number of
cointegrating vectors. These tests are sensitive to the presence of the deterministic
regressors included in the cointegrating vector(s). Restrictions on the cointegrating
vector(s) and/or speed of adjustment parameters can be tested using y? statistics.

The Johansen and Juselius tables are extended to allow for more than five vari-
ables in Osterwald-Lenum (1992). Also, there is a growing body of work consider-
ing hypothesis testing in a cointegration framework. Park (1992) develops a
non-parametric method for the estimation and testing of cointegrating vectors.
Johansen and Juselius (1992) and Horvath and Watson (1993) discuss the testing of
structural hypotheses within a cointegration framework. A useful review of the hy-
pothesis testing is provided by Johansen (1991).

The literature is proceeding in several interesting directions. Friedman and
Kuttner (1992) use cointegration tests to show that significant relationships be-
tween money, income, and interest rates break down in the 1980s. The paper makes
an excellent companion piece with this chapter since it also uses innovation ac-
counting techniques. Another interesting money demand study using the techniques
in this chapter is Baba, Hendry, and Starr (1992). Gregory and Hansen (1992) con-
sider the possibility of a structural break in a cointegrated system. The intercept
and/or slope coefficients of the cointegrating vector are allowed to experience a
regime shift at an unknown date. King et al. (1991) combine cointegration tests
with the type of structural decompositions considered in Chapter 5.

QUESTIONS AND EXERCISES
1. Let Equations (6.14) and (6.15) contain intercept terms such that

Y=oty tan + g, and 2, =0y +Ayy ) + A2 + €y

A. Show that the solution for y, can be written as

Yi=[(1 = anlle, + (1 —aylag + aple, + apal ! [(1 - a; L)(1=a,,l)
”alzazle]

B. Find the solution for z,.

C. Suppose that y, and z, are CI(1, 1). Use the conditions in (6.19), (6.20), and
(6.21) to write the error-correcting model. Compare your answer to (6.22)
and (6.23). Show that the error-correction model contains an intercept term.



D. Show that {y,} and {z,} have the same deterministic time trend (i.e., show
that the slope coefficient of the time trends is identical).

E. What is the condition such that the slope of the trend is zero? Show that this
condition is such that the constant can be included in the cointegrating vec-
tor.

2. The data file COINT6.PRN contains the three simulated series used in Sections
S and 9. You should find that the properties of the data are such that

Standard
Series  Observations Mean Error Minimum Maximum
Y 100 —4.2810736793 14148612773  —-6.3307043375 -1.2512548288
z 100 -2.1437335637  1.7951179043  -5.7040632238 0.6257029853
w 100 —6.3677952867  2.3914380011  -9.6848404427 —1.4460513399

A. Use the data to reproduce the results in Section 5

B. Use the data to reproduce the results in Section 9.

3. The data file REALRATE.PRN contains the real exchange rate series used in

Section 10. Use the series to reproduce the results in Section 10.

4. The second, third, and fourth columns of the file labeled US.PRN contain the in-
terest rates paid on U.S. 3-month, 3-year, and 10-year U.S. government securi-
ties. The data run from 1960:Q1 to 1991:Q4. These columns are labeled TBILL,
r3, and r10, respectively. You should find that the properties of the data are such

that
Standard
Series Observations Mean Error Minimum Maximum
TBILL 128 6.3959 2.7915 2.3200 15.0900
r3 128 7.3666 2.8113 3.3700 15.7900
rio 128 7.6299 2.7627 3.7900 14.8500

A. Pretest the variables to show that all the rates act as unit root processes.
Specifically, perform augmented Dickey—Fuller tests with 1, 4, and 8§ lags.

You should obtain

Series Statistic Sample Observations  Without Trend With Trend

TBILL ADF(1) 60Q391Q4 126 ~2.3007(-2.8844) —2.2850(-3.4458)
ADF(4) 61Q291Q4 123 -2.2112(-2.8849) —2.0101(-3.4466)
ADF(8) 62Q291Q4 119 -2.0913(-2.8857) ~1.8901(-3.4478)

Series Statistic Sample Observations  Without I'rend with I'rend

r3 ADEF(1) 60Q3 91Q4 126 —1.8902(~2.8844) —1.7706(-3.4458)
ADF(4) 61Q291Q4 123 ~1.9902(-2.8849) -1.6882(~3.4466)
ADF(8) 62Q291Q4 119 —1.6772(-2.8857) —1.1362(-3.4478)

rl0 ADF(1) 60Q3 91Q4 126 —1.6974(-2.8844) —-1.5642(-3.4458)
ADF(4) 61Q291Q4 123 —1.9028(-2.8849) —-1.8007(-3.4466)
ADF(8) 62Q291Q4 119 ~1.5170(-2.8857) —-.89269(-3.4478)

95% critical values appear in brackets.

B. Estimate the cointegrating relationships using the Engle-Granger procedure.
Perform augmented Dickey—Fuller tests on the residuals. Using TBILL as
the “dependent” variable, you should find

where

TBILL, = 0.050882 + 2.2535r3, - 1.3441r10,
(0.35017) (21.3184) (-12.4961)

t-statistics are in parentheses.

Unit root tests for residuals

Statistic Sample Value

ADFE(1) 60Q3 91Q4 53486
ADE(4) 61Q2 9104 —4.5669

ADF(8) 62Q2 91Q4 ~3.4573
ADF(12) 63Q2 91Q4 ~3.0687

The 95% critical value is about 3.81. Based on this data, do you conclude that
the variables are cointegrated?

C. Repeat part B using 10 as the “dependent” variable. You should find that

Unit root tests for residuals

Statistic Sample Value
ADF(1) 60Q3 91Q4 -4.9209
ADF(4) 61Q291Q4 -3.33
ADEF(8) 62Q2910Q4 -2.1910
ADF(12) 63Q2910Q4 -1.4109




D. Estimate an error-correcting model using only one lag of each variable. For
the TBILL equation, you should find

ATBILL, = 0.011346 + 0.24772é,_, — 0.15598ATBILL,_, + 0.73044Ar3,_,
—0.48743Ar10,_, + e1gp1 1,
where ¢é,_, is the lagged residual from your estimate in part B.

Diagnose the problems with this regression equation. You should find
i. All coefficients are insignificant.
it. The {ergy;;, sequence exhibits serial correlation.
iii. Large volatility of the residuals in the early 1980s.

How would you attempt to correct these problems?

E. Estimate the model using the Johansen procedure. Use four lags and include
an intercept in the cointegrating vector. You should find that

List of characteristic roots (i.e., eigenvalues) in descending order:

0.15307 0.10840 0.031092
Trace Tests Maximum Eigenvalue Tests
Null Alternative Airoce Null Alternative Ao
r=0 r21 38.7453 r=0 r=1 20.6006
r<i r>2 18.1447 r=1 r=2 14,2280
r<2 r=3 3.9167 r=2 - r=3 3.9167

i. Explain why the A, test strongly suggests that there is exactly one

cointegrating vector.

ii. To what extent is this result reinforced by the A

test?

‘max

iii. Explain why there may be a discrepancy in the results.

F. Given that there is one cointegrating vector, verify that the normalized coin-

tegrating vector is

TBILL, = 1.88923, — 0.95116r10, — 0.27438

i. Compare this result to your answer in part C.

ii. Show that the speed of adjustment parameters for the normalized TBILL,

r3, and r10 equations are

TBILL: —0.096246

r3: -0.38181

r10: -0.3538

R i e A S

ili. What do the negative signs imply about the adjustment process?

G. Test the restriction f, = 0. You should find that the estimated cointegrating
vector is

TBILL, = 1.9459r3, - 1.0376r10,

and the x? statistic with one degree of freedom is 0.80839.

H. Estimate the model assuming that there is a drift. You should find that the
characteristic roots are

0.15298 0.10615 0.025545
Given that r = 1, verify that the summation indicated by (6.57) yields

—124[In(1 - 0.10840) + In(1 — 0.031092) — In(] - 0.10619)
—In(1 - 0.025545)] =1.01

Do you conclude there is a drift term?

. Suppose you estimate T to be:

06 -05 02
=03 025 0l
12 -1.0 04

A. Show that the determinant of 7 is zero.

B. Show that two of the characteristic roots are zero and that the third is 0.75.
C. Let B’ = (3 — 2.5 1) be the single cointegrating vector normalized with re-

spect to x,. Find the (3 x 1) vector o such that = af’. How would o change
if you normalized B with respect to x,?

D. Describe how you could test the restriction B, + B, =0.
Now suppose you estimate T to be:

08 04 00
n={01 01 00
075 0.25 05

E. Show that the three characteristic roots are 0.0, 0.5, 0.9.



F. Select f such that:

08 0.75
B=[04 025
0.0 05

Find the (3 x 2) matrix o such that n = af8”.

6. Suppose that x,, and x,, are integrated of orders 1 and 2, respectively. You are to

sketch the proof that any linear combination of x,, and X, 1s integrated of order
. 2. Towards this end:

A. Allow x,, and x,, to be the random walk processes

Xy =Xy + €y

and
Xop = X0y + €,

i. Given the initial conditions x,, and x,,, show that the solution for x,, and
xy, have the form x;, = x, + Ze,,_; and x,, = x,0 + Ze,,_,.

ii. Show that the linear combination B,x,, + Pyx,, will generally contain a
stochastic trend.

iii. Wheat assumption is necessary to ensure that x,, and Xy, are CI(1, 1)?

B. Now let x,, be integrated of order 2. Specifically, let Axy, = Axy,; + €,
Given initial conditions for x,, and x,,, find the solution for X,,. [You may al-
low €, and ¢,, to be perfectly correlated).

Isd ;here any linear combination of x,, and x,, that contains only a stochastic
trend?

Is there any linear combination of x,, and x,, that does not contain a stochastic
trend?

C. Provide an intuitive explanation for the statement; If Xy, and x,, are integrated

of orders d, and d, where d, > d,, any linear combination of x,, and X, is in-
tegrated of order d,.

ENDNOTES

1. To include an intercept term, simply set all realizations of one {x;) sequence equal to
unity. In the text, the long-run relationship with an intercept will be denoted by By +
B,xJ, + - +B.x,, = 0. Also note that the definition rules out the trivial case in which all
elements of B equal zero. Obviously if all the §,= 0, Bx/ = 0.

10.

11.

13.

14.

15.

16.

17.
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ear combination of the form B,x, + B,x,, that is I(1). It is possible that rhis combination
of x,, and x,, is cointegrated with x;, such that the linear combination B,x,, + By, + Paxs,
is stationary.

. As a technical point, note that if all elements of x, are /(0), it is possible for e, to be inte-

grated of order —~1. However, this case is of little interest for economic analysis. Also
note that if {x,} is stationary, A%, is stationary for all > 0.

. The issue is trivial if both trends are deterministic. Simply detrend each of the variables

using a deterministic polynomial time trend of the form ot + 0, + 0% + -+,

. From Chapter 3 you will recall that the decomposition of an /(1) variable into a random

walk plus a noise term is not unique. Stock and Watson confine their analysis to trends
that-are random walks.

. The error-correction term could have been written in the form o(B,r,,_, — B,rg._1)-

Normalization with respect to the long-term rate yields (6.9), where oy = o sf, and = .
B,/B,. Here, the cointegrating vector is (1, —B).

. Note that (6.11) and (6.12) represent a system of first-order difference equations. The
stability conditions place restrictions on the magnitudes of o, o, and the various values =

of a,(k).

. Equation (6.18) can be written as A> = a,A + a,, where a, ={(a,, + a,;) and a, = (a,,a,, —
1 3 22 2 12421

a,,a,,). Now refer all the way back to Figure 1.5 in Chapter 1. For A, = 1, the coeffi-
cients of (6.18) must lie along line segment BC. Hence, a, + a, =1, or a,, + a,, + a,,a,,
— a,,a,, = 1. Solving for a,, yields (6.21). For l?\QI < 1, the coefficients must lie inside
region AOBC. Given (6.19), the condition a, ~ a, = | is equivalent to that in (6.21).

. Another interesting way to obtain this result is to refer back to (6.14). If a;, =0, y, =

1Y, + €,,. Imposing the condition {y,} is a unit root process is equivalent to setting a;
=1, sothat Ay, =¢,,.

As mentioned above, with three or more variables, various subsets may be cointegrated.
For example, a group of I(2) variables may be CI(2, 1) or CI(2, 2) or a subset of /(1)
variables may be CI(1, 1). Moreover, a set of CI(2, 1) variables may be cointegrated
with a set of (1) variables. Form the CI(2, 1) relation and determine whether the resul-
tant is cointegrated with the /(1) variables.

The stability/stationarity condition is such that =2 < a, < 0. Hence, if a, is found to be
sufficiently negative, we need to be able to reject the null hypothesis a, = -2.

. As shown in Section 3, the values of &, and ¢, are directly related to the characteristic

roots of the difference equation system. Direct convergence necessitates that ¢, be nega-
tive and a., positive.

Engle and Granger (1987) does provide a statistic to test the joint hypothesis &, = a, = 0.
However, their simulations suggest this statistic is not very powerful and recommend
against its use.

If a variable is found to be integrated of a different order than the others, the remaining
variables can be tested for cointegration.

Wholesale prices and period average exchange rates were used in the study. Each series
was converted into an index number such that each series was equal to unity at the be-
ginning of its respective period (either 1960 or 1973). In the fixed exchange rate period,
all values of {¢,} were set equal to unity. '
A second set of regressions of the form p, = By + B,f, + K, was also estimated. The re-
sults using this alternative normalization are very similar to those reported here.

Use (6.44) only if the residuals from the equilibrium regression are serially uncorrelated.
Any evidence that €, is not white-noise necessitates using the augmented form of the test
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[i.e., Equation (6.45)). Engle and Granger recommend using the augmented tests when
there is any doubt about the nature of the data-generating process. The unaugmented
tests have very low power if (6.44) is estimated when lags are actually present in the
data-generating process.

18. In Section 3, we allowed the disturbance to be serially correlated. Since we want to per-
form significance tests, we need the error terms to be white-noise disturbances.

19. The numbers are slightly different from those reported by Johansen and Juselius (1990)
due to rounding.

20. The Johansen procedure consists of the matrix of vectors of the squared canonical corre-
lations between the residuals of x, and Ax,_, regressed on lagged values of Ax,. The coin-
tegrating vectors are the rows of the normalized eigenvectors.

21. Long-run money neutrality guarantees that nominal variables have only temporary ef-
fects on real exchange rates. Proportional movements in prices and exchange rates may
be observed in high inflation countries since the temporary effects of the vast money
supply movements dwarf the consequences of the nonstationary changes in real vari-
ables.

22. The price series for Singapore runs from January 1974 through December 1989 and the
series for Indonesia from January 1973 through April 1986. Unfortunately, it was not
possible to obtain wholesale price indices for Hong Kong, Malaysia, or Taiwan.
Although consumer price indices are readily available, the large weights given to non-
tradables such as housing and services make them less appropriate for PPP comparisons.

23. Respectively, Japan, the United States, Germany, and the U.K. are denoted as country 1,
3, 4, and 5. Notice that the values of B,,, B4, and B, will differ for each country i; when
there is a possible ambiguity, we use the notation B, to denote the coefficient of r; in
the cointegrating relationship for country i.

24. As in any difference equation system, the speed of adjustment term can be positive or
negative. The critical factor is whether the characteristic roots of the system are all less
than unity in absolute value. Notice that these roots are the estimated values of A; from
the matrix of canonical correlations. In a sense, the Johansen (1988) procedure is a
method to determine whether the characteristic roots of the difference equation system
represented by an error-correction system imply convergence.

APPENDIX: Characteristic Roots, Stability, and Rank
Characteristic Roots Defined
Let A be an (n X n) square matrix with elements a; and x an (n X 1) vector. The
scalar A is called a characteristic root of A if
Ax=Ax (A6
Let I be an (n x n) identity matrix, so that we can rewrite (A6.1) as
Ax—Ax=0

or

(A-ADx=0 (A6.2)

Since x is a vector containing values not identically equal to zero, (A.62) requires
that the rows of (A ~ Af) be linearly dependent. Equivalently, (A6.2) requires that.
the determinant IA - 7&11 = (). Thus, we can find the characteristic root(s) of (A6.1)
by finding the values of A that satisfy

lA-arl =0 (A6.3)

Example 1
Let A be the matrix:

05 02
A=
-02 05

so that

05-2 02
02 05-A

Solving for the vahue of A such that |A — A7| = 0 yields the quadratic equation:
A2 —Ah+021=0 ‘
The two values of A that solve the equation are A = 0.7 and A = 0.3. Hence, 0.7
and 0.3 are the two characteristic roots.
Example 2

Now change A such that each element in column 2 is twice the corresponding
value in column 1. Specifically,

0.5 {
A =
02 -04

Now, Ll

0
|A=Al|=

S—-A 1
~02 -04-%

Again, there are two values of A that solve la-arl =o. Solving the quadratic
equation A? — 0.1 = 0 yields the two characteristic roots A; =0 and A, = 0.1.
Characteristic Equations
Equation (A6.3) is called the characteristic equation of the square matrix A. Notice
that the characteristic equation will be an nth-order polynomial in A. The reason is



that the determinant |A ~ AJ| = 0 contains the nth degree term A" resulting from
the expression: :

(ay; =A@y —May~A) .. . (@, —N)
As such, the characteristic equation will be an nth-order polynomial of the form:
A+ b A b N b e+ b, A+ b, =0 (A6.4)

From (A6.4), it immediately follows that an (n X n) square matrix will necessar-
ily have n characteristic roots. As we saw in Chapter 1, some of the roots may be
repeating and some may be complex. In practice, it is not necessary to actually cal-
culate the values of the roots solving (A6.4). The necessary and sufficient condition
for all characteristic roots to lie within the unit circle are given in the appendix to
Chapter 1.

Notice that the term b, is of particular relevance since b, = (-1)" [A ’ . After all,
b, is the only expression resulting from |A - AI| that is not multiplied by A. In
terms of (A6.4), the expressions A" and b, will have the same sign if n is even and
opposite signs if n is odd. In Example 1, the characteristic equation is A* — A + 0.21
=0, so that b, = 0.21. Since |A| =0.21, it follows that b, = (~1)2(0.21). Similarly,
in Example 2, the characteristic equation is A*> = 0.1A = 0, so that b, = 0. Since it is
also the case that |A| = 0, it also follows that b, = (=1)? |A]. In Example 3 below,
we consider the case in which n = 3. f i ,

Example 3
Let A be such that

05-A 02 02
[A-M|=| 02 05-1 02
02 02 05-A

ristic equation is
A~ 1.5A% + 0.63A - 0.081 =0
and the ~cha@acte1fistic roots are
A, =009, A, =0.3, A; =03
The determinant of A is 0.081, so that b, = ~0.081 = (-1)*| A|.
Determinants and Characteristic Roots

The determinant of an (n X n) matrix is equal to the product of its characteristic
roots, that is

n
A= H A; i (A6.5)
i=1 : . : :

where A, A, ..., A, =the n characteristic roots of the (n X n) matrix A

The proof of this important proposition is straightforward since the values &, A,
..., A, solve (A6.4). However, from the algebra of polynomials, the product of the
factors of (A6.4) is equal to (—1)"b,;

f[x,. =(-1)"b,
i=1

From the second section above, we also know that (-1)", = | A | Hence, (A6.5)
must hold in that the product (A )(X,) . . . (A,) = (=1)"b, = |A]. SR
Examples 1 to 3 continued:

In Examples 1 and 2, the characteristic equation is quadratic of the form A* + b, A +
b, = 0. To find the roots of this quadratic equation, we seek the factors A, and A,
such that

O&_)\l)(k_}"z)=0 L

A O A+ AR, =0

A=+ A DA+ A, =0

Clearly, the values A\, must equal b,. To check the formulas in Example 1, re-
call that the characteristic equation is A — X + 0.21 = 0. In this problem, the value
of b, is 0.21, the product of the characteristic roots A,A, = (0.7)(0.3) = 0.21, and the
determinant of A (0.5)> — (0.2)> = 0.21. In Example 2, the characteristic equation is
A2 = 0.1x = 0, so that b, = 0. The product of the characteristic roots is A A, =
(0.0)(0.1) = 0.0, and the determinant of A (0.5)(0.4) — (0.2) = 0.

In Example 3, the characteristic equation is cubic: A* — 1.5A% + 0.63% — 0.081 =
0. The value of b, is —0.081, the product of the characteristic roots (0.9)(0.3)(0.3) =
0.081, and the determinant of A 0.081.

Characteristic Roots and Rank

The rank of a square (n X n) matrix A is the number of linearly independent rows
(columns) in the matrix. The notation rank(A) = r means that the rank of A is equal
to r. The matrix A is said to be of full rank if rank(A) = n.
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From the discussion above, it follows that the rank of A is equal to the number of
its nonzero characteristic roots. Certainly, if all rows of A are linearly independent,
the determinant of A is not equal to zero. From (A6.5), it follows that none of the
characteristic roots can equal zero if [A| # 0. At the other extreme, if rank(A) =0,
each element of A must equal zero. When rank(A) = 0, the characteristic equation
degenerates into A" = Q with the solutions A, = A, = .- = A, = 0. Consider the inter-
mediate cases in which 0 < rank(A) = r < n. Since interchanging the various rows of
a matrix does not alter the absolute value of its determinant, we can always rewrite
|A - AZ| =0 such that the first  rows comprise the r linearly independent rows of
A. The determinant of these first 7 rows will contain r characteristic roots. The other
(n — r) roots will be zeros.

In Example 2, rank(A) = 1 since each element in row 1 equals —2.5 times the cor-
responding element in row 2. For this case, |A] =0and exactly one characteristic
root is equal to zero. In the other two examples, A is of full rank and all characteris-
tic roots differ from zero.

Example 4
Now consider a (3 x 3) matrix A such that rank(A) = 1. Let

05-A 02 02
|A=All=| 1 04-1 04
025 01 ~0I-A

The rank of A is unity since row 2 is twice row 1 and row 3 is —0.5 times row 1.
The determinant of A equals zero and the characteristic equation is given by

A —-0.822=0
The three characteristic roots are A, = 0.8, A, =0, and A, = 0.

Stability of a First-Order VAR
Let x, be the (n x 1) vector (x,,, x,,, . . . , X,,,)’ and consider the first-order VAR

X, =Ag+A X +¢€, (A6.6)
where A, = an (n x 1) vector with elements a,,
A = an (n X n) square matrix with elements a;;
€, = the (n x 1) vector of white-noise disturbances (¢,,, €5, - . . , €,,).

To check the stability of the system, we need only examine the homogeneous equa-
tion:

X=Axo e e (a6

i

We can use the rethod of undetermirned coefficients and for each x;, posit a solu-
tion of the form:

X, = CA' | (A6.8)

where ;= an arbitrary constant

If (A6.8) is to be a solution, it must satisfy each of the n equations represented by
(A6.7). Substituting x, = ¢,A" and x,,_, = c,A”" for each of the x,,in (A6.7), we get

oM =a,,0 M 4 a0 T + e+ ag e A!
LM = a0 N+ Ay M e+ age AT
A = a5, 0 AT+ Ay e+ ay,c M

N =a,c A+ aneh T 4 e+ a, e N

Now, divide each equation by A~ and collect terms to form

ci{ay —N) + 64, +Caayy o+ Gy, =0
€1ay, +0)(Ap = A) +Ca3ly3  + Coa, =0
C1G, + Colly +C3a,; 4@, ~A) =0

so that the following system of equations must be satisfied:

ay—A  ap a3 4y, G 0
a1 ap-h ay o ay Gl 0
0

a, T O A S [ 0

For a nontrivial solution to the system of equations, the following determinant
must equal zero:

(ay, = A) aj, a3 o a,
az (ap =N ay - A | 0
A Ao Apy (ann _l)

The determinant will be an nth-order polynomial that is satisfied by n values of
A. Denote these n characteristic roots by A, A,, .., A,. Since each is a solution to
the homogeneous equation, we know that the following linear combination of the



homogeneous solutions is also a homogeneous solution:
Xy =d M +dM + - +d N,

Note that each {x,} sequence will have the same roots. The necessary and suffi-
cient condition for stability is that all characteristic roots lie within the unit circle.
Cointegration and Rank
The relationship between the rank of a martix and its characteristic roots is critical
in the Johansen procedure. Using the notation from Section 7, let:

X, =Ax,_, +¢€
so that

A'xl = (Al - I)xr—l t+ €
=TX,_, +€

If the rank of 7t is unity, all rows of ® can be written as a scalar multiple of the
first. Thus, each of the {Ax,} sequences can be written as

Axye = ST Xy + TppXey + o+ Ty X)) + €

where s, =1
s; = nij/n,j

Hence, the linear combination 7o, ,x;,_; + WypXp; + = + Ty X,y = (Ax;, — €,)/s, is
stationary since both Ax;, and €, are stationary.

The rank of m equals the number of cointegrating vectors. If rank(x) = r, there
are r linearly independent combinations of the {x,} sequences that are stationary. If
rank(r) = n, all variables are stationary.

The rank of n is equal to the number of its characteristic roots that differ from
zero. Order the roots such that A, > A, > - > A,. The Johansen methodology allows
you to determine the number of roots that are statistically different from zero. The
relationship between A| and 7 is such that if all characteristic roots of A, are in the
unit circle, w is of full rank.

STATISTICAL TABLES

Table A Empirical Cumulative Distribution of 1

Probability of a Smaller Value
Sample Size 0.01 0.025 0.05 0.10 090 0.95 0975  0.99

No Constant or Time (ay = a, =0) T

25 -2.66 -2.26 -1.95 -1.60 0.92 1.33 1.70 2.16

50 -262 =225 -195 -l.61 0.91 1.31 1.66 2.08
100 -2.60 -2.24 -195 -l.61 0.90 1.29 1.64 2.03
250 -2.58 223 -195 -1.62 0.89 1.29 1.63 2.01
300 -2.58 223 -195 -162 0389 1.28 1.62 2.00
oo ~2.58 -~2.23 -195 -1.62 0.89 1.28 1.62 2.00
Constant (@, = 0) T,

25 -3.75 =333 -3.00 -2.62 037 0.00 0.34 0.72

50 -3.58 322 ~293 -260 040 -0.03 0.29 0.66
100 -3.51  -3.17 -2.8¢ -258 042 005 0.26 0.63
250 -346 -3.14 -288 257 042 -0.06 0.24 0.62
500 -344 313 -2.87 =257 -0.43 =007 024 0.61
oo -343 -3.12 -2.86 =257 044 -0.07 0.23 0.60
Constant + time T,

25 -4.38 -3.95 -3.60 -324 -114 080 -050 -0.15

50 —4.15  -3.80 -350 -3.18 -1.19 -0.87 0.8 -0.24
100 -4.04 =373 -345 =315 -122 090 -062 028
250 -3.99 -3.69 -343 313 -123 -~092 -064 -~031
500 -398 -3.68 -342 313 -124 093 065 032
o -3.96 -3.66 =341 312 -125 094 066 ~0.33

Source: This table was constructed by David A. Dickey using Monte Carlo methods. Standard errors of
the estimates vary, but most are less than 0.20, The table is reproduced from Wayne Fuller, Introduction
to Statistical Time Series. (New York: John Wiley). 1976.






