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Preface to the second edition

Sales of the first edition of this book surpassed expectations (at least

those of the author). Almost all of those who have contacted the author

seem to like the book, and while other textbooks have been published

since that date in the broad area of financial econometrics, none is really

at the introductory level. All of the motivations for the first edition,

described below, seem just as important today. Given that the book

seems to have gone down well with readers, I have left the style largely

unaltered and made small changes to the structure, described below.

The main motivations for writing the first edition of the book were:

● To write a book that focused on using and applying the techniques rather

than deriving proofs and learning formulae

● To write an accessible textbook that required no prior knowledge of

econometrics, but which also covered more recently developed ap-

proaches usually found only in more advanced texts

● To use examples and terminology from finance rather than economics

since there are many introductory texts in econometrics aimed at stu-

dents of economics but none for students of finance

● To litter the book with case studies of the use of econometrics in prac-

tice taken from the academic finance literature

● To include sample instructions, screen dumps and computer output

from two popular econometrics packages. This enabled readers to see

how the techniques can be implemented in practice

● To develop a companion web site containing answers to end-of-chapter

questions, PowerPoint slides and other supporting materials.

xix
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Why I thought a second edition was needed

The second edition includes a number of important new features.

(1) It could have reasonably been argued that the first edition of the book

had a slight bias towards time-series methods, probably in part as a

consequence of the main areas of interest of the author. This second

edition redresses the balance by including two new chapters, on lim-

ited dependent variables and on panel techniques. Chapters 3 and 4

from the first edition, which provided the core material on linear re-

gression, have now been expanded and reorganised into three chapters

(2 to 4) in the second edition.

(2) As a result of the length of time it took to write the book, to produce

the final product, and the time that has elapsed since then, the data

and examples used in the book are already several years old. More

importantly, the data used in the examples for the first edition were

almost all obtained from Datastream International, an organisation

which expressly denied the author permission to distribute the data

or to put them on a web site. By contrast, this edition as far as possi-

ble uses fully updated datasets from freely available sources, so that

readers should be able to directly replicate the examples used in the

text.

(3) A number of new case studies from the academic finance literature are

employed, notably on the pecking order hypothesis of firm financing,

credit ratings, banking competition, tests of purchasing power parity,

and evaluation of mutual fund manager performance.

(4) The previous edition incorporated sample instructions from EViews

and WinRATS. As a result of the additional content of the new chap-

ters, and in order to try to keep the length of the book manageable,

it was decided to include only sample instructions and outputs from

the EViews package in the revised version. WinRATS will continue to

be supported, but in a separate handbook published by Cambridge

University Press (ISBN: 9780521896955).

Motivations for the first edition

This book had its genesis in two sets of lectures given annually by the

author at the ICMA Centre (formerly ISMA Centre), University of Reading

and arose partly from several years of frustration at the lack of an appro-

priate textbook. In the past, finance was but a small sub-discipline drawn

from economics and accounting, and therefore it was generally safe to
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assume that students of finance were well grounded in economic prin-

ciples; econometrics would be taught using economic motivations and

examples.

However, finance as a subject has taken on a life of its own in recent

years. Drawn in by perceptions of exciting careers and telephone-number

salaries in the financial markets, the number of students of finance has

grown phenomenally, all around the world. At the same time, the diversity

of educational backgrounds of students taking finance courses has also

expanded. It is not uncommon to find undergraduate students of finance

even without advanced high-school qualifications in mathematics or eco-

nomics. Conversely, many with PhDs in physics or engineering are also

attracted to study finance at the Masters level. Unfortunately, authors of

textbooks have failed to keep pace, thus far, with the change in the nature

of students. In my opinion, the currently available textbooks fall short of

the requirements of this market in three main regards, which this book

seeks to address:

(1) Books fall into two distinct and non-overlapping categories: the intro-

ductory and the advanced. Introductory textbooks are at the appro-

priate level for students with limited backgrounds in mathematics or

statistics, but their focus is too narrow. They often spend too long

deriving the most basic results, and treatment of important, interest-

ing and relevant topics (such as simulations methods, VAR modelling,

etc.) is covered in only the last few pages, if at all. The more advanced

textbooks, meanwhile, usually require a quantum leap in the level of

mathematical ability assumed of readers, so that such books cannot be

used on courses lasting only one or two semesters, or where students

have differing backgrounds. In this book, I have tried to sweep a broad

brush over a large number of different econometric techniques that

are relevant to the analysis of financial and other data.

(2) Many of the currently available textbooks with broad coverage are too

theoretical in nature and students can often, after reading such a

book, still have no idea of how to tackle real-world problems them-

selves, even if they have mastered the techniques in theory. To this

end, in this book, I have tried to present examples of the use of the

techniques in finance, together with annotated computer instructions

and sample outputs for an econometrics package (EViews). This should

assist students who wish to learn how to estimate models for them-

selves -- for example, if they are required to complete a project or dis-

sertation. Some examples have been developed especially for this book,

while many others are drawn from the academic finance literature. In
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my opinion, this is an essential but rare feature of a textbook that

should help to show students how econometrics is really applied. It is

also hoped that this approach will encourage some students to delve

deeper into the literature, and will give useful pointers and stimulate

ideas for research projects. It should, however, be stated at the out-

set that the purpose of including examples from the academic finance

print is not to provide a comprehensive overview of the literature or to

discuss all of the relevant work in those areas, but rather to illustrate

the techniques. Therefore, the literature reviews may be considered de-

liberately deficient, with interested readers directed to the suggested

readings and the references therein.

(3) With few exceptions, almost all textbooks that are aimed at the intro-

ductory level draw their motivations and examples from economics,

which may be of limited interest to students of finance or business.

To see this, try motivating regression relationships using an example

such as the effect of changes in income on consumption and watch

your audience, who are primarily interested in business and finance

applications, slip away and lose interest in the first ten minutes of

your course.

Who should read this book?

The intended audience is undergraduates or Masters/MBA students who

require a broad knowledge of modern econometric techniques commonly

employed in the finance literature. It is hoped that the book will also be

useful for researchers (both academics and practitioners), who require an

introduction to the statistical tools commonly employed in the area of

finance. The book can be used for courses covering financial time-series

analysis or financial econometrics in undergraduate or postgraduate pro-

grammes in finance, financial economics, securities and investments.

Although the applications and motivations for model-building given in

the book are drawn from finance, the empirical testing of theories in many

other disciplines, such as management studies, business studies, real es-

tate, economics and so on, may usefully employ econometric analysis. For

this group, the book may also prove useful.

Finally, while the present text is designed mainly for students at the

undergraduate or Masters level, it could also provide introductory read-

ing in financial time-series modelling for finance doctoral programmes

where students have backgrounds which do not include courses in mod-

ern econometric techniques.
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Pre-requisites for good understanding of this material

In order to make the book as accessible as possible, the only background

recommended in terms of quantitative techniques is that readers have

introductory knowledge of calculus, algebra (including matrices) and basic

statistics. However, even these are not necessarily prerequisites since they

are covered briefly in an appendix to the text. The emphasis throughout

the book is on a valid application of the techniques to real data and

problems in finance.

In the finance and investment area, it is assumed that the reader has

knowledge of the fundamentals of corporate finance, financial markets

and investment. Therefore, subjects such as portfolio theory, the Capital

Asset Pricing Model (CAPM) and Arbitrage Pricing Theory (APT), the effi-

cient markets hypothesis, the pricing of derivative securities and the term

structure of interest rates, which are frequently referred to throughout the

book, are not treated in this text. There are very many good books available

in corporate finance, in investments, and in futures and options, includ-

ing those by Brealey and Myers (2005), Bodie, Kane and Marcus (2008) and

Hull (2005) respectively.

Chris Brooks, October 2007
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1
Introduction

This chapter sets the scene for the book by discussing in broad terms

the questions of what is econometrics, and what are the ‘stylised facts’

describing financial data that researchers in this area typically try to cap-

ture in their models. It also collects together a number of preliminary

issues relating to the construction of econometric models in finance.

Learning Outcomes
In this chapter, you will learn how to

● Distinguish between different types of data

● Describe the steps involved in building an econometric model

● Calculate asset price returns

● Construct a workfile, import data and accomplish simple tasks
in EViews

1.1 What is econometrics?

The literal meaning of the word econometrics is ‘measurement in eco-

nomics’. The first four letters of the word suggest correctly that the origins

of econometrics are rooted in economics. However, the main techniques

employed for studying economic problems are of equal importance in

financial applications. As the term is used in this book, financial econo-

metrics will be defined as the application of statistical techniques to problems

in finance. Financial econometrics can be useful for testing theories in

finance, determining asset prices or returns, testing hypotheses concern-

ing the relationships between variables, examining the effect on financial

markets of changes in economic conditions, forecasting future values of

financial variables and for financial decision-making. A list of possible

examples of where econometrics may be useful is given in box 1.1.

1
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Box 1.1 The value of econometrics

(1) Testing whether financial markets are weak-form informationally efficient

(2) Testing whether the Capital Asset Pricing Model (CAPM) or Arbitrage Pricing Theory

(APT) represent superior models for the determination of returns on risky assets

(3) Measuring and forecasting the volatility of bond returns

(4) Explaining the determinants of bond credit ratings used by the ratings agencies

(5) Modelling long-term relationships between prices and exchange rates

(6) Determining the optimal hedge ratio for a spot position in oil

(7) Testing technical trading rules to determine which makes the most money

(8) Testing the hypothesis that earnings or dividend announcements have no effect on

stock prices

(9) Testing whether spot or futures markets react more rapidly to news

(10) Forecasting the correlation between the stock indices of two countries.

The list in box 1.1 is of course by no means exhaustive, but it hopefully

gives some flavour of the usefulness of econometric tools in terms of their

financial applicability.

1.2 Is financial econometrics different from ‘economic
econometrics’?

As previously stated, the tools commonly used in financial applications are

fundamentally the same as those used in economic applications, although

the emphasis and the sets of problems that are likely to be encountered

when analysing the two sets of data are somewhat different. Financial

data often differ from macroeconomic data in terms of their frequency,

accuracy, seasonality and other properties.

In economics, a serious problem is often a lack of data at hand for testing

the theory or hypothesis of interest -- this is often called a ‘small samples

problem’. It might be, for example, that data are required on government

budget deficits, or population figures, which are measured only on an

annual basis. If the methods used to measure these quantities changed a

quarter of a century ago, then only at most twenty-five of these annual

observations are usefully available.

Two other problems that are often encountered in conducting applied

econometric work in the arena of economics are those of measurement

error and data revisions. These difficulties are simply that the data may be

estimated, or measured with error, and will often be subject to several

vintages of subsequent revisions. For example, a researcher may estimate

an economic model of the effect on national output of investment in

computer technology using a set of published data, only to find that the
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data for the last two years have been revised substantially in the next,

updated publication.

These issues are rarely of concern in finance. Financial data come in

many shapes and forms, but in general the prices and other entities that

are recorded are those at which trades actually took place, or which were

quoted on the screens of information providers. There exists, of course, the

possibility for typos and possibility for the data measurement method to

change (for example, owing to stock index re-balancing or re-basing). But

in general the measurement error and revisions problems are far less

serious in the financial context.

Similarly, some sets of financial data are observed at much higher frequen-

cies than macroeconomic data. Asset prices or yields are often available

at daily, hourly, or minute-by-minute frequencies. Thus the number of ob-

servations available for analysis can potentially be very large -- perhaps

thousands or even millions, making financial data the envy of macro-

econometricians! The implication is that more powerful techniques can

often be applied to financial than economic data, and that researchers

may also have more confidence in the results.

Furthermore, the analysis of financial data also brings with it a num-

ber of new problems. While the difficulties associated with handling and

processing such a large amount of data are not usually an issue given

recent and continuing advances in computer power, financial data often

have a number of additional characteristics. For example, financial data

are often considered very ‘noisy’, which means that it is more difficult

to separate underlying trends or patterns from random and uninteresting

features. Financial data are also almost always not normally distributed

in spite of the fact that most techniques in econometrics assume that

they are. High frequency data often contain additional ‘patterns’ which

are the result of the way that the market works, or the way that prices

are recorded. These features need to be considered in the model-building

process, even if they are not directly of interest to the researcher.

1.3 Types of data

There are broadly three types of data that can be employed in quantitative

analysis of financial problems: time series data, cross-sectional data, and

panel data.

1.3.1 Time series data

Time series data, as the name suggests, are data that have been collected

over a period of time on one or more variables. Time series data have
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Box 1.2 Time series data

Series Frequency

Industrial production Monthly, or quarterly

Government budget deficit Annually

Money supply Weekly

The value of a stock As transactions occur

associated with them a particular frequency of observation or collection

of data points. The frequency is simply a measure of the interval over, or

the regularity with which, the data are collected or recorded. Box 1.2 shows

some examples of time series data.

A word on ‘As transactions occur’ is necessary. Much financial data does

not start its life as being regularly spaced. For example, the price of common

stock for a given company might be recorded to have changed whenever

there is a new trade or quotation placed by the financial information

recorder. Such recordings are very unlikely to be evenly distributed over

time -- for example, there may be no activity between, say, 5p.m. when

the market closes and 8.30a.m. the next day when it reopens; there is

also typically less activity around the opening and closing of the market,

and around lunch time. Although there are a number of ways to deal

with this issue, a common and simple approach is simply to select an

appropriate frequency, and use as the observation for that time period

the last prevailing price during the interval.

It is also generally a requirement that all data used in a model be

of the same frequency of observation. So, for example, regressions that seek

to estimate an arbitrage pricing model using monthly observations on

macroeconomic factors must also use monthly observations on stock re-

turns, even if daily or weekly observations on the latter are available.

The data may be quantitative (e.g. exchange rates, prices, number of

shares outstanding), or qualitative (e.g. the day of the week, a survey of the

financial products purchased by private individuals over a period of time,

a credit rating, etc.).

Problems that could be tackled using time series data:

● How the value of a country’s stock index has varied with that country’s

macroeconomic fundamentals

● How the value of a company’s stock price has varied when it announced

the value of its dividend payment

● The effect on a country’s exchange rate of an increase in its trade deficit.
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In all of the above cases, it is clearly the time dimension which is the

most important, and the analysis will be conducted using the values of

the variables over time.

1.3.2 Cross-sectional data

Cross-sectional data are data on one or more variables collected at a single

point in time. For example, the data might be on:

● A poll of usage of Internet stockbroking services

● A cross-section of stock returns on the New York Stock Exchange

(NYSE)

● A sample of bond credit ratings for UK banks.

Problems that could be tackled using cross-sectional data:

● The relationship between company size and the return to investing in

its shares

● The relationship between a country’s GDP level and the probability that

the government will default on its sovereign debt.

1.3.3 Panel data

Panel data have the dimensions of both time series and cross-sections,

e.g. the daily prices of a number of blue chip stocks over two years. The

estimation of panel regressions is an interesting and developing area, and

will be examined in detail in chapter 10.

Fortunately, virtually all of the standard techniques and analysis in

econometrics are equally valid for time series and cross-sectional data.

For time series data, it is usual to denote the individual observation num-

bers using the index t , and the total number of observations available for

analysis by T. For cross-sectional data, the individual observation numbers

are indicated using the index i , and the total number of observations avail-

able for analysis by N. Note that there is, in contrast to the time series

case, no natural ordering of the observations in a cross-sectional sample.

For example, the observations i might be on the price of bonds of differ-

ent firms at a particular point in time, ordered alphabetically by company

name. So, in the case of cross-sectional data, there is unlikely to be any

useful information contained in the fact that Northern Rock follows Na-

tional Westminster in a sample of UK bank credit ratings, since it is purely

by chance that their names both begin with the letter ‘N’. On the other

hand, in a time series context, the ordering of the data is relevant since

the data are usually ordered chronologically.
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In this book, the total number of observations in the sample will be

given by T even in the context of regression equations that could apply

either to cross-sectional or to time series data.

1.3.4 Continuous and discrete data

As well as classifying data as being of the time series or cross-sectional

type, we could also distinguish it as being either continuous or discrete,

exactly as their labels would suggest. Continuous data can take on any value

and are not confined to take specific numbers; their values are limited only

by precision. For example, the rental yield on a property could be 6.2%,

6.24% or 6.238%, and so on. On the other hand, discrete data can only take

on certain values, which are usually integers1 (whole numbers), and are

often defined to be count numbers. For instance, the number of people in

a particular underground carriage or the number of shares traded during

a day. In these cases, having 86.3 passengers in the carriage or 58571/2

shares traded would not make sense.

1.3.5 Cardinal, ordinal and nominal numbers

Another way in which we could classify numbers is according to whether

they are cardinal, ordinal, or nominal. Cardinal numbers are those where

the actual numerical values that a particular variable takes have meaning,

and where there is an equal distance between the numerical values. On

the other hand, ordinal numbers can only be interpreted as providing a

position or an ordering. Thus, for cardinal numbers, a figure of 12 implies

a measure that is ‘twice as good’ as a figure of 6. Examples of cardinal

numbers would be the price of a share or of a building, and the number

of houses in a street. On the other hand, for an ordinal scale, a figure of 12

may be viewed as ‘better’ than a figure of 6, but could not be considered

twice as good. Examples of ordinal numbers would be the position of

a runner in a race (e.g. second place is better than fourth place, but it

would make little sense to say it is ‘twice as good’) or the level reached in

a computer game.

The final type of data that could be encountered would be where there is

no natural ordering of the values at all, so a figure of 12 is simply different

to that of a figure of 6, but could not be considered to be better or worse

in any sense. Such data often arise when numerical values are arbitrarily

assigned, such as telephone numbers or when codings are assigned to

1 Discretely measured data do not necessarily have to be integers. For example, until

recently when they became ‘decimalised’, many financial asset prices were quoted to the

nearest 1/16 or 1/32 of a dollar.
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qualitative data (e.g. when describing the exchange that a US stock is

traded on, ‘1’ might be used to denote the NYSE, ‘2’ to denote the NASDAQ

and ‘3’ to denote the AMEX). Sometimes, such variables are called nominal

variables. Cardinal, ordinal and nominal variables may require different

modelling approaches or at least different treatments, as should become

evident in the subsequent chapters.

1.4 Returns in financial modelling

In many of the problems of interest in finance, the starting point is a time

series of prices -- for example, the prices of shares in Ford, taken at 4p.m.

each day for 200 days. For a number of statistical reasons, it is preferable

not to work directly with the price series, so that raw price series are

usually converted into series of returns. Additionally, returns have the

added benefit that they are unit-free. So, for example, if an annualised

return were 10%, then investors know that they would have got back £110

for a £100 investment, or £1,100 for a £1,000 investment, and so on.

There are two methods used to calculate returns from a series of prices,

and these involve the formation of simple returns, and continuously com-

pounded returns, which are achieved as follows:

Simple returns Continuously compounded returns

Rt = pt − pt−1

pt−1

× 100% (1.1) rt = 100% × ln

(
pt

pt−1

)
(1.2)

where: Rt denotes the simple return at time t , rt denotes the continuously

compounded return at time t , pt denotes the asset price at time t , and ln

denotes the natural logarithm.

If the asset under consideration is a stock or portfolio of stocks, the

total return to holding it is the sum of the capital gain and any divi-

dends paid during the holding period. However, researchers often ignore

any dividend payments. This is unfortunate, and will lead to an under-

estimation of the total returns that accrue to investors. This is likely to

be negligible for very short holding periods, but will have a severe im-

pact on cumulative returns over investment horizons of several years.

Ignoring dividends will also have a distortionary effect on the cross-

section of stock returns. For example, ignoring dividends will imply that

‘growth’ stocks, with large capital gains will be inappropriately favoured

over income stocks (e.g. utilities and mature industries) that pay high

dividends.
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Box 1.3 Log returns

(1) Log-returns have the nice property that they can be interpreted as continuously com-

pounded returns – so that the frequency of compounding of the return does not

matter and thus returns across assets can more easily be compared.

(2) Continuously compounded returns are time-additive. For example, suppose that a

weekly returns series is required and daily log returns have been calculated for five

days, numbered 1 to 5, representing the returns on Monday through Friday. It is valid

to simply add up the five daily returns to obtain the return for the whole week:

Monday return r1 = ln (p1/p0) = ln p1 − ln p0

Tuesday return r2 = ln (p2/p1) = ln p2 − ln p1

Wednesday return r3 = ln (p3/p2) = ln p3 − ln p2

Thursday return r4 = ln (p4/p3) = ln p4 − ln p3

Friday return r5 = ln (p5/p4) = ln p5 − ln p4

——————————–
Return over the week ln p5 − ln p0 = ln (p5/p0)

Alternatively, it is possible to adjust a stock price time series so that

the dividends are added back to generate a total return index. If pt were

a total return index, returns generated using either of the two formulae

presented above thus provide a measure of the total return that would

accrue to a holder of the asset during time t .
The academic finance literature generally employs the log-return for-

mulation (also known as log-price relatives since they are the log of the

ratio of this period’s price to the previous period’s price). Box 1.3 shows

two key reasons for this.

There is, however, also a disadvantage of using the log-returns. The

simple return on a portfolio of assets is a weighted average of the simple

returns on the individual assets:

Rpt =
N∑

i=1

wi Rit (1.3)

But this does not work for the continuously compounded returns, so that

they are not additive across a portfolio. The fundamental reason why this

is the case is that the log of a sum is not the same as the sum of a log,

since the operation of taking a log constitutes a non-linear transformation.

Calculating portfolio returns in this context must be conducted by first

estimating the value of the portfolio at each time period and then deter-

mining the returns from the aggregate portfolio values. Or alternatively,

if we assume that the asset is purchased at time t − K for price Pt−K

and then sold K periods later at price Pt , then if we calculate simple

returns for each period, Rt , Rt+1, . . . , RK , the aggregate return over all K
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1a.  Economic or f inancial theory (previous studies)

1b.  Formulation of an estimable theoretical model

2. Collection of data

3. Model estimation

4.  Is the model statistically adequate?

No Yes

Reformulate model 5. Interpret model

6. Use for analysis

Figure 1.1

Steps involved in

forming an

econometric model

periods is

RK t = Pt − Pt−K

Pt−K
= Pt

Pt−K
− 1 =

[
Pt

Pt−1

× Pt−1

Pt−2

× . . . × Pt−K+1

Pt−K

]
− 1

= [(1 + Rt )(1 + Rt−1) . . . (1 + Rt−K+1)] − 1

(1.4)

In the limit, as the frequency of the sampling of the data is increased

so that they are measured over a smaller and smaller time interval, the

simple and continuously compounded returns will be identical.

1.5 Steps involved in formulating an econometric model

Although there are of course many different ways to go about the process

of model building, a logical and valid approach would be to follow the

steps described in figure 1.1.

The steps involved in the model construction process are now listed and

described. Further details on each stage are given in subsequent chapters

of this book.

● Step 1a and 1b: general statement of the problem This will usually involve

the formulation of a theoretical model, or intuition from financial the-

ory that two or more variables should be related to one another in

a certain way. The model is unlikely to be able to completely capture

every relevant real-world phenomenon, but it should present a suffi-

ciently good approximation that it is useful for the purpose at hand.
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● Step 2: collection of data relevant to the model The data required may be

available electronically through a financial information provider, such

as Reuters or from published government figures. Alternatively, the re-

quired data may be available only via a survey after distributing a set

of questionnaires i.e. primary data.

● Step 3: choice of estimation method relevant to the model proposed in step 1

For example, is a single equation or multiple equation technique to be

used?

● Step 4: statistical evaluation of the model What assumptions were required

to estimate the parameters of the model optimally? Were these assump-

tions satisfied by the data or the model? Also, does the model adequately

describe the data? If the answer is ‘yes’, proceed to step 5; if not, go back

to steps 1--3 and either reformulate the model, collect more data, or

select a different estimation technique that has less stringent require-

ments.

● Step 5: evaluation of the model from a theoretical perspective Are the param-

eter estimates of the sizes and signs that the theory or intuition from

step 1 suggested? If the answer is ‘yes’, proceed to step 6; if not, again

return to stages 1--3.

● Step 6: use of model When a researcher is finally satisfied with the model,

it can then be used for testing the theory specified in step 1, or for for-

mulating forecasts or suggested courses of action. This suggested course

of action might be for an individual (e.g. ‘if inflation and GDP rise, buy

stocks in sector X’), or as an input to government policy (e.g. ‘when

equity markets fall, program trading causes excessive volatility and so

should be banned’).

It is important to note that the process of building a robust empirical

model is an iterative one, and it is certainly not an exact science. Often,

the final preferred model could be very different from the one originally

proposed, and need not be unique in the sense that another researcher

with the same data and the same initial theory could arrive at a different

final specification.

1.6 Points to consider when reading articles in empirical finance

As stated above, one of the defining features of this book relative to others

in the area is in its use of published academic research as examples of the

use of the various techniques. The papers examined have been chosen for

a number of reasons. Above all, they represent (in this author’s opinion) a

clear and specific application in finance of the techniques covered in this
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Box 1.4 Points to consider when reading a published paper

(1) Does the paper involve the development of a theoretical model or is it merely a

technique looking for an application so that the motivation for the whole exercise is

poor?

(2) Are the data of ‘good quality’? Are they from a reliable source? Is the size of the

sample sufficiently large for the model estimation task at hand?

(3) Have the techniques been validly applied? Have tests been conducted for possible

violations of any assumptions made in the estimation of the model?

(4) Have the results been interpreted sensibly? Is the strength of the results exagger-

ated? Do the results actually obtained relate to the questions posed by the author(s)?

Can the results be replicated by other researchers?

(5) Are the conclusions drawn appropriate given the results, or has the importance of

the results of the paper been overstated?

book. They were also required to be published in a peer-reviewed journal,

and hence to be widely available.

When I was a student, I used to think that research was a very pure

science. Now, having had first-hand experience of research that academics

and practitioners do, I know that this is not the case. Researchers often cut

corners. They have a tendency to exaggerate the strength of their results,

and the importance of their conclusions. They also have a tendency not to

bother with tests of the adequacy of their models, and to gloss over or omit

altogether any results that do not conform to the point that they wish

to make. Therefore, when examining papers from the academic finance

literature, it is important to cast a very critical eye over the research --

rather like a referee who has been asked to comment on the suitability

of a study for a scholarly journal. The questions that are always worth

asking oneself when reading a paper are outlined in box 1.4.

Bear these questions in mind when reading my summaries of the ar-

ticles used as examples in this book and, if at all possible, seek out and

read the entire articles for yourself.

1.7 Econometric packages for modelling financial data

As the name suggests, this section contains descriptions of various com-

puter packages that may be employed to estimate econometric models. The

number of available packages is large, and over time, all packages have

improved in breadth of available techniques, and have also converged in

terms of what is available in each package. Some readers may already be

familiar with the use of one or more packages, and if this is the case,

this section may be skipped. For those who do not know how to use any
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Table 1.1 Econometric software packages for
modelling financial data

Package software supplier∗

EViews QMS Software

GAUSS Aptech Systems

LIMDEP Econometric Software

MATLAB The MathWorks

RATS Estima

SAS SAS Institute

SHAZAM Northwest Econometrics

SPLUS Insightful Corporation

SPSS SPSS

TSP TSP International

∗ Full contact details for all software suppliers

can be found in the appendix at the end of this

chapter.

econometrics software, or have not yet found a package which suits their

requirements, then read on.

1.7.1 What packages are available?

Although this list is by no means exhaustive, a set of widely used packages

is given in table 1.1. The programs can usefully be categorised according to

whether they are fully interactive, (menu-driven), command-driven (so that

the user has to write mini-programs), or somewhere in between. Menu-

driven packages, which are usually based on a standard Microsoft Win-

dows graphical user interface, are almost certainly the easiest for novices

to get started with, for they require little knowledge of the structure of

the package, and the menus can usually be negotiated simply. EViews is

a package that falls into this category.

On the other hand, some such packages are often the least flexible,

since the menus of available options are fixed by the developers, and

hence if one wishes to build something slightly more complex or just

different, then one is forced to consider alternatives. EViews, however,

has a command-based programming language as well as a click-and-point

interface so that it offers flexibility as well as user-friendliness.

1.7.2 Choosing a package

Choosing an econometric software package is an increasingly difficult

task as the packages become more powerful but at the same time more

homogeneous. For example, LIMDEP, a package originally developed for

the analysis of a certain class of cross-sectional data, has many useful
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features for modelling financial time series. Also, many packages devel-

oped for time series analysis, such as TSP (‘Time Series Processor’), can also

now be used for cross-sectional or panel data. Of course, this choice may

be made for you if your institution offers or supports only one or two of

the above possibilities. Otherwise, sensible questions to ask yourself are:

● Is the package suitable for your intended applications -- for example, does

the software have the capability for the models that you want to esti-

mate? Can it handle sufficiently large databases?

● Is the package user-friendly?

● Is it fast?

● How much does it cost?

● Is it accurate?

● Is the package discussed or supported in a standard textbook, as EViews

is in this book?

● Does the package have readable and comprehensive manuals? Is help avail-

able online?

● Does the package come with free technical support so that you can e-mail

the developers with queries?

A great deal of useful information can be obtained most easily from the

web pages of the software developers. Additionally, many journals (includ-

ing the Journal of Applied Econometrics, the Economic Journal, the International

Journal of Forecasting and the American Statistician) publish software reviews

that seek to evaluate and compare the packages’ usefulness for a given

purpose. Three reviews that this author has been involved with, that are

relevant for chapter 8 of this text in particular, are Brooks (1997) and

Brooks, Burke and Persand (2001, 2003).

The EViews package will be employed in this text because it is simple

to use, menu-driven, and will be sufficient to estimate most of the models

required for this book. The following section gives an introduction to this

software and outlines the key features and how basic tasks are executed.2

1.7.3 Accomplishing simple tasks using EViews

EViews is a simple to use, interactive econometrics software package, pro-

viding the tools most frequently used in practical econometrics. EViews

is built around the concept of objects with each object having its own

window, its own menu, its own procedure and its own view of its data.

2 The first edition of this text also incorporated a detailed discussion of the WinRATS

package, but in the interests of keeping the book at a manageable length with two new

chapters included, the support for WinRATS users will now be given in a separate

handbook that accompanies the main text, ISBN: 9780521896955.
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Using menus, it is easy to change between displays of a spreadsheet, line

and bar graphs, regression results, etc. One of the most important fea-

tures of EViews that makes it useful for model-building is the wealth of

diagnostic (misspecification) tests, that are automatically computed, mak-

ing it possible to test whether the model is econometrically valid or not.

You work your way through EViews using a combination of windows, but-

tons, menus and sub-menus. A good way of familiarising yourself with

EViews is to learn about its main menus and their relationships through

the examples given in this and subsequent chapters.

This section assumes that readers have obtained a licensed copy of

EViews, and have successfully loaded it onto an available computer. There

now follows a description of the EViews package, together with instruc-

tions to achieve standard tasks and sample output. Any instructions that

must be entered or icons to be clicked are illustrated throughout this book

by bold-faced type. The objective of the treatment in this and subsequent

chapters is not to demonstrate the full functionality of the package, but

rather to get readers started quickly and to explain how the techniques

are implemented. For further details, readers should consult the software

manuals in the first instance, which are now available electronically with

the software as well as in hard copy.3 Note that EViews is not case-sensitive,

so that it does not matter whether commands are entered as lower-case

or CAPITAL letters.

Opening the software

To load EViews from Windows, choose Start, All Programs, EViews6 and

finally, EViews6 again.

Reading in data

EViews provides support to read from or write to various file types, in-

cluding ‘ASCII’ (text) files, Microsoft Excel ‘.XLS’ files (reading from any

named sheet in the Excel workbook), Lotus ‘.WKS1’ and ‘.WKS3’ files. It is

usually easiest to work directly with Excel files, and this will be the case

throughout this book.

Creating a workfile and importing data

The first step when the EViews software is opened is to create a workfile

that will hold the data. To do this, select New from the File menu. Then

3 A student edition of EViews 4.1 is available at a much lower cost than the full version,

but with reduced functionality and restrictions on the number of observations and

objects that can be included in each workfile.
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choose Workfile. The ‘Workfile Create’ window in screenshot 1.1 will be

displayed.

Screenshot 1.1

Creating a workfile

We are going to use as an example a time series of UK average house

price data obtained from Nationwide,4 which comprises 197 monthly ob-

servations from January 1991 to May 2007. The frequency of the data

(Monthly) should be set and the start (1991:01) and end (2007:05) dates

should be inputted. Click OK. An untitled workfile will be created.

Under ‘Workfile structure type’, keep the default option, Dated – regu-

lar frequency. Then, under ‘Date specification’, choose Monthly. Note the

format of date entry for monthly and quarterly data: YYYY:M and YYYY:Q,

respectively. For daily data, a US date format must usually be used depend-

ing on how EViews has been set up: MM/DD/YYYY (e.g. 03/01/1999 would

be 1st March 1999, not 3rd January). Caution therefore needs to be exer-

cised here to ensure that the date format used is the correct one. Type

the start and end dates for the sample into the boxes: 1991:01 and 2007:05

respectively. Then click OK. The workfile will now have been created. Note

that two pairs of dates are displayed, ‘Range’ and ‘Sample’: the first one is

the range of dates contained in the workfile and the second one (which

is the same as above in this case) is for the current workfile sample. Two

4 Full descriptions of the sources of data used will be given in appendix 3 and on the web

site accompanying this book.
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objects are also displayed: C (which is a vector that will eventually contain

the parameters of any estimated models) and RESID (a residuals series,

which will currently be empty). See chapter 2 for a discussion of these

concepts. All EViews workfiles will contain these two objects, which are

created automatically.

Now that the workfile has been set up, we can import the data from

the Excel file UKHP.XLS. So from the File menu, select Import and Read

Text-Lotus-Excel. You will then be prompted to select the directory and file

name. Once you have found the directory where the file is stored, enter

UKHP.XLS in the ‘file name’ box and select the file type ‘Excel (∗.xls)’. The

window in screenshot 1.2 (‘Excel Spreadsheet Import’) will be displayed.

Screenshot 1.2

Importing Excel data

into the workfile

You have to choose the order of your data: by observations (series in

columns as they are in this and most other cases) or by series (series in

rows). Also you could provide the names for your series in the relevant

box. If the names of the series are already in the imported Excel data file,

you can simply enter the number of series (which you are importing) in

the ‘Names for series or Number if named in file’ field in the dialog box.

In this case, enter HP, say, for house prices. The ‘Upper-left data cell’ refers

to the first cell in the spreadsheet that actually contains numbers. In this

case, it can be left at B2 as the first column in the spreadsheet contains
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only dates and we do not need to import those since EViews will date the

observations itself. You should also choose the sample of the data that you

wish to import. This box can almost always be left at EViews’ suggestion

which defaults to the current workfile sample. Click OK and the series will

be imported. The series will appear as a new icon in the workfile window,

as in screenshot 1.3.

Screenshot 1.3

The workfile

containing loaded

data

Verifying the data

Double click on the new hp icon that has appeared, and this will open

up a spreadsheet window within EViews containing the monthly house

price values. Make sure that the data file has been correctly imported by

checking a few observations at random.

The next step is to save the workfile: click on the Save As button from

the File menu and select Save Active Workfile and click OK. A save dialog

box will open, prompting you for a workfile name and location. You should

enter XX (where XX is your chosen name for the file), then click OK. EViews

will save the workfile in the specified directory with the name XX.WF1.

The saved workfile can be opened later by selecting File/Open/EViews Work-

file . . . from the menu bar.
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Transformations

Variables of interest can be created in EViews by selecting the Genr button

from the workfile toolbar and typing in the relevant formulae. Suppose,

for example, we have a time series called Z. The latter can be modified in

the following ways so as to create Variables A, B, C, etc.

A = Z/2 Dividing

B = Z*2 Multiplication

C = Zˆ2 Squaring

D = LOG(Z) Taking the logarithms

E = EXP(Z) Taking the exponential

F = Z(−1) Lagging the data

G = LOG(Z/Z(−1)) Creating the log-returns

Other functions that can be used in the formulae include: abs, sin, cos, etc.

Notice that no special instruction is necessary; simply type ‘new variable =
function of old variable(s)’. The variables will be displayed in the same

workfile window as the original (imported) series.

In this case, it is of interest to calculate simple percentage changes in

the series. Click Genr and type DHP = 100*(HP-HP(-1))/HP(-1). It is important

to note that this new series, DHP, will be a series of monthly changes and

will not be annualised.

Computing summary statistics

Descriptive summary statistics of a series can be obtained by selecting

Quick/Series Statistics/Histogram and Stats and typing in the name of

the variable (DHP). The view in screenshot 1.4 will be displayed in the

window.

As can be seen, the histogram suggests that the series has a longer upper

tail than lower tail (note the x-axis scale) and is centred slightly above

zero. Summary statistics including the mean, maximum and minimum,

standard deviation, higher moments and a test for whether the series is

normally distributed are all presented. Interpreting these will be discussed

in subsequent chapters. Other useful statistics and transformations can

be obtained by selecting the command Quick/Series Statistics, but these are

covered later in this book.

Plots

EViews supports a wide range of graph types including line graphs, bar

graphs, pie charts, mixed line--bar graphs, high--low graphs and scatter-

plots. A variety of options permits the user to select the line types, colour,
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Screenshot 1.4

Summary statistics

for a series

border characteristics, headings, shading and scaling, including logarith-

mic scale and dual scale graphs. Legends are automatically created (al-

though they can be removed if desired), and customised graphs can be

incorporated into other Windows applications using copy-and-paste, or by

exporting as Windows metafiles.

From the main menu, select Quick/Graph and type in the name of the

series that you want to plot (HP to plot the level of house prices) and click

OK. You will be prompted with the Graph window where you choose the

type of graph that you want (line, bar, scatter or pie charts). There is a

Show Option button, which you click to make adjustments to the graphs.

Choosing a line graph would produce screenshot 1.5.

Scatter plots can similarly be produced by selecting ‘Scatter’ in the

‘Graph Type’ box after opening a new graph object.

Printing results

Results can be printed at any point by selecting the Print button on the ob-

ject window toolbar. The whole current window contents will be printed.

Choosing View/Print Selected from the workfile window prints the default
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Screenshot 1.5

A line graph

view for all of the selected objects. Graphs can be copied into the clipboard

if desired by right clicking on the graph and choosing Copy.

Saving data results and workfile

Data generated in EViews can be exported to other Windows applications,

e.g. Microsoft Excel. From the object toolbar, select Procs/Export/Write Text-

Lotus-Excel. You will then be asked to provide a name for the exported file

and to select the appropriate directory. The next window will ask you to

select all the series that you want to export, together with the sample

period.

Assuming that the workfile has been saved after the importation of

the data set (as mentioned above), additional work can be saved by just

selecting Save from the File menu. It will ask you if you want to overwrite

the existing file, in which case you click on the Yes button. You will also

be prompted to select whether the data in the file should be saved in

‘single precision’ or ‘double precision’. The latter is preferable for obvious

reasons unless the file is likely to be very large because of the quantity

of variables and observations it contains (single precision will require less

space). The workfile will be saved including all objects in it -- data, graphs,
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equations, etc. so long as they have been given a title. Any untitled objects

will be lost upon exiting the program.

Econometric tools available in EViews

Box 1.5 describes the features available in EViews, following the format

of the user guides for version 6, with material discussed in this book

indicated by italics.

Box 1.5 Features of EViews

The EViews user guide is now split into two volumes. Volume I contains parts I to III as

described below, while Volume II contains Parts IV to VIII.

PART I (EVIEWS FUNDAMENTALS)

● Chapters 1–4 contain introductory material describing the basics of Windows and

EViews, how workfiles are constructed and how to deal with objects.

● Chapters 5 and 6 document the basics of working with data. Importing data into

EViews, using EViews to manipulate and manage data, and exporting from EViews

into spreadsheets, text files and other Windows applications are discussed.

● Chapters 7–10 describe the EViews database and other advanced data and workfile

handling features.

PART II (BASIC DATA ANALYSIS)

● Chapter 11 describes the series object. Series are the basic unit of data in EViews

and are the basis for all univariate analysis. This chapter documents the basic

graphing and data analysis features associated with series.

● Chapter 12 documents the group object. Groups are collections of series that form

the basis for a variety of multivariate graphing and data analyses.

● Chapter 13 provides detailed documentation for explanatory data analysis using

distribution graphs, density plots and scatter plot graphs.

● Chapters 14 and 15 describe the creation and customisation of more advanced

tables and graphs.

PART III (COMMANDS AND PROGRAMMING)

● Chapters 16–23 describe in detail how to write programs using the EViews

programming language.

PART IV (BASIC SINGLE EQUATION ANALYSIS)

● Chapter 24 outlines the basics of ordinary least squares estimation (OLS) in EViews.

● Chapter 25 discusses the weighted least squares, two-stage least squares and

non-linear least squares estimation techniques.

● Chapter 26 describes single equation regression techniques for the analysis of time

series data: testing for serial correlation, estimation of ARMA models, using

polynomial distributed lags, and unit root tests for non-stationary time series.
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● Chapter 27 describes the fundamentals of using EViews to forecast from estimated

equations.

● Chapter 28 describes the specification testing procedures available in EViews.

PART V (ADVANCED SINGLE EQUATION ANALYSIS)

● Chapter 29 discusses ARCH and GARCH estimation and outlines the EViews tools

for modelling the conditional variance of a variable.

● Chapter 30 documents EViews functions for estimating qualitative and limited

dependent variable models. EViews provides estimation routines for binary or

ordered (e.g. probit and logit), censored or truncated (tobit, etc.) and integer valued

(count) data.

● Chapter 31 discusses the fashionable topic of the estimation of quantile

regressions.

● Chapter 32 shows how to deal with the log-likelihood object, and how to solve

problems with non-linear estimation.

PART VI (MULTIPLE EQUATION ANALYSIS)

● Chapters 33–36 describe estimation techniques for systems of equations including

VAR and VEC models, and state space models.

PART VII (PANEL AND POOLED DATA)

● Chapter 37 outlines tools for working with pooled time series, cross-section data and

estimating standard equation specifications that account for the pooled structure of

the data.

● Chapter 38 describes how to structure a panel of data and how to analyse it, while

chapter 39 extends the analysis to look at panel regression model estimation.

PART VIII (OTHER MULTIVARIATE ANALYSIS)

● Chapter 40, the final chapter of the manual, explains how to conduct factor analysis

in EViews.

1.8 Outline of the remainder of this book

Chapter 2

This introduces the classical linear regression model (CLRM). The ordinary

least squares (OLS) estimator is derived and its interpretation discussed.

The conditions for OLS optimality are stated and explained. A hypothesis

testing framework is developed and examined in the context of the linear

model. Examples employed include Jensen’s classic study of mutual fund

performance measurement and tests of the ‘overreaction hypothesis’ in

the context of the UK stock market.
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Chapter 3

This continues and develops the material of chapter 2 by generalising the

bivariate model to multiple regression -- i.e. models with many variables.

The framework for testing multiple hypotheses is outlined, and measures

of how well the model fits the data are described. Case studies include

modelling rental values and an application of principal components anal-

ysis to interest rate modelling.

Chapter 4

Chapter 4 examines the important but often neglected topic of diagnos-

tic testing. The consequences of violations of the CLRM assumptions are

described, along with plausible remedial steps. Model-building philoso-

phies are discussed, with particular reference to the general-to-specific

approach. Applications covered in this chapter include the determination

of sovereign credit ratings.

Chapter 5

This presents an introduction to time series models, including their moti-

vation and a description of the characteristics of financial data that they

can and cannot capture. The chapter commences with a presentation of

the features of some standard models of stochastic (white noise, moving

average, autoregressive and mixed ARMA) processes. The chapter contin-

ues by showing how the appropriate model can be chosen for a set of

actual data, how the model is estimated and how model adequacy checks

are performed. The generation of forecasts from such models is discussed,

as are the criteria by which these forecasts can be evaluated. Examples in-

clude model-building for UK house prices, and tests of the exchange rate

covered and uncovered interest parity hypotheses.

Chapter 6

This extends the analysis from univariate to multivariate models. Multi-

variate models are motivated by way of explanation of the possible

existence of bi-directional causality in financial relationships, and the

simultaneous equations bias that results if this is ignored. Estimation

techniques for simultaneous equations models are outlined. Vector auto-

regressive (VAR) models, which have become extremely popular in the

empirical finance literature, are also covered. The interpretation of VARs

is explained by way of joint tests of restrictions, causality tests, impulse

responses and variance decompositions. Relevant examples discussed in

this chapter are the simultaneous relationship between bid--ask spreads
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and trading volume in the context of options pricing, and the relationship

between property returns and macroeconomic variables.

Chapter 7

The first section of the chapter discusses unit root processes and presents

tests for non-stationarity in time series. The concept of and tests for coin-

tegration, and the formulation of error correction models, are then dis-

cussed in the context of both the single equation framework of Engle--

Granger, and the multivariate framework of Johansen. Applications stud-

ied in chapter 7 include spot and futures markets, tests for cointegration

between international bond markets and tests of the purchasing power

parity hypothesis and of the expectations hypothesis of the term struc-

ture of interest rates.

Chapter 8

This covers the important topic of volatility and correlation modelling

and forecasting. This chapter starts by discussing in general terms the

issue of non-linearity in financial time series. The class of ARCH (AutoRe-

gressive Conditionally Heteroscedastic) models and the motivation for this

formulation are then discussed. Other models are also presented, includ-

ing extensions of the basic model such as GARCH, GARCH-M, EGARCH

and GJR formulations. Examples of the huge number of applications are

discussed, with particular reference to stock returns. Multivariate GARCH

models are described, and applications to the estimation of conditional

betas and time-varying hedge ratios, and to financial risk measurement,

are given.

Chapter 9

This discusses testing for and modelling regime shifts or switches of be-

haviour in financial series that can arise from changes in government

policy, market trading conditions or microstructure, among other causes.

This chapter introduces the Markov switching approach to dealing with

regime shifts. Threshold autoregression is also discussed, along with issues

relating to the estimation of such models. Examples include the modelling

of exchange rates within a managed floating environment, modelling and

forecasting the gilt--equity yield ratio, and models of movements of the

difference between spot and futures prices.

Chapter 10

This new chapter focuses on how to deal appropriately with longitudinal

data -- that is, data having both time series and cross-sectional dimensions.

Fixed effect and random effect models are explained and illustrated by way
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of examples on banking competition in the UK and on credit stability in

Central and Eastern Europe. Entity fixed and time-fixed effects models are

elucidated and distinguished.

Chapter 11

The second new chapter describes various models that are appropriate

for situations where the dependent variable is not continuous. Readers

will learn how to construct, estimate and interpret such models, and to

distinguish and select between alternative specifications. Examples used

include a test of the pecking order hypothesis in corporate finance and

the modelling of unsolicited credit ratings.

Chapter 12

This presents an introduction to the use of simulations in econometrics

and finance. Motivations are given for the use of repeated sampling, and a

distinction is drawn between Monte Carlo simulation and bootstrapping.

The reader is shown how to set up a simulation, and examples are given

in options pricing and financial risk management to demonstrate the

usefulness of these techniques.

Chapter 13

This offers suggestions related to conducting a project or dissertation in

empirical finance. It introduces the sources of financial and economic data

available on the Internet and elsewhere, and recommends relevant online

information and literature on research in financial markets and financial

time series. The chapter also suggests ideas for what might constitute a

good structure for a dissertation on this subject, how to generate ideas for

a suitable topic, what format the report could take, and some common

pitfalls.

Chapter 14

This summarises the book and concludes. Several recent developments in

the field, which are not covered elsewhere in the book, are also mentioned.

Some tentative suggestions for possible growth areas in the modelling of

financial time series are also given.

1.9 Further reading

EViews 6 User’s Guides I and II -- Quantitative Micro Software (2007), QMS, Irvine, CA

EViews 6 Command Reference -- Quantitative Micro Software (2007), QMS, Irvine, CA

Startz, R. EViews Illustrated for Version 6 (2007) QMS, Irvine, CA
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Appendix: Econometric software package suppliers

Package Contact information

EViews QMS Software, Suite 336, 4521 Campus Drive #336, Irvine, CA 92612--2621, USA

Tel: (+1) 949 856 3368; Fax: (+1) 949 856 2044; Web: www.eviews.com

GAUSS Aptech Systems Inc, PO Box 250, Black Diamond, WA 98010, USA

Tel: (+1) 425 432 7855; Fax: (+1) 425 432 7832; Web: www.aptech.com

LIMDEP Econometric Software, 15 Gloria Place, Plainview, NY 11803, USA

Tel: (+1) 516 938 5254; Fax: (+1) 516 938 2441; Web: www.limdep.com

MATLAB The MathWorks Inc., 3 Applie Hill Drive, Natick, MA 01760-2098, USA

Tel: (+1) 508 647 7000; Fax: (+1) 508 647 7001; Web: www.mathworks.com

RATS Estima, 1560 Sherman Avenue, Evanson, IL 60201, USA

Tel: (+1) 847 864 8772; Fax: (+1) 847 864 6221; Web: www.estima.com

SAS SAS Institute, 100 Campus Drive, Cary NC 27513--2414, USA

Tel: (+1) 919 677 8000; Fax: (+1) 919 677 4444; Web: www.sas.com

SHAZAM Northwest Econometrics Ltd., 277 Arbutus Reach, Gibsons, B.C. V0N 1V8,

Canada

Tel: --; Fax: (+1) 707 317 5364; Web: shazam.econ.ubc.ca

SPLUS Insightful Corporation, 1700 Westlake Avenue North, Suite 500, Seattle, WA

98109--3044, USA

Tel: (+1) 206 283 8802; Fax: (+1) 206 283 8691; Web: www.splus.com

SPSS SPSS Inc, 233 S. Wacker Drive, 11th Floor, Chicago, IL 60606--6307, USA

Tel: (+1) 800 543 2185; Fax: (+1) 800 841 0064; Web: www.spss.com
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Key concepts
The key terms to be able to define and explain from this chapter are

● financial econometrics ● continuously compounded returns

● time series ● cross-sectional data

● panel data ● pooled data

● continuous data ● discrete data



2
A brief overview of the classical linear
regression model

Learning Outcomes
In this chapter, you will learn how to

● Derive the OLS formulae for estimating parameters and their
standard errors

● Explain the desirable properties that a good estimator should
have

● Discuss the factors that affect the sizes of standard errors

● Test hypotheses using the test of significance and confidence
interval approaches

● Interpret p-values

● Estimate regression models and test single hypotheses in
EViews

2.1 What is a regression model?

Regression analysis is almost certainly the most important tool at the

econometrician’s disposal. But what is regression analysis? In very general

terms, regression is concerned with describing and evaluating the relation-

ship between a given variable and one or more other variables. More specifically,

regression is an attempt to explain movements in a variable by reference

to movements in one or more other variables.

To make this more concrete, denote the variable whose movements

the regression seeks to explain by y and the variables which are used to

explain those variations by x1, x2, . . . , xk . Hence, in this relatively simple

setup, it would be said that variations in k variables (the xs) cause changes

in some other variable, y. This chapter will be limited to the case where

the model seeks to explain changes in only one variable y (although this

restriction will be removed in chapter 6).

27
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Box 2.1 Names for y and xs in regression models

Names for y
Dependent variable

Regressand

Effect variable

Explained variable

Names for the xs

Independent variables

Regressors

Causal variables

Explanatory variables

There are various completely interchangeable names for y and the

xs, and all of these terms will be used synonymously in this book (see

box 2.1).

2.2 Regression versus correlation

All readers will be aware of the notion and definition of correlation. The

correlation between two variables measures the degree of linear association

between them. If it is stated that y and x are correlated, it means that y
and x are being treated in a completely symmetrical way. Thus, it is not

implied that changes in x cause changes in y, or indeed that changes in

y cause changes in x . Rather, it is simply stated that there is evidence

for a linear relationship between the two variables, and that movements

in the two are on average related to an extent given by the correlation

coefficient.

In regression, the dependent variable (y) and the independent vari-

able(s) (xs) are treated very differently. The y variable is assumed to be

random or ‘stochastic’ in some way, i.e. to have a probability distribution.

The x variables are, however, assumed to have fixed (‘non-stochastic’) val-

ues in repeated samples.1 Regression as a tool is more flexible and more

powerful than correlation.

2.3 Simple regression

For simplicity, suppose for now that it is believed that y depends on only

one x variable. Again, this is of course a severely restricted case, but the

case of more explanatory variables will be considered in the next chap-

ter. Three examples of the kind of relationship that may be of interest

include:

1 Strictly, the assumption that the xs are non-stochastic is stronger than required, an

issue that will be discussed in more detail in chapter 4.
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Scatter plot of two

variables, y and x

● How asset returns vary with their level of market risk

● Measuring the long-term relationship between stock prices and

dividends

● Constructing an optimal hedge ratio.

Suppose that a researcher has some idea that there should be a relation-

ship between two variables y and x , and that financial theory suggests

that an increase in x will lead to an increase in y. A sensible first stage

to testing whether there is indeed an association between the variables

would be to form a scatter plot of them. Suppose that the outcome of this

plot is figure 2.1.

In this case, it appears that there is an approximate positive linear

relationship between x and y which means that increases in x are usually

accompanied by increases in y, and that the relationship between them

can be described approximately by a straight line. It would be possible

to draw by hand onto the graph a line that appears to fit the data. The

intercept and slope of the line fitted by eye could then be measured from

the graph. However, in practice such a method is likely to be laborious

and inaccurate.

It would therefore be of interest to determine to what extent this rela-

tionship can be described by an equation that can be estimated using a de-

fined procedure. It is possible to use the general equation for a straight line

y = α + βx (2.1)
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Box 2.2 Reasons for the inclusion of the disturbance term

● Even in the general case where there is more than one explanatory variable, some

determinants of yt will always in practice be omitted from the model. This might, for

example, arise because the number of influences on y is too large to place in a

single model, or because some determinants of y may be unobservable or not

measurable.

● There may be errors in the way that y is measured which cannot be modelled.

● There are bound to be random outside influences on y that again cannot be

modelled. For example, a terrorist attack, a hurricane or a computer failure could all

affect financial asset returns in a way that cannot be captured in a model and

cannot be forecast reliably. Similarly, many researchers would argue that human

behaviour has an inherent randomness and unpredictability!

to get the line that best ‘fits’ the data. The researcher would then be

seeking to find the values of the parameters or coefficients, α and β,

which would place the line as close as possible to all of the data points

taken together.

However, this equation (y = α + βx) is an exact one. Assuming that this

equation is appropriate, if the values of α and β had been calculated, then

given a value of x , it would be possible to determine with certainty what

the value of y would be. Imagine -- a model which says with complete

certainty what the value of one variable will be given any value of the

other!

Clearly this model is not realistic. Statistically, it would correspond to

the case where the model fitted the data perfectly -- that is, all of the data

points lay exactly on a straight line. To make the model more realistic, a

random disturbance term, denoted by u, is added to the equation, thus

yt = α + βxt + ut (2.2)

where the subscript t (= 1, 2, 3, . . .) denotes the observation number. The

disturbance term can capture a number of features (see box 2.2).

So how are the appropriate values of α and β determined? α and β are

chosen so that the (vertical) distances from the data points to the fitted

lines are minimised (so that the line fits the data as closely as possible).

The parameters are thus chosen to minimise collectively the (vertical)

distances from the data points to the fitted line. This could be done by

‘eye-balling’ the data and, for each set of variables y and x , one could

form a scatter plot and draw on a line that looks as if it fits the data well

by hand, as in figure 2.2.

Note that the vertical distances are usually minimised rather than the

horizontal distances or those taken perpendicular to the line. This arises
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as a result of the assumption that x is fixed in repeated samples, so that

the problem becomes one of determining the appropriate model for y
given (or conditional upon) the observed values of x .

This ‘eye-balling’ procedure may be acceptable if only indicative results

are required, but of course this method, as well as being tedious, is likely

to be imprecise. The most common method used to fit a line to the data is

known as ordinary least squares (OLS). This approach forms the workhorse

of econometric model estimation, and will be discussed in detail in this

and subsequent chapters.

Two alternative estimation methods (for determining the appropriate

values of the coefficients α and β) are the method of moments and the

method of maximum likelihood. A generalised version of the method of

moments, due to Hansen (1982), is popular, but beyond the scope of this

book. The method of maximum likelihood is also widely employed, and

will be discussed in detail in chapter 8.

Suppose now, for ease of exposition, that the sample of data contains

only five observations. The method of OLS entails taking each vertical

distance from the point to the line, squaring it and then minimising

the total sum of the areas of squares (hence ‘least squares’), as shown in

figure 2.3. This can be viewed as equivalent to minimising the sum of the

areas of the squares drawn from the points to the line.

Tightening up the notation, let yt denote the actual data point for ob-

servation t and let ŷt denote the fitted value from the regression line -- in
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other words, for the given value of x of this observation t , ŷt is the value

for y which the model would have predicted. Note that a hat (ˆ) over a

variable or parameter is used to denote a value estimated by a model.

Finally, let ût denote the residual, which is the difference between the

actual value of y and the value fitted by the model for this data point --

i.e. (yt − ŷt ). This is shown for just one observation t in figure 2.4.

What is done is to minimise the sum of the û2
t . The reason that the sum

of the squared distances is minimised rather than, for example, finding

the sum of ût that is as close to zero as possible, is that in the latter case

some points will lie above the line while others lie below it. Then, when

the sum to be made as close to zero as possible is formed, the points
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above the line would count as positive values, while those below would

count as negatives. So these distances will in large part cancel each other

out, which would mean that one could fit virtually any line to the data,

so long as the sum of the distances of the points above the line and the

sum of the distances of the points below the line were the same. In that

case, there would not be a unique solution for the estimated coefficients.

In fact, any fitted line that goes through the mean of the observations

(i.e. x̄ , ȳ) would set the sum of the ût to zero. However, taking the squared

distances ensures that all deviations that enter the calculation are positive

and therefore do not cancel out.

So minimising the sum of squared distances is given by minimising

(û2
1 + û2

2 + û2
3 + û2

4 + û2
5), or minimising

(
5∑

t=1

û2
t

)

This sum is known as the residual sum of squares (RSS) or the sum of squared

residuals. But what is ût ? Again, it is the difference between the actual

point and the line, yt − ŷt . So minimising
∑

t û2
t is equivalent to minimis-

ing
∑

t (yt − ŷt )
2.

Letting α̂ and β̂ denote the values of α and β selected by minimising the

RSS, respectively, the equation for the fitted line is given by ŷt = α̂ + β̂xt .

Now let L denote the RSS, which is also known as a loss function. Take

the summation over all of the observations, i.e. from t = 1 to T , where T
is the number of observations

L =
T∑

t=1

(yt − ŷt )
2 =

T∑
t=1

(yt − α̂ − β̂xt )
2. (2.3)

L is minimised with respect to (w.r.t.) α̂ and β̂, to find the values of α and β

which minimise the residual sum of squares to give the line that is closest

to the data. So L is differentiated w.r.t. α̂ and β̂, setting the first derivatives

to zero. A derivation of the ordinary least squares (OLS) estimator is given

in the appendix to this chapter. The coefficient estimators for the slope

and the intercept are given by

β̂ =
∑

xt yt − T xy∑
x2

t − T x̄2
(2.4) α̂ = ȳ − β̂ x̄ (2.5)

Equations (2.4) and (2.5) state that, given only the sets of observations xt

and yt , it is always possible to calculate the values of the two parameters,

α̂ and β̂, that best fit the set of data. Equation (2.4) is the easiest formula
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Table 2.1 Sample data on fund XXX to motivate OLS estimation

Excess return on Excess return on

Year, t fund XXX = rX X X,t − r ft market index = rmt − r ft

1 17.8 13.7

2 39.0 23.2

3 12.8 6.9

4 24.2 16.8

5 17.2 12.3

to use to calculate the slope estimate, but the formula can also be written,

more intuitively, as

β̂ =
∑

(xt − x̄)(yt − ȳ)∑
(xt − x̄)2

(2.6)

which is equivalent to the sample covariance between x and y divided by

the sample variance of x .

To reiterate, this method of finding the optimum is known as OLS. It

is also worth noting that it is obvious from the equation for α̂ that the

regression line will go through the mean of the observations -- i.e. that

the point (x̄, ȳ) lies on the regression line.

Example 2.1

Suppose that some data have been collected on the excess returns on a

fund manager’s portfolio (‘fund XXX’) together with the excess returns on

a market index as shown in table 2.1.

The fund manager has some intuition that the beta (in the CAPM

framework) on this fund is positive, and she therefore wants to find

whether there appears to be a relationship between x and y given the data.

Again, the first stage could be to form a scatter plot of the two variables

(figure 2.5).

Clearly, there appears to be a positive, approximately linear relation-

ship between x and y, although there is not much data on which to base

this conclusion! Plugging the five observations in to make up the for-

mulae given in (2.4) and (2.5) would lead to the estimates α̂ = −1.74 and

β̂ = 1.64. The fitted line would be written as

ŷt = −1.74 + 1.64xt (2.7)

where xt is the excess return of the market portfolio over the risk free

rate (i.e. rm − rf), also known as the market risk premium.
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2.3.1 What are α̂ and β̂ used for?

This question is probably best answered by posing another question. If an

analyst tells you that she expects the market to yield a return 20% higher

than the risk-free rate next year, what would you expect the return on

fund XXX to be?

The expected value of y = ‘−1.74 + 1.64 × value of x ’, so plug x = 20

into (2.7)

ŷt = −1.74 + 1.64 × 20 = 31.06 (2.8)

Thus, for a given expected market risk premium of 20%, and given its

riskiness, fund XXX would be expected to earn an excess over the risk-

free rate of approximately 31%. In this setup, the regression beta is also

the CAPM beta, so that fund XXX has an estimated beta of 1.64, sug-

gesting that the fund is rather risky. In this case, the residual sum of

squares reaches its minimum value of 30.33 with these OLS coefficient

values.

Although it may be obvious, it is worth stating that it is not advisable

to conduct a regression analysis using only five observations! Thus the

results presented here can be considered indicative and for illustration of

the technique only. Some further discussions on appropriate sample sizes

for regression analysis are given in chapter 4.

The coefficient estimate of 1.64 for β is interpreted as saying that, ‘if

x increases by 1 unit, y will be expected, everything else being equal,

to increase by 1.64 units’. Of course, if β̂ had been negative, a rise in x
would on average cause a fall in y. α̂, the intercept coefficient estimate, is
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interpreted as the value that would be taken by the dependent variable y
if the independent variable x took a value of zero. ‘Units’ here refer to the

units of measurement of xt and yt . So, for example, suppose that β̂ = 1.64,

x is measured in per cent and y is measured in thousands of US dollars.

Then it would be said that if x rises by 1%, y will be expected to rise on

average by $1.64 thousand (or $1,640). Note that changing the scale of y
or x will make no difference to the overall results since the coefficient

estimates will change by an off-setting factor to leave the overall relation-

ship between y and x unchanged (see Gujarati, 2003, pp. 169--173 for a

proof). Thus, if the units of measurement of y were hundreds of dollars

instead of thousands, and everything else remains unchanged, the slope

coefficient estimate would be 16.4, so that a 1% increase in x would lead

to an increase in y of $16.4 hundreds (or $1,640) as before. All other prop-

erties of the OLS estimator discussed below are also invariant to changes

in the scaling of the data.

A word of caution is, however, in order concerning the reliability of

estimates of the constant term. Although the strict interpretation of the

intercept is indeed as stated above, in practice, it is often the case that

there are no values of x close to zero in the sample. In such instances,

estimates of the value of the intercept will be unreliable. For example,

consider figure 2.6, which demonstrates a situation where no points are

close to the y-axis.
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In such cases, one could not expect to obtain robust estimates of the

value of y when x is zero as all of the information in the sample pertains

to the case where x is considerably larger than zero.

A similar caution should be exercised when producing predictions for

y using values of x that are a long way outside the range of values in

the sample. In example 2.1, x takes values between 7% and 23% in the

available data. So, it would not be advisable to use this model to determine

the expected excess return on the fund if the expected excess return on

the market were, say 1% or 30%, or −5% (i.e. the market was expected to

fall).

2.4 Some further terminology

2.4.1 The population and the sample

The population is the total collection of all objects or people to be studied. For

example, in the context of determining the relationship between risk and

return for UK equities, the population of interest would be all time series

observations on all stocks traded on the London Stock Exchange (LSE).

The population may be either finite or infinite, while a sample is a

selection of just some items from the population. In general, either all of the

observations for the entire population will not be available, or they may be

so many in number that it is infeasible to work with them, in which case

a sample of data is taken for analysis. The sample is usually random, and

it should be representative of the population of interest. A random sample

is a sample in which each individual item in the population is equally

likely to be drawn. The size of the sample is the number of observations

that are available, or that it is decided to use, in estimating the regression

equation.

2.4.2 The data generating process, the population regression function and the

sample regression function

The population regression function (PRF) is a description of the model

that is thought to be generating the actual data and it represents the true

relationship between the variables. The population regression function is also

known as the data generating process (DGP). The PRF embodies the true

values of α and β, and is expressed as

yt = α + βxt + ut (2.9)

Note that there is a disturbance term in this equation, so that even if one

had at one’s disposal the entire population of observations on x and y,



38 Introductory Econometrics for Finance

it would still in general not be possible to obtain a perfect fit of the line

to the data. In some textbooks, a distinction is drawn between the PRF

(the underlying true relationship between y and x) and the DGP (the

process describing the way that the actual observations on y come about),

although in this book, the two terms will be used synonymously.

The sample regression function, SRF, is the relationship that has been

estimated using the sample observations, and is often written as

ŷt = α̂ + β̂xt (2.10)

Notice that there is no error or residual term in (2.10); all this equation

states is that given a particular value of x , multiplying it by β̂ and adding

α̂ will give the model fitted or expected value for y, denoted ŷ. It is also

possible to write

yt = α̂ + β̂xt + ût (2.11)

Equation (2.11) splits the observed value of y into two components: the

fitted value from the model, and a residual term.

The SRF is used to infer likely values of the PRF. That is, the estimates

α̂ and β̂ are constructed, for the sample of data at hand, but what is really

of interest is the true relationship between x and y -- in other words,

the PRF is what is really wanted, but all that is ever available is the SRF!

However, what can be said is how likely it is, given the figures calculated

for α̂ and β̂, that the corresponding population parameters take on certain

values.

2.4.3 Linearity and possible forms for the regression function

In order to use OLS, a model that is linear is required. This means that,

in the simple bivariate case, the relationship between x and y must be

capable of being expressed diagramatically using a straight line. More

specifically, the model must be linear in the parameters (α and β), but it

does not necessarily have to be linear in the variables (y and x). By ‘linear

in the parameters’, it is meant that the parameters are not multiplied

together, divided, squared, or cubed, etc.

Models that are not linear in the variables can often be made to take

a linear form by applying a suitable transformation or manipulation. For

example, consider the following exponential regression model

Yt = AXβ
t eut (2.12)
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Taking logarithms of both sides, applying the laws of logs and rearranging

the right-hand side (RHS)

ln Yt = ln(A) + β ln Xt + ut (2.13)

where A and β are parameters to be estimated. Now let α = ln(A), yt = ln Yt

and xt = ln Xt

yt = α + βxt + ut (2.14)

This is known as an exponential regression model since Y varies according

to some exponent (power) function of X . In fact, when a regression equa-

tion is expressed in ‘double logarithmic form’, which means that both

the dependent and the independent variables are natural logarithms, the

coefficient estimates are interpreted as elasticities (strictly, they are unit

changes on a logarithmic scale). Thus a coefficient estimate of 1.2 for β̂ in

(2.13) or (2.14) is interpreted as stating that ‘a rise in X of 1% will lead on

average, everything else being equal, to a rise in Y of 1.2%’. Conversely, for

y and x in levels rather than logarithmic form (e.g. (2.9)), the coefficients

denote unit changes as described above.

Similarly, if theory suggests that x should be inversely related to y ac-

cording to a model of the form

yt = α + β

xt
+ ut (2.15)

the regression can be estimated using OLS by setting

zt = 1

xt

and regressing y on a constant and z. Clearly, then, a surprisingly varied

array of models can be estimated using OLS by making suitable transfor-

mations to the variables. On the other hand, some models are intrinsically

non-linear, e.g.

yt = α + βxγ
t + ut (2.16)

Such models cannot be estimated using OLS, but might be estimable using

a non-linear estimation method (see chapter 8).

2.4.4 Estimator or estimate?

Estimators are the formulae used to calculate the coefficients -- for example,

the expressions given in (2.4) and (2.5) above, while the estimates, on

the other hand, are the actual numerical values for the coefficients that are

obtained from the sample.
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2.5 Simple linear regression in EViews – estimation
of an optimal hedge ratio

This section shows how to run a bivariate regression using EViews. The

example considers the situation where an investor wishes to hedge a long

position in the S&P500 (or its constituent stocks) using a short position

in futures contracts. Many academic studies assume that the objective of

hedging is to minimise the variance of the hedged portfolio returns. If

this is the case, then the appropriate hedge ratio (the number of units

of the futures asset to sell per unit of the spot asset held) will be the

slope estimate (i.e. β̂) in a regression where the dependent variable is a

time series of spot returns and the independent variable is a time series

of futures returns.2

This regression will be run using the file ‘SandPhedge.xls’, which con-

tains monthly returns for the S&P500 index (in column 2) and S&P500

futures (in column 3). As described in chapter 1, the first step is to

open an appropriately dimensioned workfile. Open EViews and click on

File/New/Workfile; choose Dated – regular frequency and Monthly fre-

quency data. The start date is 2002:02 and the end date is 2007:07. Then

import the Excel file by clicking Import and Read Text-Lotus-Excel. The

data start in B2 and as for the previous example in chapter 1, the first

column contains only dates which we do not need to read in. In ‘Names

for series or Number if named in file’, we can write Spot Futures. The

two imported series will now appear as objects in the workfile and can

be verified by checking a couple of entries at random against the original

Excel file.

The first step is to transform the levels of the two series into percentage

returns. It is common in academic research to use continuously com-

pounded returns rather than simple returns. To achieve this (i.e. to pro-

duce continuously compounded returns), click on Genr and in the ‘Enter

Equation’ dialog box, enter dfutures=100*dlog(futures). Then click Genr

again and do the same for the spot series: dspot=100*dlog(spot). Do not

forget to Save the workfile. Continue to re-save it at regular intervals to

ensure that no work is lost!

Before proceeding to estimate the regression, now that we have im-

ported more than one series, we can examine a number of descriptive

statistics together and measures of association between the series. For ex-

ample, click Quick and Group Statistics. From there you will see that it

is possible to calculate the covariances or correlations between series and

2 See chapter 8 for a detailed discussion of why this is the appropriate hedge ratio.
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a number of other measures that will be discussed later in the book. For

now, click on Descriptive Statistics and Common Sample.3 In the dialog

box that appears, type rspot rfutures and click OK. Some summary statis-

tics for the spot and futures are presented, as displayed in screenshot 2.1,

and these are quite similar across the two series, as one would expect.

Screenshot 2.1

Summary statistics

for spot and futures

Note that the number of observations has reduced from 66 for the levels

of the series to 65 when we computed the returns (as one observation is

‘lost’ in constructing the t − 1 value of the prices in the returns formula).

If you want to save the summary statistics, you must name them by click-

ing Name and then choose a name, e.g. Descstats. The default name is

‘group01’, which could have also been used. Click OK.

We can now proceed to estimate the regression. There are several ways to

do this, but the easiest is to select Quick and then Estimate Equation. You

3 ‘Common sample’ will use only the part of the sample that is available for all the series

selected, whereas ‘Individual sample’ will use all available observations for each

individual series. In this case, the number of observations is the same for both series

and so identical results would be observed for both options.
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Screenshot 2.2

Equation estimation

window

will be presented with a dialog box, which, when it has been completed,

will look like screenshot 2.2.

In the ‘Equation Specification’ window, you insert the list of variables

to be used, with the dependent variable (y) first, and including a constant

(c), so type rspot c rfutures. Note that it would have been possible to write

this in an equation format as rspot = c(1) + c(2)∗rfutures, but this is more

cumbersome.

In the ‘Estimation settings’ box, the default estimation method is OLS

and the default sample is the whole sample, and these need not be modi-

fied. Click OK and the regression results will appear, as in screenshot 2.3.

The parameter estimates for the intercept (α̂) and slope (β̂) are 0.36 and

0.12 respectively. Name the regression results returnreg, and it will now

appear as a new object in the list. A large number of other statistics are

also presented in the regression output -- the purpose and interpretation

of these will be discussed later in this and subsequent chapters.

Now estimate a regression for the levels of the series rather than

the returns (i.e. run a regression of spot on a constant and futures) and

examine the parameter estimates. The return regression slope parame-

ter estimated above measures the optimal hedge ratio and also measures
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Screenshot 2.3

Estimation results

the short run relationship between the two series. By contrast, the slope

parameter in a regression using the raw spot and futures indices (or the

log of the spot series and the log of the futures series) can be interpreted

as measuring the long run relationship between them. This issue of the

long and short runs will be discussed in detail in chapter 4. For now, click

Quick/Estimate Equation and enter the variables spot c futures in the

Equation Specification dialog box, click OK, then name the regression

results ‘levelreg’. The intercept estimate (α̂) in this regression is 21.11

and the slope estimate (β̂) is 0.98. The intercept can be considered to ap-

proximate the cost of carry, while as expected, the long-term relationship

between spot and futures prices is almost 1:1 -- see chapter 7 for further

discussion of the estimation and interpretation of this long-term relation-

ship. Finally, click the Save button to save the whole workfile.

2.6 The assumptions underlying the classical linear regression model

The model yt = α + βxt + ut that has been derived above, together with

the assumptions listed below, is known as the classical linear regression model
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Box 2.3 Assumptions concerning disturbance terms and their interpretation

Technical notation Interpretation

(1) E(ut ) = 0 The errors have zero mean

(2) var(ut ) = σ 2 < ∞ The variance of the errors is constant and

finite over all values of xt

(3) cov(ui , u j ) = 0 The errors are linearly independent of

one another

(4) cov(ut , xt ) = 0 There is no relationship between the error

and corresponding x variate

(CLRM). Data for xt is observable, but since yt also depends on ut , it is neces-

sary to be specific about how the ut are generated. The set of assumptions

shown in box 2.3 are usually made concerning the ut s, the unobservable

error or disturbance terms. Note that no assumptions are made concern-

ing their observable counterparts, the estimated model’s residuals.

As long as assumption 1 holds, assumption 4 can be equivalently written

E(xt ut ) = 0. Both formulations imply that the regressor is orthogonal to

(i.e. unrelated to) the error term. An alternative assumption to 4, which

is slightly stronger, is that the xt are non-stochastic or fixed in repeated

samples. This means that there is no sampling variation in xt , and that

its value is determined outside the model.

A fifth assumption is required to make valid inferences about the pop-

ulation parameters (the actual α and β) from the sample parameters (α̂

and β̂) estimated using a finite amount of data:

(5)ut ∼ N(0, σ 2)−i.e. that ut is normally distributed

2.7 Properties of the OLS estimator

If assumptions 1--4 hold, then the estimators α̂ and β̂ determined by OLS

will have a number of desirable properties, and are known as Best Linear

Unbiased Estimators (BLUE). What does this acronym stand for?

● ‘Estimator’ -- α̂ and β̂ are estimators of the true value of α and β

● ‘Linear’ -- α̂ and β̂ are linear estimators -- that means that the formulae

for α̂ and β̂ are linear combinations of the random variables (in this

case, y)

● ‘Unbiased’ -- on average, the actual values of α̂ and β̂ will be equal to

their true values
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● ‘Best’ -- means that the OLS estimator β̂ has minimum variance among

the class of linear unbiased estimators; the Gauss--Markov theorem

proves that the OLS estimator is best by examining an arbitrary alter-

native linear unbiased estimator and showing in all cases that it must

have a variance no smaller than the OLS estimator.

Under assumptions 1--4 listed above, the OLS estimator can be shown

to have the desirable properties that it is consistent, unbiased and effi-

cient. Unbiasedness and efficiency have already been discussed above, and

consistency is an additional desirable property. These three characteristics

will now be discussed in turn.

2.7.1 Consistency

The least squares estimators α̂ and β̂ are consistent. One way to state this

algebraically for β̂ (with the obvious modifications made for α̂) is

lim
T →∞

Pr [|β̂ − β| > δ] = 0 ∀ δ > 0 (2.17)

This is a technical way of stating that the probability (Pr) that β̂ is more

than some arbitrary fixed distance δ away from its true value tends to

zero as the sample size tends to infinity, for all positive values of δ. In

the limit (i.e. for an infinite number of observations), the probability of

the estimator being different from the true value is zero. That is, the

estimates will converge to their true values as the sample size increases

to infinity. Consistency is thus a large sample, or asymptotic property. The

assumptions that E(xt ut ) = 0 and E(ut ) = 0 are sufficient to derive the

consistency of the OLS estimator.

2.7.2 Unbiasedness

The least squares estimates of α̂ and β̂ are unbiased. That is

E(α̂) = α (2.18)

and

E(β̂) = β (2.19)

Thus, on average, the estimated values for the coefficients will be equal to

their true values. That is, there is no systematic overestimation or under-

estimation of the true coefficients. To prove this also requires the assump-

tion that cov(ut , xt ) = 0. Clearly, unbiasedness is a stronger condition than

consistency, since it holds for small as well as large samples (i.e. for all

sample sizes).
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2.7.3 Efficiency

An estimator β̂ of a parameter β is said to be efficient if no other estima-

tor has a smaller variance. Broadly speaking, if the estimator is efficient,

it will be minimising the probability that it is a long way off from the

true value of β. In other words, if the estimator is ‘best’, the uncertainty

associated with estimation will be minimised for the class of linear un-

biased estimators. A technical way to state this would be to say that an

efficient estimator would have a probability distribution that is narrowly

dispersed around the true value.

2.8 Precision and standard errors

Any set of regression estimates α̂ and β̂ are specific to the sample used

in their estimation. In other words, if a different sample of data was

selected from within the population, the data points (the xt and yt ) will

be different, leading to different values of the OLS estimates.

Recall that the OLS estimators (α̂ and β̂) are given by (2.4) and (2.5). It

would be desirable to have an idea of how ‘good’ these estimates of α and

β are in the sense of having some measure of the reliability or precision of

the estimators (α̂ and β̂). It is thus useful to know whether one can have

confidence in the estimates, and whether they are likely to vary much

from one sample to another sample within the given population. An idea

of the sampling variability and hence of the precision of the estimates

can be calculated using only the sample of data available. This estimate is

given by its standard error. Given assumptions 1--4 above, valid estimators

of the standard errors can be shown to be given by

SE(α̂) = s

√√√√
∑

x2
t

T
∑

(xt − x̄)2
= s

√√√√√
∑

x2
t

T
(( ∑

x2
t

)
− Tx̄2

) (2.20)

SE(β̂) = s

√
1∑

(xt − x̄)2
= s

√
1∑

x2
t − Tx̄2

(2.21)

where s is the estimated standard deviation of the residuals (see below).

These formulae are derived in the appendix to this chapter.

It is worth noting that the standard errors give only a general indication

of the likely accuracy of the regression parameters. They do not show

how accurate a particular set of coefficient estimates is. If the standard

errors are small, it shows that the coefficients are likely to be precise

on average, not how precise they are for this particular sample. Thus

standard errors give a measure of the degree of uncertainty in the estimated
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values for the coefficients. It can be seen that they are a function of

the actual observations on the explanatory variable, x , the sample size,

T , and another term, s. The last of these is an estimate of the variance

of the disturbance term. The actual variance of the disturbance term is

usually denoted by σ 2. How can an estimate of σ 2 be obtained?

2.8.1 Estimating the variance of the error term (σ 2)

From elementary statistics, the variance of a random variable ut is given by

var(ut ) = E[(ut ) − E(ut )]
2 (2.22)

Assumption 1 of the CLRM was that the expected or average value of the

errors is zero. Under this assumption, (2.22) above reduces to

var(ut ) = E
[
u2

t

]
(2.23)

So what is required is an estimate of the average value of u2
t , which could

be calculated as

s2 = 1

T

∑
u2

t (2.24)

Unfortunately (2.24) is not workable since ut is a series of population

disturbances, which is not observable. Thus the sample counterpart to ut ,

which is ût , is used

s2 = 1

T

∑
û2

t (2.25)

But this estimator is a biased estimator of σ 2. An unbiased estimator,

s2, would be given by the following equation instead of the previous one

s2 =
∑

û2
t

T − 2
(2.26)

where
∑

û2
t is the residual sum of squares, so that the quantity of rele-

vance for the standard error formulae is the square root of (2.26)

s =
√∑

û2
t

T − 2
(2.27)

s is also known as the standard error of the regression or the standard error

of the estimate. It is sometimes used as a broad measure of the fit of the

regression equation. Everything else being equal, the smaller this quantity

is, the closer is the fit of the line to the actual data.

2.8.2 Some comments on the standard error estimators

It is possible, of course, to derive the formulae for the standard errors

of the coefficient estimates from first principles using some algebra, and
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this is left to the appendix to this chapter. Some general intuition is now

given as to why the formulae for the standard errors given by (2.20) and

(2.21) contain the terms that they do and in the form that they do. The

presentation offered in box 2.4 loosely follows that of Hill, Griffiths and

Judge (1997), which is the clearest that this author has seen.

Box 2.4 Standard error estimators

(1) The larger the sample size, T , the smaller will be the coefficient standard errors.

T appears explicitly in SE(α̂) and implicitly in SE(β̂). T appears implicitly since the

sum
∑

(xt − x̄)2 is from t = 1 to T . The reason for this is simply that, at least for

now, it is assumed that every observation on a series represents a piece of useful

information which can be used to help determine the coefficient estimates. So the

larger the size of the sample, the more information will have been used in estimation

of the parameters, and hence the more confidence will be placed in those estimates.

(2) Both SE(α̂) and SE(β̂) depend on s2 (or s). Recall from above that s2 is the estimate

of the error variance. The larger this quantity is, the more dispersed are the residuals,

and so the greater is the uncertainty in the model. If s2 is large, the data points are

collectively a long way away from the line.

(3) The sum of the squares of the xt about their mean appears in both formulae – since∑
(xt − x̄)2 appears in the denominators. The larger the sum of squares, the smaller

the coefficient variances. Consider what happens if
∑

(xt − x̄)2 is small or large, as

shown in figures 2.7 and 2.8, respectively.

In figure 2.7, the data are close together so that
∑

(xt − x̄)2 is small. In this first

case, it is more difficult to determine with any degree of certainty exactly where the

line should be. On the other hand, in figure 2.8, the points are widely dispersed

y

x

_
y

x
_

0

Figure 2.7

Effect on the

standard errors of

the coefficient

estimates when

(xt − x̄) are narrowly

dispersed
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across a long section of the line, so that one could hold more confidence in the

estimates in this case.

(4) The term
∑

x2
t affects only the intercept standard error and not the slope standard

error. The reason is that
∑

x2
t measures how far the points are away from the y-axis.

Consider figures 2.9 and 2.10.

In figure 2.9, all of the points are bunched a long way from the y-axis, which makes

it more difficult to accurately estimate the point at which the estimated line crosses

the y-axis (the intercept). In figure 2.10, the points collectively are closer to

y

x0

_
y

x
_

Figure 2.8

Effect on the

standard errors of

the coefficient

estimates when

(xt − x̄) are widely

dispersed

x
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Effect on the

standard errors of

x2
t large
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x

y

0

Figure 2.10

Effect on the

standard errors of

x2
t small

the y-axis and hence it will be easier to determine where the line actually crosses

the axis. Note that this intuition will work only in the case where all of the xt are

positive!

Example 2.2

Assume that the following data have been calculated from a regression of

y on a single variable x and a constant over 22 observations∑
xt yt = 830102, T = 22, x̄ = 416.5, ȳ = 86.65,∑

x2
t = 3919654, RSS = 130.6

Determine the appropriate values of the coefficient estimates and their

standard errors.

This question can simply be answered by plugging the appropriate num-

bers into the formulae given above. The calculations are

β̂ = 830102 − (22 × 416.5 × 86.65)

3919654 − 22 × (416.5)2
= 0.35

α̂ = 86.65 − 0.35 × 416.5 = −59.12

The sample regression function would be written as

ŷt = α̂ + β̂xt

ŷt = −59.12 + 0.35xt
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Now, turning to the standard error calculations, it is necessary to obtain

an estimate, s, of the error variance

SE (regression), s =
√ ∑

û2
t

T − 2
=

√
130.6

20
= 2.55

SE(α̂) = 2.55 ×
√

3919654

22 × (3919654 − 22 × 416.52)
= 3.35

SE(β̂) = 2.55 ×
√

1

3919654 − 22 × 416.52
= 0.0079

With the standard errors calculated, the results are written as

ŷt = −59.12 + 0.35xt

(3.35) (0.0079)
(2.28)

The standard error estimates are usually placed in parentheses under the

relevant coefficient estimates.

2.9 An introduction to statistical inference

Often, financial theory will suggest that certain coefficients should take

on particular values, or values within a given range. It is thus of interest

to determine whether the relationships expected from financial theory

are upheld by the data to hand or not. Estimates of α and β have been

obtained from the sample, but these values are not of any particular in-

terest; the population values that describe the true relationship between

the variables would be of more interest, but are never available. Instead,

inferences are made concerning the likely population values from the re-

gression parameters that have been estimated from the sample of data

to hand. In doing this, the aim is to determine whether the differences

between the coefficient estimates that are actually obtained, and expecta-

tions arising from financial theory, are a long way from one another in a

statistical sense.

Example 2.3

Suppose the following regression results have been calculated:

ŷt = 20.3 + 0.5091xt

(14.38) (0.2561)
(2.29)

β̂ = 0.5091 is a single (point) estimate of the unknown population param-

eter, β. As stated above, the reliability of the point estimate is measured
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by the coefficient’s standard error. The information from one or more of

the sample coefficients and their standard errors can be used to make

inferences about the population parameters. So the estimate of the slope

coefficient is β̂ = 0.5091, but it is obvious that this number is likely to

vary to some degree from one sample to the next. It might be of interest

to answer the question, ‘Is it plausible, given this estimate, that the true

population parameter, β, could be 0.5? Is it plausible that β could be 1?’,

etc. Answers to these questions can be obtained through hypothesis testing.

2.9.1 Hypothesis testing: some concepts

In the hypothesis testing framework, there are always two hypotheses that

go together, known as the null hypothesis (denoted H0 or occasionally HN)

and the alternative hypothesis (denoted H1 or occasionally HA). The null hy-

pothesis is the statement or the statistical hypothesis that is actually being

tested. The alternative hypothesis represents the remaining outcomes of

interest.

For example, suppose that given the regression results above, it is of

interest to test the hypothesis that the true value of β is in fact 0.5. The

following notation would be used.

H0 : β = 0.5

H1 : β �= 0.5

This states that the hypothesis that the true but unknown value of β could

be 0.5 is being tested against an alternative hypothesis where β is not 0.5.

This would be known as a two-sided test, since the outcomes of both

β < 0.5 and β > 0.5 are subsumed under the alternative hypothesis.

Sometimes, some prior information may be available, suggesting for

example that β > 0.5 would be expected rather than β < 0.5. In this case,

β < 0.5 is no longer of interest to us, and hence a one-sided test would be

conducted:

H0 : β = 0.5

H1 : β > 0.5

Here the null hypothesis that the true value of β is 0.5 is being tested

against a one-sided alternative that β is more than 0.5.

On the other hand, one could envisage a situation where there is prior

information that β < 0.5 is expected. For example, suppose that an in-

vestment bank bought a piece of new risk management software that is

intended to better track the riskiness inherent in its traders’ books and

that β is some measure of the risk that previously took the value 0.5.

Clearly, it would not make sense to expect the risk to have risen, and so
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β > 0.5, corresponding to an increase in risk, is not of interest. In this

case, the null and alternative hypotheses would be specified as

H0 : β = 0.5

H1 : β < 0.5

This prior information should come from the financial theory of the prob-

lem under consideration, and not from an examination of the estimated

value of the coefficient. Note that there is always an equality under the

null hypothesis. So, for example, β < 0.5 would not be specified under

the null hypothesis.

There are two ways to conduct a hypothesis test: via the test of significance

approach or via the confidence interval approach. Both methods centre on

a statistical comparison of the estimated value of the coefficient, and its

value under the null hypothesis. In very general terms, if the estimated

value is a long way away from the hypothesised value, the null hypothesis

is likely to be rejected; if the value under the null hypothesis and the esti-

mated value are close to one another, the null hypothesis is less likely to

be rejected. For example, consider β̂ = 0.5091 as above. A hypothesis that

the true value of β is 5 is more likely to be rejected than a null hypothesis

that the true value of β is 0.5. What is required now is a statistical decision

rule that will permit the formal testing of such hypotheses.

2.9.2 The probability distribution of the least squares estimators

In order to test hypotheses, assumption 5 of the CLRM must be used,

namely that ut ∼ N(0, σ 2) -- i.e. that the error term is normally distributed.

The normal distribution is a convenient one to use for it involves only

two parameters (its mean and variance). This makes the algebra involved

in statistical inference considerably simpler than it otherwise would have

been. Since yt depends partially on ut , it can be stated that if ut is normally

distributed, yt will also be normally distributed.

Further, since the least squares estimators are linear combinations of

the random variables, i.e. β̂ = ∑
wt yt , where wt are effectively weights,

and since the weighted sum of normal random variables is also normally

distributed, it can be said that the coefficient estimates will also be nor-

mally distributed. Thus

α̂ ∼ N(α, var(α̂)) and β̂ ∼ N(β, var(β̂))

Will the coefficient estimates still follow a normal distribution if the er-

rors do not follow a normal distribution? Well, briefly, the answer is usu-

ally ‘yes’, provided that the other assumptions of the CLRM hold, and the

sample size is sufficiently large. The issue of non-normality, how to test

for it, and its consequences, will be further discussed in chapter 4.
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x

xf (  )Figure 2.11

The normal

distribution

Standard normal variables can be constructed from α̂ and β̂ by subtract-

ing the mean and dividing by the square root of the variance

α̂ − α√
var(α̂)

∼ N(0, 1) and
β̂ − β√
var(β̂)

∼ N(0, 1)

The square roots of the coefficient variances are the standard errors. Unfor-

tunately, the standard errors of the true coefficient values under the PRF

are never known -- all that is available are their sample counterparts, the

calculated standard errors of the coefficient estimates, SE(α̂) and SE(β̂).4

Replacing the true values of the standard errors with the sample es-

timated versions induces another source of uncertainty, and also means

that the standardised statistics follow a t -distribution with T − 2 degrees

of freedom (defined below) rather than a normal distribution, so

α̂ − α

SE(α̂)
∼ tT −2 and

β̂ − β

SE(β̂)
∼ tT −2

This result is not formally proved here. For a formal proof, see Hill,

Griffiths and Judge (1997, pp. 88--90).

2.9.3 A note on the t and the normal distributions

The normal distribution, shown in figure 2.11, should be familiar to read-

ers. Note its characteristic ‘bell’ shape and its symmetry around the mean

(of zero for a standard normal distribution).

4 Strictly, these are the estimated standard errors conditional on the parameter estimates,

and so should be denoted SÊ(α̂) and SÊ(β̂), but the additional layer of hats will be

omitted here since the meaning should be obvious from the context.
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Table 2.2 Critical values from the standard normal versus
t-distribution

Significance level (%) N (0,1) t40 t4

50% 0 0 0

5% 1.64 1.68 2.13

2.5% 1.96 2.02 2.78

0.5% 2.57 2.70 4.60

normal distribution

t-distribution

x

xf (  )Figure 2.12

The t-distribution

versus the normal

A normal variate can be scaled to have zero mean and unit variance

by subtracting its mean and dividing by its standard deviation. There is a

specific relationship between the t - and the standard normal distribution,

and the t -distribution has another parameter, its degrees of freedom.

What does the t -distribution look like? It looks similar to a normal

distribution, but with fatter tails, and a smaller peak at the mean, as

shown in figure 2.12.

Some examples of the percentiles from the normal and t -distributions

taken from the statistical tables are given in table 2.2. When used in the

context of a hypothesis test, these percentiles become critical values. The

values presented in table 2.2 would be those critical values appropriate

for a one-sided test of the given significance level.

It can be seen that as the number of degrees of freedom for the t -
distribution increases from 4 to 40, the critical values fall substantially.

In figure 2.12, this is represented by a gradual increase in the height of

the distribution at the centre and a reduction in the fatness of the tails as

the number of degrees of freedom increases. In the limit, a t -distribution

with an infinite number of degrees of freedom is a standard normal, i.e.



56 Introductory Econometrics for Finance

t∞ = N (0, 1), so the normal distribution can be viewed as a special case of

the t.

Putting the limit case, t∞, aside, the critical values for the t -distribution

are larger in absolute value than those from the standard normal. This

arises from the increased uncertainty associated with the situation where

the error variance must be estimated. So now the t -distribution is used,

and for a given statistic to constitute the same amount of reliable evidence

against the null, it has to be bigger in absolute value than in circumstances

where the normal is applicable.

There are broadly two approaches to testing hypotheses under regres-

sion analysis: the test of significance approach and the confidence interval

approach. Each of these will now be considered in turn.

2.9.4 The test of significance approach

Assume the regression equation is given by yt = α + βxt + ut , t =
1, 2, . . . , T . The steps involved in doing a test of significance are shown

in box 2.5.

Box 2.5 Conducting a test of significance

(1) Estimate α̂, β̂ and SE(α̂), SE(β̂) in the usual way.

(2) Calculate the test statistic. This is given by the formula

test statistic = β̂ − β∗

SE(β̂)
(2.30)

where β∗ is the value of β under the null hypothesis. The null hypothesis is H0 : β

= β∗ and the alternative hypothesis is H1 : β �= β∗ (for a two-sided test).

(3) A tabulated distribution with which to compare the estimated test statistics is re-

quired. Test statistics derived in this way can be shown to follow a t -distribution with

T − 2 degrees of freedom.

(4) Choose a ‘significance level’, often denoted α (not the same as the regression

intercept coefficient). It is conventional to use a significance level of 5%.

(5) Given a significance level, a rejection region and non-rejection region can be de-

termined. If a 5% significance level is employed, this means that 5% of the total

distribution (5% of the area under the curve) will be in the rejection region. That

rejection region can either be split in half (for a two-sided test) or it can all fall on

one side of the y-axis, as is the case for a one-sided test.

For a two-sided test, the 5% rejection region is split equally between the two tails,

as shown in figure 2.13.

For a one-sided test, the 5% rejection region is located solely in one tail of the

distribution, as shown in figures 2.14 and 2.15, for a test where the alternative

is of the ‘less than’ form, and where the alternative is of the ‘greater than’ form,

respectively.
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H0 : β = β∗,
H1 : β < β∗
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a one-sided

hypothesis test of

the form

H0 : β = β∗,
H1 : β > β∗
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Box 2.5 contd.

(6) Use the t -tables to obtain a critical value or values with which to compare the test

statistic. The critical value will be that value of x that puts 5% into the rejection

region.

(7) Finally perform the test. If the test statistic lies in the rejection region then reject

the null hypothesis (H0), else do not reject H0.

Steps 2--7 require further comment. In step 2, the estimated value of β is

compared with the value that is subject to test under the null hypothesis,

but this difference is ‘normalised’ or scaled by the standard error of the

coefficient estimate. The standard error is a measure of how confident

one is in the coefficient estimate obtained in the first stage. If a standard

error is small, the value of the test statistic will be large relative to the

case where the standard error is large. For a small standard error, it would

not require the estimated and hypothesised values to be far away from one

another for the null hypothesis to be rejected. Dividing by the standard

error also ensures that, under the five CLRM assumptions, the test statistic

follows a tabulated distribution.

In this context, the number of degrees of freedom can be interpreted

as the number of pieces of additional information beyond the minimum

requirement. If two parameters are estimated (α and β -- the intercept

and the slope of the line, respectively), a minimum of two observations is

required to fit this line to the data. As the number of degrees of freedom

increases, the critical values in the tables decrease in absolute terms, since

less caution is required and one can be more confident that the results

are appropriate.

The significance level is also sometimes called the size of the test (note

that this is completely different from the size of the sample) and it de-

termines the region where the null hypothesis under test will be rejected

or not rejected. Remember that the distributions in figures 2.13--2.15 are

for a random variable. Purely by chance, a random variable will take on

extreme values (either large and positive values or large and negative val-

ues) occasionally. More specifically, a significance level of 5% means that

a result as extreme as this or more extreme would be expected only 5%

of the time as a consequence of chance alone. To give one illustration, if

the 5% critical value for a one-sided test is 1.68, this implies that the test

statistic would be expected to be greater than this only 5% of the time by

chance alone. There is nothing magical about the test -- all that is done is

to specify an arbitrary cutoff value for the test statistic that determines

whether the null hypothesis would be rejected or not. It is conventional

to use a 5% size of test, but 10% and 1% are also commonly used.
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However, one potential problem with the use of a fixed (e.g. 5%) size

of test is that if the sample size is sufficiently large, any null hypothesis

can be rejected. This is particularly worrisome in finance, where tens of

thousands of observations or more are often available. What happens is

that the standard errors reduce as the sample size increases, thus leading

to an increase in the value of all t -test statistics. This problem is frequently

overlooked in empirical work, but some econometricians have suggested

that a lower size of test (e.g. 1%) should be used for large samples (see, for

example, Leamer, 1978, for a discussion of these issues).

Note also the use of terminology in connection with hypothesis tests:

it is said that the null hypothesis is either rejected or not rejected. It is

incorrect to state that if the null hypothesis is not rejected, it is ‘accepted’

(although this error is frequently made in practice), and it is never said

that the alternative hypothesis is accepted or rejected. One reason why

it is not sensible to say that the null hypothesis is ‘accepted’ is that it

is impossible to know whether the null is actually true or not! In any

given situation, many null hypotheses will not be rejected. For example,

suppose that H0 : β = 0.5 and H0 : β = 1 are separately tested against the

relevant two-sided alternatives and neither null is rejected. Clearly then it

would not make sense to say that ‘H0 : β = 0.5 is accepted’ and ‘H0 : β = 1

is accepted’, since the true (but unknown) value of β cannot be both 0.5

and 1. So, to summarise, the null hypothesis is either rejected or not

rejected on the basis of the available evidence.

2.9.5 The confidence interval approach to hypothesis testing (box 2.6)

To give an example of its usage, one might estimate a parameter, say β̂, to

be 0.93, and a ‘95% confidence interval’ to be (0.77, 1.09). This means that

in many repeated samples, 95% of the time, the true value of β will be

contained within this interval. Confidence intervals are almost invariably

estimated in a two-sided form, although in theory a one-sided interval

can be constructed. Constructing a 95% confidence interval is equivalent

to using the 5% level in a test of significance.

2.9.6 The test of significance and confidence interval approaches always

give the same conclusion

Under the test of significance approach, the null hypothesis that β = β∗

will not be rejected if the test statistic lies within the non-rejection region,

i.e. if the following condition holds

−tcrit ≤ β̂ − β∗

SE(β̂)
≤ + tcrit
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Box 2.6 Carrying out a hypothesis test using confidence intervals

(1) Calculate α̂, β̂ and SE(α̂), SE(β̂) as before.

(2) Choose a significance level, α (again the convention is 5%). This is equivalent to

choosing a (1 − α)∗100% confidence interval

i.e. 5% significance level = 95% confidence interval

(3) Use the t -tables to find the appropriate critical value, which will again have T −2

degrees of freedom.

(4) The confidence interval for β is given by

(β̂ − tcrit · SE(β̂), β̂ + tcrit · SE(β̂))

Note that a centre dot (·) is sometimes used instead of a cross (×) to denote when

two quantities are multiplied together.

(5) Perform the test: if the hypothesised value of β (i.e. β∗) lies outside the confidence

interval, then reject the null hypothesis that β = β∗, otherwise do not reject the null.

Rearranging, the null hypothesis would not be rejected if

−tcrit · SE(β̂) ≤ β̂ − β∗ ≤ + tcrit · SE(β̂)

i.e. one would not reject if

β̂ − tcrit · SE(β̂) ≤ β∗ ≤ β̂ + tcrit · SE(β̂)

But this is just the rule for non-rejection under the confidence interval

approach. So it will always be the case that, for a given significance level,

the test of significance and confidence interval approaches will provide

the same conclusion by construction. One testing approach is simply an

algebraic rearrangement of the other.

Example 2.4

Given the regression results above

ŷt = 20.3 + 0.5091xt
, T = 22

(14.38) (0.2561)
(2.31)

Using both the test of significance and confidence interval approaches, test

the hypothesis that β = 1 against a two-sided alternative. This hypothesis

might be of interest, for a unit coefficient on the explanatory variable

implies a 1:1 relationship between movements in x and movements in y.

The null and alternative hypotheses are respectively:

H0 : β = 1

H1 : β �= 1
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Box 2.7 The test of significance and confidence interval approaches compared

Test of significance approach Confidence interval approach

test stat = β̂ − β∗

SE(β̂)

= 0.5091 − 1

0.2561
= −1.917

Find tcrit = t20;5% = ±2.086

Find tcrit = t20;5% = ±2.086

β̂ ± tcrit · SE(β̂)

= 0.5091 ± 2.086 · 0.2561

= (−0.0251, 1.0433)

Do not reject H0 since test statistic Do not reject H0 since 1 lies

lies within non-rejection region within the confidence interval

The results of the test according to each approach are shown in box 2.7.

A couple of comments are in order. First, the critical value from the

t -distribution that is required is for 20 degrees of freedom and at the 5%

level. This means that 5% of the total distribution will be in the rejec-

tion region, and since this is a two-sided test, 2.5% of the distribution

is required to be contained in each tail. From the symmetry of the t -
distribution around zero, the critical values in the upper and lower tail

will be equal in magnitude, but opposite in sign, as shown in figure 2.16.

What if instead the researcher wanted to test H0 : β = 0 or H0 : β = 2?

In order to test these hypotheses using the test of significance approach,

the test statistic would have to be reconstructed in each case, although the

critical value would be the same. On the other hand, no additional work

would be required if the confidence interval approach had been adopted,

x

95% non-rejection region2.5%
rejection region

2.5%
rejection region

–2.086 +2.086

xf (  )Figure 2.16

Critical values and

rejection regions for

a t20;5%
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since it effectively permits the testing of an infinite number of hypotheses.

So for example, suppose that the researcher wanted to test

H0 : β = 0

versus

H1 : β �= 0

and

H0 : β = 2

versus

H1 : β �= 2

In the first case, the null hypothesis (that β = 0) would not be rejected

since 0 lies within the 95% confidence interval. By the same argument, the

second null hypothesis (that β =2) would be rejected since 2 lies outside

the estimated confidence interval.

On the other hand, note that this book has so far considered only the

results under a 5% size of test. In marginal cases (e.g. H0 : β = 1, where the

test statistic and critical value are close together), a completely different

answer may arise if a different size of test was used. This is where the test

of significance approach is preferable to the construction of a confidence

interval.

For example, suppose that now a 10% size of test is used for the null

hypothesis given in example 2.4. Using the test of significance approach,

test statistic = β̂ − β∗

SE(β̂)

= 0.5091 − 1

0.2561
= −1.917

as above. The only thing that changes is the critical t -value. At the 10%

level (so that 5% of the total distribution is placed in each of the tails

for this two-sided test), the required critical value is t20;10% = ±1.725. So

now, as the test statistic lies in the rejection region, H0 would be rejected.

In order to use a 10% test under the confidence interval approach, the

interval itself would have to have been re-estimated since the critical value

is embedded in the calculation of the confidence interval.

So the test of significance and confidence interval approaches both have

their relative merits. The testing of a number of different hypotheses is

easier under the confidence interval approach, while a consideration of
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the effect of the size of the test on the conclusion is easier to address

under the test of significance approach.

Caution should therefore be used when placing emphasis on or making

decisions in the context of marginal cases (i.e. in cases where the null

is only just rejected or not rejected). In this situation, the appropriate

conclusion to draw is that the results are marginal and that no strong in-

ference can be made one way or the other. A thorough empirical analysis

should involve conducting a sensitivity analysis on the results to deter-

mine whether using a different size of test alters the conclusions. It is

worth stating again that it is conventional to consider sizes of test of 10%,

5% and 1%. If the conclusion (i.e. ‘reject’ or ‘do not reject’) is robust to

changes in the size of the test, then one can be more confident that the

conclusions are appropriate. If the outcome of the test is qualitatively al-

tered when the size of the test is modified, the conclusion must be that

there is no conclusion one way or the other!

It is also worth noting that if a given null hypothesis is rejected using a

1% significance level, it will also automatically be rejected at the 5% level,

so that there is no need to actually state the latter. Dougherty (1992,

p. 100), gives the analogy of a high jumper. If the high jumper can clear

2 metres, it is obvious that the jumper could also clear 1.5 metres. The

1% significance level is a higher hurdle than the 5% significance level.

Similarly, if the null is not rejected at the 5% level of significance, it will

automatically not be rejected at any stronger level of significance (e.g. 1%).

In this case, if the jumper cannot clear 1.5 metres, there is no way s/he

will be able to clear 2 metres.

2.9.7 Some more terminology

If the null hypothesis is rejected at the 5% level, it would be said that the

result of the test is ‘statistically significant’. If the null hypothesis is not

rejected, it would be said that the result of the test is ‘not significant’, or

that it is ‘insignificant’. Finally, if the null hypothesis is rejected at the

1% level, the result is termed ‘highly statistically significant’.

Note that a statistically significant result may be of no practical sig-

nificance. For example, if the estimated beta for a stock under a CAPM

regression is 1.05, and a null hypothesis that β = 1 is rejected, the result

will be statistically significant. But it may be the case that a slightly higher

beta will make no difference to an investor’s choice as to whether to buy

the stock or not. In that case, one would say that the result of the test

was statistically significant but financially or practically insignificant.
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Table 2.3 Classifying hypothesis testing errors and correct conclusions

Reality

H0 is true H0 is false

Significant Type I error = α
√

Result of test (reject H0)
Insignificant

√
Type II error = β

(do not reject H0)

2.9.8 Classifying the errors that can be made using hypothesis tests

H0 is usually rejected if the test statistic is statistically significant at a

chosen significance level. There are two possible errors that could be made:

(1) Rejecting H0 when it was really true; this is called a type I error.

(2) Not rejecting H0 when it was in fact false; this is called a type II error.

The possible scenarios can be summarised in table 2.3.

The probability of a type I error is just α, the significance level or size

of test chosen. To see this, recall what is meant by ‘significance’ at the 5%

level: it is only 5% likely that a result as or more extreme as this could

have occurred purely by chance. Or, to put this another way, it is only 5%

likely that this null would be rejected when it was in fact true.

Note that there is no chance for a free lunch (i.e. a cost-less gain) here!

What happens if the size of the test is reduced (e.g. from a 5% test to a

1% test)? The chances of making a type I error would be reduced . . . but so

would the probability that the null hypothesis would be rejected at all,

so increasing the probability of a type II error. The two competing effects

of reducing the size of the test can be shown in box 2.8.

So there always exists, therefore, a direct trade-off between type I

and type II errors when choosing a significance level. The only way to

Box 2.8 Type I and Type II errors

Less likely Lower

to falsely →chance of

Reduce size→More strict →Reject null↗ reject type I error

of test (e.g. criterion for hypothesis↘
5% to 1%) rejection less often More likely to Higher

incorrectly →chance of

not reject type II error
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reduce the chances of both is to increase the sample size or to select

a sample with more variation, thus increasing the amount of informa-

tion upon which the results of the hypothesis test are based. In practice,

up to a certain level, type I errors are usually considered more serious

and hence a small size of test is usually chosen (5% or 1% are the most

common).

The probability of a type I error is the probability of incorrectly reject-

ing a correct null hypothesis, which is also the size of the test. Another

important piece of terminology in this area is the power of a test. The power

of a test is defined as the probability of (appropriately) rejecting an incor-

rect null hypothesis. The power of the test is also equal to one minus the

probability of a type II error.

An optimal test would be one with an actual test size that matched

the nominal size and which had as high a power as possible. Such a test

would imply, for example, that using a 5% significance level would result

in the null being rejected exactly 5% of the time by chance alone, and

that an incorrect null hypothesis would be rejected close to 100% of the

time.

2.10 A special type of hypothesis test: the t -ratio

Recall that the formula under a test of significance approach to hypothesis

testing using a t -test for the slope parameter was

test statistic = β̂ − β∗

SE
(
β̂
) (2.32)

with the obvious adjustments to test a hypothesis about the intercept. If

the test is

H0 : β = 0

H1 : β �= 0

i.e. a test that the population parameter is zero against a two-sided alter-

native, this is known as a t -ratio test. Since β∗ = 0, the expression in (2.32)

collapses to

test statistic = β̂

SE(β̂)
(2.33)

Thus the ratio of the coefficient to its standard error, given by this

expression, is known as the t-ratio or t-statistic.
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Example 2.5

Suppose that we have calculated the estimates for the intercept and the

slope (1.10 and −19.88 respectively) and their corresponding standard er-

rors (1.35 and 1.98 respectively). The t -ratios associated with each of the

intercept and slope coefficients would be given by

α̂ β̂

Coefficient 1.10 −19.88

SE 1.35 1.98

t-ratio 0.81 −10.04

Note that if a coefficient is negative, its t -ratio will also be negative. In

order to test (separately) the null hypotheses that α = 0 and β = 0, the

test statistics would be compared with the appropriate critical value from

a t -distribution. In this case, the number of degrees of freedom, given by

T − k, is equal to 15 -- 3=12. The 5% critical value for this two-sided test

(remember, 2.5% in each tail for a 5% test) is 2.179, while the 1% two-sided

critical value (0.5% in each tail) is 3.055. Given these t -ratios and critical

values, would the following null hypotheses be rejected?

H0 : α = 0? (No)

H0 : β = 0? (Yes)

If H0 is rejected, it would be said that the test statistic is significant. If the

variable is not ‘significant’, it means that while the estimated value of the

coefficient is not exactly zero (e.g. 1.10 in the example above), the coeffi-

cient is indistinguishable statistically from zero. If a zero were placed in

the fitted equation instead of the estimated value, this would mean that

whatever happened to the value of that explanatory variable, the depen-

dent variable would be unaffected. This would then be taken to mean that

the variable is not helping to explain variations in y, and that it could

therefore be removed from the regression equation. For example, if the t -
ratio associated with x had been −1.04 rather than −10.04 (assuming that

the standard error stayed the same), the variable would be classed as in-

significant (i.e. not statistically different from zero). The only insignificant

term in the above regression is the intercept. There are good statistical

reasons for always retaining the constant, even if it is not significant; see

chapter 4.

It is worth noting that, for degrees of freedom greater than around 25,

the 5% two-sided critical value is approximately ±2. So, as a rule of thumb

(i.e. a rough guide), the null hypothesis would be rejected if the t -statistic

exceeds 2 in absolute value.
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Some authors place the t -ratios in parentheses below the corresponding

coefficient estimates rather than the standard errors. One thus needs to

check which convention is being used in each particular application, and

also to state this clearly when presenting estimation results.

There will now follow two finance case studies that involve only the

estimation of bivariate linear regression models and the construction and

interpretation of t -ratios.

2.11 An example of the use of a simple t -test to test a theory in
finance: can US mutual funds beat the market?

Jensen (1968) was the first to systematically test the performance of mutual

funds, and in particular examine whether any ‘beat the market’. He used

a sample of annual returns on the portfolios of 115 mutual funds from

1945--64. Each of the 115 funds was subjected to a separate OLS time series

regression of the form

Rjt − Rft = α j + β j (Rmt − Rft) + ujt (2.52)

where Rjt is the return on portfolio j at time t, Rft is the return on a

risk-free proxy (a 1-year government bond), Rmt is the return on a mar-

ket portfolio proxy, ujt is an error term, and α j , β j are parameters to be

estimated. The quantity of interest is the significance of α j , since this

parameter defines whether the fund outperforms or underperforms the

market index. Thus the null hypothesis is given by: H0 : α j = 0. A positive

and significant α j for a given fund would suggest that the fund is able

to earn significant abnormal returns in excess of the market-required re-

turn for a fund of this given riskiness. This coefficient has become known

as ‘Jensen’s alpha’. Some summary statistics across the 115 funds for the

estimated regression results for (2.52) are given in table 2.4.

Table 2.4 Summary statistics for the estimated regression results for (2.52)

Extremal values

Item Mean value Median value Minimum Maximum

α̂ −0.011 −0.009 −0.080 0.058

β̂ 0.840 0.848 0.219 1.405

Sample size 17 19 10 20

Source: Jensen (1968). Reprinted with the permission of Blackwell Publishers.
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As table 2.4 shows, the average (defined as either the mean or the me-

dian) fund was unable to ‘beat the market’, recording a negative alpha

in both cases. There were, however, some funds that did manage to per-

form significantly better than expected given their level of risk, with the

best fund of all yielding an alpha of 0.058. Interestingly, the average fund

had a beta estimate of around 0.85, indicating that, in the CAPM context,

most funds were less risky than the market index. This result may be

attributable to the funds investing predominantly in (mature) blue chip

stocks rather than small caps.

The most visual method of presenting the results was obtained by plot-

ting the number of mutual funds in each t -ratio category for the alpha

coefficient, first gross and then net of transactions costs, as in figure 2.17

and figure 2.18, respectively.
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Table 2.5 Summary statistics for unit trust returns, January 1979–May 2000

Mean Minimum Maximum Median

(%) (%) (%) (%)

Average monthly

return, 1979--2000 1.0 0.6 1.4 1.0

Standard deviation of

returns over time 5.1 4.3 6.9 5.0

The appropriate critical value for a two-sided test of α j = 0 is approx-

imately 2.10 (assuming 20 years of annual data leading to 18 degrees of

freedom). As can be seen, only five funds have estimated t -ratios greater

than 2 and are therefore implied to have been able to outperform the

market before transactions costs are taken into account. Interestingly, five

firms have also significantly underperformed the market, with t -ratios

of --2 or less.

When transactions costs are taken into account (figure 2.18), only one

fund out of 115 is able to significantly outperform the market, while 14

significantly underperform it. Given that a nominal 5% two-sided size of

test is being used, one would expect two or three funds to ‘significantly

beat the market’ by chance alone. It would thus be concluded that, during

the sample period studied, US fund managers appeared unable to system-

atically generate positive abnormal returns.

2.12 Can UK unit trust managers beat the market?

Jensen’s study has proved pivotal in suggesting a method for conducting

empirical tests of the performance of fund managers. However, it has been

criticised on several grounds. One of the most important of these in the

context of this book is that only between 10 and 20 annual observations

were used for each regression. Such a small number of observations is

really insufficient for the asymptotic theory underlying the testing proce-

dure to be validly invoked.

A variant on Jensen’s test is now estimated in the context of the UK

market, by considering monthly returns on 76 equity unit trusts. The

data cover the period January 1979--May 2000 (257 observations for each

fund). Some summary statistics for the funds are presented in table 2.5.

From these summary statistics, the average continuously compounded

return is 1.0% per month, although the most interesting feature is the
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Table 2.6 CAPM regression results for unit trust returns, January 1979–May 2000

Estimates of Mean Minimum Maximum Median

α(%) −0.02 −0.54 0.33 −0.03

β 0.91 0.56 1.09 0.91

t-ratio on α −0.07 −2.44 3.11 −0.25

Figure 2.19

Performance of UK

unit trusts,

1979–2000

wide variation in the performances of the funds. The worst-performing

fund yields an average return of 0.6% per month over the 20-year pe-

riod, while the best would give 1.4% per month. This variability is further

demonstrated in figure 2.19, which plots over time the value of £100 in-

vested in each of the funds in January 1979.

A regression of the form (2.52) is applied to the UK data, and the sum-

mary results presented in table 2.6. A number of features of the regression

results are worthy of further comment. First, most of the funds have esti-

mated betas less than one again, perhaps suggesting that the fund man-

agers have historically been risk-averse or investing disproportionately in

blue chip companies in mature sectors. Second, gross of transactions costs,

nine funds of the sample of 76 were able to significantly outperform the

market by providing a significant positive alpha, while seven funds yielded

significant negative alphas. The average fund (where ‘average’ is measured

using either the mean or the median) is not able to earn any excess return

over the required rate given its level of risk.
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Box 2.9 Reasons for stock market overreactions

(1) That the ‘overreaction effect’ is just another manifestation of the ‘size effect’. The size

effect is the tendency of small firms to generate on average, superior returns to large

firms. The argument would follow that the losers were small firms and that these

small firms would subsequently outperform the large firms. DeBondt and Thaler did

not believe this a sufficient explanation, but Zarowin (1990) found that allowing for

firm size did reduce the subsequent return on the losers.

(2) That the reversals of fortune reflect changes in equilibrium required returns. The losers

are argued to be likely to have considerably higher CAPM betas, reflecting investors’

perceptions that they are more risky. Of course, betas can change over time, and a

substantial fall in the firms’ share prices (for the losers) would lead to a rise in their

leverage ratios, leading in all likelihood to an increase in their perceived riskiness.

Therefore, the required rate of return on the losers will be larger, and their ex post

performance better. Ball and Kothari (1989) find the CAPM betas of losers to be

considerably higher than those of winners.

2.13 The overreaction hypothesis and the UK stock market

2.13.1 Motivation

Two studies by DeBondt and Thaler (1985, 1987) showed that stocks expe-

riencing a poor performance over a 3--5-year period subsequently tend to

outperform stocks that had previously performed relatively well. This im-

plies that, on average, stocks which are ‘losers’ in terms of their returns

subsequently become ‘winners’, and vice versa. This chapter now exam-

ines a paper by Clare and Thomas (1995) that conducts a similar study

using monthly UK stock returns from January 1955 to 1990 (36 years) on

all firms traded on the London Stock exchange.

This phenomenon seems at first blush to be inconsistent with the effi-

cient markets hypothesis, and Clare and Thomas propose two explanations

(box 2.9).

Zarowin (1990) also finds that 80% of the extra return available from

holding the losers accrues to investors in January, so that almost all of

the ‘overreaction effect’ seems to occur at the start of the calendar year.

2.13.2 Methodology

Clare and Thomas take a random sample of 1,000 firms and, for each, they

calculate the monthly excess return of the stock for the market over a 12-,

24- or 36-month period for each stock i

Uit = Rit − Rmt t = 1, . . . , n; i = 1, . . . , 1000;

n = 12, 24 or 36 (2.53)
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Box 2.10 Ranking stocks and forming portfolios

Portfolio Ranking

Portfolio 1 Best performing 20% of firms

Portfolio 2 Next 20%

Portfolio 3 Next 20%

Portfolio 4 Next 20%

Portfolio 5 Worst performing 20% of firms

Box 2.11 Portfolio monitoring

Estimate R̄i for year 1

Monitor portfolios for year 2

Estimate R̄i for year 3
...

Monitor portfolios for year 36

Then the average monthly return over each stock i for the first 12-, 24-, or

36-month period is calculated:

R̄i = 1

n

n∑
t=1

Uit (2.54)

The stocks are then ranked from highest average return to lowest and

from these 5 portfolios are formed and returns are calculated assuming

an equal weighting of stocks in each portfolio (box 2.10).

The same sample length n is used to monitor the performance of each

portfolio. Thus, for example, if the portfolio formation period is one, two

or three years, the subsequent portfolio tracking period will also be one,

two or three years, respectively. Then another portfolio formation period

follows and so on until the sample period has been exhausted. How many

samples of length n will there be? n = 1, 2, or 3 years. First, suppose n =
1 year. The procedure adopted would be as shown in box 2.11.

So if n = 1, there are 18 independent (non-overlapping) observation

periods and 18 independent tracking periods. By similar arguments, n = 2

gives 9 independent periods and n = 3 gives 6 independent periods. The

mean return for each month over the 18, 9, or 6 periods for the winner

and loser portfolios (the top 20% and bottom 20% of firms in the portfolio

formation period) are denoted by R̄W
pt and R̄L

pt , respectively. Define the

difference between these as R̄Dt = R̄L
pt − R̄W

pt .
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Table 2.7 Is there an overreaction effect in the UK stock market?

Panel A: All Months

n = 12 n = 24 n = 36

Return on loser 0.0033 0.0011 0.0129

Return on winner 0.0036 −0.0003 0.0115

Implied annualised return difference −0.37% 1.68% 1.56%

Coefficient for (2.55): α̂1 −0.00031 0.0014∗∗ 0.0013

(0.29) (2.01) (1.55)

Coefficients for (2.56): α̂2 −0.00034 0.00147∗∗ 0.0013∗

(−0.30) (2.01) (1.41)

Coefficients for (2.56): β̂ −0.022 0.010 −0.0025

(−0.25) (0.21) (−0.06)

Panel B: all months except January

Coefficient for (2.55): α̂1 −0.0007 0.0012∗ 0.0009

(−0.72) (1.63) (1.05)

Notes: t -ratios in parentheses; ∗ and ∗∗ denote significance at the 10% and 5% levels,

respectively.

Source: Clare and Thomas (1995). Reprinted with the permission of Blackwell

Publishers.

The first regression to be performed is of the excess return of the losers

over the winners on a constant only

R̄Dt = α1 + ηt (2.55)

where ηt is an error term. The test is of whether α1 is significant and

positive. However, a significant and positive α1 is not a sufficient condition

for the overreaction effect to be confirmed because it could be owing to

higher returns being required on loser stocks owing to loser stocks being

more risky. The solution, Clare and Thomas (1995) argue, is to allow for

risk differences by regressing against the market risk premium

R̄Dt = α2 + β(Rmt − R f t ) + ηt (2.56)

where Rmt is the return on the FTA All-share, and R f t is the return on a

UK government three-month Treasury Bill. The results for each of these

two regressions are presented in table 2.7.

As can be seen by comparing the returns on the winners and losers in

the first two rows of table 2.7, 12 months is not a sufficiently long time

for losers to become winners. By the two-year tracking horizon, however,

the losers have become winners, and similarly for the three-year samples.

This translates into an average 1.68% higher return on the losers than the
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winners at the two-year horizon, and 1.56% higher return at the three-year

horizon. Recall that the estimated value of the coefficient in a regression

of a variable on a constant only is equal to the average value of that vari-

able. It can also be seen that the estimated coefficients on the constant

terms for each horizon are exactly equal to the differences between the

returns of the losers and the winners. This coefficient is statistically signif-

icant at the two-year horizon, and marginally significant at the three-year

horizon.

In the second test regression, β̂ represents the difference between the

market betas of the winner and loser portfolios. None of the beta coeffi-

cient estimates are even close to being significant, and the inclusion of

the risk term makes virtually no difference to the coefficient values or

significances of the intercept terms.

Removal of the January returns from the samples reduces the subse-

quent degree of overperformance of the loser portfolios, and the signif-

icances of the α̂1 terms is somewhat reduced. It is concluded, therefore,

that only a part of the overreaction phenomenon occurs in January. Clare

and Thomas then proceed to examine whether the overreaction effect is

related to firm size, although the results are not presented here.

2.13.3 Conclusions

The main conclusions from Clare and Thomas’ study are:

(1) There appears to be evidence of overreactions in UK stock returns, as

found in previous US studies.

(2) These over-reactions are unrelated to the CAPM beta.

(3) Losers that subsequently become winners tend to be small, so that

most of the overreaction in the UK can be attributed to the size effect.

2.14 The exact significance level

The exact significance level is also commonly known as the p-value. It

gives the marginal significance level where one would be indifferent between

rejecting and not rejecting the null hypothesis. If the test statistic is ‘large’

in absolute value, the p-value will be small, and vice versa. For example,

consider a test statistic that is distributed as a t62 and takes a value of 1.47.

Would the null hypothesis be rejected? It would depend on the size of the

test. Now, suppose that the p-value for this test is calculated to be 0.12:

● Is the null rejected at the 5% level? No

● Is the null rejected at the 10% level? No

● Is the null rejected at the 20% level? Yes



A brief overview of the classical linear regression model 75

Table 2.8 Part of the EViews regression output revisited

Coefficient Std. Error t-Statistic Prob.

C 0.363302 0.444369 0.817569 0.4167

RFUTURES 0.123860 0.133790 0.925781 0.3581

In fact, the null would have been rejected at the 12% level or higher.

To see this, consider conducting a series of tests with size 0.1%, 0.2%,

0.3%, 0.4%, . . . 1%, . . . , 5%, . . . 10%, . . . Eventually, the critical value and test

statistic will meet and this will be the p-value. p-values are almost always

provided automatically by software packages. Note how useful they are!

They provide all of the information required to conduct a hypothesis test

without requiring of the researcher the need to calculate a test statistic or

to find a critical value from a table -- both of these steps have already been

taken by the package in producing the p-value. The p-value is also useful

since it avoids the requirement of specifying an arbitrary significance

level (α). Sensitivity analysis of the effect of the significance level on the

conclusion occurs automatically.

Informally, the p-value is also often referred to as the probability of

being wrong when the null hypothesis is rejected. Thus, for example, if a

p-value of 0.05 or less leads the researcher to reject the null (equivalent to

a 5% significance level), this is equivalent to saying that if the probability

of incorrectly rejecting the null is more than 5%, do not reject it. The

p-value has also been termed the ‘plausibility’ of the null hypothesis; so,

the smaller is the p-value, the less plausible is the null hypothesis.

2.15 Hypothesis testing in EViews – example 1: hedging revisited

Reload the ‘hedge.wf1’ EViews work file that was created above. If we

re-examine the results table from the returns regression (screenshot 2.3

on p. 43), it can be seen that as well as the parameter estimates, EViews

automatically calculates the standard errors, the t -ratios, and the p-values

associated with a two-sided test of the null hypothesis that the true value

of a parameter is zero. Part of the results table is replicated again here

(table 2.8) for ease of interpretation.

The third column presents the t -ratios, which are the test statistics for

testing the null hypothesis that the true values of these parameters are

zero against a two sided alternative -- i.e. these statistics test H0 : α = 0 ver-

sus H1 : α �= 0 in the first row of numbers and H0 : β = 0 versus H1 : β �= 0
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in the second. The fact that these test statistics are both very small is in-

dicative that neither of these null hypotheses is likely to be rejected. This

conclusion is confirmed by the p-values given in the final column. Both p-

values are considerably larger than 0.1, indicating that the corresponding

test statistics are not even significant at the 10% level.

Suppose now that we wanted to test the null hypothesis that H0 : β = 1

rather than H0 : β = 0. We could test this, or any other hypothesis about

the coefficients, by hand, using the information we already have. But it

is easier to let EViews do the work by typing View and then Coefficient

Tests/Wald – Coefficient Restrictions . . . . EViews defines all of the param-

eters in a vector C, so that C(1) will be the intercept and C(2) will be the

slope. Type C(2)=1 and click OK. Note that using this software, it is possi-

ble to test multiple hypotheses, which will be discussed in chapter 3, and

also non-linear restrictions, which cannot be tested using the standard

procedure for inference described above.

Wald Test:

Equation: LEVELREG

Test Statistic Value df Probability

F-statistic 0.565298 (1, 64) 0.4549

Chi-square 0.565298 1 0.4521

Null Hypothesis Summary:

Normalised Restriction (= 0) Value Std. Err.

−1 + C(2) −0.017777 0.023644

Restrictions are linear in coefficients.

The test is performed in two different ways, but results suggest that

the null hypothesis should clearly be rejected as the p-value for the test

is zero to four decimal places. Since we are testing a hypothesis about

only one parameter, the two test statistics (‘F -statistic’ and ‘χ -square’) will

always be identical. These are equivalent to conducting a t -test, and these

alternative formulations will be discussed in detail in chapter 4. EViews

also reports the ‘normalised restriction’, although this can be ignored for

the time being since it merely reports the regression slope parameter (in

a different form) and its standard error.

Now go back to the regression in levels (i.e. with the raw prices rather

than the returns) and test the null hypothesis that β = 1 in this regression.

You should find in this case that the null hypothesis is not rejected (table

below).



A brief overview of the classical linear regression model 77

Wald Test:

Equation: RETURNREG

Test Statistic Value df Probability

F-statistic 42.88455 (1, 63) 0.0000

Chi-square 42.88455 1 0.0000

Null Hypothesis Summary:

Normalised Restriction (= 0) Value Std. Err.

−1 + C(2) −0.876140 0.133790

Restrictions are linear in coefficients.

2.16 Estimation and hypothesis testing in EViews – example 2:
the CAPM

This exercise will estimate and test some hypotheses about the CAPM beta

for several US stocks. First, Open a new workfile to accommodate monthly

data commencing in January 2002 and ending in April 2007. Then import

the Excel file ‘capm.xls’. The file is organised by observation and contains

six columns of numbers plus the dates in the first column, so in the

‘Names for series or Number if named in file’ box, type 6. As before, do

not import the dates so the data start in cell B2. The monthly stock prices

of four companies (Ford, General Motors, Microsoft and Sun) will appear as

objects, along with index values for the S&P500 (‘sandp’) and three-month

US-Treasury bills (‘ustb3m’). Save the EViews workfile as ‘capm.wk1’.

In order to estimate a CAPM equation for the Ford stock, for example,

we need to first transform the price series into returns and then the

excess returns over the risk free rate. To transform the series, click on the

Generate button (Genr) in the workfile window. In the new window, type

RSANDP=100*LOG(SANDP/SANDP(−1))

This will create a new series named RSANDP that will contain the returns

of the S&P500. The operator (−1) is used to instruct EViews to use the one-

period lagged observation of the series. To estimate percentage returns on

the Ford stock, press the Genr button again and type

RFORD=100*LOG(FORD/FORD(−1))

This will yield a new series named RFORD that will contain the returns

of the Ford stock. EViews allows various kinds of transformations to the
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series. For example

X2=X/2 creates a new variable called X2 that is half

of X

XSQ=Xˆ2 creates a new variable XSQ that is X squared

LX=LOG(X) creates a new variable LX that is the

log of X

LAGX=X(−1) creates a new variable LAGX containing X

lagged by one period

LAGX2=X(−2) creates a new variable LAGX2 containing X

lagged by two periods

Other functions include:

d(X) first difference of X

d(X,n) nth order difference of X

dlog(X) first difference of the logarithm of X

dlog(X,n) nth order difference of the logarithm of X

abs(X) absolute value of X

If, in the transformation, the new series is given the same name as the

old series, then the old series will be overwritten. Note that the returns

for the S&P index could have been constructed using a simpler command

in the ‘Genr’ window such as

RSANDP=100∗DLOG(SANDP)

as we used in chapter 1. Before we can transform the returns into ex-

cess returns, we need to be slightly careful because the stock returns

are monthly, but the Treasury bill yields are annualised. We could run

the whole analysis using monthly data or using annualised data and it

should not matter which we use, but the two series must be measured

consistently. So, to turn the T-bill yields into monthly figures and to write

over the original series, press the Genr button again and type

USTB3M=USTB3M/12

Now, to compute the excess returns, click Genr again and type

ERSANDP=RSANDP-USTB3M

where ‘ERSANDP’ will be used to denote the excess returns, so that the

original raw returns series will remain in the workfile. The Ford returns

can similarly be transformed into a set of excess returns.

Now that the excess returns have been obtained for the two series,

before running the regression, plot the data to examine visually whether
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the series appear to move together. To do this, create a new object by

clicking on the Object/New Object menu on the menu bar. Select Graph,

provide a name (call the graph Graph1) and then in the new window

provide the names of the series to plot. In this new window, type

ERSANDP ERFORD

Then press OK and screenshot 2.4 will appear.

Screenshot 2.4

Plot of two series

This is a time-series plot of the two variables, but a scatter plot may be

more informative. To examine a scatter plot, Click Options, choose the

Type tab, then select Scatter from the list and click OK. There appears to

be a weak association between ERFTAS and ERFORD. Close the window of

the graph and return to the workfile window.

To estimate the CAPM equation, click on Object/New Objects. In the

new window, select Equation and name the object CAPM. Click on OK.

In the window, specify the regression equation. The regression equation

takes the form

(RFord − r f )t = α + β(RM − r f )t + ut
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Since the data have already been transformed to obtain the excess returns,

in order to specify this regression equation, type in the equation window

ERFORD C ERSANDP

To use all the observations in the sample and to estimate the regression

using LS -- Least Squares (NLS and ARMA), click on OK. The results screen

appears as in the following table. Make sure that you save the Workfile

again to include the transformed series and regression results!

Dependent Variable: ERFORD

Method: Least Squares

Date: 08/21/07 Time: 15:02

Sample (adjusted): 2002M02 2007M04

Included observations: 63 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 2.020219 2.801382 0.721151 0.4736

ERSANDP 0.359726 0.794443 0.452803 0.6523

R-squared 0.003350 Mean dependent var 2.097445

Adjusted R-squared −0.012989 S.D. dependent var 22.05129

S.E. of regression 22.19404 Akaike info criterion 9.068756

Sum squared resid 30047.09 Schwarz criterion 9.136792

Log likelihood −283.6658 Hannan-Quinn criter. 9.095514

F-statistic 0.205031 Durbin-Watson stat 1.785699

Prob(F-statistic) 0.652297

Take a couple of minutes to examine the results of the regression. What

is the slope coefficient estimate and what does it signify? Is this coefficient

statistically significant? The beta coefficient (the slope coefficient) estimate

is 0.3597. The p-value of the t -ratio is 0.6523, signifying that the excess

return on the market proxy has no significant explanatory power for the

variability of the excess returns of Ford stock. What is the interpretation

of the intercept estimate? Is it statistically significant?

In fact, there is a considerably quicker method for using transformed

variables in regression equations, and that is to write the transformation

directly into the equation window. In the CAPM example above, this could

be done by typing

DLOG(FORD)-USTB3M C DLOG(SANDP)-USTB3M

into the equation window. As well as being quicker, an advantage of this

approach is that the output will show more clearly the regression that has

actually been conducted, so that any errors in making the transformations

can be seen more clearly.
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How could the hypothesis that the value of the population coefficient is

equal to 1 be tested? The answer is to click on View/Coefficient Tests/Wald

– Coefficient Restrictions. . . and then in the box that appears, Type C(2)=1.

The conclusion here is that the null hypothesis that the CAPM beta of Ford

stock is 1 cannot be rejected and hence the estimated beta of 0.359 is not

significantly different from 1.5

Key concepts
The key terms to be able to define and explain from this chapter are

● regression model ● disturbance term

● population ● sample

● linear model ● consistency

● unbiasedness ● efficiency

● standard error ● statistical inference

● null hypothesis ● alternative hypothesis

● t -distribution ● confidence interval

● test statistic ● rejection region

● type I error ● type II error

● size of a test ● power of a test

● p-value ● data mining

● asymptotic

Appendix: Mathematical derivations of CLRM results

2A.1 Derivation of the OLS coefficient estimator in the bivariate case

L =
T∑

t=1

(yt − ŷt )
2 =

T∑
t=1

(yt − α̂ − β̂xt )
2 (2A.1)

It is necessary to minimise L w.r.t. α̂ and β̂, to find the values of α and

β that give the line that is closest to the data. So L is differentiated w.r.t.

α̂ and β̂, and the first derivatives are set to zero. The first derivatives are

given by

∂L

∂α̂
= −2

∑
t

(yt − α̂ − β̂xt ) = 0 (2A.2)

∂L

∂β̂
= −2

∑
t

xt (yt − α̂ − β̂xt ) = 0 (2A.3)

5 Although the value 0.359 may seem a long way from 1, considered purely from an

econometric perspective, the sample size is quite small and this has led to a large

parameter standard error, which explains the failure to reject both H0 : β = 0 and

H0 : β = 1.
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The next step is to rearrange (2A.2) and (2A.3) in order to obtain expres-

sions for α̂ and β̂. From (2A.2)

∑
t

(yt − α̂ − β̂xt ) = 0 (2A.4)

Expanding the parentheses and recalling that the sum runs from 1 to T
so that there will be T terms in α̂

∑
yt − T α̂ − β̂

∑
xt = 0 (2A.5)

But
∑

yt = Tȳ and
∑

xt = Tx̄ , so it is possible to write (2A.5) as

T ȳ − Tα̂ − Tβ̂ x̄ = 0 (2A.6)

or

ȳ − α̂ − β̂ x̄ = 0 (2A.7)

From (2A.3)

∑
t

xt (yt − α̂ − β̂xt ) = 0 (2A.8)

From (2A.7)

α̂ = ȳ − β̂ x̄ (2A.9)

Substituting into (2A.8) for α̂ from (2A.9)

∑
t

xt (yt − ȳ + β̂ x̄ − β̂xt ) = 0 (2A.10)

∑
t

xt yt − ȳ
∑

xt + β̂ x̄
∑

xt − β̂
∑

x2
t = 0 (2A.11)

∑
t

xt yt − T x̄ ȳ + β̂T x̄2 − β̂
∑

x2
t = 0 (2A.12)

Rearranging for β̂,

β̂
(

T x̄2 −
∑

x2
t

)
= T x y −

∑
xt yt (2A.13)

Dividing both sides of (2A.13) by
(
T x̄2 − ∑

x2
t

)
gives

β̂ =
∑

xt yt − T x y∑
x2

t − T x̄2
and α̂ = ȳ − β̂ x̄ (2A.14)
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2A.2 Derivation of the OLS standard error estimators for the intercept and

slope in the bivariate case

Recall that the variance of the random variable α̂ can be written as

var(α̂) = E(α̂ − E(α̂))2 (2A.15)

and since the OLS estimator is unbiased

var(α̂) = E(α̂ − α)2 (2A.16)

By similar arguments, the variance of the slope estimator can be written

as

var(β̂) = E(β̂ − β)2 (2A.17)

Working first with (2A.17), replacing β̂ with the formula for it given by

the OLS estimator

var(β̂) = E

(∑
(xt − x̄)(yt − ȳ)∑

(xt − x̄)2
− β

)2

(2A.18)

Replacing yt with α + βxt + ut , and replacing ȳ with α + β x̄ in (2A.18)

var(β̂) = E

(∑
(xt − x̄)(α + βxt + ut − α − β x̄)∑

(xt − x̄)2
− β

)2

(2A.19)

Cancelling α and multiplying the last β term in (2A.19) by

∑
(xt − x̄)2∑
(xt − x̄)2

var(β̂) = E

(∑
(xt − x̄)(βxt + ut − β x̄) − β

∑
(xt − x̄)2∑

(xt − x̄)2

)2

(2A.20)

Rearranging

var(β̂) = E

(∑
(xt − x̄)β(xt − x̄) +

∑
ut (xt − x̄) − β

∑
(xt − x̄)2∑

(xt − x̄)2

)2

(2A.21)

var(β̂) = E

(
β

∑
(xt − x̄)2 +

∑
ut (xt − x̄) − β

∑
(xt − x̄)2∑

(xt − x̄)2

)2

(2A.22)

Now the β terms in (2A.22) will cancel to give

var(β̂) = E

(∑
ut (xt − x̄)∑
(xt − x̄)2

)2

(2A.23)
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Now let x∗
t denote the mean-adjusted observation for xt , i.e. (xt − x̄ ). Equa-

tion (2A.23) can be written

var(β̂) = E

(∑
ut x

∗
t∑

x∗2
t

)2

(2A.24)

The denominator of (2A.24) can be taken through the expectations oper-

ator under the assumption that x is fixed or non-stochastic

var(β̂) = 1(∑
x∗2

t

)2
E

(∑
ut x

∗
t

)2

(2A.25)

Writing the terms out in the last summation of (2A.25)

var(β̂) = 1(∑
x∗2

t

)2
E

(
u1x∗

1 + u2x∗
2 + · · · + uT x∗

T

)2
(2A.26)

Now expanding the brackets of the squared term in the expectations

operator of (2A.26)

var(β̂) = 1(∑
x∗2

t

)2
E

(
u2

1x∗2
1 + u2

2x∗2
2 + · · · + u2

T x∗2
T + cross-products

)

(2A.27)

where ‘cross-products’ in (2A.27) denotes all of the terms ui x∗
i u j x∗

j (i �= j).

These cross-products can be written as ui u j x∗
i x∗

j (i �= j) and their expecta-

tion will be zero under the assumption that the error terms are uncorre-

lated with one another. Thus, the ‘cross-products’ term in (2A.27) will drop

out. Recall also from the chapter text that E(u2
t ) is the error variance,

which is estimated using s2

var(β̂) = 1(∑
x∗2

t

)2

(
s2x∗2

1 + s2x∗2
2 + · · · + s2x∗2

T

)
(2A.28)

which can also be written

var(β̂) = s2

(∑
x∗2

t

)2

(
x∗2

1 + x∗2
2 + · · · + x∗2

T

) = s2
∑

x∗2
t(∑

x∗2
t

)2
(2A.29)

A term in
∑

x∗2
t can be cancelled from the numerator and denominator

of (2A.29), and recalling that x∗
t = (xt − x̄ ), this gives the variance of the

slope coefficient as

var(β̂) = s2∑
(xt − x̄)2

(2A.30)
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so that the standard error can be obtained by taking the square root of

(2A.30)

SE(β̂) = s

√
1∑

(xt − x̄)2
(2A.31)

Turning now to the derivation of the intercept standard error, this is in

fact much more difficult than that of the slope standard error. In fact,

both are very much easier using matrix algebra as shown below. Therefore,

this derivation will be offered in summary form. It is possible to express

α̂ as a function of the true α and of the disturbances, ut

α̂ = α +
∑

ut

[ ∑
x2

t − xt

∑
xt

]
[
T

∑
x2

t −
( ∑

xt

)2] (2A.32)

Denoting all of the elements in square brackets as gt , (2A.32) can be written

α̂ − α =
∑

ut gt (2A.33)

From (2A.15), the intercept variance would be written

var(α̂) = E
( ∑

ut gt

)2

=
∑

g2
t E

(
u2

t

) = s2
∑

g2
t (2A.34)

Writing (2A.34) out in full for g2
t and expanding the brackets

var(α̂) =
s2

[
T

( ∑
x2

t

)2

− 2
∑

xt

( ∑
x2

t

) ∑
xt +

( ∑
x2

t

)( ∑
xt

)2]
[
T

∑
x2

t −
( ∑

xt

)2]2

(2A.35)

This looks rather complex, but fortunately, if we take
∑

x2
t outside the

square brackets in the numerator, the remaining numerator cancels with

a term in the denominator to leave the required result

SE(α̂) = s

√√√√
∑

x2
t

T
∑

(xt − x̄)2
(2A.36)

Review questions

1. (a) Why does OLS estimation involve taking vertical deviations of the

points to the line rather than horizontal distances?

(b) Why are the vertical distances squared before being added

together?
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(c) Why are the squares of the vertical distances taken rather than the

absolute values?

2. Explain, with the use of equations, the difference between the sample

regression function and the population regression function.

3. What is an estimator? Is the OLS estimator superior to all other

estimators? Why or why not?

4. What five assumptions are usually made about the unobservable error

terms in the classical linear regression model (CLRM)? Briefly explain

the meaning of each. Why are these assumptions made?

5. Which of the following models can be estimated (following a suitable

rearrangement if necessary) using ordinary least squares (OLS), where

X , y, Z are variables and α, β, γ are parameters to be estimated?

(Hint: the models need to be linear in the parameters.)

yt = α + βxt + ut (2.57)

yt = eαxβ
t eut (2.58)

yt = α + βγ xt + ut (2.59)

ln(yt ) = α + β ln(xt ) + ut (2.60)

yt = α + βxt zt + ut (2.61)

6. The capital asset pricing model (CAPM) can be written as

E(Ri ) = R f + βi [E(Rm) − R f ] (2.62)

using the standard notation.

The first step in using the CAPM is to estimate the stock’s beta using

the market model. The market model can be written as

Rit = αi + βi Rmt + uit (2.63)

where Rit is the excess return for security i at time t, Rmt is the excess

return on a proxy for the market portfolio at time t, and ut is an iid

random disturbance term. The cofficient beta in this case is also the

CAPM beta for security i .
Suppose that you had estimated (2.63) and found that the estimated

value of beta for a stock, β̂ was 1.147. The standard error associated

with this coefficient SE(β̂) is estimated to be 0.0548.

A city analyst has told you that this security closely follows the

market, but that it is no more risky, on average, than the market. This

can be tested by the null hypotheses that the value of beta is one. The

model is estimated over 62 daily observations. Test this hypothesis

against a one-sided alternative that the security is more risky than the
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market, at the 5% level. Write down the null and alternative hypothesis.

What do you conclude? Are the analyst’s claims empirically verified?

7. The analyst also tells you that shares in Chris Mining PLC have no

systematic risk, in other words that the returns on its shares are

completely unrelated to movements in the market. The value of beta

and its standard error are calculated to be 0.214 and 0.186,

respectively. The model is estimated over 38 quarterly observations.

Write down the null and alternative hypotheses. Test this null

hypothesis against a two-sided alternative.

8. Form and interpret a 95% and a 99% confidence interval for beta using

the figures given in question 7.

9. Are hypotheses tested concerning the actual values of the coefficients

(i.e. β) or their estimated values (i.e. β̂) and why?

10. Using EViews, select one of the other stock series from the ‘capm.wk1’

file and estimate a CAPM beta for that stock. Test the null hypothesis

that the true beta is one and also test the null hypothesis that the true

alpha (intercept) is zero. What are your conclusions?



3
Further development and analysis of the
classical linear regression model

Learning Outcomes
In this chapter, you will learn how to

● Construct models with more than one explanatory variable

● Test multiple hypotheses using an F -test

● Determine how well a model fits the data

● Form a restricted regression

● Derive the OLS parameter and standard error estimators using
matrix algebra

● Estimate multiple regression models and test multiple
hypotheses in EViews

3.1 Generalising the simple model to multiple linear regression

Previously, a model of the following form has been used:

yt = α + βxt + ut t = 1, 2, . . . , T (3.1)

Equation (3.1) is a simple bivariate regression model. That is, changes

in the dependent variable are explained by reference to changes in one

single explanatory variable x . But what if the financial theory or idea that

is sought to be tested suggests that the dependent variable is influenced

by more than one independent variable? For example, simple estimation

and tests of the CAPM can be conducted using an equation of the form of

(3.1), but arbitrage pricing theory does not pre-suppose that there is only

a single factor affecting stock returns. So, to give one illustration, stock

returns might be purported to depend on their sensitivity to unexpected

changes in:

88
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(1) inflation

(2) the differences in returns on short- and long-dated bonds

(3) industrial production

(4) default risks.

Having just one independent variable would be no good in this case. It

would of course be possible to use each of the four proposed explanatory

factors in separate regressions. But it is of greater interest and it is more

valid to have more than one explanatory variable in the regression equa-

tion at the same time, and therefore to examine the effect of all of the

explanatory variables together on the explained variable.

It is very easy to generalise the simple model to one with k regressors

(independent variables). Equation (3.1) becomes

yt = β1 + β2x2t + β3x3t + · · · + βk xkt + ut , t = 1, 2, . . . , T (3.2)

So the variables x2t , x3t , . . . , xkt are a set of k − 1 explanatory variables

which are thought to influence y, and the coefficient estimates β1,

β2, . . . , βk are the parameters which quantify the effect of each of these

explanatory variables on y. The coefficient interpretations are slightly al-

tered in the multiple regression context. Each coefficient is now known

as a partial regression coefficient, interpreted as representing the partial

effect of the given explanatory variable on the explained variable, after

holding constant, or eliminating the effect of, all other explanatory vari-

ables. For example, β̂2 measures the effect of x2 on y after eliminating

the effects of x3, x4, . . . , xk . Stating this in other words, each coefficient

measures the average change in the dependent variable per unit change

in a given independent variable, holding all other independent variables

constant at their average values.

3.2 The constant term

In (3.2) above, astute readers will have noticed that the explanatory vari-

ables are numbered x2, x3, . . . i.e. the list starts with x2 and not x1. So,

where is x1? In fact, it is the constant term, usually represented by a

column of ones of length T :

x1 =

⎡
⎢⎢⎢⎢⎢⎣

1

1
·
·
·
1

⎤
⎥⎥⎥⎥⎥⎦

(3.3)
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Thus there is a variable implicitly hiding next to β1, which is a column

vector of ones, the length of which is the number of observations in

the sample. The x1 in the regression equation is not usually written, in

the same way that one unit of p and 2 units of q would be written as

‘p + 2q’ and not ‘1p + 2q’. β1 is the coefficient attached to the constant

term (which was called α in the previous chapter). This coefficient can still

be referred to as the intercept, which can be interpreted as the average value

which y would take if all of the explanatory variables took a value of zero.

A tighter definition of k, the number of explanatory variables, is prob-

ably now necessary. Throughout this book, k is defined as the number of

‘explanatory variables’ or ‘regressors’ including the constant term. This

is equivalent to the number of parameters that are estimated in the re-

gression equation. Strictly speaking, it is not sensible to call the constant

an explanatory variable, since it does not explain anything and it always

takes the same values. However, this definition of k will be employed for

notational convenience.

Equation (3.2) can be expressed even more compactly by writing it in

matrix form

y = Xβ + u (3.4)

where: y is of dimension T × 1

X is of dimension T × k
β is of dimension k × 1

u is of dimension T × 1

The difference between (3.2) and (3.4) is that all of the time observations

have been stacked up in a vector, and also that all of the different ex-

planatory variables have been squashed together so that there is a col-

umn for each in the X matrix. Such a notation may seem unnecessarily

complex, but in fact, the matrix notation is usually more compact and

convenient. So, for example, if k is 2, i.e. there are two regressors, one of

which is the constant term (equivalent to a simple bivariate regression

yt = α + βxt + ut ), it is possible to write⎡
⎢⎢⎢⎣

y1

y2

...

yT

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 x21

1 x22

...
...

1 x2T

⎤
⎥⎥⎥⎦

[
β1

β2

]
+

⎡
⎢⎢⎢⎣

u1

u2

...

uT

⎤
⎥⎥⎥⎦ (3.5)

T × 1 T × 2 2 × 1 T × 1

so that the xi j element of the matrix X represents the jth time observa-

tion on the ith variable. Notice that the matrices written in this way are
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conformable -- in other words, there is a valid matrix multiplication and

addition on the RHS.

The above presentation is the standard way to express matrices in the

time series econometrics literature, although the ordering of the indices is

different to that used in the mathematics of matrix algebra (as presented

in the mathematical appendix at the end of this book). In the latter case,

xi j would represent the element in row i and column j , although in the

notation used in the body of this book it is the other way around.

3.3 How are the parameters (the elements of the β vector)
calculated in the generalised case?

Previously, the residual sum of squares,
∑

û2
i was minimised with respect

to α and β. In the multiple regression context, in order to obtain estimates

of the parameters, β1, β2, . . . , βk , the RSS would be minimised with respect

to all the elements of β. Now, the residuals can be stacked in a vector:

û =

⎡
⎢⎢⎢⎣

û1

û2

...

ûT

⎤
⎥⎥⎥⎦ (3.6)

The RSS is still the relevant loss function, and would be given in a matrix

notation by

L = û′û = [û1û2 · · · ûT ]

⎡
⎢⎢⎢⎣

û1

û2

...

ûT

⎤
⎥⎥⎥⎦ = û2

1 + û2
2 + · · · + û2

T =
∑

û2
t

(3.7)

Using a similar procedure to that employed in the bivariate regression

case, i.e. substituting into (3.7), and denoting the vector of estimated pa-

rameters as β̂, it can be shown (see the appendix to this chapter) that the

coefficient estimates will be given by the elements of the expression

β̂ =

⎡
⎢⎢⎣

β̂1

β̂2
...

β̂k

⎤
⎥⎥⎦ = (X ′ X )−1 X ′y (3.8)

If one were to check the dimensions of the RHS of (3.8), it would be

observed to be k × 1. This is as required since there are k parameters to

be estimated by the formula for β̂.
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But how are the standard errors of the coefficient estimates calculated?

Previously, to estimate the variance of the errors, σ 2, an estimator denoted

by s2 was used

s2 =
∑

û2
t

T − 2
(3.9)

The denominator of (3.9) is given by T − 2, which is the number of de-

grees of freedom for the bivariate regression model (i.e. the number of

observations minus two). This essentially applies since two observations

are effectively ‘lost’ in estimating the two model parameters (i.e. in de-

riving estimates for α and β). In the case where there is more than one

explanatory variable plus a constant, and using the matrix notation, (3.9)

would be modified to

s2 = û′û
T − k

(3.10)

where k = number of regressors including a constant. In this case, k
observations are ‘lost’ as k parameters are estimated, leaving T − k degrees

of freedom. It can also be shown (see the appendix to this chapter) that

the parameter variance--covariance matrix is given by

var(β̂) = s2(X ′ X )−1 (3.11)

The leading diagonal terms give the coefficient variances while the off-

diagonal terms give the covariances between the parameter estimates, so

that the variance of β̂1 is the first diagonal element, the variance of β̂2

is the second element on the leading diagonal, and the variance of β̂k is

the kth diagonal element. The coefficient standard errors are thus simply

given by taking the square roots of each of the terms on the leading

diagonal.

Example 3.1

The following model with 3 regressors (including the constant) is esti-

mated over 15 observations

y = β1 + β2x2 + β3x3 + u (3.12)

and the following data have been calculated from the original xs

(X ′ X )−1 =

⎡
⎢⎣

2.0 3.5 −1.0

3.5 1.0 6.5

−1.0 6.5 4.3

⎤
⎥⎦ , (X ′y) =

⎡
⎢⎣

−3.0

2.2

0.6

⎤
⎥⎦ , û′û = 10.96
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Calculate the coefficient estimates and their standard errors.

β̂ =

⎡
⎢⎢⎢⎣

β̂1

β̂2
...

β̂k

⎤
⎥⎥⎥⎦ = (X ′ X )−1 X ′y =

⎡
⎢⎣

2.0 3.5 −1.0

3.5 1.0 6.5

−1.0 6.5 4.3

⎤
⎥⎦

×

⎡
⎢⎣

−3.0

2.2

0.6

⎤
⎥⎦ =

⎡
⎢⎣

1.10

−4.40

19.88

⎤
⎥⎦ (3.13)

To calculate the standard errors, an estimate of σ 2 is required

s2 = RSS

T − k
= 10.96

15 − 3
= 0.91 (3.14)

The variance--covariance matrix of β̂ is given by

s2(X ′ X )−1 = 0.91(X ′ X )−1 =
⎡
⎣ 1.82 3.19 −0.91

3.19 0.91 5.92

−0.91 5.92 3.91

⎤
⎦ (3.15)

The coefficient variances are on the diagonals, and the standard errors

are found by taking the square roots of each of the coefficient variances

var(β̂1) = 1.82 SE(β̂1) = 1.35 (3.16)

var(β̂2) = 0.91 ⇔ SE(β̂2) = 0.95 (3.17)

var(β̂3) = 3.91 SE(β̂3) = 1.98 (3.18)

The estimated equation would be written

ŷ = 1.10 − 4.40x2 + 19.88x3

(1.35) (0.95) (1.98)
(3.19)

Fortunately, in practice all econometrics software packages will estimate

the cofficient values and their standard errors. Clearly, though, it is still

useful to understand where these estimates came from.

3.4 Testing multiple hypotheses: the F-test

The t -test was used to test single hypotheses, i.e. hypotheses involving

only one coefficient. But what if it is of interest to test more than one

coefficient simultaneously? For example, what if a researcher wanted to

determine whether a restriction that the coefficient values for β2 and β3

are both unity could be imposed, so that an increase in either one of the

two variables x2 or x3 would cause y to rise by one unit? The t -testing
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framework is not sufficiently general to cope with this sort of hypothesis

test. Instead, a more general framework is employed, centring on an F -test.

Under the F -test framework, two regressions are required, known as the

unrestricted and the restricted regressions. The unrestricted regression is

the one in which the coefficients are freely determined by the data, as

has been constructed previously. The restricted regression is the one in

which the coefficients are restricted, i.e. the restrictions are imposed on

some βs. Thus the F -test approach to hypothesis testing is also termed

restricted least squares, for obvious reasons.

The residual sums of squares from each regression are determined, and

the two residual sums of squares are ‘compared’ in the test statistic. The

F -test statistic for testing multiple hypotheses about the coefficient esti-

mates is given by

test statistic = RRSS − URSS

URSS
× T − k

m
(3.20)

where the following notation applies:

URSS = residual sum of squares from unrestricted regression

RRSS = residual sum of squares from restricted regression

m = number of restrictions

T = number of observations

k = number of regressors in unrestricted regression

The most important part of the test statistic to understand is the nu-

merator expression RRSS − URSS. To see why the test centres around a

comparison of the residual sums of squares from the restricted and un-

restricted regressions, recall that OLS estimation involved choosing the

model that minimised the residual sum of squares, with no constraints

imposed. Now if, after imposing constraints on the model, a residual sum

of squares results that is not much higher than the unconstrained model’s

residual sum of squares, it would be concluded that the restrictions were

supported by the data. On the other hand, if the residual sum of squares

increased considerably after the restrictions were imposed, it would be

concluded that the restrictions were not supported by the data and there-

fore that the hypothesis should be rejected.

It can be further stated that RRSS ≥ URSS. Only under a particular set

of very extreme circumstances will the residual sums of squares for the

restricted and unrestricted models be exactly equal. This would be the case

when the restriction was already present in the data, so that it is not really

a restriction at all (it would be said that the restriction is ‘not binding’, i.e.

it does not make any difference to the parameter estimates). So, for exam-

ple, if the null hypothesis is H0: β2 = 1 and β3 = 1, then RRSS = URSS only
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in the case where the coefficient estimates for the unrestricted regression

had been β̂2 = 1 and β̂3 = 1. Of course, such an event is extremely unlikely

to occur in practice.

Example 3.2

Dropping the time subscripts for simplicity, suppose that the general re-

gression is

y = β1 + β2x2 + β3x3 + β4x4 + u (3.21)

and that the restriction β3 + β4 = 1 is under test (there exists some hy-

pothesis from theory which suggests that this would be an interesting

hypothesis to study). The unrestricted regression is (3.21) above, but what

is the restricted regression? It could be expressed as

y = β1 + β2x2 + β3x3 + β4x4 + u s.t. (subject to) β3 + β4 = 1 (3.22)

The restriction (β3 + β4 = 1) is substituted into the regression so that it is

automatically imposed on the data. The way that this would be achieved

would be to make either β3 or β4 the subject of (3.22), e.g.

β3 + β4 = 1 ⇒ β4 = 1 − β3 (3.23)

and then substitute into (3.21) for β4

y = β1 + β2x2 + β3x3 + (1 − β3)x4 + u (3.24)

Equation (3.24) is already a restricted form of the regression, but it is not

yet in the form that is required to estimate it using a computer package. In

order to be able to estimate a model using OLS, software packages usually

require each RHS variable to be multiplied by one coefficient only. There-

fore, a little more algebraic manipulation is required. First, expanding the

brackets around (1 − β3)

y = β1 + β2x2 + β3x3 + x4 − β3x4 + u (3.25)

Then, gathering all of the terms in each βi together and rearranging

(y − x4) = β1 + β2x2 + β3(x3 − x4) + u (3.26)

Note that any variables without coefficients attached (e.g. x4 in (3.25)) are

taken over to the LHS and are then combined with y. Equation (3.26)

is the restricted regression. It is actually estimated by creating two new

variables -- call them, say, P and Q, where P = y − x4 and Q = x3 − x4 --

so the regression that is actually estimated is

P = β1 + β2x2 + β3 Q + u (3.27)
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What would have happened if instead β3 had been made the subject of

(3.23) and β3 had therefore been removed from the equation? Although

the equation that would have been estimated would have been different

from (3.27), the value of the residual sum of squares for these two models

(both of which have imposed upon them the same restriction) would be

the same.

The test statistic follows the F -distribution under the null hypothesis.

The F -distribution has 2 degrees of freedom parameters (recall that the

t -distribution had only 1 degree of freedom parameter, equal to T − k).

The value of the degrees of freedom parameters for the F -test are m, the

number of restrictions imposed on the model, and (T − k), the number of

observations less the number of regressors for the unrestricted regression,

respectively. Note that the order of the degree of freedom parameters is

important. The appropriate critical value will be in column m, row (T − k)

of the F -distribution tables.

3.4.1 The relationship between the t - and the F -distributions

Any hypothesis that could be tested with a t -test could also have been

tested using an F -test, but not the other way around. So, single hypotheses

involving one coefficient can be tested using a t - or an F -test, but multiple

hypotheses can be tested only using an F -test. For example, consider the

hypothesis

H0 : β2 = 0.5

H1 : β2 �= 0.5

This hypothesis could have been tested using the usual t -test

test stat = β̂2 − 0.5

SE(β̂2)
(3.28)

or it could be tested in the framework above for the F -test. Note that the

two tests always give the same conclusion since the t -distribution is just

a special case of the F -distribution. For example, consider any random

variable Z that follows a t -distribution with T − k degrees of freedom,

and square it. The square of the t is equivalent to a particular form of the

F -distribution

Z2 ∼ t2 (T − k) then also Z2 ∼ F(1, T − k)

Thus the square of a t -distributed random variable with T − k degrees

of freedom also follows an F -distribution with 1 and T − k degrees of
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freedom. This relationship between the t and the F -distributions will al-

ways hold -- take some examples from the statistical tables and try it!

The F -distribution has only positive values and is not symmetrical.

Therefore, the null is rejected only if the test statistic exceeds the critical

F -value, although the test is a two-sided one in the sense that rejection

will occur if β̂2 is significantly bigger or significantly smaller than 0.5.

3.4.2 Determining the number of restrictions, m

How is the appropriate value of m decided in each case? Informally, the

number of restrictions can be seen as ‘the number of equality signs under

the null hypothesis’. To give some examples

H0 : hypothesis No. of restrictions, m
β1 + β2 = 2 1

β2 = 1 and β3 = −1 2

β2 = 0, β3 = 0 and β4 = 0 3

At first glance, you may have thought that in the first of these cases, the

number of restrictions was two. In fact, there is only one restriction that

involves two coefficients. The number of restrictions in the second two

examples is obvious, as they involve two and three separate component

restrictions, respectively.

The last of these three examples is particularly important. If the

model is

y = β1 + β2x2 + β3x3 + β4x4 + u (3.29)

then the null hypothesis of

H0 : β2 = 0 and β3 = 0 and β4 = 0

is tested by ‘THE’ regression F -statistic. It tests the null hypothesis that

all of the coefficients except the intercept coefficient are zero. This test is

sometimes called a test for ‘junk regressions’, since if this null hypothesis

cannot be rejected, it would imply that none of the independent variables

in the model was able to explain variations in y.

Note the form of the alternative hypothesis for all tests when more than

one restriction is involved

H1 : β2 �= 0 or β3 �= 0 or β4 �= 0

In other words, ‘and’ occurs under the null hypothesis and ‘or’ under the

alternative, so that it takes only one part of a joint null hypothesis to be

wrong for the null hypothesis as a whole to be rejected.
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3.4.3 Hypotheses that cannot be tested with either an F - or a t -test

It is not possible to test hypotheses that are not linear or that are multi-

plicative using this framework -- for example, H0 : β2β3 = 2, or H0 : β2
2 = 1

cannot be tested.

Example 3.3

Suppose that a researcher wants to test whether the returns on a com-

pany stock (y) show unit sensitivity to two factors (factor x2 and factor

x3) among three considered. The regression is carried out on 144 monthly

observations. The regression is

y = β1 + β2x2 + β3x3 + β4x4 + u (3.30)

(1) What are the restricted and unrestricted regressions?

(2) If the two RSS are 436.1 and 397.2, respectively, perform the test.

Unit sensitivity to factors x2 and x3 implies the restriction that the coef-

ficients on these two variables should be unity, so H0: β2 = 1 and β3 = 1.

The unrestricted regression will be the one given by (3.30) above. To derive

the restricted regression, first impose the restriction:

y = β1 + β2x2 + β3x3 + β4x4 + u s.t. β2 = 1 and β3 = 1 (3.31)

Replacing β2 and β3 by their values under the null hypothesis

y = β1 + x2 + x3 + β4x4 + u (3.32)

Rearranging

y − x2 − x3 = β1 + β4x4 + u (3.33)

Defining z = y − x2 − x3, the restricted regression is one of z on a constant

and x4

z = β1 + β4x4 + u (3.34)

The formula for the F -test statistic is given in (3.20) above. For this appli-

cation, the following inputs to the formula are available: T = 144, k = 4,

m = 2, RRSS = 436.1, URSS = 397.2. Plugging these into the formula gives

an F -test statistic value of 6.86. This statistic should be compared with an

F(m, T − k), which in this case is an F (2, 140). The critical values are 3.07

at the 5% level and 4.79 at the 1% level. The test statistic clearly exceeds

the critical values at both the 5% and 1% levels, and hence the null hy-

pothesis is rejected. It would thus be concluded that the restriction is not

supported by the data.

The following sections will now re-examine the CAPM model as an il-

lustration of how to conduct multiple hypothesis tests using EViews.
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3.5 Sample EViews output for multiple hypothesis tests

Reload the ‘capm.wk1’ workfile constructed in the previous chapter. As

a reminder, the results are included again below.

Dependent Variable: ERFORD

Method: Least Squares

Date: 08/21/07 Time: 15:02

Sample (adjusted): 2002M02 2007M04

Included observations: 63 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 2.020219 2.801382 0.721151 0.4736

ERSANDP 0.359726 0.794443 0.452803 0.6523

R-squared 0.003350 Mean dependent var 2.097445

Adjusted R-squared −0.012989 S.D. dependent var 22.05129

S.E. of regression 22.19404 Akaike info criterion 9.068756

Sum squared resid 30047.09 Schwarz criterion 9.136792

Log likelihood −283.6658 Hannan-Quinn criter. 9.095514

F-statistic 0.205031 Durbin-Watson stat 1.785699

Prob(F-statistic) 0.652297

If we examine the regression F -test, this also shows that the regression

slope coefficient is not significantly different from zero, which in this case

is exactly the same result as the t -test for the beta coefficient (since there

is only one slope coefficient). Thus, in this instance, the F -test statistic is

equal to the square of the slope t -ratio.

Now suppose that we wish to conduct a joint test that both the intercept

and slope parameters are 1. We would perform this test exactly as for a

test involving only one coefficient. Select View/Coefficient Tests/Wald -

Coefficient Restrictions. . . and then in the box that appears, type C(1)=1,

C(2)=1. There are two versions of the test given: an F -version and a χ2-

version. The F -version is adjusted for small sample bias and should be

used when the regression is estimated using a small sample (see chapter 4).

Both statistics asymptotically yield the same result, and in this case the

p-values are very similar. The conclusion is that the joint null hypothesis,

H0 : β1 = 1 and β2 = 1, is not rejected.

3.6 Multiple regression in EViews using an APT-style model

In the spirit of arbitrage pricing theory (APT), the following example will

examine regressions that seek to determine whether the monthly returns
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on Microsoft stock can be explained by reference to unexpected changes

in a set of macroeconomic and financial variables. Open a new EViews

workfile to store the data. There are 254 monthly observations in the file

‘macro.xls’, starting in March 1986 and ending in April 2007. There are 13

series plus a column of dates. The series in the Excel file are the Microsoft

stock price, the S&P500 index value, the consumer price index, an indus-

trial production index, Treasury bill yields for the following maturities:

three months, six months, one year, three years, five years and ten years, a

measure of ‘narrow’ money supply, a consumer credit series, and a ‘credit

spread’ series. The latter is defined as the difference in annualised average

yields between a portfolio of bonds rated AAA and a portfolio of bonds

rated BAA.

Import the data from the Excel file and save the resulting workfile as

‘macro.wf1’.

The first stage is to generate a set of changes or differences for each of the

variables, since the APT posits that the stock returns can be explained by

reference to the unexpected changes in the macroeconomic variables rather

than their levels. The unexpected value of a variable can be defined as the

difference between the actual (realised) value of the variable and its ex-

pected value. The question then arises about how we believe that investors

might have formed their expectations, and while there are many ways to

construct measures of expectations, the easiest is to assume that investors

have naive expectations that the next period value of the variable is equal

to the current value. This being the case, the entire change in the variable

from one period to the next is the unexpected change (because investors

are assumed to expect no change).1

Transforming the variables can be done as described above. Press Genr

and then enter the following in the ‘Enter equation’ box:

dspread = baa aaa spread - baa aaa spread(-1)

Repeat these steps to conduct all of the following transformations:

dcredit = consumer credit - consumer credit(-1)

dprod = industrial production - industrial production(-1)

rmsoft = 100*dlog(microsoft)

rsandp = 100*dlog(sandp)

dmoney = m1money supply - m1money supply(-1)

1 It is an interesting question as to whether the differences should be taken on the levels

of the variables or their logarithms. If the former, we have absolute changes in the

variables, whereas the latter would lead to proportionate changes. The choice between

the two is essentially an empirical one, and this example assumes that the former is

chosen, apart from for the stock price series themselves and the consumer price series.
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inflation = 100*dlog(cpi)

term = ustb10y - ustb3m

and then click OK. Next, we need to apply further transformations to some

of the transformed series, so repeat the above steps to generate

dinflation = inflation - inflation(-1)

mustb3m = ustb3m/12

rterm = term - term(-1)

ermsoft = rmsoft - mustb3m

ersandp = rsandp - mustb3m

The final two of these calculate excess returns for the stock and for the

index.

We can now run the regression. So click Object/New Object/Equation

and name the object ‘msoftreg’. Type the following variables in the Equa-

tion specification window

ERMSOFT C ERSANDP DPROD DCREDIT DINFLATION DMONEY DSPREAD

RTERM

and use Least Squares over the whole sample period. The table of results

will appear as follows.

Dependent Variable: ERMSOFT

Method: Least Squares

Date: 08/21/07 Time: 21:45

Sample (adjusted): 1986M05 2007M04

Included observations: 252 after adjustments

Coefficient Std. Error t-Statistic Prob.

C −0.587603 1.457898 −0.403048 0.6873

ERSANDP 1.489434 0.203276 7.327137 0.0000

DPROD 0.289322 0.500919 0.577583 0.5641

DCREDIT −5.58E-05 0.000160 −0.347925 0.7282

DINFLATION 4.247809 2.977342 1.426712 0.1549

DMONEY −1.161526 0.713974 −1.626847 0.1051

DSPREAD 12.15775 13.55097 0.897187 0.3705

RTERM 6.067609 3.321363 1.826843 0.0689

R-squared 0.203545 Mean dependent var −0.420803

Adjusted R-squared 0.180696 S.D. dependent var 15.41135

S.E. of regression 13.94965 Akaike info criterion 8.140017

Sum squared resid 47480.62 Schwarz criterion 8.252062

Log likelihood −1017.642 Hannan-Quinn criter. 8.185102

F-statistic 8.908218 Durbin-Watson stat 2.156221

Prob(F-statistic) 0.000000
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Take a few minutes to examine the main regression results. Which of

the variables has a statistically significant impact on the Microsoft excess

returns? Using your knowledge of the effects of the financial and macro-

economic environment on stock returns, examine whether the coefficients

have their expected signs and whether the sizes of the parameters are

plausible.

The regression F-statistic takes a value 8.908. Remember that this tests

the null hypothesis that all of the slope parameters are jointly zero. The

p-value of zero attached to the test statistic shows that this null hy-

pothesis should be rejected. However, there are a number of parame-

ter estimates that are not significantly different from zero -- specifically

those on the DPROD, DCREDIT and DSPREAD variables. Let us test the

null hypothesis that the parameters on these three variables are jointly

zero using an F -test. To test this, Click on View/Coefficient Tests/Wald –

Coefficient Restrictions. . . and in the box that appears type C(3)=0, C(4)=0,

C(7)=0 and click OK. The resulting F -test statistic follows an F (3, 244) dis-

tribution as there are three restrictions, 252 usable observations and eight

parameters to estimate in the unrestricted regression. The F -statistic value

is 0.402 with p-value 0.752, suggesting that the null hypothesis cannot be

rejected. The parameters on DINLATION and DMONEY are almost signifi-

cant at the 10% level and so the associated parameters are not included

in this F -test and the variables are retained.

There is a procedure known as a stepwise regression that is now avail-

able in EViews 6. Stepwise regression is an automatic variable selection

procedure which chooses the jointly most ‘important’ (variously defined)

explanatory variables from a set of candidate variables. There are a num-

ber of different stepwise regression procedures, but the simplest is the

uni-directional forwards method. This starts with no variables in the re-

gression (or only those variables that are always required by the researcher

to be in the regression) and then it selects first the variable with the low-

est p-value (largest t -ratio) if it were included, then the variable with the

second lowest p-value conditional upon the first variable already being in-

cluded, and so on. The procedure continues until the next lowest p-value

relative to those already included variables is larger than some specified

threshold value, then the selection stops, with no more variables being

incorporated into the model.

To conduct a stepwise regression which will automatically select from

among these variables the most important ones for explaining the vari-

ations in Microsoft stock returns, click Proc and then Equation. Name

the equation Msoftstepwise and then in the ‘Estimation settings/Method’

box, change LS -- Least Squares (NLS and ARMA) to STEPLS – Stepwise Least
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Squares and then in the top box that appears, ‘Dependent variable fol-

lowed by list of always included regressors’, enter

ERMSOFT C

This shows that the dependent variable will be the excess returns on

Microsoft stock and that an intercept will always be included in the re-

gression. If the researcher had a strong prior view that a particular ex-

planatory variable must always be included in the regression, it should be

listed in this first box. In the second box, ‘List of search regressors’, type

the list of all of the explanatory variables used above: ERSANDP DPROD

DCREDIT DINFLATION DMONEY DSPREAD RTERM. The window will ap-

pear as in screenshot 3.1.

Screenshot 3.1

Stepwise procedure

equation estimation

window

Clicking on the ‘Options’ tab gives a number of ways to conduct the

regression. For example, ‘Forwards’ will start with the list of required

regressors (the intercept only in this case) and will sequentially add to
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them, while ‘Backwards’ will start by including all of the variables and

will sequentially delete variables from the regression. The default criterion

is to include variables if the p-value is less than 0.5, but this seems high

and could potentially result in the inclusion of some very insignificant

variables, so modify this to 0.2 and then click OK to see the results.

As can be seen, the excess market return, the term structure, money

supply and unexpected inflation variables have all been included, while

the default spread and credit variables have been omitted.

Dependent Variable: ERMSOFT

Method: Stepwise Regression

Date: 08/27/07 Time: 10:21

Sample (adjusted): 1986M05 2007M04

Included observations: 252 after adjustments

Number of always included regressors: 1

Number of search regressors: 7

Selection method: Stepwise forwards

Stopping criterion: p-value forwards/backwards = 0.2/0.2

Coefficient Std. Error t-Statistic Prob.∗

C −0.947198 0.8787 −1.077954 0.2821

ERSANDP 1.471400 0.201459 7.303725 0.0000

RTERM 6.121657 3.292863 1.859068 0.0642

DMONEY −1.171273 0.702523 −1.667238 0.0967

DINFLATION 4.013512 2.876986 1.395040 0.1643

R-squared 0.199612 Mean dependent var −0.420803

Adjusted R-squared 0.186650 S.D. dependent var 15.41135

S.E. of regression 13.89887 Akaike info criterion 8.121133

Sum squared resid 47715.09 Schwarz criterion 8.191162

Log likelihood −1018.263 Hannan-Quinn criter. 8.149311

F-statistic 15.40008 Durbin-Watson stat 2.150604

Prob(F-statistic) 0.000000

Selection Summary

Added ERSANDP

Added RTERM

Added DMONEY

Added DINFLATION

∗Note: p-values and subsequent tests do not account for stepwise selection.

Stepwise procedures have been strongly criticised by statistical purists.

At the most basic level, they are sometimes argued to be no better than

automated procedures for data mining, in particular if the list of potential

candidate variables is long and results from a ‘fishing trip’ rather than
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a strong prior financial theory. More subtly, the iterative nature of the

variable selection process implies that the size of the tests on parameters

attached to variables in the final model will not be the nominal values (e.g.

5%) that would have applied had this model been the only one estimated.

Thus the p-values for tests involving parameters in the final regression

should really be modified to take into account that the model results

from a sequential procedure, although they are usually not in statistical

packages such as EViews.

3.6.1 A note on sample sizes and asymptotic theory

A question that is often asked by those new to econometrics is ‘what is an

appropriate sample size for model estimation?’ While there is no definitive

answer to this question, it should be noted that most testing procedures

in econometrics rely on asymptotic theory. That is, the results in theory

hold only if there are an infinite number of observations. In practice, an in-

finite number of observations will never be available and fortunately, an

infinite number of observations are not usually required to invoke the

asymptotic theory! An approximation to the asymptotic behaviour of the

test statistics can be obtained using finite samples, provided that they are

large enough. In general, as many observations as possible should be used

(although there are important caveats to this statement relating to ‘struc-

tural stability’, discussed in chapter 4). The reason is that all the researcher

has at his disposal is a sample of data from which to estimate parameter

values and to infer their likely population counterparts. A sample may fail

to deliver something close to the exact population values owing to sam-

pling error. Even if the sample is randomly drawn from the population,

some samples will be more representative of the behaviour of the popu-

lation than others, purely owing to ‘luck of the draw’. Sampling error is

minimised by increasing the size of the sample, since the larger the sam-

ple, the less likely it is that all of the data drawn will be unrepresentative

of the population.

3.7 Data mining and the true size of the test

Recall that the probability of rejecting a correct null hypothesis is equal

to the size of the test, denoted α. The possibility of rejecting a correct null

hypothesis arises from the fact that test statistics are assumed to follow

a random distribution and hence they will take on extreme values that

fall in the rejection region some of the time by chance alone. A conse-

quence of this is that it will almost always be possible to find significant
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relationships between variables if enough variables are examined. For ex-

ample, suppose that a dependent variable yt and 20 explanatory variables

x2t , . . . , x21t (excluding a constant term) are generated separately as in-

dependent normally distributed random variables. Then y is regressed

separately on each of the 20 explanatory variables plus a constant, and

the significance of each explanatory variable in the regressions is exam-

ined. If this experiment is repeated many times, on average one of the 20

regressions will have a slope coefficient that is significant at the 5% level

for each experiment. The implication is that for any regression, if enough

explanatory variables are employed in a regression, often one or more will

be significant by chance alone. More concretely, it could be stated that if

an α% size of test is used, on average one in every (100/α) regressions will

have a significant slope coefficient by chance alone.

Trying many variables in a regression without basing the selection of

the candidate variables on a financial or economic theory is known as

‘data mining’ or ‘data snooping’. The result in such cases is that the true

significance level will be considerably greater than the nominal signifi-

cance level assumed. For example, suppose that 20 separate regressions

are conducted, of which three contain a significant regressor, and a 5%

nominal significance level is assumed, then the true significance level

would be much higher (e.g. 25%). Therefore, if the researcher then shows

only the results for the regression containing the final three equations

and states that they are significant at the 5% level, inappropriate conclu-

sions concerning the significance of the variables would result.

As well as ensuring that the selection of candidate regressors for in-

clusion in a model is made on the basis of financial or economic theory,

another way to avoid data mining is by examining the forecast perfor-

mance of the model in an ‘out-of-sample’ data set (see chapter 5). The

idea is essentially that a proportion of the data is not used in model esti-

mation, but is retained for model testing. A relationship observed in the

estimation period that is purely the result of data mining, and is there-

fore spurious, is very unlikely to be repeated for the out-of-sample period.

Therefore, models that are the product of data mining are likely to fit very

poorly and to give very inaccurate forecasts for the out-of-sample period.

3.8 Goodness of fit statistics

3.8.1 R2

It is desirable to have some measure of how well the regression model

actually fits the data. In other words, it is desirable to have an answer

to the question, ‘how well does the model containing the explanatory
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variables that was proposed actually explain variations in the dependent

variable?’ Quantities known as goodness of fit statistics are available to test

how well the sample regression function (SRF) fits the data -- that is, how

‘close’ the fitted regression line is to all of the data points taken together.

Note that it is not possible to say how well the sample regression function

fits the population regression function -- i.e. how the estimated model

compares with the true relationship between the variables, since the latter

is never known.

But what measures might make plausible candidates to be goodness

of fit statistics? A first response to this might be to look at the residual

sum of squares (RSS). Recall that OLS selected the coefficient estimates that

minimised this quantity, so the lower was the minimised value of the RSS,

the better the model fitted the data. Consideration of the RSS is certainly

one possibility, but RSS is unbounded from above (strictly, RSS is bounded

from above by the total sum of squares -- see below) -- i.e. it can take any

(non-negative) value. So, for example, if the value of the RSS under OLS

estimation was 136.4, what does this actually mean? It would therefore be

very difficult, by looking at this number alone, to tell whether the regres-

sion line fitted the data closely or not. The value of RSS depends to a great

extent on the scale of the dependent variable. Thus, one way to pointlessly

reduce the RSS would be to divide all of the observations on y by 10!

In fact, a scaled version of the residual sum of squares is usually employed.

The most common goodness of fit statistic is known as R2. One way to

define R2 is to say that it is the square of the correlation coefficient

between y and ŷ -- that is, the square of the correlation between the values

of the dependent variable and the corresponding fitted values from the

model. A correlation coefficient must lie between −1 and +1 by definition.

Since R2 defined in this way is the square of a correlation coefficient, it

must lie between 0 and 1. If this correlation is high, the model fits the

data well, while if the correlation is low (close to zero), the model is not

providing a good fit to the data.

Another definition of R2 requires a consideration of what the model

is attempting to explain. What the model is trying to do in effect is to

explain variability of y about its mean value, ȳ. This quantity, ȳ, which

is more specifically known as the unconditional mean of y, acts like a

benchmark since, if the researcher had no model for y, he could do no

worse than to regress y on a constant only. In fact, the coefficient estimate

for this regression would be the mean of y. So, from the regression

yt = β1 + ut (3.35)

the coefficient estimate β̂1, will be the mean of y, i.e. ȳ. The total variation

across all observations of the dependent variable about its mean value is
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known as the total sum of squares, TSS, which is given by:

TSS =
∑

t

(yt − ȳ)2 (3.36)

The TSS can be split into two parts: the part that has been explained by the

model (known as the explained sum of squares, ESS) and the part that the

model was not able to explain (the RSS). That is

TSS = ESS + RSS (3.37)∑
t

(yt − ȳ)2 =
∑

t

(ŷt − ȳ)2 +
∑

t

û2
t (3.38)

Recall also that the residual sum of squares can also be expressed as∑
t

(yt − ŷt )
2

since a residual for observation t is defined as the difference between the

actual and fitted values for that observation. The goodness of fit statistic

is given by the ratio of the explained sum of squares to the total sum of

squares:

R2 = ESS

TSS
(3.39)

but since TSS = ESS + RSS, it is also possible to write

R2 = ESS

TSS
= TSS − RSS

TSS
= 1 − RSS

TSS
(3.40)

R2 must always lie between zero and one (provided that there is a constant

term in the regression). This is intuitive from the correlation interpreta-

tion of R2 given above, but for another explanation, consider two extreme

cases

RSS = TSS i.e. ESS = 0 so R2 = ESS/TSS = 0

ESS = TSS i.e. RSS = 0 so R2 = ESS/TSS = 1

In the first case, the model has not succeeded in explaining any of the

variability of y about its mean value, and hence the residual and total

sums of squares are equal. This would happen only where the estimated

values of all of the coefficients were exactly zero. In the second case, the

model has explained all of the variability of y about its mean value, which

implies that the residual sum of squares will be zero. This would happen

only in the case where all of the observation points lie exactly on the

fitted line. Neither of these two extremes is likely in practice, of course,

but they do show that R2 is bounded to lie between zero and one, with a

higher R2 implying, everything else being equal, that the model fits the

data better.
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y–

yt

xt

Figure 3.1

R2 = 0

demonstrated by a

flat estimated line,

i.e. a zero slope

coefficient

yt

xt

Figure 3.2

R2 = 1 when all data

points lie exactly on

the estimated line

To sum up, a simple way (but crude, as explained next) to tell whether

the regression line fits the data well is to look at the value of R2. A value of

R2 close to 1 indicates that the model explains nearly all of the variability

of the dependent variable about its mean value, while a value close to zero

indicates that the model fits the data poorly. The two extreme cases, where

R2 = 0 and R2 = 1, are indicated in figures 3.1 and 3.2 in the context of

a simple bivariate regression.

3.8.2 Problems with R2 as a goodness of fit measure

R2 is simple to calculate, intuitive to understand, and provides a broad

indication of the fit of the model to the data. However, there are a number

of problems with R2 as a goodness of fit measure:
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(1) R2 is defined in terms of variation about the mean of y so that if

a model is reparameterised (rearranged) and the dependent variable

changes, R2 will change, even if the second model was a simple re-

arrangement of the first, with identical RSS. Thus it is not sensible

to compare the value of R2 across models with different dependent

variables.

(2) R2 never falls if more regressors are added to the regression. For ex-

ample, consider the following two models:

Regression 1: y = β1 + β2x2 + β3x3 + u (3.41)

Regression 2: y = β1 + β2x2 + β3x3 + β4x4 + u (3.42)

R2 will always be at least as high for regression 2 relative to regression

1. The R2 from regression 2 would be exactly the same as that for

regression 1 only if the estimated value of the coefficient on the new

variable were exactly zero, i.e. β̂4 = 0. In practice, β̂4 will always be non-

zero, even if not significantly so, and thus in practice R2 always rises

as more variables are added to a model. This feature of R2 essentially

makes it impossible to use as a determinant of whether a given variable

should be present in the model or not.

(3) R2 can take values of 0.9 or higher for time series regressions, and

hence it is not good at discriminating between models, since a wide

array of models will frequently have broadly similar (and high) values

of R2.

3.8.3 Adjusted R2

In order to get around the second of these three problems, a modifica-

tion to R2 is often made which takes into account the loss of degrees of

freedom associated with adding extra variables. This is known as R̄2, or

adjusted R2, which is defined as

R̄2 = 1 −
[

T − 1

T − k
(1 − R2)

]
(3.43)

So if an extra regressor (variable) is added to the model, k increases and

unless R2 increases by a more than off-setting amount, R̄2 will actually

fall. Hence R̄2 can be used as a decision-making tool for determining

whether a given variable should be included in a regression model or not,

with the rule being: include the variable if R̄2 rises and do not include it

if R̄2 falls.

However, there are still problems with the maximisation of R̄2 as crite-

rion for model selection, and principal among these is that it is a ‘soft’
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rule, implying that by following it, the researcher will typically end up

with a large model, containing a lot of marginally significant or insignif-

icant variables. Also, while R2 must be at least zero if an intercept is

included in the regression, its adjusted counterpart may take negative

values, even with an intercept in the regression, if the model fits the data

very poorly.

Now reconsider the results from the previous exercises using EViews in

the previous chapter and earlier in this chapter. If we first consider the

hedging model from chapter 2, the R2 value for the returns regression

was only 0.01, indicating that a mere 1% of the variation in spot returns

is explained by the futures returns -- a very poor model fit indeed.

The fit is no better for the Ford stock CAPM regression described in

chapter 2, where the R2 is less than 1% and the adjusted R2 is actually

negative. The conclusion here would be that for this stock and this sample

period, almost none of the monthly movement in the excess returns can

be attributed to movements in the market as a whole, as measured by the

S&P500.

Finally, if we look at the results from the recent regressions for Mi-

crosoft, we find a considerably better fit. It is of interest to compare the

model fit for the original regression that included all of the variables

with the results of the stepwise procedure. We can see that the raw R2

is slightly higher for the original regression (0.204 versus 0.200 for the

stepwise regression, to three decimal places), exactly as we would expect.

Since the original regression contains more variables, the R2-value must

be at least as high. But comparing the R̄2s, the stepwise regression value

(0.187) is slightly higher than for the full regression (0.181), indicating

that the additional regressors in the full regression do not justify their

presence, at least according to this criterion.

Box 3.1 The relationship between the regression F -statistic and R2

There is a particular relationship between a regression’s R2 value and the regression

F -statistic. Recall that the regression F -statistic tests the null hypothesis that all of

the regression slope parameters are simultaneously zero. Let us call the residual sum

of squares for the unrestricted regression including all of the explanatory variables

RSS, while the restricted regression will simply be one of yt on a constant

yt = β1 + ut (3.44)

Since there are no slope parameters in this model, none of the variability of yt about

its mean value would have been explained. Thus the residual sum of squares for

equation (3.44) will actually be the total sum of squares of yt , TSS. We could write the
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usual F -statistic formula for testing this null that all of the slope parameters are jointly

zero as

F − stat = TSS − RSS

RSS
× T − k

k − 1
(3.45)

In this case, the number of restrictions (‘m’) is equal to the number of slope

parameters, k − 1. Recall that TSS − RSS = ESS and dividing the numerator and

denominator of equation (3.45) by TSS, we obtain

F − stat = ESS/TSS

RSS/TSS
× T − k

k − 1
(3.46)

Now the numerator of equation (3.46) is R2, while the denominator is 1 − R2, so that

the F -statistic can be written

F − stat = R2(T − k)

1 − R2(k − 1)
(3.47)

This relationship between the F -statistic and R2 holds only for a test of this null

hypothesis and not for any others.

There now follows another case study of the application of the OLS

method of regression estimation, including interpretation of t -ratios

and R2.

3.9 Hedonic pricing models

One application of econometric techniques where the coefficients have

a particularly intuitively appealing interpretation is in the area of hedo-

nic pricing models. Hedonic models are used to value real assets, especially

housing, and view the asset as representing a bundle of characteristics,

each of which gives either utility or disutility to its consumer. Hedonic

models are often used to produce appraisals or valuations of properties,

given their characteristics (e.g. size of dwelling, number of bedrooms,

location, number of bathrooms, etc). In these models, the coefficient esti-

mates represent ‘prices of the characteristics’.

One such application of a hedonic pricing model is given by Des Rosiers

and Thérialt (1996), who consider the effect of various amenities on rental

values for buildings and apartments in five sub-markets in the Quebec area

of Canada. After accounting for the effect of ‘contract-specific’ features

which will affect rental values (such as whether furnishings, lighting, or

hot water are included in the rental price), they arrive at a model where

the rental value in Canadian dollars per month (the dependent variable) is
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a function of 9--14 variables (depending on the area under consideration).

The paper employs 1990 data for the Quebec City region, and there are

13,378 observations. The 12 explanatory variables are:

LnAGE log of the apparent age of the property

NBROOMS number of bedrooms

AREABYRM area per room (in square metres)

ELEVATOR a dummy variable = 1 if the building has an

elevator; 0 otherwise

BASEMENT a dummy variable = 1 if the unit is located in a

basement; 0 otherwise

OUTPARK number of outdoor parking spaces

INDPARK number of indoor parking spaces

NOLEASE a dummy variable = 1 if the unit has no lease

attached to it; 0 otherwise

LnDISTCBD log of the distance in kilometres to the central

business district (CBD)

SINGLPAR percentage of single parent families in the area

where the building stands

DSHOPCNTR distance in kilometres to the nearest shopping

centre

VACDIFF1 vacancy difference between the building and the

census figure

This list includes several variables that are dummy variables. Dummy vari-

ables are also known as qualitative variables because they are often used to

numerically represent a qualitative entity. Dummy variables are usually

specified to take on one of a narrow range of integer values, and in most

instances only zero and one are used.

Dummy variables can be used in the context of cross-sectional or time

series regressions. The latter case will be discussed extensively below. Ex-

amples of the use of dummy variables as cross-sectional regressors would

be for sex in the context of starting salaries for new traders (e.g. male = 0,

female = 1) or in the context of sovereign credit ratings (e.g. developing

country = 0, developed country = 1), and so on. In each case, the dummy

variables are used in the same way as other explanatory variables and the

coefficients on the dummy variables can be interpreted as the average dif-

ferences in the values of the dependent variable for each category, given

all of the other factors in the model.

Des Rosiers and Thérialt (1996) report several specifications for five dif-

ferent regions, and they present results for the model with variables as
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Table 3.1 Hedonic model of rental values in Quebec City, 1990.
Dependent variable: Canadian dollars per month

A priori

Variable Coefficient t-ratio sign expected

Intercept 282.21 56.09 +
LnAGE −53.10 −59.71 −
NBROOMS 48.47 104.81 +
AREABYRM 3.97 29.99 +
ELEVATOR 88.51 45.04 +
BASEMENT −15.90 −11.32 −
OUTPARK 7.17 7.07 +
INDPARK 73.76 31.25 +
NOLEASE −16.99 −7.62 −
LnDISTCBD 5.84 4.60 −
SINGLPAR −4.27 −38.88 −
DSHOPCNTR −10.04 −5.97 −
VACDIFF1 0.29 5.98 −

Notes: Adjusted R2 = 0.651; regression F-statistic = 2082.27.

Source: Des Rosiers and Thérialt (1996). Reprinted with permission

of American Real Estate Society.

discussed here in their exhibit 4, which is adapted and reported here as

table 3.1.

The adjusted R2 value indicates that 65% of the total variability of rental

prices about their mean value is explained by the model. For a cross-

sectional regression, this is quite high. Also, all variables are significant at

the 0.01% level or lower and consequently, the regression F-statistic rejects

very strongly the null hypothesis that all coefficient values on explanatory

variables are zero.

As stated above, one way to evaluate an econometric model is to de-

termine whether it is consistent with theory. In this instance, no real

theory is available, but instead there is a notion that each variable will af-

fect rental values in a given direction. The actual signs of the coefficients

can be compared with their expected values, given in the last column of

table 3.1 (as determined by this author). It can be seen that all coefficients

except two (the log of the distance to the CBD and the vacancy differential)

have their predicted signs. It is argued by Des Rosiers and Thérialt that the

‘distance to the CBD’ coefficient may be expected to have a positive sign

since, while it is usually viewed as desirable to live close to a town centre,

everything else being equal, in this instance most of the least desirable

neighbourhoods are located towards the centre.
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The coefficient estimates themselves show the Canadian dol-

lar rental price per month of each feature of the dwelling. To offer a

few illustrations, the NBROOMS value of 48 (rounded) shows that, every-

thing else being equal, one additional bedroom will lead to an average

increase in the rental price of the property by $48 per month at 1990

prices. A basement coefficient of −16 suggests that an apartment located

in a basement commands a rental $16 less than an identical apartment

above ground. Finally the coefficients for parking suggest that on average

each outdoor parking space adds $7 to the rent while each indoor parking

space adds $74, and so on. The intercept shows, in theory, the rental that

would be required of a property that had zero values on all the attributes.

This case demonstrates, as stated previously, that the coefficient on the

constant term often has little useful interpretation, as it would refer to a

dwelling that has just been built, has no bedrooms each of zero size, no

parking spaces, no lease, right in the CBD and shopping centre, etc.

One limitation of such studies that is worth mentioning at this stage is

their assumption that the implicit price of each characteristic is identical

across types of property, and that these characteristics do not become

saturated. In other words, it is implicitly assumed that if more and more

bedrooms or allocated parking spaces are added to a dwelling indefinitely,

the monthly rental price will rise each time by $48 and $7, respectively.

This assumption is very unlikely to be upheld in practice, and will result in

the estimated model being appropriate for only an ‘average’ dwelling. For

example, an additional indoor parking space is likely to add far more value

to a luxury apartment than a basic one. Similarly, the marginal value of

an additional bedroom is likely to be bigger if the dwelling currently has

one bedroom than if it already has ten. One potential remedy for this

would be to use dummy variables with fixed effects in the regressions;

see, for example, chapter 10 for an explanation of these.

3.10 Tests of non-nested hypotheses

All of the hypothesis tests conducted thus far in this book have been in

the context of ‘nested’ models. This means that, in each case, the test in-

volved imposing restrictions on the original model to arrive at a restricted

formulation that would be a sub-set of, or nested within, the original spec-

ification.

However, it is sometimes of interest to compare between non-nested

models. For example, suppose that there are two researchers working

independently, each with a separate financial theory for explaining the
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variation in some variable, yt . The models selected by the researchers re-

spectively could be

yt = α1 + α2x2t + ut (3.48)

yt = β1 + β2x3t + vt (3.49)

where ut and vt are iid error terms. Model (3.48) includes variable x2 but

not x3, while model (3.49) includes x3 but not x2. In this case, neither

model can be viewed as a restriction of the other, so how then can the

two models be compared as to which better represents the data, yt ? Given

the discussion in section 3.8, an obvious answer would be to compare the

values of R2 or adjusted R2 between the models. Either would be equally

applicable in this case since the two specifications have the same num-

ber of RHS variables. Adjusted R2 could be used even in cases where the

number of variables was different across the two models, since it employs

a penalty term that makes an allowance for the number of explanatory

variables. However, adjusted R2 is based upon a particular penalty func-

tion (that is, T − k appears in a specific way in the formula). This form of

penalty term may not necessarily be optimal. Also, given the statement

above that adjusted R2 is a soft rule, it is likely on balance that use of

it to choose between models will imply that models with more explana-

tory variables are favoured. Several other similar rules are available, each

having more or less strict penalty terms; these are collectively known as

‘information criteria’. These are explained in some detail in chapter 5, but

suffice to say for now that a different strictness of the penalty term will

in many cases lead to a different preferred model.

An alternative approach to comparing between non-nested models

would be to estimate an encompassing or hybrid model. In the case of

(3.48) and (3.49), the relevant encompassing model would be

yt = γ1 + γ2x2t + γ3x3t + wt (3.50)

where wt is an error term. Formulation (3.50) contains both (3.48) and

(3.49) as special cases when γ3 and γ2 are zero, respectively. Therefore, a

test for the best model would be conducted via an examination of the

significances of γ2 and γ3 in model (3.50). There will be four possible

outcomes (box 3.2).

However, there are several limitations to the use of encompassing re-

gressions to select between non-nested models. Most importantly, even if

models (3.48) and (3.49) have a strong theoretical basis for including the

RHS variables that they do, the hybrid model may be meaningless. For

example, it could be the case that financial theory suggests that y could

either follow model (3.48) or model (3.49), but model (3.50) is implausible.
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Box 3.2 Selecting between models

(1) γ2 is statistically significant but γ3 is not. In this case, (3.50) collapses to (3.48),

and the latter is the preferred model.

(2) γ3 is statistically significant but γ2 is not. In this case, (3.50) collapses to (3.49),

and the latter is the preferred model.

(3) γ2 and γ3 are both statistically significant. This would imply that both x2 and x3 have

incremental explanatory power for y, in which case both variables should be retained.

Models (3.48) and (3.49) are both ditched and (3.50) is the preferred model.

(4) Neither γ2 nor γ3 are statistically significant. In this case, none of the models can be

dropped, and some other method for choosing between them must be employed.

Also, if the competing explanatory variables x2 and x3 are highly re-

lated (i.e. they are near collinear), it could be the case that if they are

both included, neither γ2 nor γ3 are statistically significant, while each is

significant in their separate regressions (3.48) and (3.49); see the section

on multicollinearity in chapter 4.

An alternative approach is via the J -encompassing test due to Davidson

and MacKinnon (1981). Interested readers are referred to their work or to

Gujarati (2003, pp. 533--6) for further details.

Key concepts
The key terms to be able to define and explain from this chapter are

● multiple regression model ● variance-covariance matrix

● restricted regression ● F -distribution

● R2 ● R̄2

● hedonic model ● encompassing regression

● data mining

Appendix 3.1 Mathematical derivations of CLRM results

Derivation of the OLS coefficient estimator in the

multiple regression context

In the multiple regression context, in order to obtain the parameter esti-

mates, β1, β2, . . . , βk , the RSS would be minimised with respect to all the

elements of β. Now the residuals are expressed in a vector:

û =

⎡
⎢⎢⎢⎣

û1

û2

...

ûT

⎤
⎥⎥⎥⎦ (3A.1)
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The RSS is still the relevant loss function, and would be given in a matrix

notation by expression (3A.2)

L = û′û = [û1û2 . . . ûT ]

⎡
⎢⎢⎢⎣

û1

û2

...

ûT

⎤
⎥⎥⎥⎦ = û2

1 + û2
2 + · · · + û2

T =
∑

û2
t (3A.2)

Denoting the vector of estimated parameters as β̂, it is also possible to

write

L = û′û = (y − X β̂)′(y − X β̂) = y′y − β̂
′
X ′y − y′ X β̂ + β̂

′
X ′ X β̂ (3A.3)

It turns out that β̂
′
X ′y is (1 × k) × (k × T ) × (T × 1) = 1 × 1, and also that

y′ X β̂ is (1 × T ) × (T × k) × (k × 1) = 1 × 1, so in fact β̂
′
X ′y = y′ X β̂. Thus

(3A.3) can be written

L = û′û = (y − X β̂)′(y − X β̂) = y′y − 2β̂
′
X ′y + β̂

′
X ′ X β̂ (3A.4)

Differentiating this expression with respect to β̂ and setting it to zero

in order to find the parameter values that minimise the residual sum of

squares would yield

∂L

∂β̂
= −2X ′y + 2X ′ X β̂ = 0 (3A.5)

This expression arises since the derivative of y′y is zero with respect to

β̂, and β̂
′
X ′ X β̂ acts like a square of X β̂, which is differentiated to 2X ′ X β̂.

Rearranging (3A.5)

2X ′y = 2X ′ X β̂ (3A.6)

X ′y = X ′ X β̂ (3A.7)

Pre-multiplying both sides of (3A.7) by the inverse of X ′ X

β̂ = (X ′ X )−1 X ′y (3A.8)

Thus, the vector of OLS coefficient estimates for a set of k parameters is

given by

β̂ =

⎡
⎢⎢⎢⎣

β̂1

β̂2
...

β̂k

⎤
⎥⎥⎥⎦ = (X ′ X )−1 X ′y (3A.9)



Further development and analysis of the CLRM 119

Derivation of the OLS standard error estimator in the

multiple regression context

The variance of a vector of random variables β̂ is given by the formula

E[(β̂ − β)(β̂ − β)′]. Since y = Xβ + u, it can also be stated, given (3A.9),

that

β̂ = (X ′ X )−1 X ′(Xβ + u) (3A.10)

Expanding the parentheses

β̂ = (X ′ X )−1 X ′ Xβ + (X ′ X )−1 X ′u (3A.11)

β̂ = β + (X ′ X )−1 X ′u (3A.12)

Thus, it is possible to express the variance of β̂ as

E[(β̂ − β)(β̂ − β)′] = E[(β + (X ′ X )−1 X ′u − β)(β + (X ′ X )−1 X ′u − β)′]

(3A.13)

Cancelling the β terms in each set of parentheses

E[(β̂ − β)(β̂ − β)′] = E[((X ′ X )−1 X ′u)((X ′ X )−1 X ′u)′] (3A.14)

Expanding the parentheses on the RHS of (3A.14) gives

E[(β̂ − β)(β̂ − β)′] = E[(X ′ X )−1 X ′uu′ X (X ′ X )−1] (3A.15)

E[(β̂ − β)(β̂ − β)′] = (X ′ X )−1 X ′E[uu′]X (X ′ X )−1 (3A.16)

Now E[uu′] is estimated by s2 I , so that

E[(β̂ − β)(β̂ − β)′] = (X ′ X )−1 X ′s2 I X (X ′ X )−1 (3A.17)

where I is a k × k identity matrix. Rearranging further,

E[(β̂ − β)(β̂ − β)′] = s2(X ′ X )−1 X ′ X (X ′ X )−1 (3A.18)

The X ′ X and the last (X ′ X )−1 term cancel out to leave

var(β̂) = s2(X ′ X )−1 (3A.19)

as the expression for the parameter variance--covariance matrix. This quan-

tity, s2(X ′ X )−1, is known as the estimated variance--covariance matrix of

the coefficients. The leading diagonal terms give the estimated coefficient

variances while the off-diagonal terms give the estimated covariances be-

tween the parameter estimates. The variance of β̂1 is the first diagonal

element, the variance of β̂2 is the second element on the leading di-

agonal, . . . , and the variance of β̂k is the kth diagonal element, etc. as

discussed in the body of the chapter.
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Appendix 3.2 A brief introduction to factor models and principal
components analysis

Factor models are employed primarily as dimensionality reduction tech-

niques in situations where we have a large number of closely related

variables and where we wish to allow for the most important influences

from all of these variables at the same time. Factor models decompose

the structure of a set of series into factors that are common to all

series and a proportion that is specific to each series (idiosyncratic varia-

tion). There are broadly two types of such models, which can be loosely

characterised as either macroeconomic or mathematical factor models.

The key distinction between the two is that the factors are observable

for the former but are latent (unobservable) for the latter. Observable

factor models include the APT model of Ross (1976). The most common

mathematical factor model is principal components analysis (PCA). PCA

is a technique that may be useful where explanatory variables are closely

related -- for example, in the context of near multicollinearity. Specifi-

cally, if there are k explanatory variables in the regression model, PCA

will transform them into k uncorrelated new variables. To elucidate,

suppose that the original explanatory variables are denoted x1, x2, . . . ,

xk , and denote the principal components by p1, p2, . . . , pk . These prin-

cipal components are independent linear combinations of the original

data

p1 = α11x1 + α12x2 + · · · + α1k xk

p2 = α21x1 + α22x2 + · · · + α2k xk (3A.20)

. . . . . . . . . . . .

pk = αk1x1 + αk2x2 + · · · + αkk xk

where αi j are coefficients to be calculated, representing the coefficient

on the jth explanatory variable in the ith principal component. These

coefficients are also known as factor loadings. Note that there will be T
observations on each principal component if there were T observations

on each explanatory variable.

It is also required that the sum of the squares of the coefficients for

each component is one, i.e.

α2
11 + α2

12 + · · · + α2
1k = 1

...
... (3A.21)

α2
k1 + α2

k2 + · · · + α2
kk = 1
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This requirement could also be expressed using sigma notation

k∑
j=1

α2
i j = 1 ∀ i = 1, . . . , k (3A.22)

Constructing the components is a purely mathematical exercise in con-

strained optimisation, and thus no assumption is made concerning the

structure, distribution, or other properties of the variables.

The principal components are derived in such a way that they are in

descending order of importance. Although there are k principal compo-

nents, the same as the number of explanatory variables, if there is some

collinearity between these original explanatory variables, it is likely that

some of the (last few) principal components will account for so little of

the variation that they can be discarded. However, if all of the original

explanatory variables were already essentially uncorrelated, all of the com-

ponents would be required, although in such a case there would have been

little motivation for using PCA in the first place.

The principal components can also be understood as the eigenvalues

of (X ′ X ), where X is the matrix of observations on the original variables.

Thus the number of eigenvalues will be equal to the number of variables,

k. If the ordered eigenvalues are denoted λi (i = 1, . . . , k), the ratio

φi = λi

k∑
i=1

λi

gives the proportion of the total variation in the original data explained

by the principal component i . Suppose that only the first r (0 < r < k)

principal components are deemed sufficiently useful in explaining the

variation of (X ′ X ), and that they are to be retained, with the remaining

k − r components being discarded. The regression finally estimated, after

the principal components have been formed, would be one of y on the r
principal components

yt = γ0 + γ1 p1t + · · · + γr prt + ut (3A.23)

In this way, the principal components are argued to keep most of the

important information contained in the original explanatory variables,

but are orthogonal. This may be particularly useful for independent vari-

ables that are very closely related. The principal component estimates

(γ̂i , i = 1, . . . , r ) will be biased estimates, although they will be more ef-

ficient than the OLS estimators since redundant information has been



122 Introductory Econometrics for Finance

removed. In fact, if the OLS estimator for the original regression of y on

x is denoted β̂, it can be shown that

γ̂r = P ′
r β̂ (3A.24)

where γ̂r are the coefficient estimates for the principal components, and

Pr is a matrix of the first r principal components. The principal component

coefficient estimates are thus simply linear combinations of the original

OLS estimates.

An application of principal components to interest rates

Many economic and financial models make use of interest rates in some

form or another as independent variables. Researchers may wish to in-

clude interest rates on a large number of different assets in order to re-

flect the variety of investment opportunities open to investors. However,

market interest rates could be argued to be not sufficiently independent

of one another to make the inclusion of several interest rate series in an

econometric model statistically sensible. One approach to examining this

issue would be to use PCA on several related interest rate series to de-

termine whether they did move independently of one another over some

historical time period or not.

Fase (1973) conducted such a study in the context of monthly Dutch mar-

ket interest rates from January 1962 until December 1970 (108 months).

Fase examined both ‘money market’ and ‘capital market’ rates, although

only the money market results will be discussed here in the interests of

brevity. The money market instruments investigated were:

● Call money

● Three-month Treasury paper

● One-year Treasury paper

● Two-year Treasury paper

● Three-year Treasury paper

● Five-year Treasury paper

● Loans to local authorities: three-month

● Loans to local authorities: one-year

● Eurodollar deposits

● Netherlands Bank official discount rate.

Prior to analysis, each series was standardised to have zero mean and

unit variance by subtracting the mean and dividing by the standard de-

viation in each case. The three largest of the ten eigenvalues are given in

table 3A.1.
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Table 3A.1 Principal component ordered eigenvalues for Dutch interest rates,
1962–1970

Monthly data Quarterly data

Jan 62--Dec 70 Jan 62--Jun 66 Jul 66--Dec 70 Jan 62--Dec 70

λ1 9.57 9.31 9.32 9.67

λ2 0.20 0.31 0.40 0.16

λ3 0.09 0.20 0.17 0.07

φ1 95.7% 93.1% 93.2% 96.7%

Source: Fase (1973). Reprinted with the permission of Elsevier Science.

Table 3A.2 Factor loadings of the first and second principal components for
Dutch interest rates, 1962–1970

j Debt instrument α j1 α j2

1 Call money 0.95 −0.22

2 3-month Treasury paper 0.98 0.12

3 1-year Treasury paper 0.99 0.15

4 2-year Treasury paper 0.99 0.13

5 3-year Treasury paper 0.99 0.11

6 5-year Treasury paper 0.99 0.09

7 Loans to local authorities: 3-month 0.99 −0.08

8 Loans to local authorities: 1-year 0.99 −0.04

9 Eurodollar deposits 0.96 −0.26

10 Netherlands Bank official discount rate 0.96 −0.03

Eigenvalue, λi 9.57 0.20

Proportion of variability explained by 95.7 2.0

eigenvalue i , φi (%)

Source: Fase (1973). Reprinted with the permission of Elsevier Science.

The results in table 3A.1 are presented for the whole period using the

monthly data, for two monthly sub-samples, and for the whole period

using data sampled quarterly instead of monthly. The results show clearly

that the first principal component is sufficient to describe the common

variation in these Dutch interest rate series. The first component is able to

explain over 90% of the variation in all four cases, as given in the last row

of table 3A.1. Clearly, the estimated eigenvalues are fairly stable across the

sample periods and are relatively invariant to the frequency of sampling

of the data. The factor loadings (coefficient estimates) for the first two

ordered components are given in table 3A.2.

As table 3A.2 shows, the loadings on each factor making up the

first principal component are all positive. Since each series has been
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standardised to have zero mean and unit variance, the coefficients α j1

and α j2 can be interpreted as the correlations between the interest rate

j and the first and second principal components, respectively. The fac-

tor loadings for each interest rate series on the first component are all

very close to one. Fase (1973) therefore argues that the first component

can be interpreted simply as an equally weighted combination of all of

the market interest rates. The second component, which explains much

less of the variability of the rates, shows a factor loading pattern of posi-

tive coefficients for the Treasury paper series and negative or almost zero

values for the other series. Fase (1973) argues that this is owing to the

characteristics of the Dutch Treasury instruments that they rarely change

hands and have low transactions costs, and therefore have less sensitivity

to general interest rate movements. Also, they are not subject to default

risks in the same way as, for example Eurodollar deposits. Therefore, the

second principal component is broadly interpreted as relating to default

risk and transactions costs.

Principal components can be useful in some circumstances, although

the technique has limited applicability for the following reasons:

● A change in the units of measurement of x will change the principal

components. It is thus usual to transform all of the variables to have

zero mean and unit variance prior to applying PCA.

● The principal components usually have no theoretical motivation or

interpretation whatsoever.

● The r principal components retained from the original k are the ones

that explain most of the variation in x , but these components might

not be the most useful as explanations for y.

Calculating principal components in EViews

In order to calculate the principal components of a set of series with

EViews, the first stage is to compile the series concerned into a group.

Re-open the ‘macro.wf1’ file which contains US Treasury bill and bond

series of various maturities. Select New Object/Group but do not name the

object. When EViews prompts you to give a ‘List of series, groups and/or

series expressions’, enter

USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y

and click OK, then name the group Interest by clicking the Name tab. The

group will now appear as a set of series in a spreadsheet format. From

within this window, click View/Principal Components. Screenshot 3.2 will

appear.
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There are many features of principal components that can be examined,

but for now keep the defaults and click OK. The results will appear as in

the following table.

Principal Components Analysis

Date: 08/31/07 Time: 14:45

Sample: 1986M03 2007M04

Included observations: 254

Computed using: Ordinary correlations

Extracting 6 of 6 possible components

Eigenvalues: (Sum = 6, Average = 1)

Cumulative Cumulative

Number Value Difference Proportion Value Proportion

1 5.645020 5.307297 0.9408 5.645020 0.9408

2 0.337724 0.323663 0.0563 5.982744 0.9971

3 0.014061 0.011660 0.0023 5.996805 0.9995

4 0.002400 0.001928 0.0004 5.999205 0.9999

5 0.000473 0.000150 0.0001 5.999678 0.9999

6 0.000322 -- 0.0001 6.000000 1.0000

Eigenvectors (loadings):

Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

USTB3M 0.405126 −0.450928 0.556508 −0.407061 0.393026 −0.051647

USTB6M 0.409611 −0.393843 0.084066 0.204579 −0.746089 0.267466

USTB1Y 0.415240 −0.265576 −0.370498 0.577827 0.335650 −0.416211

USTB3Y 0.418939 0.118972 −0.540272 −0.295318 0.243919 0.609699

USTB5Y 0.410743 0.371439 −0.159996 −0.461981 −0.326636 −0.589582

USTB10Y 0.389162 0.647225 0.477986 0.3973990 0.100167 0.182274

Ordinary correlations:

USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y

USTB3M 1.000000

USTB6M 0.997052 1.000000

USTB1Y 0.986682 0.995161 1.000000

USTB3Y 0.936070 0.952056 0.973701 1.000000

USTB5Y 0.881930 0.899989 0.929703 0.987689 1.000000

USTB10Y 0.794794 0.814497 0.852213 0.942477 0.981955 1.000000

It is evident that there is a great deal of common variation in the series,

since the first principal component captures 94% of the variation in the

series and the first two components capture 99.7%. Consequently, if we

wished, we could reduce the dimensionality of the system by using two

components rather than the entire six interest rate series. Interestingly,
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Screenshot 3.2

Conducting PCA in

EViews

the first component comprises almost exactly equal weights in all six

series.

Then Minimise this group and you will see that the ‘Interest’ group

has been added to the list of objects.

Review questions

1. By using examples from the relevant statistical tables, explain the

relationship between the t - and the F -distributions.

For questions 2–5, assume that the econometric model is of the form

yt = β1 + β2x2t + β3x3t + β4x4t + β5x5t + ut (3.51)

2. Which of the following hypotheses about the coefficients can be tested

using a t -test? Which of them can be tested using an F -test? In each

case, state the number of restrictions.

(a) H0 : β3 = 2

(b) H0 : β3 + β4 = 1
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(c) H0 : β3 + β4 = 1 and β5 = 1

(d) H0 : β2 = 0 and β3 = 0 and β4 = 0 and β5 = 0

(e) H0 : β2β3 = 1

3. Which of the above null hypotheses constitutes ‘THE’ regression

F -statistic in the context of (3.51)? Why is this null hypothesis

always of interest whatever the regression relationship under study?

What exactly would constitute the alternative hypothesis in this

case?

4. Which would you expect to be bigger – the unrestricted residual sum of

squares or the restricted residual sum of squares, and why?

5. You decide to investigate the relationship given in the null hypothesis of

question 2, part (c). What would constitute the restricted regression?

The regressions are carried out on a sample of 96 quarterly

observations, and the residual sums of squares for the restricted and

unrestricted regressions are 102.87 and 91.41, respectively. Perform

the test. What is your conclusion?

6. You estimate a regression of the form given by (3.52) below in order to

evaluate the effect of various firm-specific factors on the returns of a

sample of firms. You run a cross-sectional regression with 200

firms

ri = β0 + β1Si + β2MBi + β3PEi + β4BETAi + ui (3.52)

where: ri is the percentage annual return for the stock

Si is the size of firm i measured in terms of sales revenue

MBi is the market to book ratio of the firm

PEi is the price/earnings (P/E) ratio of the firm

BETAi is the stock’s CAPM beta coefficient

You obtain the following results (with standard errors in parentheses)

r̂i = 0.080 + 0.801Si + 0.321MBi + 0.164PEi − 0.084BETAi

(0.064) (0.147) (0.136) (0.420) (0.120) (3.53)

Calculate the t -ratios. What do you conclude about the effect of each

variable on the returns of the security? On the basis of your results,

what variables would you consider deleting from the regression? If a

stock’s beta increased from 1 to 1.2, what would be the expected

effect on the stock’s return? Is the sign on beta as you would have

expected? Explain your answers in each case.
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7. A researcher estimates the following econometric models including a

lagged dependent variable

yt = β1 + β2x2t + β3x3t + β4 yt−1 + ut (3.54)


yt = γ1 + γ2x2t + γ3x3t + γ4 yt−1 + vt (3.55)

where ut and vt are iid disturbances.

Will these models have the same value of (a) The residual sum of

squares (RSS), (b) R2, (c) Adjusted R2? Explain your answers in each

case.

8. A researcher estimates the following two econometric models

yt = β1 + β2x2t + β3x3t + ut (3.56)

yt = β1 + β2x2t + β3x3t + β4x4t + vt (3.57)

where ut and vt are iid disturbances and x3t is an irrelevant variable

which does not enter into the data generating process for yt . Will the

value of (a) R2, (b) Adjusted R2, be higher for the second model than

the first? Explain your answers.

9. Re-open the CAPM Eviews file and estimate CAPM betas for each of the

other stocks in the file.

(a) Which of the stocks, on the basis of the parameter estimates you

obtain, would you class as defensive stocks and which as

aggressive stocks? Explain your answer.

(b) Is the CAPM able to provide any reasonable explanation of the

overall variability of the returns to each of the stocks over the

sample period? Why or why not?

10. Re-open the Macro file and apply the same APT-type model to some of

the other time-series of stock returns contained in the CAPM-file.

(a) Run the stepwise procedure in each case. Is the same sub-set of

variables selected for each stock? Can you rationalise the

differences between the series chosen?

(b) Examine the sizes and signs of the parameters in the regressions

in each case – do these make sense?

11. What are the units of R2?



4
Classical linear regression model assumptions
and diagnostic tests

Learning Outcomes
In this chapter, you will learn how to

● Describe the steps involved in testing regression residuals for
heteroscedasticity and autocorrelation

● Explain the impact of heteroscedasticity or autocorrelation on
the optimality of OLS parameter and standard error estimation

● Distinguish between the Durbin--Watson and Breusch--Godfrey
tests for autocorrelation

● Highlight the advantages and disadvantages of dynamic models

● Test for whether the functional form of the model employed is
appropriate

● Determine whether the residual distribution from a regression
differs significantly from normality

● Investigate whether the model parameters are stable

● Appraise different philosophies of how to build an econometric
model

● Conduct diagnostic tests in EViews

4.1 Introduction

Recall that five assumptions were made relating to the classical linear re-

gression model (CLRM). These were required to show that the estimation

technique, ordinary least squares (OLS), had a number of desirable proper-

ties, and also so that hypothesis tests regarding the coefficient estimates

could validly be conducted. Specifically, it was assumed that:

(1) E(ut ) = 0

(2) var(ut ) = σ 2 < ∞
(3) cov(ui ,u j ) = 0

129
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(4) cov(ut ,xt ) = 0

(5) ut ∼ N(0, σ 2)

These assumptions will now be studied further, in particular looking at

the following:

● How can violations of the assumptions be detected?

● What are the most likely causes of the violations in practice?

● What are the consequences for the model if an assumption is violated

but this fact is ignored and the researcher proceeds regardless?

The answer to the last of these questions is that, in general, the model

could encounter any combination of three problems:

● the coefficient estimates (β̂s) are wrong

● the associated standard errors are wrong

● the distributions that were assumed for the test statistics are inappro-

priate.

A pragmatic approach to ‘solving’ problems associated with the use of

models where one or more of the assumptions is not supported by the

data will then be adopted. Such solutions usually operate such that:

● the assumptions are no longer violated, or

● the problems are side-stepped, so that alternative techniques are used

which are still valid.

4.2 Statistical distributions for diagnostic tests

The text below discusses various regression diagnostic (misspecification)

tests that are based on the calculation of a test statistic. These tests can

be constructed in several ways, and the precise approach to constructing

the test statistic will determine the distribution that the test statistic is

assumed to follow. Two particular approaches are in common usage and

their results are given by the statistical packages: the LM test and the Wald

test. Further details concerning these procedures are given in chapter 8.

For now, all that readers require to know is that LM test statistics in the

context of the diagnostic tests presented here follow a χ2 distribution

with degrees of freedom equal to the number of restrictions placed

on the model, and denoted m. The Wald version of the test follows an

F-distribution with (m, T − k) degrees of freedom. Asymptotically, these

two tests are equivalent, although their results will differ somewhat

in small samples. They are equivalent as the sample size increases

towards infinity since there is a direct relationship between the χ2- and
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F-distributions. Taking a χ2 variate and dividing by its degrees of freedom

asymptotically gives an F -variate

χ2(m)

m
→ F(m, T − k) as T → ∞

Computer packages typically present results using both approaches, al-

though only one of the two will be illustrated for each test below. They will

usually give the same conclusion, although if they do not, the F-version

is usually considered preferable for finite samples, since it is sensitive to

sample size (one of its degrees of freedom parameters depends on sample

size) in a way that the χ2-version is not.

4.3 Assumption 1: E(ut ) = 0

The first assumption required is that the average value of the errors is

zero. In fact, if a constant term is included in the regression equation, this

assumption will never be violated. But what if financial theory suggests

that, for a particular application, there should be no intercept so that

the regression line is forced through the origin? If the regression did

not include an intercept, and the average value of the errors was non-

zero, several undesirable consequences could arise. First, R2, defined as

ESS/TSS can be negative, implying that the sample average, ȳ, ‘explains’

more of the variation in y than the explanatory variables. Second, and

more fundamentally, a regression with no intercept parameter could lead

to potentially severe biases in the slope coefficient estimates. To see this,

consider figure 4.1.

yt

xt

Figure 4.1

Effect of no

intercept on a

regression line
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The solid line shows the regression estimated including a constant term,

while the dotted line shows the effect of suppressing (i.e. setting to zero)

the constant term. The effect is that the estimated line in this case is

forced through the origin, so that the estimate of the slope coefficient

(β̂) is biased. Additionally, R2 and R̄2 are usually meaningless in such a

context. This arises since the mean value of the dependent variable, ȳ,

will not be equal to the mean of the fitted values from the model, i.e. the

mean of ŷ if there is no constant in the regression.

4.4 Assumption 2: var(ut ) = σ2 < ∞

It has been assumed thus far that the variance of the errors is con-

stant, σ 2 -- this is known as the assumption of homoscedasticity. If the er-

rors do not have a constant variance, they are said to be heteroscedastic.

To consider one illustration of heteroscedasticity, suppose that a regres-

sion had been estimated and the residuals, ût , have been calculated and

then plotted against one of the explanatory variables, x2t , as shown in

figure 4.2.

It is clearly evident that the errors in figure 4.2 are heteroscedastic --

that is, although their mean value is roughly constant, their variance is

increasing systematically with x2t .

ût

x2t

+

–

Figure 4.2

Graphical

illustration of

heteroscedasticity
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4.4.1 Detection of heteroscedasticity

How can one tell whether the errors are heteroscedastic or not? It is pos-

sible to use a graphical method as above, but unfortunately one rarely

knows the cause or the form of the heteroscedasticity, so that a plot is

likely to reveal nothing. For example, if the variance of the errors was

an increasing function of x3t , and the researcher had plotted the residu-

als against x2t , he would be unlikely to see any pattern and would thus

wrongly conclude that the errors had constant variance. It is also possible

that the variance of the errors changes over time rather than systemati-

cally with one of the explanatory variables; this phenomenon is known

as ‘ARCH’ and is described in chapter 8.

Fortunately, there are a number of formal statistical tests for het-

eroscedasticity, and one of the simplest such methods is the Goldfeld--

Quandt (1965) test. Their approach is based on splitting the total sample

of length T into two sub-samples of length T1 and T2. The regression model

is estimated on each sub-sample and the two residual variances are cal-

culated as s2
1 = û′

1û1/(T1 − k) and s2
2 = û′

2û2/(T2 − k) respectively. The null

hypothesis is that the variances of the disturbances are equal, which can

be written H0 : σ 2
1 = σ 2

2 , against a two-sided alternative. The test statistic,

denoted GQ, is simply the ratio of the two residual variances where the

larger of the two variances must be placed in the numerator (i.e. s2
1 is the

higher sample variance for the sample with length T1, even if it comes

from the second sub-sample):

GQ = s2
1

s2
2

(4.1)

The test statistic is distributed as an F(T1 − k, T2 − k) under the null hy-

pothesis, and the null of a constant variance is rejected if the test statistic

exceeds the critical value.

The GQ test is simple to construct but its conclusions may be contin-

gent upon a particular, and probably arbitrary, choice of where to split

the sample. Clearly, the test is likely to be more powerful when this choice

is made on theoretical grounds -- for example, before and after a major

structural event. Suppose that it is thought that the variance of the dis-

turbances is related to some observable variable zt (which may or may not

be one of the regressors). A better way to perform the test would be to

order the sample according to values of zt (rather than through time) and

then to split the re-ordered sample into T1 and T2.

An alternative method that is sometimes used to sharpen the inferences

from the test and to increase its power is to omit some of the observations
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from the centre of the sample so as to introduce a degree of separation

between the two sub-samples.

A further popular test is White’s (1980) general test for heteroscedas-

ticity. The test is particularly useful because it makes few assumptions

about the likely form of the heteroscedasticity. The test is carried out as

in box 4.1.

Box 4.1 Conducting White’s test

(1) Assume that the regression model estimated is of the standard linear form, e.g.

yt = β1 + β2x2t + β3x3t + ut (4.2)

To test var(ut ) = σ 2, estimate the model above, obtaining the residuals, ût

(2) Then run the auxiliary regression

û2
t = α1 + α2x2t + α3x3t + α4x2

2t + α5x2
3t + α6x2t x3t + vt (4.3)

where vt is a normally distributed disturbance term independent of ut . This

regression is of the squared residuals on a constant, the original explanatory

variables, the squares of the explanatory variables and their cross-products. To see

why the squared residuals are the quantity of interest, recall that for a random

variable ut , the variance can be written

var(ut ) = E[(ut − E(ut ))
2] (4.4)

Under the assumption that E(ut ) = 0, the second part of the RHS of this

expression disappears:

var(ut ) = E
[
u2

t

]
(4.5)

Once again, it is not possible to know the squares of the population disturbances,

u2
t , so their sample counterparts, the squared residuals, are used instead.

The reason that the auxiliary regression takes this form is that it is desirable to

investigate whether the variance of the residuals (embodied in û2
t ) varies

systematically with any known variables relevant to the model. Relevant variables

will include the original explanatory variables, their squared values and their

cross-products. Note also that this regression should include a constant term,

even if the original regression did not. This is as a result of the fact that û2
t will

always have a non-zero mean, even if ût has a zero mean.

(3) Given the auxiliary regression, as stated above, the test can be conducted using

two different approaches. First, it is possible to use the F-test framework described

in chapter 3. This would involve estimating (4.3) as the unrestricted regression and

then running a restricted regression of û2
t on a constant only. The RSS from each

specification would then be used as inputs to the standard F-test formula.

With many diagnostic tests, an alternative approach can be adopted that does

not require the estimation of a second (restricted) regression. This approach is

known as a Lagrange Multiplier (LM) test, which centres around the value of R2 for

the auxiliary regression. If one or more coefficients in (4.3) is statistically

significant, the value of R2 for that equation will be relatively high, while if none of

the variables is significant, R2 will be relatively low. The LM test would thus operate
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by obtaining R2 from the auxiliary regression and multiplying it by the number of

observations, T . It can be shown that

TR2 ∼ χ2(m)

where m is the number of regressors in the auxiliary regression (excluding the

constant term), equivalent to the number of restrictions that would have to be

placed under the F-test approach.

(4) The test is one of the joint null hypothesis that α2 = 0, and α3 = 0, and α4 = 0,

and α5 = 0, and α6 = 0. For the LM test, if the χ2-test statistic from step 3 is

greater than the corresponding value from the statistical table then reject the null

hypothesis that the errors are homoscedastic.

Example 4.1

Suppose that the model (4.2) above has been estimated using 120 obser-

vations, and the R2 from the auxiliary regression (4.3) is 0.234. The test

statistic will be given by TR2 = 120 × 0.234 = 28.8, which will follow a

χ2(5) under the null hypothesis. The 5% critical value from the χ2 table is

11.07. The test statistic is therefore more than the critical value and hence

the null hypothesis is rejected. It would be concluded that there is signif-

icant evidence of heteroscedasticity, so that it would not be plausible to

assume that the variance of the errors is constant in this case.

4.4.2 Consequences of using OLS in the presence of heteroscedasticity

What happens if the errors are heteroscedastic, but this fact is ignored

and the researcher proceeds with estimation and inference? In this case,

OLS estimators will still give unbiased (and also consistent) coefficient

estimates, but they are no longer BLUE -- that is, they no longer have the

minimum variance among the class of unbiased estimators. The reason

is that the error variance, σ 2, plays no part in the proof that the OLS

estimator is consistent and unbiased, but σ 2 does appear in the formulae

for the coefficient variances. If the errors are heteroscedastic, the formulae

presented for the coefficient standard errors no longer hold. For a very

accessible algebraic treatment of the consequences of heteroscedasticity,

see Hill, Griffiths and Judge (1997, pp. 217--18).

So, the upshot is that if OLS is still used in the presence of heteroscedas-

ticity, the standard errors could be wrong and hence any inferences made

could be misleading. In general, the OLS standard errors will be too

large for the intercept when the errors are heteroscedastic. The effect of

heteroscedasticity on the slope standard errors will depend on its form.

For example, if the variance of the errors is positively related to the
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square of an explanatory variable (which is often the case in practice), the

OLS standard error for the slope will be too low. On the other hand, the

OLS slope standard errors will be too big when the variance of the errors

is inversely related to an explanatory variable.

4.4.3 Dealing with heteroscedasticity

If the form (i.e. the cause) of the heteroscedasticity is known, then an alter-

native estimation method which takes this into account can be used. One

possibility is called generalised least squares (GLS). For example, suppose

that the error variance was related to zt by the expression

var(ut ) = σ 2z2
t (4.6)

All that would be required to remove the heteroscedasticity would be to

divide the regression equation through by zt

yt

zt
= β1

1

zt
+ β2

x2t

zt
+ β3

x3t

zt
+ vt (4.7)

where vt = ut

zt
is an error term.

Now, if var(ut ) = σ 2z2
t , var(vt ) = var

(
ut

zt

)
= var(ut )

z2
t

= σ 2z2
t

z2
t

= σ 2 for

known z.

Therefore, the disturbances from (4.7) will be homoscedastic. Note that

this latter regression does not include a constant since β1 is multiplied by

(1/zt ). GLS can be viewed as OLS applied to transformed data that satisfy

the OLS assumptions. GLS is also known as weighted least squares (WLS),

since under GLS a weighted sum of the squared residuals is minimised,

whereas under OLS it is an unweighted sum.

However, researchers are typically unsure of the exact cause of the het-

eroscedasticity, and hence this technique is usually infeasible in practice.

Two other possible ‘solutions’ for heteroscedasticity are shown in box 4.2.

Examples of tests for heteroscedasticity in the context of the single in-

dex market model are given in Fabozzi and Francis (1980). Their results are

strongly suggestive of the presence of heteroscedasticity, and they examine

various factors that may constitute the form of the heteroscedasticity.

4.4.4 Testing for heteroscedasticity using EViews

Re-open the Microsoft Workfile that was examined in the previous chap-

ter and the regression that included all the macroeconomic explanatory

variables. First, plot the residuals by selecting View/Actual, Fitted, Residu-

als/Residual Graph. If the residuals of the regression have systematically

changing variability over the sample, that is a sign of heteroscedasticity.
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In this case, it is hard to see any clear pattern, so we need to run the

formal statistical test. To test for heteroscedasticity using White’s test,

click on the View button in the regression window and select Residual

Tests/Heteroscedasticity Tests. You will see a large number of different

tests available, including the ARCH test that will be discussed in chapter

8. For now, select the White specification. You can also select whether

to include the cross-product terms or not (i.e. each variable multiplied by

each other variable) or include only the squares of the variables in the

auxiliary regression. Uncheck the ‘Include White cross terms’ given the

relatively large number of variables in this regression and then click OK.

The results of the test will appear as follows.

Heteroskedasticity Test: White

F-statistic 0.626761 Prob. F(7,244) 0.7336

Obs∗R-squared 4.451138 Prob. Chi-Square(7) 0.7266

Scaled explained SS 21.98760 Prob. Chi-Square(7) 0.0026

Test Equation:

Dependent Variable: RESID∧2
Method: Least Squares

Date: 08/27/07 Time: 11:49

Sample: 1986M05 2007M04

Included observations: 252

Coefficient Std. Error t-Statistic Prob.

C 259.9542 65.85955 3.947099 0.0001

ERSANDP∧2 −0.130762 0.826291 −0.158252 0.8744

DPROD∧2 −7.465850 7.461475 −1.000586 0.3180

DCREDIT∧2 −1.65E-07 3.72E-07 −0.443367 0.6579

DINFLATION∧2 −137.6317 227.2283 −0.605698 0.5453

DMONEY∧2 12.79797 13.66363 0.936645 0.3499

DSPREAD∧2 −650.6570 3144.176 −0.20694 0.8362

RTERM∧2 −491.0652 418.2860 −1.173994 0.2415

R-squared 0.017663 Mean dependent var 188.4152

Adjusted R-squared −0.010519 S.D. dependent var 612.8558

S.E. of regression 616.0706 Akaike info criterion 15.71583

Sum squared resid 92608485 Schwarz criterion 15.82788

Log likelihood −1972.195 Hannan-Quinn criter. 15.76092

F-statistic 0.626761 Durbin-Watson stat 2.068099

Prob(F-statistic) 0.733596

EViews presents three different types of tests for heteroscedasticity and

then the auxiliary regression in the first results table displayed. The test

statistics give us the information we need to determine whether the

assumption of homoscedasticity is valid or not, but seeing the actual
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Box 4.2 ‘Solutions’ for heteroscedasticity

(1) Transforming the variables into logs or reducing by some other measure of ‘size’. This

has the effect of re-scaling the data to ‘pull in’ extreme observations. The regression

would then be conducted upon the natural logarithms or the transformed data. Taking

logarithms also has the effect of making a previously multiplicative model, such as

the exponential regression model discussed previously (with a multiplicative error

term), into an additive one. However, logarithms of a variable cannot be taken in

situations where the variable can take on zero or negative values, for the log will not

be defined in such cases.

(2) Using heteroscedasticity-consistent standard error estimates. Most standard econo-

metrics software packages have an option (usually called something like ‘robust’)

that allows the user to employ standard error estimates that have been modified to

account for the heteroscedasticity following White (1980). The effect of using the

correction is that, if the variance of the errors is positively related to the square of

an explanatory variable, the standard errors for the slope coefficients are increased

relative to the usual OLS standard errors, which would make hypothesis testing more

‘conservative’, so that more evidence would be required against the null hypothesis

before it would be rejected.

auxiliary regression in the second table can provide useful additional in-

formation on the source of the heteroscedasticity if any is found. In this

case, both the F - and χ2 (‘LM’) versions of the test statistic give the same

conclusion that there is no evidence for the presence of heteroscedasticity,

since the p-values are considerably in excess of 0.05. The third version of

the test statistic, ‘Scaled explained SS’, which as the name suggests is based

on a normalised version of the explained sum of squares from the auxil-

iary regression, suggests in this case that there is evidence of heteroscedas-

ticity. Thus the conclusion of the test is somewhat ambiguous here.

4.4.5 Using White’s modified standard error estimates in EViews

In order to estimate the regression with heteroscedasticity-robust standard

errors in EViews, select this from the option button in the regression entry

window. In other words, close the heteroscedasticity test window and click

on the original ‘Msoftreg’ regression results, then click on the Estimate

button and in the Equation Estimation window, choose the Options tab

and screenshot 4.1 will appear.

Check the ‘Heteroskedasticity consistent coefficient variance’ box and

click OK. Comparing the results of the regression using heteroscedasticity-

robust standard errors with those using the ordinary standard er-

rors, the changes in the significances of the parameters are only

marginal. Of course, only the standard errors have changed and the

parameter estimates have remained identical to those from before. The
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Screenshot 4.1

Regression options

window

heteroscedasticity-consistent standard errors are smaller for all variables

except for money supply, resulting in the p-values being smaller. The main

changes in the conclusions reached are that the term structure variable,

which was previously significant only at the 10% level, is now significant

at 5%, and the unexpected inflation variable is now significant at the 10%

level.

4.5 Assumption 3: cov(ui , u j ) = 0 for i �= j

Assumption 3 that is made of the CLRM’s disturbance terms is that the

covariance between the error terms over time (or cross-sectionally, for

that type of data) is zero. In other words, it is assumed that the errors are

uncorrelated with one another. If the errors are not uncorrelated with

one another, it would be stated that they are ‘autocorrelated’ or that they

are ‘serially correlated’. A test of this assumption is therefore required.

Again, the population disturbances cannot be observed, so tests for

autocorrelation are conducted on the residuals, û. Before one can proceed

to see how formal tests for autocorrelation are formulated, the concept

of the lagged value of a variable needs to be defined.
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Table 4.1 Constructing a series of lagged values and first differences

t yt yt−1 �yt

2006M09 0.8 − −
2006M10 1.3 0.8 (1.3 − 0.8) = 0.5

2006M11 −0.9 1.3 (−0.9 − 1.3) = −2.2

2006M12 0.2 −0.9 (0.2 − −0.9) = 1.1

2007M01 −1.7 0.2 (−1.7 −0.2) = −1.9

2007M02 2.3 −1.7 (2.3 − −1.7) = 4.0

2007M03 0.1 2.3 (0.1 − 2.3) = −2.2

2007M04 0.0 0.1 (0.0 − 0.1) = −0.1

. . . .

. . . .

. . . .

4.5.1 The concept of a lagged value

The lagged value of a variable (which may be yt , xt , or ut ) is simply the

value that the variable took during a previous period. So for example, the

value of yt lagged one period, written yt−1, can be constructed by shifting

all of the observations forward one period in a spreadsheet, as illustrated

in table 4.1.

So, the value in the 2006M10 row and the yt−1 column shows the value

that yt took in the previous period, 2006M09, which was 0.8. The last

column in table 4.1 shows another quantity relating to y, namely the

‘first difference’. The first difference of y, also known as the change in y,

and denoted �yt , is calculated as the difference between the values of y
in this period and in the previous period. This is calculated as

�yt = yt − yt−1 (4.8)

Note that when one-period lags or first differences of a variable are con-

structed, the first observation is lost. Thus a regression of �yt using the

above data would begin with the October 2006 data point. It is also possi-

ble to produce two-period lags, three-period lags, and so on. These would

be accomplished in the obvious way.

4.5.2 Graphical tests for autocorrelation

In order to test for autocorrelation, it is necessary to investigate whether

any relationships exist between the current value of û, ût , and any of

its previous values, ût−1, ût−2, . . . The first step is to consider possible
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Figure 4.3

Plot of ût against

ût−1, showing

positive

autocorrelation

relationships between the current residual and the immediately previ-

ous one, ût−1, via a graphical exploration. Thus ût is plotted against ût−1,

and ût is plotted over time. Some stereotypical patterns that may be found

in the residuals are discussed below.

Figures 4.3 and 4.4 show positive autocorrelation in the residuals, which

is indicated by a cyclical residual plot over time. This case is known as pos-

itive autocorrelation since on average if the residual at time t − 1 is positive,

the residual at time t is likely to be also positive; similarly, if the residual

at t − 1 is negative, the residual at t is also likely to be negative. Figure 4.3

shows that most of the dots representing observations are in the first and

third quadrants, while figure 4.4 shows that a positively autocorrelated

series of residuals will not cross the time-axis very frequently.

Figures 4.5 and 4.6 show negative autocorrelation, indicated by an

alternating pattern in the residuals. This case is known as negative

autocorrelation since on average if the residual at time t − 1 is positive,

the residual at time t is likely to be negative; similarly, if the residual

at t − 1 is negative, the residual at t is likely to be positive. Figure 4.5

shows that most of the dots are in the second and fourth quadrants,

while figure 4.6 shows that a negatively autocorrelated series of residu-

als will cross the time-axis more frequently than if they were distributed

randomly.
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Plot of ût over time,

showing positive

autocorrelation
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Figure 4.5

Plot of ût against

ût−1, showing

negative

autocorrelation

Finally, figures 4.7 and 4.8 show no pattern in residuals at all: this is

what is desirable to see. In the plot of ût against ût−1 (figure 4.7), the points

are randomly spread across all four quadrants, and the time series plot of

the residuals (figure 4.8) does not cross the x -axis either too frequently or

too little.
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Plot of ût over time,

showing negative

autocorrelation
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Figure 4.7

Plot of ût against

ût−1, showing no

autocorrelation

4.5.3 Detecting autocorrelation: the Durbin–Watson test

Of course, a first step in testing whether the residual series from an esti-

mated model are autocorrelated would be to plot the residuals as above,

looking for any patterns. Graphical methods may be difficult to interpret

in practice, however, and hence a formal statistical test should also be

applied. The simplest test is due to Durbin and Watson (1951).
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ût

+

–

time

Figure 4.8

Plot of ût over time,

showing no

autocorrelation

Durbin--Watson (DW) is a test for first order autocorrelation -- i.e. it tests

only for a relationship between an error and its immediately previous

value. One way to motivate the test and to interpret the test statistic

would be in the context of a regression of the time t error on its previous

value

ut = ρut−1 + vt (4.9)

where vt ∼ N (0, σ 2
v ). The DW test statistic has as its null and alternative

hypotheses

H0 : ρ = 0 and H1 : ρ �= 0

Thus, under the null hypothesis, the errors at time t − 1 and t are indepen-

dent of one another, and if this null were rejected, it would be concluded

that there was evidence of a relationship between successive residuals. In

fact, it is not necessary to run the regression given by (4.9) since the test

statistic can be calculated using quantities that are already available after

the first regression has been run

DW =

T∑
t=2

(ût − ût−1)2

T∑
t=2

û2
t

(4.10)

The denominator of the test statistic is simply (the number of observations

−1) × the variance of the residuals. This arises since if the average of the
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residuals is zero

var(ût ) = E(û2
t ) = 1

T − 1

T∑
t=2

û2
t

so that
T∑

t=2

û2
t = var(ût ) × (T − 1)

The numerator ‘compares’ the values of the error at times t − 1 and t .
If there is positive autocorrelation in the errors, this difference in the

numerator will be relatively small, while if there is negative autocorrela-

tion, with the sign of the error changing very frequently, the numerator

will be relatively large. No autocorrelation would result in a value for the

numerator between small and large.

It is also possible to express the DW statistic as an approximate function

of the estimated value of ρ

DW ≈ 2(1 − ρ̂) (4.11)

where ρ̂ is the estimated correlation coefficient that would have been

obtained from an estimation of (4.9). To see why this is the case, consider

that the numerator of (4.10) can be written as the parts of a quadratic

T∑
t=2

(ût − ût−1)2 =
T∑

t=2

û2
t +

T∑
t=2

û2
t−1 − 2

T∑
t=2

ût ût−1 (4.12)

Consider now the composition of the first two summations on the RHS of

(4.12). The first of these is

T∑
t=2

û2
t = û2

2 + û2
3 + û2

4 + · · · + û2
T

while the second is

T∑
t=2

û2
t−1 = û2

1 + û2
2 + û2

3 + · · · + û2
T −1

Thus, the only difference between them is that they differ in the first and

last terms in the summation

T∑
t=2

û2
t

contains û2
T but not û2

1, while

T∑
t=2

û2
t−1



146 Introductory Econometrics for Finance

contains û2
1 but not û2

T . As the sample size, T , increases towards infin-

ity, the difference between these two will become negligible. Hence, the

expression in (4.12), the numerator of (4.10), is approximately

2
T∑

t=2

û2
t − 2

T∑
t=2

ût ût−1

Replacing the numerator of (4.10) with this expression leads to

DW ≈
2

T∑
t=2

û2
t − 2

T∑
t=2

ût ût−1

T∑
t=2

û2
t

= 2

⎛
⎜⎜⎜⎜⎝1 −

T∑
t=2

ût ût−1

T∑
t=2

û2
t

⎞
⎟⎟⎟⎟⎠ (4.13)

The covariance between ut and ut−1 can be written as E[(ut − E(ut ))(ut−1 −
E(ut−1))]. Under the assumption that E(ut ) = 0 (and therefore that E(ut−1) =
0), the covariance will be E[ut ut−1]. For the sample residuals, this covari-

ance will be evaluated as

1

T − 1

T∑
t=2

ût ût−1

Thus, the sum in the numerator of the expression on the right of (4.13)

can be seen as T − 1 times the covariance between ût and ût−1, while the

sum in the denominator of the expression on the right of (4.13) can be

seen from the previous exposition as T − 1 times the variance of ût . Thus,

it is possible to write

DW ≈ 2

(
1 − T − 1 cov(ût , ût−1)

T − 1 var(ût )

)
= 2

(
1 − cov(ût , ût−1)

var(ût )

)

= 2 (1 − corr(ût , ût−1)) (4.14)

so that the DW test statistic is approximately equal to 2(1 − ρ̂). Since ρ̂

is a correlation, it implies that −1 ≤ ρ̂ ≤ 1. That is, ρ̂ is bounded to lie

between −1 and +1. Substituting in these limits for ρ̂ to calculate DW

from (4.11) would give the corresponding limits for DW as 0 ≤ DW ≤ 4.

Consider now the implication of DW taking one of three important values

(0, 2, and 4):

● ρ̂ = 0, DW = 2 This is the case where there is no autocorrelation in

the residuals. So roughly speaking, the null hypothesis would not be

rejected if DW is near 2 → i.e. there is little evidence of autocorrelation.

● ρ̂ = 1, DW = 0 This corresponds to the case where there is perfect pos-

itive autocorrelation in the residuals.
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Reject H0:
positive
autocorrelation

Inconclusive
Do not reject
H0: No evidence
of autocorrelation

Inconclusive
Reject H0:
negative
autocorrelation

0 dL dU 4-dU2 4-dL 4

Figure 4.9 Rejection and non-rejection regions for DW test

● ρ̂ = −1, DW = 4 This corresponds to the case where there is perfect

negative autocorrelation in the residuals.

The DW test does not follow a standard statistical distribution such as a

t , F , or χ2. DW has 2 critical values: an upper critical value (dU) and a

lower critical value (dL ), and there is also an intermediate region where

the null hypothesis of no autocorrelation can neither be rejected nor not

rejected! The rejection, non-rejection, and inconclusive regions are shown

on the number line in figure 4.9.

So, to reiterate, the null hypothesis is rejected and the existence of pos-

itive autocorrelation presumed if DW is less than the lower critical value;

the null hypothesis is rejected and the existence of negative autocorrela-

tion presumed if DW is greater than 4 minus the lower critical value; the

null hypothesis is not rejected and no significant residual autocorrelation

is presumed if DW is between the upper and 4 minus the upper limits.

Example 4.2

A researcher wishes to test for first order serial correlation in the residuals

from a linear regression. The DW test statistic value is 0.86. There are 80

quarterly observations in the regression, and the regression is of the form

yt = β1 + β2x2t + β3x3t + β4x4t + ut (4.15)

The relevant critical values for the test (see table A2.6 in the appendix of

statistical distributions at the end of this book), are dL = 1.42, dU = 1.57, so

4 − dU = 2.43 and 4 − dL = 2.58. The test statistic is clearly lower than the

lower critical value and hence the null hypothesis of no autocorrelation

is rejected and it would be concluded that the residuals from the model

appear to be positively autocorrelated.

4.5.4 Conditions which must be fulfilled for DW to be a valid test

In order for the DW test to be valid for application, three conditions must

be fulfilled (box 4.3).
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Box 4.3 Conditions for DW to be a valid test

(1) There must be a constant term in the regression

(2) The regressors must be non-stochastic – as assumption 4 of the CLRM (see p. 160

and chapter 6)

(3) There must be no lags of dependent variable (see section 4.5.8) in the regression.

If the test were used in the presence of lags of the dependent vari-

able or otherwise stochastic regressors, the test statistic would be biased

towards 2, suggesting that in some instances the null hypothesis of no

autocorrelation would not be rejected when it should be.

4.5.5 Another test for autocorrelation: the Breusch–Godfrey test

Recall that DW is a test only of whether consecutive errors are related to

one another. So, not only can the DW test not be applied if a certain set of

circumstances are not fulfilled, there will also be many forms of residual

autocorrelation that DW cannot detect. For example, if corr(ût , ût−1) = 0,

but corr(ût , ût−2) �= 0, DW as defined above will not find any autocorre-

lation. One possible solution would be to replace ût−1 in (4.10) with ût−2.

However, pairwise examinations of the correlations (ût , ût−1), (ût , ût−2), (ût ,

ût−3), . . . will be tedious in practice and is not coded in econometrics soft-

ware packages, which have been programmed to construct DW using only

a one-period lag. In addition, the approximation in (4.11) will deteriorate

as the difference between the two time indices increases. Consequently,

the critical values should also be modified somewhat in these cases.

Therefore, it is desirable to examine a joint test for autocorrelation that

will allow examination of the relationship between ût and several of its

lagged values at the same time. The Breusch--Godfrey test is a more general

test for autocorrelation up to the rth order. The model for the errors under

this test is

ut = ρ1ut−1 + ρ2ut−2 + ρ3ut−3 + · · · + ρr ut−r + vt , vt ∼ N
(
0, σ 2

v

)
(4.16)

The null and alternative hypotheses are:

H0 : ρ1 = 0 and ρ2 = 0 and . . . and ρr = 0

H1 : ρ1 �= 0 or ρ2 �= 0 or . . . or ρr �= 0

So, under the null hypothesis, the current error is not related to any of

its r previous values. The test is carried out as in box 4.4.

Note that (T − r ) pre-multiplies R2 in the test for autocorrelation rather

than T (as was the case for the heteroscedasticity test). This arises because
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Box 4.4 Conducting a Breusch–Godfrey test

(1) Estimate the linear regression using OLS and obtain the residuals, ût

(2) Regress ût on all of the regressors from stage 1 (the xs) plus ût−1, ût−2, . . . , ût−r ;

the regression will thus be

ût = γ1 + γ2x2t + γ3x3t + γ4x4t + ρ1ût−1 + ρ2ût−2 + ρ3ût−3

+ · · · + ρr ût−r + vt , vt ∼ N
(
0, σ 2

v

)
(4.17)

Obtain R2 from this auxiliary regression

(3) Letting T denote the number of observations, the test statistic is given by

(T − r )R2 ∼ χ2
r

the first r observations will effectively have been lost from the sample

in order to obtain the r lags used in the test regression, leaving (T − r )

observations from which to estimate the auxiliary regression. If the test

statistic exceeds the critical value from the Chi-squared statistical tables,

reject the null hypothesis of no autocorrelation. As with any joint test,

only one part of the null hypothesis has to be rejected to lead to rejection

of the hypothesis as a whole. So the error at time t has to be significantly

related only to one of its previous r values in the sample for the null of

no autocorrelation to be rejected. The test is more general than the DW

test, and can be applied in a wider variety of circumstances since it does

not impose the DW restrictions on the format of the first stage regression.

One potential difficulty with Breusch--Godfrey, however, is in determin-

ing an appropriate value of r , the number of lags of the residuals, to use

in computing the test. There is no obvious answer to this, so it is typical

to experiment with a range of values, and also to use the frequency of the

data to decide. So, for example, if the data is monthly or quarterly, set r
equal to 12 or 4, respectively. The argument would then be that errors at

any given time would be expected to be related only to those errors in the

previous year. Obviously, if the model is statistically adequate, no evidence

of autocorrelation should be found in the residuals whatever value of r is

chosen.

4.5.6 Consequences of ignoring autocorrelation if it is present

In fact, the consequences of ignoring autocorrelation when it is present

are similar to those of ignoring heteroscedasticity. The coefficient esti-

mates derived using OLS are still unbiased, but they are inefficient, i.e.

they are not BLUE, even at large sample sizes, so that the standard er-

ror estimates could be wrong. There thus exists the possibility that the

wrong inferences could be made about whether a variable is or is not
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an important determinant of variations in y. In the case of positive

serial correlation in the residuals, the OLS standard error estimates will

be biased downwards relative to the true standard errors. That is, OLS

will understate their true variability. This would lead to an increase in

the probability of type I error -- that is, a tendency to reject the null hy-

pothesis sometimes when it is correct. Furthermore, R2 is likely to be

inflated relative to its ‘correct’ value if autocorrelation is present but ig-

nored, since residual autocorrelation will lead to an underestimate of the

true error variance (for positive autocorrelation).

4.5.7 Dealing with autocorrelation

If the form of the autocorrelation is known, it would be possible to use

a GLS procedure. One approach, which was once fairly popular, is known

as the Cochrane--Orcutt procedure (see box 4.5). Such methods work by as-

suming a particular form for the structure of the autocorrelation (usually

a first order autoregressive process -- see chapter 5 for a general description

of these models). The model would thus be specified as follows:

yt = β1 + β2x2t + β3x3t + ut , ut = ρut−1 + vt (4.18)

Note that a constant is not required in the specification for the errors

since E(ut ) = 0. If this model holds at time t , it is assumed to also hold

for time t − 1, so that the model in (4.18) is lagged one period

yt−1 = β1 + β2x2t−1 + β3x3t−1 + ut−1 (4.19)

Multiplying (4.19) by ρ

ρyt−1 = ρβ1 + ρβ2x2t−1 + ρβ3x3t−1 + ρut−1 (4.20)

Subtracting (4.20) from (4.18) would give

yt − ρyt−1 = β1 − ρβ1 + β2x2t − ρβ2x2t−1 + β3x3t − ρβ3x3t−1 + ut − ρut−1

(4.21)

Factorising, and noting that vt = ut − ρut−1

(yt − ρyt−1) = (1 − ρ)β1 + β2(x2t − ρx2t−1) + β3(x3t − ρx3t−1) + vt

(4.22)

Setting y∗
t = yt − ρyt−1, β

∗
1 = (1 − ρ)β1, x∗

2t = (x2t − ρx2t−1), and x∗
3t = (x3t −

ρx3t−1), the model in (4.22) can be written

y∗
t = β∗

1 + β2x∗
2t + β3x∗

3t + vt (4.23)
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Box 4.5 The Cochrane–Orcutt procedure

(1) Assume that the general model is of the form (4.18) above. Estimate the equation

in (4.18) using OLS, ignoring the residual autocorrelation.

(2) Obtain the residuals, and run the regression

ût = ρût−1 + vt (4.24)

(3) Obtain ρ̂ and construct y∗
t etc. using this estimate of ρ̂.

(4) Run the GLS regression (4.23).

Since the final specification (4.23) contains an error term that is free

from autocorrelation, OLS can be directly applied to it. This procedure is

effectively an application of GLS. Of course, the construction of y∗
t etc.

requires ρ to be known. In practice, this will never be the case so that ρ

has to be estimated before (4.23) can be used.

A simple method would be to use the ρ obtained from rearranging

the equation for the DW statistic given in (4.11). However, this is only an

approximation as the related algebra showed. This approximation may be

poor in the context of small samples.

The Cochrane--Orcutt procedure is an alternative, which operates as in

box 4.5.

This could be the end of the process. However, Cochrane and Orcutt

(1949) argue that better estimates can be obtained by going through steps

2--4 again. That is, given the new coefficient estimates, β∗
1 , β2, β3, etc. con-

struct again the residual and regress it on its previous value to obtain

a new estimate for ρ̂. This would then be used to construct new values

of the variables y∗
t , x∗

2t , x∗
3t and a new (4.23) is estimated. This procedure

would be repeated until the change in ρ̂ between one iteration and the

next is less than some fixed amount (e.g. 0.01). In practice, a small number

of iterations (no more than 5) will usually suffice.

However, the Cochrane--Orcutt procedure and similar approaches re-

quire a specific assumption to be made concerning the form of the model

for the autocorrelation. Consider again (4.22). This can be rewritten taking

ρyt−1 over to the RHS

yt = (1 − ρ)β1 + β2(x2t − ρx2t−1) + β3(x3t − ρx3t−1) + ρyt−1 + vt (4.25)

Expanding the brackets around the explanatory variable terms would give

yt = (1 − ρ)β1 + β2x2t − ρβ2x2t−1 + β3x3t − ρβ3x3t−1 + ρyt−1 + vt (4.26)



152 Introductory Econometrics for Finance

Now, suppose that an equation containing the same variables as (4.26)

were estimated using OLS

yt = γ1 + γ2x2t + γ3x2t−1 + γ4x3t + γ5x3t−1 + γ6 yt−1 + vt (4.27)

It can be seen that (4.26) is a restricted version of (4.27), with the re-

strictions imposed that the coefficient on x2t in (4.26) multiplied by the

negative of the coefficient on yt−1 gives the coefficient on x2t−1, and that

the coefficient on x3t multiplied by the negative of the coefficient on yt−1

gives the coefficient on x3t−1. Thus, the restrictions implied for (4.27) to

get (4.26) are

γ2γ6 = −γ3 and γ4γ6 = −γ5

These are known as the common factor restrictions, and they should be tested

before the Cochrane--Orcutt or similar procedure is implemented. If the

restrictions hold, Cochrane--Orcutt can be validly applied. If not, however,

Cochrane--Orcutt and similar techniques would be inappropriate, and the

appropriate step would be to estimate an equation such as (4.27) directly

using OLS. Note that in general there will be a common factor restriction

for every explanatory variable (excluding a constant) x2t , x3t , . . . , xkt in the

regression. Hendry and Mizon (1978) argued that the restrictions are likely

to be invalid in practice and therefore a dynamic model that allows for

the structure of y should be used rather than a residual correction on a

static model -- see also Hendry (1980).

The White variance--covariance matrix of the coefficients (that is, calcu-

lation of the standard errors using the White correction for heteroscedas-

ticity) is appropriate when the residuals of the estimated equation are

heteroscedastic but serially uncorrelated. Newey and West (1987) develop

a variance--covariance estimator that is consistent in the presence of both

heteroscedasticity and autocorrelation. So an alternative approach to deal-

ing with residual autocorrelation would be to use appropriately modified

standard error estimates.

While White’s correction to standard errors for heteroscedasticity as dis-

cussed above does not require any user input, the Newey--West procedure

requires the specification of a truncation lag length to determine the num-

ber of lagged residuals used to evaluate the autocorrelation. EViews uses

INTEGER[4(T/100)2/9]. In EViews, the Newey--West procedure for estimat-

ing the standard errors is employed by invoking it from the same place

as the White heteroscedasticity correction. That is, click the Estimate but-

ton and in the Equation Estimation window, choose the Options tab and

then instead of checking the ‘White’ box, check Newey-West. While this

option is listed under ‘Heteroskedasticity consistent coefficient variance’,
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the Newey-West procedure in fact produces ‘HAC’ (Heteroscedasticity and

Autocorrelation Consistent) standard errors that correct for both autocor-

relation and heteroscedasticity that may be present.

A more ‘modern’ view concerning autocorrelation is that it presents

an opportunity rather than a problem! This view, associated with Sargan,

Hendry and Mizon, suggests that serial correlation in the errors arises as

a consequence of ‘misspecified dynamics’. For another explanation of the

reason why this stance is taken, recall that it is possible to express the

dependent variable as the sum of the parts that can be explained using

the model, and a part which cannot (the residuals)

yt = ŷt + ût (4.28)

where ŷt are the fitted values from the model (= β̂1 + β̂2x2t + β̂3x3t + · · · +
β̂k xkt ). Autocorrelation in the residuals is often caused by a dynamic struc-

ture in y that has not been modelled and so has not been captured in

the fitted values. In other words, there exists a richer structure in the

dependent variable y and more information in the sample about that

structure than has been captured by the models previously estimated.

What is required is a dynamic model that allows for this extra structure

in y.

4.5.8 Dynamic models

All of the models considered so far have been static in nature, e.g.

yt = β1 + β2x2t + β3x3t + β4x4t + β5x5t + ut (4.29)

In other words, these models have allowed for only a contemporaneous re-

lationship between the variables, so that a change in one or more of the

explanatory variables at time t causes an instant change in the depen-

dent variable at time t . But this analysis can easily be extended to the

case where the current value of yt depends on previous values of y or on

previous values of one or more of the variables, e.g.

yt = β1 + β2 x2t + β3 x3t + β4 x4t + β5 x5t + γ1 yt−1 + γ2x2t−1

+ · · · + γk xkt−1 + ut (4.30)

It is of course possible to extend the model even more by adding further

lags, e.g. x2t−2, yt−3. Models containing lags of the explanatory variables

(but no lags of the explained variable) are known as distributed lag models.

Specifications with lags of both explanatory and explained variables are

known as autoregressive distributed lag (ADL) models.

How many lags and of which variables should be included in a dy-

namic regression model? This is a tricky question to answer, but hopefully
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recourse to financial theory will help to provide an answer; for another

response (see section 4.13).

Another potential ‘remedy’ for autocorrelated residuals would be to

switch to a model in first differences rather than in levels. As explained

previously, the first difference of yt , i.e. yt − yt−1 is denoted �yt ; similarly,

one can construct a series of first differences for each of the explanatory

variables, e.g. �x2t = x2t − x2t−1, etc. Such a model has a number of other

useful features (see chapter 7 for more details) and could be expressed as

�yt = β1 + β2�x2t + β3�x3t + ut (4.31)

Sometimes the change in y is purported to depend on previous values

of the level of y or xi (i = 2, . . . , k) as well as changes in the explanatory

variables

�yt = β1 + β2�x2t + β3�x3t + β4x2t−1 + β5 yt−1 + ut (4.32)

4.5.9 Why might lags be required in a regression?

Lagged values of the explanatory variables or of the dependent variable (or

both) may capture important dynamic structure in the dependent variable

that might be caused by a number of factors. Two possibilities that are

relevant in finance are as follows:

● Inertia of the dependent variable Often a change in the value of one

of the explanatory variables will not affect the dependent variable im-

mediately during one time period, but rather with a lag over several

time periods. For example, the effect of a change in market microstruc-

ture or government policy may take a few months or longer to work

through since agents may be initially unsure of what the implications

for asset pricing are, and so on. More generally, many variables in eco-

nomics and finance will change only slowly. This phenomenon arises

partly as a result of pure psychological factors -- for example, in finan-

cial markets, agents may not fully comprehend the effects of a particu-

lar news announcement immediately, or they may not even believe the

news. The speed and extent of reaction will also depend on whether the

change in the variable is expected to be permanent or transitory. Delays

in response may also arise as a result of technological or institutional

factors. For example, the speed of technology will limit how quickly

investors’ buy or sell orders can be executed. Similarly, many investors

have savings plans or other financial products where they are ‘locked in’

and therefore unable to act for a fixed period. It is also worth noting that
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dynamic structure is likely to be stronger and more prevalent the higher

is the frequency of observation of the data.

● Overreactions It is sometimes argued that financial markets overre-

act to good and to bad news. So, for example, if a firm makes a profit

warning, implying that its profits are likely to be down when formally

reported later in the year, the markets might be anticipated to perceive

this as implying that the value of the firm is less than was previously

thought, and hence that the price of its shares will fall. If there is

an overreaction, the price will initially fall below that which is appro-

priate for the firm given this bad news, before subsequently bouncing

back up to a new level (albeit lower than the initial level before the

announcement).

Moving from a purely static model to one which allows for lagged ef-

fects is likely to reduce, and possibly remove, serial correlation which was

present in the static model’s residuals. However, other problems with the

regression could cause the null hypothesis of no autocorrelation to be

rejected, and these would not be remedied by adding lagged variables to

the model:

● Omission of relevant variables, which are themselves autocorrelated

In other words, if there is a variable that is an important determinant

of movements in y, but which has not been included in the model, and

which itself is autocorrelated, this will induce the residuals from the

estimated model to be serially correlated. To give a financial context in

which this may arise, it is often assumed that investors assess one-step-

ahead expected returns on a stock using a linear relationship

rt = α0 + α1	t−1 + ut (4.33)

where 	t−1 is a set of lagged information variables (i.e. 	t−1 is a vector of

observations on a set of variables at time t − 1). However, (4.33) cannot

be estimated since the actual information set used by investors to form

their expectations of returns is not known. 	t−1 is therefore proxied

with an assumed sub-set of that information, Zt−1. For example, in many

popular arbitrage pricing specifications, the information set used in the

estimated model includes unexpected changes in industrial production,

the term structure of interest rates, inflation and default risk premia.

Such a model is bound to omit some informational variables used by

actual investors in forming expectations of returns, and if these are

autocorrelated, it will induce the residuals of the estimated model to

be also autocorrelated.
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● Autocorrelation owing to unparameterised seasonality Suppose that

the dependent variable contains a seasonal or cyclical pattern, where

certain features periodically occur. This may arise, for example, in the

context of sales of gloves, where sales will be higher in the autumn

and winter than in the spring or summer. Such phenomena are likely

to lead to a positively autocorrelated residual structure that is cyclical

in shape, such as that of figure 4.4, unless the seasonal patterns are

captured by the model. See chapter 9 for a discussion of seasonality

and how to deal with it.

● If ‘misspecification’ error has been committed by using an inappro-

priate functional form For example, if the relationship between y and

the explanatory variables was a non-linear one, but the researcher had

specified a linear regression model, this may again induce the residuals

from the estimated model to be serially correlated.

4.5.10 The long-run static equilibrium solution

Once a general model of the form given in (4.32) has been found, it may

contain many differenced and lagged terms that make it difficult to in-

terpret from a theoretical perspective. For example, if the value of x2

were to increase in period t , what would be the effect on y in periods,

t, t + 1, t + 2, and so on? One interesting property of a dynamic model

that can be calculated is its long-run or static equilibrium solution.

The relevant definition of ‘equilibrium’ in this context is that a system

has reached equilibrium if the variables have attained some steady state

values and are no longer changing, i.e. if y and x are in equilibrium, it is

possible to write

yt = yt+1 = . . . = y and x2t = x2t+1 = . . . = x2, and so on.

Consequently, �yt = yt − yt−1 = y − y = 0, �x2t = x2t − x2t−1 = x2 − x2 =
0, etc. since the values of the variables are no longer changing. So the

way to obtain a long-run static solution from a given empirical model

such as (4.32) is:

(1) Remove all time subscripts from the variables

(2) Set error terms equal to their expected values of zero, i.e E(ut ) = 0

(3) Remove differenced terms (e.g. �yt ) altogether

(4) Gather terms in x together and gather terms in y together

(5) Rearrange the resulting equation if necessary so that the dependent

variable y is on the left-hand side (LHS) and is expressed as a function

of the independent variables.
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Example 4.3

Calculate the long-run equilibrium solution for the following model

�yt = β1 + β2�x2t + β3�x3t + β4x2t−1 + β5 yt−1 + ut (4.34)

Applying first steps 1--3 above, the static solution would be given by

0 = β1 + β4x2 + β5 y (4.35)

Rearranging (4.35) to bring y to the LHS

β5 y = −β1 − β4x2 (4.36)

and finally, dividing through by β5

y = −β1

β5

− β4

β5

x2 (4.37)

Equation (4.37) is the long-run static solution to (4.34). Note that this

equation does not feature x3, since the only term which contained x3

was in first differenced form, so that x3 does not influence the long-run

equilibrium value of y.

4.5.11 Problems with adding lagged regressors to ‘cure’ autocorrelation

In many instances, a move from a static model to a dynamic one will result

in a removal of residual autocorrelation. The use of lagged variables in a

regression model does, however, bring with it additional problems:

● Inclusion of lagged values of the dependent variable violates the as-

sumption that the explanatory variables are non-stochastic (assump-

tion 4 of the CLRM), since by definition the value of y is determined

partly by a random error term, and so its lagged values cannot be non-

stochastic. In small samples, inclusion of lags of the dependent variable

can lead to biased coefficient estimates, although they are still consis-

tent, implying that the bias will disappear asymptotically (that is, as

the sample size increases towards infinity).

● What does an equation with a large number of lags actually mean?

A model with many lags may have solved a statistical problem

(autocorrelated residuals) at the expense of creating an interpretational

one (the empirical model containing many lags or differenced terms is

difficult to interpret and may not test the original financial theory that

motivated the use of regression analysis in the first place).

Note that if there is still autocorrelation in the residuals of a model

including lags, then the OLS estimators will not even be consistent. To see
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why this occurs, consider the following regression model

yt = β1 + β2x2t + β3x3t + β4 yt−1 + ut (4.38)

where the errors, ut , follow a first order autoregressive process

ut = ρut−1 + vt (4.39)

Substituting into (4.38) for ut from (4.39)

yt = β1 + β2x2t + β3x3t + β4 yt−1 + ρut−1 + vt (4.40)

Now, clearly yt depends upon yt−1. Taking (4.38) and lagging it one period

(i.e. subtracting one from each time index)

yt−1 = β1 + β2x2t−1 + β3x3t−1 + β4 yt−2 + ut−1 (4.41)

It is clear from (4.41) that yt−1 is related to ut−1 since they both appear

in that equation. Thus, the assumption that E(X ′u) = 0 is not satisfied

for (4.41) and therefore for (4.38). Thus the OLS estimator will not be

consistent, so that even with an infinite quantity of data, the coefficient

estimates would be biased.

4.5.12 Autocorrelation and dynamic models in EViews

In EViews, the lagged values of variables can be used as regressors or for

other purposes by using the notation x(−1) for a one-period lag, x(−5)

for a five-period lag, and so on, where x is the variable name. EViews

will automatically adjust the sample period used for estimation to take

into account the observations that are lost in constructing the lags. For

example, if the regression contains five lags of the dependent variable, five

observations will be lost and estimation will commence with observation

six.

In EViews, the DW statistic is calculated automatically, and was given in

the general estimation output screens that result from estimating any re-

gression model. To view the results screen again, click on the View button

in the regression window and select Estimation output. For the Microsoft

macroeconomic regression that included all of the explanatory variables,

the value of the DW statistic was 2.156. What is the appropriate conclu-

sion regarding the presence or otherwise of first order autocorrelation in

this case?

The Breusch--Godfrey test can be conducted by selecting View; Residual

Tests; Serial Correlation LM Test . . . In the new window, type again the

number of lagged residuals you want to include in the test and click on

OK. Assuming that you selected to employ ten lags in the test, the results

would be as given in the following table.
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Breusch-Godfrey Serial Correlation LM Test:

F-statistic 1.497460 Prob. F(10,234) 0.1410

Obs*R-squared 15.15657 Prob. Chi-Square(10) 0.1265

Test Equation:

Dependent Variable: RESID

Method: Least Squares

Date: 08/27/07 Time: 13:26

Sample: 1986M05 2007M04

Included observations: 252

Presample missing value lagged residuals set to zero.

Coefficient Std. Error t-Statistic Prob.

C 0.087053 1.461517 0.059563 0.9526

ERSANDP −0.021725 0.204588 −0.106187 0.9155

DPROD −0.036054 0.510873 −0.070573 0.9438

DCREDIT −9.64E-06 0.000162 −0.059419 0.9527

DINFLATION −0.364149 3.010661 −0.120953 0.9038

DMONEY 0.225441 0.718175 0.313909 0.7539

DSPREAD 0.202672 13.70006 0.014794 0.9882

RTERM −0.19964 3.363238 −0.059360 0.9527

RESID(−1) −0.12678 0.065774 −1.927509 0.0551

RESID(−2) −0.063949 0.066995 −0.954537 0.3408

RESID(−3) −0.038450 0.065536 −0.586694 0.5580

RESID(−4) −0.120761 0.065906 −1.832335 0.0682

RESID(−5) −0.126731 0.065253 −1.942152 0.0533

RESID(−6) −0.090371 0.066169 −1.365755 0.1733

RESID(−7) −0.071404 0.065761 −1.085803 0.2787

RESID(−8) −0.119176 0.065926 −1.807717 0.0719

RESID(−9) −0.138430 0.066121 −2.093571 0.0374

RESID(−10) −0.060578 0.065682 −0.922301 0.3573

R-squared 0.060145 Mean dependent var 8.11E-17

Adjusted R-squared −0.008135 S.D. dependent var 13.75376

S.E. of regression 13.80959 Akaike info criterion 8.157352

Sum squared resid 44624.90 Schwarz criterion 8.409454

Log likelihood −1009.826 Hannan-Quinn criter. 8.258793

F-statistic 0.880859 Durbin-Watson stat 2.013727

Prob(F-statistic) 0.597301

In the first table of output, EViews offers two versions of the test -- an

F -version and a χ2 version, while the second table presents the estimates

from the auxiliary regression. The conclusion from both versions of the

test in this case is that the null hypothesis of no autocorrelation should

not be rejected. Does this agree with the DW test result?
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4.5.13 Autocorrelation in cross-sectional data

The possibility that autocorrelation may occur in the context of a time

series regression is quite intuitive. However, it is also plausible that auto-

correlation could be present in certain types of cross-sectional data. For

example, if the cross-sectional data comprise the profitability of banks in

different regions of the US, autocorrelation may arise in a spatial sense,

if there is a regional dimension to bank profitability that is not captured

by the model. Thus the residuals from banks of the same region or in

neighbouring regions may be correlated. Testing for autocorrelation in

this case would be rather more complex than in the time series context,

and would involve the construction of a square, symmetric ‘spatial con-

tiguity matrix’ or a ‘distance matrix’. Both of these matrices would be

N × N , where N is the sample size. The former would be a matrix of ze-

ros and ones, with one for element i , j when observation i occurred for

a bank in the same region to, or sufficiently close to, region j and zero

otherwise (i, j = 1, . . . , N ). The distance matrix would comprise elements

that measured the distance (or the inverse of the distance) between bank

i and bank j . A potential solution to a finding of autocorrelated residuals

in such a model would be again to use a model containing a lag struc-

ture, in this case known as a ‘spatial lag’. Further details are contained in

Anselin (1988).

4.6 Assumption 4: the xt are non-stochastic

Fortunately, it turns out that the OLS estimator is consistent and unbiased

in the presence of stochastic regressors, provided that the regressors are

not correlated with the error term of the estimated equation. To see this,

recall that

β̂ = (X ′ X )−1 X ′y and y = Xβ + u (4.42)

Thus

β̂ = (X ′ X )−1 X ′(Xβ + u) (4.43)

β̂ = (X ′ X )−1 X ′ Xβ + (X ′ X )−1 X ′u (4.44)

β̂ = β + (X ′ X )−1 X ′u (4.45)

Taking expectations, and provided that X and u are independent,1

E(β̂) = E(β) + E((X ′ X )−1 X ′u) (4.46)

E(β̂) = β + E[(X ′ X )−1 X ′]E(u) (4.47)

1 A situation where X and u are not independent is discussed at length in chapter 6.
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Since E(u) = 0, this expression will be zero and therefore the estimator is

still unbiased, even if the regressors are stochastic.

However, if one or more of the explanatory variables is contemporane-

ously correlated with the disturbance term, the OLS estimator will not

even be consistent. This results from the estimator assigning explanatory

power to the variables where in reality it is arising from the correlation

between the error term and yt . Suppose for illustration that x2t and ut

are positively correlated. When the disturbance term happens to take a

high value, yt will also be high (because yt = β1 + β2x2t + · · · + ut ). But if

x2t is positively correlated with ut , then x2t is also likely to be high. Thus

the OLS estimator will incorrectly attribute the high value of yt to a high

value of x2t , where in reality yt is high simply because ut is high, which

will result in biased and inconsistent parameter estimates and a fitted

line that appears to capture the features of the data much better than it

does in reality.

4.7 Assumption 5: the disturbances are normally distributed

Recall that the normality assumption (ut ∼ N(0, σ 2)) is required in order

to conduct single or joint hypothesis tests about the model parameters.

4.7.1 Testing for departures from normality

One of the most commonly applied tests for normality is the Bera--Jarque

(hereafter BJ) test. BJ uses the property of a normally distributed random

variable that the entire distribution is characterised by the first two mo-

ments -- the mean and the variance. The standardised third and fourth

moments of a distribution are known as its skewness and kurtosis. Skewness

measures the extent to which a distribution is not symmetric about its

mean value and kurtosis measures how fat the tails of the distribution are.

A normal distribution is not skewed and is defined to have a coefficient

of kurtosis of 3. It is possible to define a coefficient of excess kurtosis,

equal to the coefficient of kurtosis minus 3; a normal distribution will

thus have a coefficient of excess kurtosis of zero. A normal distribution is

symmetric and said to be mesokurtic. To give some illustrations of what a

series having specific departures from normality may look like, consider

figures 4.10 and 4.11.

A normal distribution is symmetric about its mean, while a skewed

distribution will not be, but will have one tail longer than the other, such

as in the right hand part of figure 4.10.
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Figure 4.10 A normal versus a skewed distribution
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Figure 4.11

A leptokurtic versus

a normal distribution

A leptokurtic distribution is one which has fatter tails and is more

peaked at the mean than a normally distributed random variable with

the same mean and variance, while a platykurtic distribution will be less

peaked in the mean, will have thinner tails, and more of the distribution

in the shoulders than a normal. In practice, a leptokurtic distribution

is far more likely to characterise financial (and economic) time series,

and to characterise the residuals from a financial time series model. In

figure 4.11, the leptokurtic distribution is shown by the bold line, with

the normal by the faint line.
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Bera and Jarque (1981) formalise these ideas by testing whether the co-

efficient of skewness and the coefficient of excess kurtosis are jointly zero.

Denoting the errors by u and their variance by σ 2, it can be proved that

the coefficients of skewness and kurtosis can be expressed respectively as

b1 = E[u3](
σ 2

)3/2
and b2 = E[u4](

σ 2
)2

(4.48)

The kurtosis of the normal distribution is 3 so its excess kurtosis (b2 − 3)

is zero.

The Bera--Jarque test statistic is given by

W = T

[
b2

1

6
+ (b2 − 3)2

24

]
(4.49)

where T is the sample size. The test statistic asymptotically follows a χ2(2)

under the null hypothesis that the distribution of the series is symmetric

and mesokurtic.

b1 and b2 can be estimated using the residuals from the OLS regression,

û. The null hypothesis is of normality, and this would be rejected if the

residuals from the model were either significantly skewed or leptokurtic/

platykurtic (or both).

4.7.2 Testing for non-normality using EViews

The Bera--Jarque normality tests results can be viewed by selecting

View/Residual Tests/Histogram – Normality Test. The statistic has a χ2

distribution with 2 degrees of freedom under the null hypothesis of nor-

mally distributed errors. If the residuals are normally distributed, the

histogram should be bell-shaped and the Bera--Jarque statistic would not

be significant. This means that the p-value given at the bottom of the

normality test screen should be bigger than 0.05 to not reject the null of

normality at the 5% level. In the example of the Microsoft regression, the

screen would appear as in screenshot 4.2.

In this case, the residuals are very negatively skewed and are leptokurtic.

Hence the null hypothesis for residual normality is rejected very strongly

(the p-value for the BJ test is zero to six decimal places), implying that

the inferences we make about the coefficient estimates could be wrong,

although the sample is probably just about large enough that we need be

less concerned than we would be with a small sample. The non-normality

in this case appears to have been caused by a small number of very

large negative residuals representing monthly stock price falls of more

than −25%.
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Screenshot 4.2

Non-normality test

results

4.7.3 What should be done if evidence of non-normality is found?

It is not obvious what should be done! It is, of course, possible to em-

ploy an estimation method that does not assume normality, but such a

method may be difficult to implement, and one can be less sure of its

properties. It is thus desirable to stick with OLS if possible, since its be-

haviour in a variety of circumstances has been well researched. For sample

sizes that are sufficiently large, violation of the normality assumption is

virtually inconsequential. Appealing to a central limit theorem, the test

statistics will asymptotically follow the appropriate distributions even in

the absence of error normality.2

In economic or financial modelling, it is quite often the case that one

or two very extreme residuals cause a rejection of the normality assump-

tion. Such observations would appear in the tails of the distribution, and

would therefore lead u4, which enters into the definition of kurtosis, to

be very large. Such observations that do not fit in with the pattern of the

remainder of the data are known as outliers. If this is the case, one way

2 The law of large numbers states that the average of a sample (which is a random

variable) will converge to the population mean (which is fixed), and the central limit

theorem states that the sample mean converges to a normal distribution.
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to improve the chances of error normality is to use dummy variables or

some other method to effectively remove those observations.

In the time series context, suppose that a monthly model of asset re-

turns from 1980--90 had been estimated, and the residuals plotted, and

that a particularly large outlier has been observed for October 1987, shown

in figure 4.12.

A new variable called D87M10t could be defined as

D87M10t = 1 during October 1987 and zero otherwise

The observations for the dummy variable would appear as in box 4.6.

The dummy variable would then be used just like any other variable in

the regression model, e.g.

yt = β1 + β2x2t + β3x3t + β4 D87M10t + ut (4.50)

Box 4.6 Observations for the dummy variable

Time Value of dummy variable D87M10t

1986M12 0

1987M01 0
...

...

1987M09 0

1987M10 1

1987M11 0
...

...
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Figure 4.13

Possible effect of an

outlier on OLS

estimation

This type of dummy variable that takes the value one for only a single

observation has an effect exactly equivalent to knocking out that obser-

vation from the sample altogether, by forcing the residual for that obser-

vation to zero. The estimated coefficient on the dummy variable will be

equal to the residual that the dummied observation would have taken if

the dummy variable had not been included.

However, many econometricians would argue that dummy variables to

remove outlying residuals can be used to artificially improve the charac-

teristics of the model -- in essence fudging the results. Removing outlying

observations will reduce standard errors, reduce the RSS, and therefore

increase R2, thus improving the apparent fit of the model to the data.

The removal of observations is also hard to reconcile with the notion in

statistics that each data point represents a useful piece of information.

The other side of this argument is that observations that are ‘a long

way away’ from the rest, and seem not to fit in with the general pattern

of the rest of the data are known as outliers. Outliers can have a serious

effect on coefficient estimates, since by definition, OLS will receive a big

penalty, in the form of an increased RSS, for points that are a long way

from the fitted line. Consequently, OLS will try extra hard to minimise

the distances of points that would have otherwise been a long way from

the line. A graphical depiction of the possible effect of an outlier on OLS

estimation, is given in figure 4.13.

In figure 4.13, one point is a long way away from the rest. If this point

is included in the estimation sample, the fitted line will be the dotted

one, which has a slight positive slope. If this observation were removed,

the full line would be the one fitted. Clearly, the slope is now large and

negative. OLS would not select this line if the outlier is included since the
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observation is a long way from the others and hence when the residual

(the distance from the point to the fitted line) is squared, it would lead to

a big increase in the RSS. Note that outliers could be detected by plotting

y against x only in the context of a bivariate regression. In the case where

there are more explanatory variables, outliers are easiest identified by

plotting the residuals over time, as in figure 4.12, etc.

So, it can be seen that a trade-off potentially exists between the need

to remove outlying observations that could have an undue impact on the

OLS estimates and cause residual non-normality on the one hand, and the

notion that each data point represents a useful piece of information on

the other. The latter is coupled with the fact that removing observations

at will could artificially improve the fit of the model. A sensible way to

proceed is by introducing dummy variables to the model only if there is

both a statistical need to do so and a theoretical justification for their

inclusion. This justification would normally come from the researcher’s

knowledge of the historical events that relate to the dependent variable

and the model over the relevant sample period. Dummy variables may

be justifiably used to remove observations corresponding to ‘one-off’ or

extreme events that are considered highly unlikely to be repeated, and

the information content of which is deemed of no relevance for the data

as a whole. Examples may include stock market crashes, financial panics,

government crises, and so on.

Non-normality in financial data could also arise from certain types of

heteroscedasticity, known as ARCH -- see chapter 8. In this case, the non-

normality is intrinsic to all of the data and therefore outlier removal

would not make the residuals of such a model normal.

Another important use of dummy variables is in the modelling of sea-

sonality in financial data, and accounting for so-called ‘calendar anoma-

lies’, such as day-of-the-week effects and weekend effects. These are dis-

cussed in chapter 9.

4.7.4 Dummy variable construction and use in EViews

As we saw from the plot of the distribution above, the non-normality in

the residuals from the Microsoft regression appears to have been caused

by a small number of outliers in the regression residuals. Such events

can be identified if it is present by plotting the actual values, the fitted

values and the residuals of the regression. This can be achieved in EViews

by selecting View/Actual, Fitted, Residual/Actual, Fitted, Residual Graph.

The plot should look as in screenshot 4.3.

From the graph, it can be seen that there are several large (negative)

outliers, but the largest of all occur in early 1998 and early 2003. All of the
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Screenshot 4.3

Regression

residuals, actual

values and fitted

series

large outliers correspond to months where the actual return was much

smaller (i.e. more negative) than the model would have predicted. Inter-

estingly, the residual in October 1987 is not quite so prominent because

even though the stock price fell, the market index value fell as well, so

that the stock price fall was at least in part predicted (this can be seen by

comparing the actual and fitted values during that month).

In order to identify the exact dates that the biggest outliers were re-

alised, we could use the shading option by right clicking on the graph

and selecting the ‘add lines & shading’ option. But it is probably easier to

just examine a table of values for the residuals, which can be achieved by

selecting View/Actual, Fitted, Residual/Actual, Fitted, Residual Table. If we

do this, it is evident that the two most extreme residuals (with values to

the nearest integer) were in February 1998 (−68) and February 2003 (−67).

As stated above, one way to remove big outliers in the data is by using

dummy variables. It would be tempting, but incorrect, to construct one

dummy variable that takes the value 1 for both Feb 98 and Feb 03, but

this would not have the desired effect of setting both residuals to zero. In-

stead, to remove two outliers requires us to construct two separate dummy
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variables. In order to create the Feb 98 dummy first, we generate a series

called ‘FEB98DUM’ that will initially contain only zeros. Generate this se-

ries (hint: you can use ‘Quick/Generate Series’ and then type in the box

‘FEB98DUM = 0’). Double click on the new object to open the spreadsheet

and turn on the editing mode by clicking ‘Edit +/−’ and input a single 1

in the cell that corresponds to February 1998. Leave all other cell entries

as zeros.

Once this dummy variable has been created, repeat the process above to

create another dummy variable called ‘FEB03DUM’ that takes the value

1 in February 2003 and zero elsewhere and then rerun the regression

including all the previous variables plus these two dummy variables. This

can most easily be achieved by clicking on the ‘Msoftreg’ results object,

then the Estimate button and adding the dummy variables to the end of

the variable list. The full list of variables is

ermsoft c ersandp dprod dcredit dinflation dmoney dspread rterm

feb98dum feb03dum

and the results of this regression are as in the following table.

Dependent Variable: ERMSOFT

Method: Least Squares

Date: 08/29/07 Time: 09:11

Sample (adjusted): 1986M05 2007M04

Included observations: 252 after adjustments

Coefficient Std. Error t-Statistic Prob.

C −0.086606 1.315194 −0.065850 0.9476

ERSANDP 1.547971 0.183945 8.415420 0.0000

DPROD 0.455015 0.451875 1.006948 0.315

DCREDIT −5.92E-05 0.000145 −0.409065 0.6829

DINFLATION 4.913297 2.685659 1.829457 0.0686

DMONEY −1.430608 0.644601 −2.219369 0.0274

DSPREAD 8.624895 12.22705 0.705395 0.4812

RTERM 6.893754 2.993982 2.302537 0.0222

FEB98DUM −69.14177 12.68402 −5.451093 0.0000

FEB03DUM −68.24391 12.65390 −5.393113 0.0000

R-squared 0.358962 Mean dependent var −0.420803

Adjusted R-squared 0.335122 S.D. dependent var 15.41135

S.E. of regression 12.56643 Akaike info criterion 7.938808

Sum squared resid 38215.45 Schwarz criterion 8.078865

Log likelihood −990.2898 Hannan-Quinn criter. 7.995164

F-statistic 15.05697 Durbin-Watson stat 2.142031

Prob(F-statistic) 0.000000
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Note that the dummy variable parameters are both highly significant and

take approximately the values that the corresponding residuals would

have taken if the dummy variables had not been included in the model.3

By comparing the results with those of the regression above that excluded

the dummy variables, it can be seen that the coefficient estimates on the

remaining variables change quite a bit in this instance and the signifi-

cances improve considerably. The term structure and money supply pa-

rameters are now both significant at the 5% level, and the unexpected

inflation parameter is now significant at the 10% level. The R2 value has

risen from 0.20 to 0.36 because of the perfect fit of the dummy variables

to those two extreme outlying observations.

Finally, if we re-examine the normality test results by clicking

View/Residual Tests/Histogram – Normality Test, we will see that while

the skewness and kurtosis are both slightly closer to the values that they

would take under normality, the Bera--Jarque test statistic still takes a

value of 829 (compared with over 1000 previously). We would thus con-

clude that the residuals are still a long way from following a normal

distribution. While it would be possible to continue to generate dummy

variables, there is a limit to the extent to which it would be desirable to do

so. With this particular regression, we are unlikely to be able to achieve a

residual distribution that is close to normality without using an excessive

number of dummy variables. As a rule of thumb, in a monthly sample

with 252 observations, it is reasonable to include, perhaps, two or three

dummy variables, but more would probably be excessive.

4.8 Multicollinearity

An implicit assumption that is made when using the OLS estimation

method is that the explanatory variables are not correlated with one an-

other. If there is no relationship between the explanatory variables, they

would be said to be orthogonal to one another. If the explanatory variables

were orthogonal to one another, adding or removing a variable from a

regression equation would not cause the values of the coefficients on the

other variables to change.

In any practical context, the correlation between explanatory variables

will be non-zero, although this will generally be relatively benign in the

3 Note the inexact correspondence between the values of the residuals and the values of

the dummy variable parameters because two dummies are being used together; had we

included only one dummy, the value of the dummy variable coefficient and that which

the residual would have taken would be identical.
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sense that a small degree of association between explanatory variables

will almost always occur but will not cause too much loss of precision.

However, a problem occurs when the explanatory variables are very highly

correlated with each other, and this problem is known as multicollinearity.

It is possible to distinguish between two classes of multicollinearity: per-

fect multicollinearity and near multicollinearity.

Perfect multicollinearity occurs when there is an exact relationship be-

tween two or more variables. In this case, it is not possible to estimate all

of the coefficients in the model. Perfect multicollinearity will usually be

observed only when the same explanatory variable is inadvertently used

twice in a regression. For illustration, suppose that two variables were

employed in a regression function such that the value of one variable was

always twice that of the other (e.g. suppose x3 = 2x2). If both x3 and x2

were used as explanatory variables in the same regression, then the model

parameters cannot be estimated. Since the two variables are perfectly re-

lated to one another, together they contain only enough information to

estimate one parameter, not two. Technically, the difficulty would occur

in trying to invert the (X ′ X ) matrix since it would not be of full rank

(two of the columns would be linearly dependent on one another), so

that the inverse of (X ′ X ) would not exist and hence the OLS estimates

β̂ = (X ′ X )−1 X ′y could not be calculated.

Near multicollinearity is much more likely to occur in practice, and would

arise when there was a non-negligible, but not perfect, relationship be-

tween two or more of the explanatory variables. Note that a high correla-

tion between the dependent variable and one of the independent variables

is not multicollinearity.

Visually, we could think of the difference between near and perfect

multicollinearity as follows. Suppose that the variables x2t and x3t were

highly correlated. If we produced a scatter plot of x2t against x3t , then

perfect multicollinearity would correspond to all of the points lying ex-

actly on a straight line, while near multicollinearity would correspond to

the points lying close to the line, and the closer they were to the line

(taken altogether), the stronger would be the relationship between the

two variables.

4.8.1 Measuring near multicollinearity

Testing for multicollinearity is surprisingly difficult, and hence all that

is presented here is a simple method to investigate the presence or

otherwise of the most easily detected forms of near multicollinear-

ity. This method simply involves looking at the matrix of correlations
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between the individual variables. Suppose that a regression equation has

three explanatory variables (plus a constant term), and that the pair-wise

correlations between these explanatory variables are.

corr x2 x3 x4

x2 -- 0.2 0.8

x3 0.2 -- 0.3

x4 0.8 0.3 --

Clearly, if multicollinearity was suspected, the most likely culprit would

be a high correlation between x2 and x4. Of course, if the relationship

involves three or more variables that are collinear -- e.g. x2 + x3 ≈ x4 --

then multicollinearity would be very difficult to detect.

4.8.2 Problems if near multicollinearity is present but ignored

First, R2 will be high but the individual coefficients will have high stan-

dard errors, so that the regression ‘looks good’ as a whole4, but the in-

dividual variables are not significant. This arises in the context of very

closely related explanatory variables as a consequence of the difficulty in

observing the individual contribution of each variable to the overall fit

of the regression. Second, the regression becomes very sensitive to small

changes in the specification, so that adding or removing an explanatory

variable leads to large changes in the coefficient values or significances of

the other variables. Finally, near multicollinearity will thus make confi-

dence intervals for the parameters very wide, and significance tests might

therefore give inappropriate conclusions, and so make it difficult to draw

sharp inferences.

4.8.3 Solutions to the problem of multicollinearity

A number of alternative estimation techniques have been proposed that

are valid in the presence of multicollinearity -- for example, ridge re-

gression, or principal components. Principal components analysis was dis-

cussed briefly in an appendix to the previous chapter. Many researchers

do not use these techniques, however, as they can be complex, their prop-

erties are less well understood than those of the OLS estimator and, above

all, many econometricians would argue that multicollinearity is more a

problem with the data than with the model or estimation method.

4 Note that multicollinearity does not affect the value of R2 in a regression.
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Other, more ad hoc methods for dealing with the possible existence of

near multicollinearity include:

● Ignore it, if the model is otherwise adequate, i.e. statistically and in

terms of each coefficient being of a plausible magnitude and having an

appropriate sign. Sometimes, the existence of multicollinearity does not

reduce the t -ratios on variables that would have been significant without

the multicollinearity sufficiently to make them insignificant. It is worth

stating that the presence of near multicollinearity does not affect the

BLUE properties of the OLS estimator -- i.e. it will still be consistent,

unbiased and efficient since the presence of near multicollinearity does

not violate any of the CLRM assumptions 1--4. However, in the presence

of near multicollinearity, it will be hard to obtain small standard errors.

This will not matter if the aim of the model-building exercise is to

produce forecasts from the estimated model, since the forecasts will

be unaffected by the presence of near multicollinearity so long as this

relationship between the explanatory variables continues to hold over

the forecasted sample.

● Drop one of the collinear variables, so that the problem disappears.

However, this may be unacceptable to the researcher if there were strong

a priori theoretical reasons for including both variables in the model.

Also, if the removed variable was relevant in the data generating process

for y, an omitted variable bias would result (see section 4.10).

● Transform the highly correlated variables into a ratio and include

only the ratio and not the individual variables in the regression.

Again, this may be unacceptable if financial theory suggests that

changes in the dependent variable should occur following changes in

the individual explanatory variables, and not a ratio of them.

● Finally, as stated above, it is also often said that near multicollinear-

ity is more a problem with the data than with the model, so that there

is insufficient information in the sample to obtain estimates for all

of the coefficients. This is why near multicollinearity leads coefficient

estimates to have wide standard errors, which is exactly what would

happen if the sample size were small. An increase in the sample size

will usually lead to an increase in the accuracy of coefficient estimation

and consequently a reduction in the coefficient standard errors, thus

enabling the model to better dissect the effects of the various explana-

tory variables on the explained variable. A further possibility, therefore,

is for the researcher to go out and collect more data -- for example,

by taking a longer run of data, or switching to a higher frequency of
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sampling. Of course, it may be infeasible to increase the sample size

if all available data is being utilised already. A further method of in-

creasing the available quantity of data as a potential remedy for near

multicollinearity would be to use a pooled sample. This would involve

the use of data with both cross-sectional and time series dimensions (see

chapter 10).

4.8.4 Multicollinearity in EViews

For the Microsoft stock return example given above previously, a correla-

tion matrix for the independent variables can be constructed in EViews

by clicking Quick/Group Statistics/Correlations and then entering the

list of regressors (not including the regressand) in the dialog box that

appears:

ersandp dprod dcredit dinflation dmoney dspread rterm

A new window will be displayed that contains the correlation matrix of

the series in a spreadsheet format:

ERSANDP DPROD DCREDIT DINFLATION DMONEY DSPREAD RTERM

ERSANDP 1.000000 −0.096173 −0.012885 −0.013025 −0.033632 −0.038034 0.013764

DPROD −0.096173 1.000000 −0.002741 0.168037 0.121698 −0.073796 −0.042486

DCREDIT −0.012885 −0.002741 1.000000 0.071330 0.035290 0.025261 −0.062432

DINFLATION −0.013025 0.168037 0.071330 1.000000 0.006702 −0.169399 −0.006518

DMONEY −0.033632 0.121698 0.035290 0.006702 1.000000 −0.075082 0.170437

DSPREAD −0.038034 −0.073796 0.025261 −0.169399 −0.075082 1.000000 0.018458

RTERM 0.013764 −0.042486 −0.062432 −0.006518 0.170437 0.018458 1.000000

Do the results indicate any significant correlations between the inde-

pendent variables? In this particular case, the largest observed correlation

is 0.17 between the money supply and term structure variables and this

is sufficiently small that it can reasonably be ignored.

4.9 Adopting the wrong functional form

A further implicit assumption of the classical linear regression model is

that the appropriate ‘functional form’ is linear. This means that the ap-

propriate model is assumed to be linear in the parameters, and that in

the bivariate case, the relationship between y and x can be represented

by a straight line. However, this assumption may not always be upheld.

Whether the model should be linear can be formally tested using Ramsey’s

(1969) RESET test, which is a general test for misspecification of functional
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form. Essentially, the method works by using higher order terms of the

fitted values (e.g. ŷ2
t , ŷ3

t , etc.) in an auxiliary regression. The auxiliary re-

gression is thus one where yt , the dependent variable from the original

regression, is regressed on powers of the fitted values together with the

original explanatory variables

yt = α1 + α2 ŷ2
t + α3 ŷ3

t + · · · + αp ŷ p
t +

∑
βi xi t + vt (4.51)

Higher order powers of the fitted values of y can capture a variety

of non-linear relationships, since they embody higher order powers and

cross-products of the original explanatory variables, e.g.

ŷ2
t = (β̂1 + β̂2x2t + β̂3x3t + · · · + β̂k xkt )

2 (4.52)

The value of R2 is obtained from the regression (4.51), and the test statis-

tic, given by TR2, is distributed asymptotically as a χ2(p − 1). Note that

the degrees of freedom for this test will be (p − 1) and not p. This arises

because p is the highest order term in the fitted values used in the aux-

iliary regression and thus the test will involve p − 1 terms, one for the

square of the fitted value, one for the cube, . . . , one for the pth power. If

the value of the test statistic is greater than the χ2 critical value, reject

the null hypothesis that the functional form was correct.

4.9.1 What if the functional form is found to be inappropriate?

One possibility would be to switch to a non-linear model, but the RESET

test presents the user with no guide as to what a better specification might

be! Also, non-linear models in the parameters typically preclude the use

of OLS, and require the use of a non-linear estimation technique. Some

non-linear models can still be estimated using OLS, provided that they are

linear in the parameters. For example, if the true model is of the form

yt = β1 + β2x2t + β3x2
2t + β4x3

2t + ut (4.53)

-- that is, a third order polynomial in x -- and the researcher assumes that

the relationship between yt and xt is linear (i.e. x2
2t and x3

2t are missing

from the specification), this is simply a special case of omitted variables,

with the usual problems (see section 4.10) and obvious remedy.

However, the model may be multiplicatively non-linear. A second possi-

bility that is sensible in this case would be to transform the data into

logarithms. This will linearise many previously multiplicative models

into additive ones. For example, consider again the exponential growth

model

yt = β1xβ2

t ut (4.54)
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Taking logs, this becomes

ln(yt ) = ln(β1) + β2 ln(xt ) + ln(ut ) (4.55)

or

Yt = α + β2 Xt + vt (4.56)

where Yt = ln(yt ), α = ln(β1), Xt = ln(xt ), vt = ln(ut ). Thus a simple loga-

rithmic transformation makes this model a standard linear bivariate re-

gression equation that can be estimated using OLS.

Loosely following the treatment given in Stock and Watson (2006), the

following list shows four different functional forms for models that are

either linear or can be made linear following a logarithmic transformation

to one or more of the dependent or independent variables, examining only

a bivariate specification for simplicity. Care is needed when interpreting

the coefficient values in each case.

(1) Linear model: yt = β1 + β2x2t + ut ; a 1-unit increase in x2t causes a β2-

unit increase in yt .

x2t

yt

(2) Log-linear: ln(yt ) = β1 + β2x2t + ut ; a 1-unit increase in x2t causes a

100 × β2% increase in yt .

x2t

ln yt

x2t

yt
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(3) Linear-log: yt = β1 + β2ln(x2t ) + ut ; a 1% increase in x2t causes a 0.01 ×
β2-unit increase in yt .

yt

In(x2t) x2t

yt

(4) Double log: ln(yt ) = β1 + β2ln(x2t ) + ut ; a 1% increase in x2t causes a β2%

increase in yt . Note that to plot y against x2 would be more complex

since the shape would depend on the size of β2.

ln(yt)

In(x2t)

Note also that we cannot use R2 or adjusted R2 to determine which

of these four types of model is most appropriate since the dependent

variables are different across some of the models.

4.9.2 RESET tests using EViews

Using EViews, the Ramsey RESET test is found in the View menu of the

regression window (for ‘Msoftreg’) under Stability tests/Ramsey RESET

test. . . . EViews will prompt you for the ‘number of fitted terms’, equivalent

to the number of powers of the fitted value to be used in the regression;

leave the default of 1 to consider only the square of the fitted values. The

Ramsey RESET test for this regression is in effect testing whether the rela-

tionship between the Microsoft stock excess returns and the explanatory
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variables is linear or not. The results of this test for one fitted term are

shown in the following table.

Ramsey RESET Test:

F-statistic 1.603573 Prob. F(1,241) 0.2066

Log likelihood ratio 1.671212 Prob. Chi-Square(1) 0.1961

Test Equation:

Dependent Variable: ERMSOFT

Method: Least Squares

Date: 08/29/07 Time: 09:54

Sample: 1986M05 2007M04

Included observations: 252

Coefficient Std. Error t-Statistic Prob.

C −0.531288 1.359686 −0.390743 0.6963

ERSANDP 1.639661 0.197469 8.303368 0.0000

DPROD 0.487139 0.452025 1.077681 0.2823

DCREDIT −5.99E-05 0.000144 −0.414772 0.6787

DINFLATION 5.030282 2.683906 1.874239 0.0621

DMONEY −1.413747 0.643937 −2.195475 0.0291

DSPREAD 8.488655 12.21231 0.695090 0.4877

RTERM 6.692483 2.994476 2.234943 0.0263

FEB89DUM −94.39106 23.62309 −3.995712 0.0001

FEB03DUM −105.0831 31.71804 −3.313037 0.0011

FITTED∧2 0.007732 0.006106 1.266323 0.2066

R-squared 0.363199 Mean dependent var −0.420803

Adjusted R-squared 0.336776 S.D. dependent var 15.41135

S.E. of regression 12.55078 Akaike info criterion 7.940113

Sum squared resid 37962.85 Schwarz criterion 8.094175

Log likelihood −989.4542 Hannan-Quinn criter. 8.002104

F-statistic 13.74543 Durbin-Watson stat 2.090304

Prob(F-statistic) 0.000000

Both F− and χ2 versions of the test are presented, and it can be seen

that there is no apparent non-linearity in the regression equation and so

it would be concluded that the linear model for the Microsoft returns is

appropriate.

4.10 Omission of an important variable

What would be the effects of excluding from the estimated regression a

variable that is a determinant of the dependent variable? For example,
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suppose that the true, but unknown, data generating process is repre-

sented by

yt = β1 + β2 x2t + β3 x3t + β4 x4t + β5 x5t + ut (4.57)

but the researcher estimated a model of the form

yt = β1 + β2 x2t + β3 x3t + β4 x4t + ut (4.58)

so that the variable x5t is omitted from the model. The consequence would

be that the estimated coefficients on all the other variables will be biased

and inconsistent unless the excluded variable is uncorrelated with all

the included variables. Even if this condition is satisfied, the estimate of

the coefficient on the constant term will be biased, which would imply

that any forecasts made from the model would be biased. The standard

errors will also be biased (upwards), and hence hypothesis tests could yield

inappropriate inferences. Further intuition is offered in Dougherty (1992,

pp. 168--73).

4.11 Inclusion of an irrelevant variable

Suppose now that the researcher makes the opposite error to section 4.10,

i.e. that the true DGP was represented by

yt = β1 + β2 x2t + β3 x3t + β4 x4t + ut (4.59)

but the researcher estimates a model of the form

yt = β1 + β2 x2t + β3 x3t + β4 x4t + β5 x5t + ut (4.60)

thus incorporating the superfluous or irrelevant variable x5t . As x5t is

irrelevant, the expected value of β5 is zero, although in any practical

application, its estimated value is very unlikely to be exactly zero. The

consequence of including an irrelevant variable would be that the coeffi-

cient estimators would still be consistent and unbiased, but the estima-

tors would be inefficient. This would imply that the standard errors for

the coefficients are likely to be inflated relative to the values which they

would have taken if the irrelevant variable had not been included. Vari-

ables which would otherwise have been marginally significant may no

longer be so in the presence of irrelevant variables. In general, it can also

be stated that the extent of the loss of efficiency will depend positively

on the absolute value of the correlation between the included irrelevant

variable and the other explanatory variables.
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Summarising the last two sections it is evident that when trying to

determine whether to err on the side of including too many or too few

variables in a regression model, there is an implicit trade-off between in-

consistency and efficiency; many researchers would argue that while in an

ideal world, the model will incorporate precisely the correct variables -- no

more and no less -- the former problem is more serious than the latter and

therefore in the real world, one should err on the side of incorporating

marginally significant variables.

4.12 Parameter stability tests

So far, regressions of a form such as

yt = β1 + β2x2t + β3x3t + ut (4.61)

have been estimated. These regressions embody the implicit assumption

that the parameters (β1, β2 and β3) are constant for the entire sample, both

for the data period used to estimate the model, and for any subsequent

period used in the construction of forecasts.

This implicit assumption can be tested using parameter stability tests.

The idea is essentially to split the data into sub-periods and then to esti-

mate up to three models, for each of the sub-parts and for all the data

and then to ‘compare’ the RSS of each of the models. There are two types

of test that will be considered, namely the Chow (analysis of variance) test

and predictive failure tests.

4.12.1 The Chow test

The steps involved are shown in box 4.7.

Box 4.7 Conducting a Chow test

(1) Split the data into two sub-periods. Estimate the regression over the whole period

and then for the two sub-periods separately (3 regressions). Obtain the RSS for

each regression.

(2) The restricted regression is now the regression for the whole period while the

‘unrestricted regression’ comes in two parts: one for each of the sub-samples. It is

thus possible to form an F-test, which is based on the difference between the

RSSs. The statistic is

test statistic = RSS − ( RSS1 + RSS2)

RSS1 + RSS2

× T − 2k

k
(4.62)

where RSS = residual sum of squares for whole sample
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RSS1 = residual sum of squares for sub-sample 1

RSS2 = residual sum of squares for sub-sample 2

T = number of observations

2k = number of regressors in the ‘unrestricted’ regression (since it comes in two

parts)

k = number of regressors in (each) ‘unrestricted’ regression

The unrestricted regression is the one where the restriction has not been imposed

on the model. Since the restriction is that the coefficients are equal across the

sub-samples, the restricted regression will be the single regression for the whole

sample. Thus, the test is one of how much the residual sum of squares for

the whole sample (RSS) is bigger than the sum of the residual sums of squares for

the two sub-samples (RSS1 + RSS2). If the coefficients do not change much

between the samples, the residual sum of squares will not rise much upon

imposing the restriction. Thus the test statistic in (4.62) can be considered a

straightforward application of the standard F-test formula discussed in chapter 3.

The restricted residual sum of squares in (4.62) is RSS, while the unrestricted

residual sum of squares is (RSS1 + RSS2). The number of restrictions is equal to the

number of coefficients that are estimated for each of the regressions, i.e. k. The

number of regressors in the unrestricted regression (including the constants) is 2k,

since the unrestricted regression comes in two parts, each with k regressors.

(3) Perform the test. If the value of the test statistic is greater than the critical value

from the F-distribution, which is an F(k, T −2k), then reject the null hypothesis that

the parameters are stable over time.

Note that it is also possible to use a dummy variables approach to calcu-

lating both Chow and predictive failure tests. In the case of the Chow test,

the unrestricted regression would contain dummy variables for the inter-

cept and for all of the slope coefficients (see also chapter 9). For example,

suppose that the regression is of the form

yt = β1 + β2x2t + β3x3t + ut (4.63)

If the split of the total of T observations is made so that the sub-samples

contain T1 and T2 observations (where T1 + T2 = T ), the unrestricted re-

gression would be given by

yt = β1 + β2x2t + β3x3t + β4 Dt + β5 Dt x2t + β6 Dt x3t + vt (4.64)

where Dt = 1 for t ∈ T1 and zero otherwise. In other words, Dt takes the

value one for observations in the first sub-sample and zero for observations

in the second sub-sample. The Chow test viewed in this way would then be

a standard F-test of the joint restriction H0: β4 = 0 and β5 = 0 and β6 = 0,

with (4.64) and (4.63) being the unrestricted and restricted regressions,

respectively.
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Example 4.4

Suppose that it is now January 1993. Consider the following regression

for the standard CAPM β for the returns on a stock

rgt = α + βrMt + ut (4.65)

where rgt and rMt are excess returns on Glaxo shares and on a market

portfolio, respectively. Suppose that you are interested in estimating beta

using monthly data from 1981 to 1992, to aid a stock selection decision.

Another researcher expresses concern that the October 1987 stock market

crash fundamentally altered the risk--return relationship. Test this conjec-

ture using a Chow test. The model for each sub-period is

1981M1--1987M10

r̂gt = 0.24 + 1.2rMt T = 82 RSS1 = 0.03555 (4.66)

1987M11--1992M12

r̂gt = 0.68 + 1.53rMt T = 62 RSS2 = 0.00336 (4.67)

1981M1--1992M12

r̂gt = 0.39 + 1.37rMt T = 144 RSS = 0.0434 (4.68)

The null hypothesis is

H0 : α1 = α2 and β1 = β2

where the subscripts 1 and 2 denote the parameters for the first and

second sub-samples, respectively. The test statistic will be given by

test statistic = 0.0434 − (0.0355 + 0.00336)

0.0355 + 0.00336
× 144 − 4

2
(4.69)

= 7.698

The test statistic should be compared with a 5%, F (2,140) = 3.06. H0 is

rejected at the 5% level and hence it is concluded that the restriction

that the coefficients are the same in the two periods cannot be employed.

The appropriate modelling response would probably be to employ only

the second part of the data in estimating the CAPM beta relevant for

investment decisions made in early 1993.

4.12.2 The predictive failure test

A problem with the Chow test is that it is necessary to have enough data

to do the regression on both sub-samples, i.e. T1 � k, T2 � k. This may not
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hold in the situation where the total number of observations available is

small. Even more likely is the situation where the researcher would like

to examine the effect of splitting the sample at some point very close to

the start or very close to the end of the sample. An alternative formula-

tion of a test for the stability of the model is the predictive failure test,

which requires estimation for the full sample and one of the sub-samples

only. The predictive failure test works by estimating the regression over a

‘long’ sub-period (i.e. most of the data) and then using those coefficient

estimates for predicting values of y for the other period. These predic-

tions for y are then implicitly compared with the actual values. Although

it can be expressed in several different ways, the null hypothesis for this

test is that the prediction errors for all of the forecasted observations are

zero.

To calculate the test:

● Run the regression for the whole period (the restricted regression) and

obtain the RSS.

● Run the regression for the ‘large’ sub-period and obtain the RSS (called

RSS1). Note that in this book, the number of observations for the long

estimation sub-period will be denoted by T1 (even though it may come

second). The test statistic is given by

test statistic = RSS − RSS1

RSS1

× T1 − k

T2

(4.70)

where T2 = number of observations that the model is attempting to

‘predict’. The test statistic will follow an F(T2, T1 − k).

For an intuitive interpretation of the predictive failure test statistic for-

mulation, consider an alternative way to test for predictive failure using a

regression containing dummy variables. A separate dummy variable would

be used for each observation that was in the prediction sample. The un-

restricted regression would then be the one that includes the dummy

variables, which will be estimated using all T observations, and will have

(k + T2) regressors (the k original explanatory variables, and a dummy

variable for each prediction observation, i.e. a total of T2 dummy vari-

ables). Thus the numerator of the last part of (4.70) would be the total

number of observations (T ) minus the number of regressors in the unre-

stricted regression (k + T2). Noting also that T − (k + T2) = (T1 − k), since

T1 + T2 = T, this gives the numerator of the last term in (4.70). The re-

stricted regression would then be the original regression containing the

explanatory variables but none of the dummy variables. Thus the number
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of restrictions would be the number of observations in the prediction

period, which would be equivalent to the number of dummy variables

included in the unrestricted regression, T2.

To offer an illustration, suppose that the regression is again of the form

of (4.63), and that the last three observations in the sample are used for

a predictive failure test. The unrestricted regression would include three

dummy variables, one for each of the observations in T2

rgt = α + βrMt + γ1 D1t + γ2 D2t + γ3 D3t + ut (4.71)

where D1t = 1 for observation T − 2 and zero otherwise, D2t = 1 for

observation T − 1 and zero otherwise, D3t = 1 for observation T and zero

otherwise. In this case, k = 2, and T2 = 3. The null hypothesis for the

predictive failure test in this regression is that the coefficients on all of

the dummy variables are zero (i.e. H0 : γ1 = 0 and γ2 = 0 and γ3 = 0). Both

approaches to conducting the predictive failure test described above are

equivalent, although the dummy variable regression is likely to take more

time to set up.

However, for both the Chow and the predictive failure tests, the dummy

variables approach has the one major advantage that it provides the

user with more information. This additional information comes from

the fact that one can examine the significances of the coefficients on

the individual dummy variables to see which part of the joint null hy-

pothesis is causing a rejection. For example, in the context of the Chow

regression, is it the intercept or the slope coefficients that are signifi-

cantly different across the two sub-samples? In the context of the pre-

dictive failure test, use of the dummy variables approach would show

for which period(s) the prediction errors are significantly different from

zero.

4.12.3 Backward versus forward predictive failure tests

There are two types of predictive failure tests -- forward tests and back-

wards tests. Forward predictive failure tests are where the last few obser-

vations are kept back for forecast testing. For example, suppose that obser-

vations for 1980Q1--2004Q4 are available. A forward predictive failure test

could involve estimating the model over 1980Q1--2003Q4 and forecasting

2004Q1--2004Q4. Backward predictive failure tests attempt to ‘back-cast’

the first few observations, e.g. if data for 1980Q1--2004Q4 are available,

and the model is estimated over 1971Q1--2004Q4 and back-cast 1980Q1--

1980Q4. Both types of test offer further evidence on the stability of the

regression relationship over the whole sample period.
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Example 4.5

Suppose that the researcher decided to determine the stability of the

estimated model for stock returns over the whole sample in example 4.4

by using a predictive failure test of the last two years of observations. The

following models would be estimated:

1981M1--1992M12 (whole sample)

r̂gt = 0.39 + 1.37rMt T = 144 RSS = 0.0434 (4.72)

1981M1--1990M12 (‘long sub-sample’)

r̂gt = 0.32 + 1.31rMt T = 120 RSS1 = 0.0420 (4.73)

Can this regression adequately ‘forecast’ the values for the last two years?

The test statistic would be given by

test statistic = 0.0434 − 0.0420

0.0420
× 120 − 2

24
(4.74)

= 0.164

Compare the test statistic with an F (24,118) = 1.66 at the 5% level. So

the null hypothesis that the model can adequately predict the last few

observations would not be rejected. It would thus be concluded that the

model did not suffer from predictive failure during the 1991M1--1992M12

period.

4.12.4 How can the appropriate sub-parts to use be decided?

As a rule of thumb, some or all of the following methods for selecting

where the overall sample split occurs could be used:

● Plot the dependent variable over time and split the data accordingly to

any obvious structural changes in the series, as illustrated in figure 4.14.
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It is clear that y in figure 4.14 underwent a large fall in its value

around observation 175, and it is possible that this may have caused

a change in its behaviour. A Chow test could be conducted with the

sample split at this observation.

● Split the data according to any known important historical events (e.g. a

stock market crash, change in market microstructure, new government

elected). The argument is that a major change in the underlying envi-

ronment in which y is measured is more likely to cause a structural

change in the model’s parameters than a relatively trivial change.

● Use all but the last few observations and do a forwards predictive failure

test on those.

● Use all but the first few observations and do a backwards predictive failure

test on those.

If a model is good, it will survive a Chow or predictive failure test with

any break date. If the Chow or predictive failure tests are failed, two ap-

proaches could be adopted. Either the model is respecified, for example,

by including additional variables, or separate estimations are conducted

for each of the sub-samples. On the other hand, if the Chow and predictive

failure tests show no rejections, it is empirically valid to pool all of the

data together in a single regression. This will increase the sample size and

therefore the number of degrees of freedom relative to the case where the

sub-samples are used in isolation.

4.12.5 The QLR test

The Chow and predictive failure tests will work satisfactorily if the date

of a structural break in a financial time series can be specified. But more

often, a researcher will not know the break date in advance, or may know

only that it lies within a given range (sub-set) of the sample period. In

such circumstances, a modified version of the Chow test, known as the

Quandt likelihood ratio (QLR) test, named after Quandt (1960), can be used

instead. The test works by automatically computing the usual Chow F -

test statistic repeatedly with different break dates, then the break date

giving the largest F -statistic value is chosen. While the test statistic is

of the F -variety, it will follow a non-standard distribution rather than

an F -distribution since we are selecting the largest from a number of

F -statistics rather than examining a single one.

The test is well behaved only when the range of possible break dates is

sufficiently far from the end points of the whole sample, so it is usual

to ‘‘trim’’ the sample by (typically) 5% at each end. To illustrate, suppose

that the full sample comprises 200 observations; then we would test for
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a structural break between observations 31 and 170 inclusive. The criti-

cal values will depend on how much of the sample is trimmed away, the

number of restrictions under the null hypothesis (the number of regres-

sors in the original regression as this is effectively a Chow test) and the

significance level.

4.12.6 Stability tests based on recursive estimation

An alternative to the QLR test for use in the situation where a researcher

believes that a series may contain a structural break but is unsure of

the date is to perform a recursive estimation. This is sometimes known

as recursive least squares (RLS). The procedure is appropriate only for time-

series data or cross-sectional data that have been ordered in some sensible

way (for example, a sample of annual stock returns, ordered by market

capitalisation). Recursive estimation simply involves starting with a sub-

sample of the data, estimating the regression, then sequentially adding

one observation at a time and re-running the regression until the end of

the sample is reached. It is common to begin the initial estimation with

the very minimum number of observations possible, which will be k + 1.

So at the first step, the model is estimated using observations 1 to k + 1;

at the second step, observations 1 to k + 2 are used and so on; at the final

step, observations 1 to T are used. The final result will be the production

of T − k separate estimates of every parameter in the regression model.

It is to be expected that the parameter estimates produced near the

start of the recursive procedure will appear rather unstable since these

estimates are being produced using so few observations, but the key ques-

tion is whether they then gradually settle down or whether the volatility

continues through the whole sample. Seeing the latter would be an indi-

cation of parameter instability.

It should be evident that RLS in itself is not a statistical test for parame-

ter stability as such, but rather it provides qualitative information which

can be plotted and thus gives a very visual impression of how stable the

parameters appear to be. But two important stability tests, known as the

CUSUM and CUSUMSQ tests, are derived from the residuals of the recur-

sive estimation (known as the recursive residuals).5 The CUSUM statistic

is based on a normalised (i.e. scaled) version of the cumulative sums of

the residuals. Under the null hypothesis of perfect parameter stability, the

CUSUM statistic is zero however many residuals are included in the sum

5 Strictly, the CUSUM and CUSUMSQ statistics are based on the one-step ahead prediction

errors -- i.e. the differences between yt and its predicted value based on the parameters

estimated at time t − 1. See Greene (2002, chapter 7) for full technical details.
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(because the expected value of a disturbance is always zero). A set of ±2

standard error bands is usually plotted around zero and any statistic lying

outside the bands is taken as evidence of parameter instability.

The CUSUMSQ test is based on a normalised version of the cumulative

sums of squared residuals. The scaling is such that under the null hy-

pothesis of parameter stability, the CUSUMSQ statistic will start at zero

and end the sample with a value of 1. Again, a set of ±2 standard error

bands is usually plotted around zero and any statistic lying outside these

is taken as evidence of parameter instability.

4.12.7 Stability tests in EViews

In EViews, to access the Chow test, click on the View/Stability Tests/Chow

Breakpoint Test . . . in the ‘Msoftreg’ regression window. In the new win-

dow that appears, enter the date at which it is believed that a breakpoint

occurred. Input 1996:01 in the dialog box in screenshot 4.4 to split the

sample roughly in half. Note that it is not possible to conduct a Chow

test or a parameter stability test when there are outlier dummy variables

Screenshot 4.4

Chow test for

parameter stability
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in the regression. This occurs because when the sample is split into two

parts, the dummy variable for one of the parts will have values of zero for

all observations, which would thus cause perfect multicollinearity with

the column of ones that is used for the constant term. So ensure that the

Chow test is performed using the regression containing all of the explana-

tory variables except the dummies. By default, EViews allows the values of

all the parameters to vary across the two sub-samples in the unrestricted

regressions, although if we wanted, we could force some of the parameters

to be fixed across the two sub-samples.

EViews gives three versions of the test statistics, as shown in the follow-

ing table.

Chow Breakpoint Test: 1996M01

Null Hypothesis: No breaks at specified breakpoints

Varying regressors: All equation variables

Equation Sample: 1986M05 2007M04

F-statistic 0.581302 Prob. F(8,236) 0.7929

Log likelihood ratio 4.917407 Prob. Chi-Square(8) 0.7664

Wald Statistic 4.650416 Prob. Chi-Square(8) 0.7942

The first version of the test is the familiar F -test, which computes a

restricted version and an unrestricted version of the auxiliary regression

and ‘compares’ the residual sums of squares, while the second and third

versions are based on χ2 formulations. In this case, all three test statistics

are smaller than their critical values and so the null hypothesis that

the parameters are constant across the two sub-samples is not rejected.

Note that the Chow forecast (i.e. the predictive failure) test could also be

employed by clicking on the View/Stability Tests/Chow Forecast Test . . .

in the regression window. Determine whether the model can predict the

last four observations by entering 2007:01 in the dialog box. The results

of this test are given in the following table.

Chow Forecast Test: Forecast from 2007M01 to 2007M04

F-statistic 0.056576 Prob. F(4,240) 0.9940

Log likelihood ratio 0.237522 Prob. Chi-Square(4) 0.9935

The table indicates that the model can indeed adequately predict the

2007 observations. Thus the conclusions from both forms of the test are

that there is no evidence of parameter instability. However, the conclusion

should really be that the parameters are stable with respect to these partic-

ular break dates. It is important to note that for the model to be deemed
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adequate, it needs to be stable with respect to any break dates that we

may choose. A good way to test this is to use one of the tests based on

recursive estimation.

Click on View/Stability Tests/Recursive Estimates (OLS Only). . . . You will

be presented with a menu as shown in screenshot 4.5 containing a number

of options including the CUSUM and CUSUMSQ tests described above and

also the opportunity to plot the recursively estimated coefficients.

Screenshot 4.5

Plotting recursive

coefficient

estimates

First, check the box next to Recursive coefficients and then recur-

sive estimates will be given for all those parameters listed in the ‘Co-

efficient display list’ box, which by default is all of them. Click OK and

you will be presented with eight small figures, one for each parameter,

showing the recursive estimates and ±2 standard error bands around

them. As discussed above, it is bound to take some time for the co-

efficients to stabilise since the first few sets are estimated using such

small samples. Given this, the parameter estimates in all cases are re-

markably stable over time. Now go back to View/Stability Tests/Recursive

Estimates (OLS Only) . . . . and choose CUSUM Test. The resulting graph is in

screenshot 4.6.

Since the line is well within the confidence bands, the conclusion would

be again that the null hypothesis of stability is not rejected. Now repeat

the above but using the CUSUMSQ test rather than CUSUM. Do we retain

the same conclusion? (No) Why?
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4.13 A strategy for constructing econometric models and a
discussion of model-building philosophies

The objective of many econometric model-building exercises is to build a

statistically adequate empirical model which satisfies the assumptions of

the CLRM, is parsimonious, has the appropriate theoretical interpretation,

and has the right ‘shape’ (i.e. all signs on coefficients are ‘correct’ and all

sizes of coefficients are ‘correct’).

But how might a researcher go about achieving this objective? A com-

mon approach to model building is the ‘LSE’ or general-to-specific method-

ology associated with Sargan and Hendry. This approach essentially in-

volves starting with a large model which is statistically adequate and re-

stricting and rearranging the model to arrive at a parsimonious final for-

mulation. Hendry’s approach (see Gilbert, 1986) argues that a good model

is consistent with the data and with theory. A good model will also encom-

pass rival models, which means that it can explain all that rival models

can and more. The Hendry methodology suggests the extensive use of

diagnostic tests to ensure the statistical adequacy of the model.

An alternative philosophy of econometric model-building, which pre-

dates Hendry’s research, is that of starting with the simplest model and

adding to it sequentially so that it gradually becomes more complex

and a better description of reality. This approach, associated principally

with Koopmans (1937), is sometimes known as a ‘specific-to-general’ or
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‘bottoms-up’ modelling approach. Gilbert (1986) termed this the ‘Average

Economic Regression’ since most applied econometric work had been tack-

led in that way. This term was also having a joke at the expense of a top

economics journal that published many papers using such a methodology.

Hendry and his co-workers have severely criticised this approach, mainly

on the grounds that diagnostic testing is undertaken, if at all, almost as

an after-thought and in a very limited fashion. However, if diagnostic tests

are not performed, or are performed only at the end of the model-building

process, all earlier inferences are potentially invalidated. Moreover, if the

specific initial model is generally misspecified, the diagnostic tests them-

selves are not necessarily reliable in indicating the source of the prob-

lem. For example, if the initially specified model omits relevant variables

which are themselves autocorrelated, introducing lags of the included

variables would not be an appropriate remedy for a significant DW test

statistic. Thus the eventually selected model under a specific-to-general

approach could be sub-optimal in the sense that the model selected using

a general-to-specific approach might represent the data better. Under the

Hendry approach, diagnostic tests of the statistical adequacy of the model

come first, with an examination of inferences for financial theory drawn

from the model left until after a statistically adequate model has been

found.

According to Hendry and Richard (1982), a final acceptable model should

satisfy several criteria (adapted slightly here). The model should:

● be logically plausible

● be consistent with underlying financial theory, including satisfying any

relevant parameter restrictions

● have regressors that are uncorrelated with the error term

● have parameter estimates that are stable over the entire sample

● have residuals that are white noise (i.e. completely random and exhibit-

ing no patterns)

● be capable of explaining the results of all competing models and more.

The last of these is known as the encompassing principle. A model that

nests within it a smaller model always trivially encompasses it. But a small

model is particularly favoured if it can explain all of the results of a larger

model; this is known as parsimonious encompassing.

The advantages of the general-to-specific approach are that it is statis-

tically sensible and also that the theory on which the models are based

usually has nothing to say about the lag structure of a model. Therefore,

the lag structure incorporated in the final model is largely determined

by the data themselves. Furthermore, the statistical consequences from
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excluding relevant variables are usually considered more serious than

those from including irrelevant variables.

The general-to-specific methodology is conducted as follows. The first

step is to form a ‘large’ model with lots of variables on the RHS. This is

known as a generalised unrestricted model (GUM), which should originate

from financial theory, and which should contain all variables thought to

influence the dependent variable. At this stage, the researcher is required

to ensure that the model satisfies all of the assumptions of the CLRM.

If the assumptions are violated, appropriate actions should be taken to

address or allow for this, e.g. taking logs, adding lags, adding dummy

variables.

It is important that the steps above are conducted prior to any hypoth-

esis testing. It should also be noted that the diagnostic tests presented

above should be cautiously interpreted as general rather than specific

tests. In other words, rejection of a particular diagnostic test null hypoth-

esis should be interpreted as showing that there is something wrong with

the model. So, for example, if the RESET test or White’s test show a rejec-

tion of the null, such results should not be immediately interpreted as

implying that the appropriate response is to find a solution for inappro-

priate functional form or heteroscedastic residuals, respectively. It is quite

often the case that one problem with the model could cause several as-

sumptions to be violated simultaneously. For example, an omitted variable

could cause failures of the RESET, heteroscedasticity and autocorrelation

tests. Equally, a small number of large outliers could cause non-normality

and residual autocorrelation (if they occur close together in the sample)

and heteroscedasticity (if the outliers occur for a narrow range of the

explanatory variables). Moreover, the diagnostic tests themselves do not

operate optimally in the presence of other types of misspecification since

they essentially assume that the model is correctly specified in all other

respects. For example, it is not clear that tests for heteroscedasticity will

behave well if the residuals are autocorrelated.

Once a model that satisfies the assumptions of the CLRM has been ob-

tained, it could be very big, with large numbers of lags and indepen-

dent variables. The next stage is therefore to reparameterise the model by

knocking out very insignificant regressors. Also, some coefficients may be

insignificantly different from each other, so that they can be combined.

At each stage, it should be checked whether the assumptions of the CLRM

are still upheld. If this is the case, the researcher should have arrived

at a statistically adequate empirical model that can be used for testing

underlying financial theories, forecasting future values of the dependent

variable, or for formulating policies.
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However, needless to say, the general-to-specific approach also has its

critics. For small or moderate sample sizes, it may be impractical. In such

instances, the large number of explanatory variables will imply a small

number of degrees of freedom. This could mean that none of the variables

is significant, especially if they are highly correlated. This being the case, it

would not be clear which of the original long list of candidate regressors

should subsequently be dropped. Moreover, in any case the decision on

which variables to drop may have profound implications for the final

specification of the model. A variable whose coefficient was not significant

might have become significant at a later stage if other variables had been

dropped instead.

In theory, sensitivity of the final specification to the various possible

paths of variable deletion should be carefully checked. However, this could

imply checking many (perhaps even hundreds) of possible specifications. It

could also lead to several final models, none of which appears noticeably

better than the others.

The general-to-specific approach, if followed faithfully to the end, will

hopefully lead to a statistically valid model that passes all of the usual

model diagnostic tests and contains only statistically significant regres-

sors. However, the final model could also be a bizarre creature that is

devoid of any theoretical interpretation. There would also be more than

just a passing chance that such a model could be the product of a statisti-

cally vindicated data mining exercise. Such a model would closely fit the

sample of data at hand, but could fail miserably when applied to other

samples if it is not based soundly on theory.

There now follows another example of the use of the classical linear

regression model in finance, based on an examination of the determinants

of sovereign credit ratings by Cantor and Packer (1996).

4.14 Determinants of sovereign credit ratings

4.14.1 Background

Sovereign credit ratings are an assessment of the riskiness of debt issued

by governments. They embody an estimate of the probability that the bor-

rower will default on her obligation. Two famous US ratings agencies,

Moody’s and Standard and Poor’s, provide ratings for many governments.

Although the two agencies use different symbols to denote the given risk-

iness of a particular borrower, the ratings of the two agencies are com-

parable. Gradings are split into two broad categories: investment grade

and speculative grade. Investment grade issuers have good or adequate

payment capacity, while speculative grade issuers either have a high
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degree of uncertainty about whether they will make their payments, or

are already in default. The highest grade offered by the agencies, for the

highest quality of payment capacity, is ‘triple A’, which Moody’s denotes

‘Aaa’ and Standard and Poor’s denotes ‘AAA’. The lowest grade issued to a

sovereign in the Cantor and Packer sample was B3 (Moody’s) or B− (Stan-

dard and Poor’s). Thus the number of grades of debt quality from the

highest to the lowest given to governments in their sample is 16.

The central aim of Cantor and Packer’s paper is an attempt to explain

and model how the agencies arrived at their ratings. Although the ratings

themselves are publicly available, the models or methods used to arrive

at them are shrouded in secrecy. The agencies also provide virtually no

explanation as to what the relative weights of the factors that make up the

rating are. Thus, a model of the determinants of sovereign credit ratings

could be useful in assessing whether the ratings agencies appear to have

acted rationally. Such a model could also be employed to try to predict

the rating that would be awarded to a sovereign that has not previously

been rated and when a re-rating is likely to occur. The paper continues,

among other things, to consider whether ratings add to publicly available

information, and whether it is possible to determine what factors affect

how the sovereign yields react to ratings announcements.

4.14.2 Data

Cantor and Packer (1996) obtain a sample of government debt ratings for

49 countries as of September 1995 that range between the above grad-

ings. The ratings variable is quantified, so that the highest credit quality

(Aaa/AAA) in the sample is given a score of 16, while the lowest rated

sovereign in the sample is given a score of 1 (B3/B−). This score forms the

dependent variable. The factors that are used to explain the variability

in the ratings scores are macroeconomic variables. All of these variables

embody factors that are likely to influence a government’s ability and

willingness to service its debt costs. Ideally, the model would also include

proxies for socio-political factors, but these are difficult to measure ob-

jectively and so are not included. It is not clear in the paper from where

the list of factors was drawn. The included variables (with their units of

measurement) are:

● Per capita income (in 1994 thousand US dollars). Cantor and Packer ar-

gue that per capita income determines the tax base, which in turn in-

fluences the government’s ability to raise revenue.

● GDP growth (annual 1991--4 average, %). The growth rate of increase in

GDP is argued to measure how much easier it will become to service

debt costs in the future.
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● Inflation (annual 1992--4 average, %). Cantor and Packer argue that high

inflation suggests that inflationary money financing will be used to

service debt when the government is unwilling or unable to raise the

required revenue through the tax system.

● Fiscal balance (average annual government budget surplus as a propor-

tion of GDP 1992--4, %). Again, a large fiscal deficit shows that the

government has a relatively weak capacity to raise additional revenue

and to service debt costs.

● External balance (average annual current account surplus as a proportion

of GDP 1992--4, %). Cantor and Packer argue that a persistent current

account deficit leads to increasing foreign indebtedness, which may be

unsustainable in the long run.

● External debt (foreign currency debt as a proportion of exports in 1994,

%). Reasoning as for external balance (which is the change in external

debt over time).

● Dummy for economic development (=1 for a country classified by the IMF as

developed, 0 otherwise). Cantor and Packer argue that credit ratings

agencies perceive developing countries as relatively more risky beyond

that suggested by the values of the other factors listed above.

● Dummy for default history (=1 if a country has defaulted, 0 otherwise).

It is argued that countries that have previously defaulted experience a

large fall in their credit rating.

The income and inflation variables are transformed to their logarithms.

The model is linear and estimated using OLS. Some readers of this book

who have a background in econometrics will note that strictly, OLS is not

an appropriate technique when the dependent variable can take on only

one of a certain limited set of values (in this case, 1, 2, 3, . . . 16). In such

applications, a technique such as ordered probit (not covered in this text)

would usually be more appropriate. Cantor and Packer argue that any

approach other than OLS is infeasible given the relatively small sample

size (49), and the large number (16) of ratings categories.

The results from regressing the rating value on the variables listed above

are presented in their exhibit 5, adapted and presented here as table 4.2.

Four regressions are conducted, each with identical independent vari-

ables but a different dependent variable. Regressions are conducted for

the rating score given by each agency separately, with results presented

in columns (4) and (5) of table 4.2. Occasionally, the ratings agencies give

different scores to a country -- for example, in the case of Italy, Moody’s

gives a rating of ‘A1’, which would generate a score of 12 on a 16-scale.

Standard and Poor’s (S and P), on the other hand, gives a rating of ‘AA’,
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Table 4.2 Determinants and impacts of sovereign credit ratings

Dependent variable

Explanatory Expected Average Moody’s S&P Difference

variable sign rating rating rating Moody’s/S&P

(1) (2) (3) (4) (5) (6)

Intercept ? 1.442 3.408 −0.524 3.932∗∗

(0.663) (1.379) (−0.223) (2.521)

Per capita income + 1.242∗∗∗ 1.027∗∗∗ 1.458∗∗∗ −0.431∗∗∗

(5.302) (4.041) (6.048) (−2.688)

GDP growth + 0.151 0.130 0.171∗∗ −0.040

(1.935) (1.545) (2.132) (0.756)

Inflation − −0.611∗∗∗ −0.630∗∗∗ −0.591∗∗∗ −0.039

(−2.839) (−2.701) (−2.671) (−0.265)

Fiscal balance + 0.073 0.049 0.097∗ −0.048

(1.324) (0.818) (1.71) (−1.274)

External balance + 0.003 0.006 0.001 0.006

(0.314) (0.535) (0.046) (0.779)

External debt − −0.013∗∗∗ −0.015∗∗∗ −0.011∗∗∗ −0.004∗∗∗

(−5.088) (−5.365) (−4.236) (−2.133)

Development dummy + 2.776∗∗∗ 2.957∗∗∗ 2.595∗∗∗ 0.362

(4.25) (4.175) (3.861) (0.81)

Default dummy − −2.042∗∗∗ −1.63∗∗ −2.622∗∗∗ 1.159∗∗∗

(−3.175) (−2.097) (−3.962) (2.632)

Adjusted R2 0.924 0.905 0.926 0.836

Notes: t -ratios in parentheses; ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5% and

1% levels, respectively.

Source: Cantor and Packer (1996). Reprinted with permission from Institutional

Investor.

which would score 14 on the 16-scale, two gradings higher. Thus a regres-

sion with the average score across the two agencies, and with the differ-

ence between the two scores as dependent variables, is also conducted,

and presented in columns (3) and (6), respectively of table 4.2.

4.14.3 Interpreting the models

The models are difficult to interpret in terms of their statistical adequacy,

since virtually no diagnostic tests have been undertaken. The values of

the adjusted R2, at over 90% for each of the three ratings regressions,

are high for cross-sectional regressions, indicating that the model seems

able to capture almost all of the variability of the ratings about their
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mean values across the sample. There does not appear to be any attempt

at reparameterisation presented in the paper, so it is assumed that the

authors reached this set of models after some searching.

In this particular application, the residuals have an interesting interpre-

tation as the difference between the actual and fitted ratings. The actual

ratings will be integers from 1 to 16, although the fitted values from the

regression and therefore the residuals can take on any real value. Cantor

and Packer argue that the model is working well as no residual is bigger

than 3, so that no fitted rating is more than three categories out from the

actual rating, and only four countries have residuals bigger than two cat-

egories. Furthermore, 70% of the countries have ratings predicted exactly

(i.e. the residuals are less than 0.5 in absolute value).

Now, turning to interpret the models from a financial perspective, it is

of interest to investigate whether the coefficients have their expected signs

and sizes. The expected signs for the regression results of columns (3)--(5)

are displayed in column (2) of table 4.2 (as determined by this author).

As can be seen, all of the coefficients have their expected signs, although

the fiscal balance and external balance variables are not significant or are

only very marginally significant in all three cases. The coefficients can be

interpreted as the average change in the rating score that would result

from a unit change in the variable. So, for example, a rise in per capita

income of $1,000 will on average increase the rating by 1.0 units according

to Moody’s and 1.5 units according to Standard & Poor’s. The development

dummy suggests that, on average, a developed country will have a rating

three notches higher than an otherwise identical developing country. And

everything else equal, a country that has defaulted in the past will have

a rating two notches lower than one that has always kept its obligation.

By and large, the ratings agencies appear to place similar weights on

each of the variables, as evidenced by the similar coefficients and signif-

icances across columns (4) and (5) of table 4.2. This is formally tested in

column (6) of the table, where the dependent variable is the difference be-

tween Moody’s and Standard and Poor’s ratings. Only three variables are

statistically significantly differently weighted by the two agencies. Stan-

dard & Poor’s places higher weights on income and default history, while

Moody’s places more emphasis on external debt.

4.14.4 The relationship between ratings and yields

In this section of the paper, Cantor and Packer try to determine whether

ratings have any additional information useful for modelling the cross-

sectional variability of sovereign yield spreads over and above that con-

tained in publicly available macroeconomic data. The dependent variable
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Table 4.3 Do ratings add to public information?

Dependent variable: ln (yield spread)

Variable Expected sign (1) (2) (3)

Intercept ? 2.105∗∗∗ 0.466 0.074

(16.148) (0.345) (0.071)

Average rating − −0.221∗∗∗ −0.218∗∗∗

(−19.175) (−4.276)

Per capita − −0.144 0.226

income (−0.927) (1.523)

GDP growth − −0.004 0.029

(−0.142) (1.227)

Inflation + 0.108 −0.004

(1.393) (−0.068)

Fiscal balance − −0.037 −0.02

(−1.557) (−1.045)

External balance − −0.038 −0.023

(−1.29) (−1.008)

External debt + 0.003∗∗∗ 0.000

(2.651) (0.095)

Development − −0.723∗∗∗ −0.38

dummy (−2.059) (−1.341)

Default dummy + 0.612∗∗∗ 0.085

(2.577) (0.385)

Adjusted R2 0.919 0.857 0.914

Notes: t -ratios in parentheses; ∗, ∗∗and ∗∗∗ indicate significance at the 10%, 5% and 1%

levels, respectively.

Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.

is now the log of the yield spread, i.e.

ln(Yield on the sovereign bond -- Yield on a US Treasury Bond)

One may argue that such a measure of the spread is imprecise, for the

true credit spread should be defined by the entire credit quality curve

rather than by just two points on it. However, leaving this issue aside, the

results are presented in table 4.3.

Three regressions are presented in table 4.3, denoted specifications (1),

(2) and (3). The first of these is a regression of the ln(spread) on only a

constant and the average rating (column (1)), and this shows that ratings

have a highly significant inverse impact on the spread. Specification (2)
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is a regression of the ln(spread) on the macroeconomic variables used in

the previous analysis. The expected signs are given (as determined by this

author) in column (2). As can be seen, all coefficients have their expected

signs, although now only the coefficients belonging to the external debt

and the two dummy variables are statistically significant. Specification

(3) is a regression on both the average rating and the macroeconomic

variables. When the rating is included with the macroeconomic factors,

none of the latter is any longer significant -- only the rating coefficient

is statistically significantly different from zero. This message is also por-

trayed by the adjusted R2 values, which are highest for the regression

containing only the rating, and slightly lower for the regression contain-

ing the macroeconomic variables and the rating. One may also observe

that, under specification (3), the coefficients on the per capita income,

GDP growth and inflation variables now have the wrong sign. This is, in

fact, never really an issue, for if a coefficient is not statistically significant,

it is indistinguishable from zero in the context of hypothesis testing, and

therefore it does not matter whether it is actually insignificant and pos-

itive or insignificant and negative. Only coefficients that are both of the

wrong sign and statistically significant imply that there is a problem with

the regression.

It would thus be concluded from this part of the paper that there is no

more incremental information in the publicly available macroeconomic

variables that is useful for predicting the yield spread than that embodied

in the rating. The information contained in the ratings encompasses that

contained in the macroeconomic variables.

4.14.5 What determines how the market reacts to ratings announcements?

Cantor and Packer also consider whether it is possible to build a model

to predict how the market will react to ratings announcements, in terms

of the resulting change in the yield spread. The dependent variable for

this set of regressions is now the change in the log of the relative spread,

i.e. log[(yield -- treasury yield)/treasury yield], over a two-day period at the

time of the announcement. The sample employed for estimation comprises

every announcement of a ratings change that occurred between 1987 and

1994; 79 such announcements were made, spread over 18 countries. Of

these, 39 were actual ratings changes by one or more of the agencies,

and 40 were listed as likely in the near future to experience a regrad-

ing. Moody’s calls this a ‘watchlist’, while Standard and Poor’s term it

their ‘outlook’ list. The explanatory variables are mainly dummy variables

for:
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● whether the announcement was positive -- i.e. an upgrade

● whether there was an actual ratings change or just listing for probable

regrading

● whether the bond was speculative grade or investment grade

● whether there had been another ratings announcement in the previous

60 days

● the ratings gap between the announcing and the other agency.

The following cardinal variable was also employed:

● the change in the spread over the previous 60 days.

The results are presented in table 4.4, but in this text, only the final

specification (numbered 5 in Cantor and Packer’s exhibit 11) containing

all of the variables described above is included.

As can be seen from table 4.4, the models appear to do a relatively poor

job of explaining how the market will react to ratings announcements.

The adjusted R2 value is only 12%, and this is the highest of the five

Table 4.4 What determines reactions to ratings announcements?

Dependent variable: log relative spread

Independent variable Coefficient (t-ratio)

Intercept −0.02

(−1.4)

Positive announcements 0.01

(0.34)

Ratings changes −0.01

(−0.37)

Moody’s announcements 0.02

(1.51)

Speculative grade 0.03∗∗

(2.33)

Change in relative spreads from day −60 to day −1 −0.06

(−1.1)

Rating gap 0.03∗

(1.7)

Other rating announcements from day −60 to day −1 0.05∗∗

(2.15)

Adjusted R2 0.12

Note: ∗ and ∗∗ denote significance at the 10% and 5% levels, respectively.

Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.
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specifications tested by the authors. Further, only two variables are signif-

icant and one marginally significant of the seven employed in the model.

It can therefore be stated that yield changes are significantly higher fol-

lowing a ratings announcement for speculative than investment grade

bonds, and that ratings changes have a bigger impact on yield spreads if

there is an agreement between the ratings agencies at the time the an-

nouncement is made. Further, yields change significantly more if there

has been a previous announcement in the past 60 days than if not. On

the other hand, neither whether the announcement is an upgrade or

downgrade, nor whether it is an actual ratings change or a name on the

watchlist, nor whether the announcement is made by Moody’s or Stan-

dard & Poor’s, nor the amount by which the relative spread has already

changed over the past 60 days, has any significant impact on how the

market reacts to ratings announcements.

4.14.6 Conclusions

● To summarise, six factors appear to play a big role in determining

sovereign credit ratings -- incomes, GDP growth, inflation, external debt,

industrialised or not and default history

● The ratings provide more information on yields than all of the macro-

economic factors put together

● One cannot determine with any degree of confidence what factors de-

termine how the markets will react to ratings announcements.

Key concepts
The key terms to be able to define and explain from this chapter are

● homoscedasticity ● heteroscedasticity

● autocorrelation ● dynamic model

● equilibrium solution ● robust standard errors

● skewness ● kurtosis

● outlier ● functional form

● multicollinearity ● omitted variable

● irrelevant variable ● parameter stability

● recursive least squares ● general-to-specific approach

Review questions

1. Are assumptions made concerning the unobservable error terms (ut ) or

about their sample counterparts, the estimated residuals (ût )? Explain

your answer.
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2. What pattern(s) would one like to see in a residual plot and why?

3. A researcher estimates the following model for stock market returns,

but thinks that there may be a problem with it. By calculating the

t -ratios, and considering their significance and by examining the value

of R2 or otherwise, suggest what the problem might be.

ŷt = 0.638 + 0.402x2t − 0.891x3t R2 = 0.96, R̄2 = 0.89

(4.75)(0.436) (0.291) (0.763)

How might you go about solving the perceived problem?

4. (a) State in algebraic notation and explain the assumption about the

CLRM’s disturbances that is referred to by the term

‘homoscedasticity’.

(b) What would the consequence be for a regression model if the

errors were not homoscedastic?

(c) How might you proceed if you found that (b) were actually the case?

5. (a) What do you understand by the term ‘autocorrelation’?

(b) An econometrician suspects that the residuals of her model might

be autocorrelated. Explain the steps involved in testing this theory

using the Durbin–Watson (DW) test.

(c) The econometrician follows your guidance (!!!) in part (b) and

calculates a value for the Durbin–Watson statistic of 0.95. The

regression has 60 quarterly observations and three explanatory

variables (plus a constant term). Perform the test. What is your

conclusion?

(d) In order to allow for autocorrelation, the econometrician decides to

use a model in first differences with a constant

�yt = β1 + β2�x2t + β3�x3t + β4�x4t + ut (4.76)

By attempting to calculate the long-run solution to this model,

explain what might be a problem with estimating models entirely in

first differences.

(e) The econometrician finally settles on a model with both first

differences and lagged levels terms of the variables

�yt = β1 + β2�x2t + β3�x3t + β4�x4t + β5x2t−1

+ β6x3t−1 + β7x4t−1 + vt (4.77)

Can the Durbin–Watson test still validly be used in this case?

6. Calculate the long-run static equilibrium solution to the following

dynamic econometric model

�yt = β1 + β2�x2t + β3�x3t + β4 yt−1 + β5x2t−1

+ β6x3t−1 + β7x3t−4 + ut (4.78)
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7. What might Ramsey’s RESET test be used for? What could be done if it

were found that the RESET test has been failed?

8. (a) Why is it necessary to assume that the disturbances of a

regression model are normally distributed?

(b) In a practical econometric modelling situation, how might the

problem that the residuals are not normally distributed be

addressed?

9. (a) Explain the term ‘parameter structural stability’?

(b) A financial econometrician thinks that the stock market crash of

October 1987 fundamentally changed the risk–return relationship

given by the CAPM equation. He decides to test this hypothesis

using a Chow test. The model is estimated using monthly data from

January 1980–December 1995, and then two separate regressions

are run for the sub-periods corresponding to data before and after

the crash. The model is

rt = α + β Rmt + ut (4.79)

so that the excess return on a security at time t is regressed upon

the excess return on a proxy for the market portfolio at time t. The

results for the three models estimated for shares in British Airways

(BA) are as follows:

1981M1–1995M12

rt = 0.0215 + 1.491 rmt RSS = 0.189 T = 180 (4.80)

1981M1–1987M10

rt = 0.0163 + 1.308 rmt RSS = 0.079 T = 82 (4.81)

1987M11–1995M12

rt = 0.0360 + 1.613 rmt RSS = 0.082 T = 98 (4.82)

(c) What are the null and alternative hypotheses that are being tested

here, in terms of α and β?

(d) Perform the test. What is your conclusion?

10. For the same model as above, and given the following results, do a

forward and backward predictive failure test:

1981M1–1995M12

rt = 0.0215 + 1.491 rmt RSS = 0.189 T = 180 (4.83)

1981M1–1994M12

rt = 0.0212 + 1.478 rmt RSS = 0.148 T = 168 (4.84)
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1982M1–1995M12

rt = 0.0217 + 1.523 rmt RSS = 0.182 T = 168 (4.85)

What is your conclusion?

11. Why is it desirable to remove insignificant variables from a regression?

12. Explain why it is not possible to include an outlier dummy variable in a

regression model when you are conducting a Chow test for parameter

stability. Will the same problem arise if you were to conduct a predictive

failure test? Why or why not?

13. Re-open the ‘macro.wf1’ and apply the stepwise procedure including all

of the explanatory variables as listed above, i.e. ersandp dprod dcredit

dinflation dmoney dspread rterm with a strict 5% threshold criterion for

inclusion in the model. Then examine the resulting model both

financially and statistically by investigating the signs, sizes and

significances of the parameter estimates and by conducting all of the

diagnostic tests for model adequacy.



5
Univariate time series modelling and forecasting

Learning Outcomes
In this chapter, you will learn how to

● Explain the defining characteristics of various types of
stochastic processes

● Identify the appropriate time series model for a given data
series

● Produce forecasts for ARMA and exponential smoothing models

● Evaluate the accuracy of predictions using various metrics

● Estimate time series models and produce forecasts from them
in EViews

5.1 Introduction

Univariate time series models are a class of specifications where one attempts

to model and to predict financial variables using only information con-

tained in their own past values and possibly current and past values of an

error term. This practice can be contrasted with structural models, which

are multivariate in nature, and attempt to explain changes in a variable

by reference to the movements in the current or past values of other (ex-

planatory) variables. Time series models are usually a-theoretical, implying

that their construction and use is not based upon any underlying theo-

retical model of the behaviour of a variable. Instead, time series models

are an attempt to capture empirically relevant features of the observed

data that may have arisen from a variety of different (but unspecified)

structural models. An important class of time series models is the fam-

ily of AutoRegressive Integrated Moving Average (ARIMA) models, usually

associated with Box and Jenkins (1976). Time series models may be useful

206
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when a structural model is inappropriate. For example, suppose that there

is some variable yt whose movements a researcher wishes to explain. It

may be that the variables thought to drive movements of yt are not ob-

servable or not measurable, or that these forcing variables are measured

at a lower frequency of observation than yt . For example, yt might be a

series of daily stock returns, where possible explanatory variables could

be macroeconomic indicators that are available monthly. Additionally, as

will be examined later in this chapter, structural models are often not

useful for out-of-sample forecasting. These observations motivate the con-

sideration of pure time series models, which are the focus of this chapter.

The approach adopted for this topic is as follows. In order to define,

estimate and use ARIMA models, one first needs to specify the notation

and to define several important concepts. The chapter will then consider

the properties and characteristics of a number of specific models from the

ARIMA family. The book endeavours to answer the following question: ‘For

a specified time series model with given parameter values, what will be its

defining characteristics?’ Following this, the problem will be reversed, so

that the reverse question is asked: ‘Given a set of data, with characteristics

that have been determined, what is a plausible model to describe that

data?’

5.2 Some notation and concepts

The following sub-sections define and describe several important concepts

in time series analysis. Each will be elucidated and drawn upon later in

the chapter. The first of these concepts is the notion of whether a series is

stationary or not. Determining whether a series is stationary or not is very

important, for the stationarity or otherwise of a series can strongly influ-

ence its behaviour and properties. Further detailed discussion of station-

arity, testing for it, and implications of it not being present, are covered

in chapter 7.

5.2.1 A strictly stationary process

A strictly stationary process is one where, for any t1, t2, . . . , tT ∈ Z , any

k ∈ Z and T = 1, 2, . . .

Fyt1, yt2, . . . , ytT (y1, . . . , yT ) = Fyt1+k, yt2+k, . . . , ytT +k(y1, . . . , yT ) (5.1)

where F denotes the joint distribution function of the set of random vari-

ables (Tong, 1990, p.3). It can also be stated that the probability measure

for the sequence {yt} is the same as that for {yt+k}∀ k (where ‘∀ k’ means
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‘for all values of k’). In other words, a series is strictly stationary if the

distribution of its values remains the same as time progresses, implying

that the probability that y falls within a particular interval is the same

now as at any time in the past or the future.

5.2.2 A weakly stationary process

If a series satisfies (5.2)--(5.4) for t = 1, 2, . . . , ∞, it is said to be weakly or

covariance stationary

(1) E(yt ) = μ (5.2)

(2) E(yt − μ)(yt − μ) = σ 2 < ∞ (5.3)

(3) E(yt1 − μ)(yt2 − μ) = γt2−t1 ∀ t1, t2 (5.4)

These three equations state that a stationary process should have a con-

stant mean, a constant variance and a constant autocovariance structure,

respectively. Definitions of the mean and variance of a random variable

are probably well known to readers, but the autocovariances may not be.

The autocovariances determine how y is related to its previous values,

and for a stationary series they depend only on the difference between

t1 and t2, so that the covariance between yt and yt−1 is the same as the

covariance between yt−10 and yt−11, etc. The moment

E(yt − E(yt ))(yt−s − E(yt−s)) = γs, s = 0, 1, 2, . . . (5.5)

is known as the autocovariance function. When s = 0, the autocovariance at

lag zero is obtained, which is the autocovariance of yt with yt , i.e. the vari-

ance of y. These covariances, γs , are also known as autocovariances since

they are the covariances of y with its own previous values. The autocovari-

ances are not a particularly useful measure of the relationship between y
and its previous values, however, since the values of the autocovariances

depend on the units of measurement of yt , and hence the values that they

take have no immediate interpretation.

It is thus more convenient to use the autocorrelations, which are the

autocovariances normalised by dividing by the variance

τs = γs

γ0

, s = 0, 1, 2, . . . (5.6)

The series τs now has the standard property of correlation coefficients

that the values are bounded to lie between ±1. In the case that s = 0, the

autocorrelation at lag zero is obtained, i.e. the correlation of yt with yt ,

which is of course 1. If τs is plotted against s = 0, 1, 2, . . . , a graph known

as the autocorrelation function (acf) or correlogram is obtained.
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5.2.3 A white noise process

Roughly speaking, a white noise process is one with no discernible struc-

ture. A definition of a white noise process is

E(yt ) = μ (5.7)

var(yt ) = σ 2 (5.8)

γt−r =
{
σ 2 if t = r
0 otherwise

(5.9)

Thus a white noise process has constant mean and variance, and zero

autocovariances, except at lag zero. Another way to state this last condi-

tion would be to say that each observation is uncorrelated with all other

values in the sequence. Hence the autocorrelation function for a white

noise process will be zero apart from a single peak of 1 at s = 0. If μ = 0,

and the three conditions hold, the process is known as zero mean white

noise.

If it is further assumed that yt is distributed normally, then the sample

autocorrelation coefficients are also approximately normally distributed

τ̂s ∼ approx. N (0, 1/T )

where T is the sample size, and τ̂s denotes the autocorrelation coefficient

at lag s estimated from a sample. This result can be used to conduct

significance tests for the autocorrelation coefficients by constructing a

non-rejection region (like a confidence interval) for an estimated autocor-

relation coefficient to determine whether it is significantly different from

zero. For example, a 95% non-rejection region would be given by

±1.96 × 1√
T

for s �= 0. If the sample autocorrelation coefficient, τ̂s , falls outside this

region for a given value of s, then the null hypothesis that the true value

of the coefficient at that lag s is zero is rejected.

It is also possible to test the joint hypothesis that all m of the τk corre-

lation coefficients are simultaneously equal to zero using the Q-statistic

developed by Box and Pierce (1970)

Q = T
m∑

k=1

τ̂ 2
k (5.10)

where T = sample size, m = maximum lag length.

The correlation coefficients are squared so that the positive and nega-

tive coefficients do not cancel each other out. Since the sum of squares of

independent standard normal variates is itself a χ2 variate with degrees
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of freedom equal to the number of squares in the sum, it can be stated

that the Q-statistic is asymptotically distributed as a χ2
m under the null

hypothesis that all m autocorrelation coefficients are zero. As for any joint

hypothesis test, only one autocorrelation coefficient needs to be statisti-

cally significant for the test to result in a rejection.

However, the Box--Pierce test has poor small sample properties, implying

that it leads to the wrong decision too frequently for small samples. A

variant of the Box--Pierce test, having better small sample properties, has

been developed. The modified statistic is known as the Ljung--Box (1978)

statistic

Q∗ = T (T + 2)
m∑

k=1

τ̂ 2
k

T − k
∼ χ2

m (5.11)

It should be clear from the form of the statistic that asymptotically (that

is, as the sample size increases towards infinity), the (T + 2) and (T − k)

terms in the Ljung--Box formulation will cancel out, so that the statis-

tic is equivalent to the Box--Pierce test. This statistic is very useful as a

portmanteau (general) test of linear dependence in time series.

Example 5.1

Suppose that a researcher had estimated the first five autocorrelation co-

efficients using a series of length 100 observations, and found them to be

Lag 1 2 3 4 5

Autocorrelation coefficient 0.207 −0.013 0.086 0.005 −0.022

Test each of the individual correlation coefficients for significance, and

test all five jointly using the Box--Pierce and Ljung--Box tests.

A 95% confidence interval can be constructed for each coefficient using

±1.96 × 1√
T

where T = 100 in this case. The decision rule is thus to reject the null

hypothesis that a given coefficient is zero in the cases where the coeffi-

cient lies outside the range (−0.196, +0.196). For this example, it would

be concluded that only the first autocorrelation coefficient is significantly

different from zero at the 5% level.

Now, turning to the joint tests, the null hypothesis is that all of the

first five autocorrelation coefficients are jointly zero, i.e.

H0 : τ1 = 0, τ2 = 0, τ3 = 0, τ4 = 0, τ5 = 0
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The test statistics for the Box--Pierce and Ljung--Box tests are given respec-

tively as

Q = 100 × (0.2072 + −0.0132 + 0.0862 + 0.0052 + −0.0222)

= 5.09 (5.12)

Q∗ = 100 × 102 ×
(

0.2072

100 − 1
+ −0.0132

100 − 2
+ 0.0862

100 − 3

+ 0.0052

100 − 4
+ −0.0222

100 − 5

)
= 5.26 (5.13)

The relevant critical values are from a χ2 distribution with 5 degrees of

freedom, which are 11.1 at the 5% level, and 15.1 at the 1% level. Clearly,

in both cases, the joint null hypothesis that all of the first five autocorre-

lation coefficients are zero cannot be rejected. Note that, in this instance,

the individual test caused a rejection while the joint test did not. This is an

unexpected result that may have arisen as a result of the low power of the

joint test when four of the five individual autocorrelation coefficients are

insignificant. Thus the effect of the significant autocorrelation coefficient

is diluted in the joint test by the insignificant coefficients. The sample size

used in this example is also modest relative to those commonly available

in finance.

5.3 Moving average processes

The simplest class of time series model that one could entertain is that

of the moving average process. Let ut (t = 1, 2, 3, . . . ) be a white noise

process with E(ut ) = 0 and var(ut ) = σ 2. Then

yt = μ + ut + θ1ut−1 + θ2ut−2 + · · · + θqut−q (5.14)

is a qth order moving average mode, denoted MA(q). This can be expressed

using sigma notation as

yt = μ +
q∑

i=1

θi ut−i + ut (5.15)

A moving average model is simply a linear combination of white noise

processes, so that yt depends on the current and previous values of a white

noise disturbance term. Equation (5.15) will later have to be manipulated,

and such a process is most easily achieved by introducing the lag operator

notation. This would be written Lyt = yt−1 to denote that yt is lagged once.

In order to show that the ith lag of yt is being taken (that is, the value

that yt took i periods ago), the notation would be Li yt = yt−i . Note that in
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some books and studies, the lag operator is referred to as the ‘backshift

operator’, denoted by B. Using the lag operator notation, (5.15) would be

written as

yt = μ +
q∑

i=1

θi Li ut + ut (5.16)

or as

yt = μ + θ (L)ut (5.17)

where: θ (L) = 1 + θ1L + θ2L2 + · · · + θq Lq .

In much of what follows, the constant (μ) is dropped from the equations.

Removing μ considerably eases the complexity of algebra involved, and is

inconsequential for it can be achieved without loss of generality. To see

this, consider a sample of observations on a series, zt that has a mean z̄. A

zero-mean series, yt can be constructed by simply subtracting z̄ from each

observation zt .

The distinguishing properties of the moving average process of order q
given above are

(1) E(yt ) = μ (5.18)

(2) var(yt ) = γ0 = (
1 + θ2

1 + θ2
2 + · · · + θ2

q

)
σ 2 (5.19)

(3) covariances γs

=
{

(θs + θs+1θ1 + θs+2θ2 + · · · + θqθq−s) σ 2 for s = 1, 2, . . . , q

0 for s > q
(5.20)

So, a moving average process has constant mean, constant variance, and

autocovariances which may be non-zero to lag q and will always be zero

thereafter. Each of these results will be derived below.

Example 5.2

Consider the following MA(2) process

yt = ut + θ1ut−1 + θ2ut−2 (5.21)

where ut is a zero mean white noise process with variance σ 2.

(1) Calculate the mean and variance of yt

(2) Derive the autocorrelation function for this process (i.e. express the

autocorrelations, τ1, τ2, . . . as functions of the parameters θ1 and θ2)

(3) If θ1 = −0.5 and θ2 = 0.25, sketch the acf of yt .
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Solution

(1) If E(ut ) = 0, then E(ut−i ) = 0 ∀ i (5.22)

So the expected value of the error term is zero for all time periods.

Taking expectations of both sides of (5.21) gives

E(yt ) = E(ut + θ1ut−1 + θ2ut−2)

= E(ut ) + θ1E(ut−1) + θ2E(ut−2) = 0 (5.23)

var(yt ) = E[yt − E(yt )][yt − E(yt )] (5.24)

but E(yt ) = 0, so that the last component in each set of square brackets

in (5.24) is zero and this reduces to

var(yt ) = E[(yt )(yt )] (5.25)

Replacing yt in (5.25) with the RHS of (5.21)

var(yt ) = E[(ut + θ1ut−1 + θ2ut−2)(ut + θ1ut−1 + θ2ut−2)] (5.26)

var(yt ) = E
[
u2

t + θ2
1 u2

t−1 + θ2
2 u2

t−2 + cross-products
]

(5.27)

But E[cross-products] = 0 since cov(ut , ut−s) = 0 for s �= 0. ‘Cross-products’

is thus a catchall expression for all of the terms in u which have

different time subscripts, such as ut−1ut−2 or ut−5ut−20, etc. Again, one

does not need to worry about these cross-product terms, since these

are effectively the autocovariances of ut , which will all be zero by

definition since ut is a random error process, which will have zero

autocovariances (except at lag zero). So

var(yt ) = γ0 = E
[
u2

t + θ2
1 u2

t−1 + θ2
2 u2

t−2

]
(5.28)

var(yt ) = γ0 = σ 2 + θ2
1 σ 2 + θ2

2 σ 2 (5.29)

var(yt ) = γ0 = (
1 + θ2

1 + θ2
2

)
σ 2 (5.30)

γ0 can also be interpreted as the autocovariance at lag zero.

(2) Calculating now the acf of yt , first determine the autocovariances

and then the autocorrelations by dividing the autocovariances by the

variance.

The autocovariance at lag 1 is given by

γ1 = E[yt − E(yt )][yt−1 − E(yt−1)] (5.31)

γ1 = E[yt ][yt−1] (5.32)

γ1 = E[(ut + θ1ut−1 + θ2ut−2)(ut−1 + θ1ut−2 + θ2ut−3)] (5.33)
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Again, ignoring the cross-products, (5.33) can be written as

γ1 = E
[(

θ1u2
t−1 + θ1θ2u2

t−2

)]
(5.34)

γ1 = θ1σ
2 + θ1θ2σ

2 (5.35)

γ1 = (θ1 + θ1θ2)σ 2 (5.36)

The autocovariance at lag 2 is given by

γ2 = E[yt − E(yt )][yt−2 − E(yt−2)] (5.37)

γ2 = E[yt ][yt−2] (5.38)

γ2 = E[(ut + θ1ut−1 + θ2ut−2)(ut−2 + θ1ut−3 + θ2ut−4)] (5.39)

γ2 = E
[(

θ2u2
t−2

)]
(5.40)

γ2 = θ2σ
2 (5.41)

The autocovariance at lag 3 is given by

γ3 = E[yt − E(yt )][yt−3 − E(yt−3)] (5.42)

γ3 = E[yt ][yt−3] (5.43)

γ3 = E[(ut + θ1ut−1 + θ2ut−2)(ut−3 + θ1ut−4 + θ2ut−5)] (5.44)

γ3 = 0 (5.45)

So γs = 0 for s 2. All autocovariances for the MA(2) process will be zero

for any lag length, s, greater than 2.

The autocorrelation at lag 0 is given by

τ0 = γ0

γ0

= 1 (5.46)

The autocorrelation at lag 1 is given by

τ1 = γ1

γ0

= (θ1 + θ1θ2)σ 2(
1 + θ2

1 + θ2
2

)
σ 2

= (θ1 + θ1θ2)(
1 + θ2

1 + θ2
2

) (5.47)

The autocorrelation at lag 2 is given by

τ2 = γ2

γ0

= (θ2)σ 2(
1 + θ2

1 + θ2
2

)
σ 2

= θ2(
1 + θ2

1 + θ2
2

) (5.48)

The autocorrelation at lag 3 is given by

τ3 = γ3

γ0

= 0 (5.49)

The autocorrelation at lag s is given by

τs = γs

γ0

= 0 ∀ s > 2 (5.50)
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Figure 5.1 Autocorrelation function for sample MA(2) process

(3) For θ1 = −0.5 and θ2 = 0.25, substituting these into the formulae

above gives the first two autocorrelation coefficients as τ1 = −0.476,

τ2 = 0.190. Autocorrelation coefficients for lags greater than 2 will

all be zero for an MA(2) model. Thus the acf plot will appear as in

figure 5.1.

5.4 Autoregressive processes

An autoregressive model is one where the current value of a variable, y,

depends upon only the values that the variable took in previous periods

plus an error term. An autoregressive model of order p, denoted as AR(p),

can be expressed as

yt = μ + φ1 yt−1 + φ2 yt−2 + · · · + φp yt−p + ut (5.51)

where ut is a white noise disturbance term. A manipulation of expression

(5.51) will be required to demonstrate the properties of an autoregres-

sive model. This expression can be written more compactly using sigma

notation

yt = μ +
p∑

i=1

φi yt−i + ut (5.52)
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or using the lag operator, as

yt = μ +
p∑

i=1

φi Li yt + ut (5.53)

or

φ(L)yt = μ + ut (5.54)

where φ(L) = (1 − φ1L − φ2L2 − · · · − φp L p).

5.4.1 The stationarity condition

Stationarity is a desirable property of an estimated AR model, for several

reasons. One important reason is that a model whose coefficients are non-

stationary will exhibit the unfortunate property that previous values of

the error term will have a non-declining effect on the current value of

yt as time progresses. This is arguably counter-intuitive and empirically

implausible in many cases. More discussion on this issue will be presented

in chapter 7. Box 5.1 defines the stationarity condition algebraically.

Box 5.1 The stationarity condition for an AR(p) model

Setting μ to zero in (5.54), for a zero mean AR (p) process, yt , given by

φ(L)yt = ut (5.55)

it would be stated that the process is stationary if it is possible to write

yt = φ(L)−1ut (5.56)

with φ(L)−1 converging to zero. This means that the autocorrelations will decline

eventually as the lag length is increased. When the expansion φ(L)−1 is calculated, it

will contain an infinite number of terms, and can be written as an MA(∞), e.g.

a1ut−1 + a2ut−2 + a3ut−3 + · · · + ut . If the process given by (5.54) is stationary, the

coefficients in the MA(∞) representation will decline eventually with lag length. On

the other hand, if the process is non-stationary, the coefficients in the MA(∞)

representation would not converge to zero as the lag length increases.

The condition for testing for the stationarity of a general AR(p) model is that the

roots of the ‘characteristic equation’

1 − φ1z − φ2z2 − · · · − φpz p = 0 (5.57)

all lie outside the unit circle. The notion of a characteristic equation is so-called

because its roots determine the characteristics of the process yt – for example, the

acf for an AR process will depend on the roots of this characteristic equation, which is

a polynomial in z.
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Example 5.3

Is the following model stationary?

yt = yt−1 + ut (5.58)

In order to test this, first write yt−1 in lag operator notation (i.e. as Lyt ),

and take this term over to the LHS of (5.58), and factorise

yt = Lyt + ut (5.59)

yt − Lyt = ut (5.60)

yt (1 − L) = ut (5.61)

Then the characteristic equation is

1 − z = 0, (5.62)

having the root z = 1, which lies on, not outside, the unit circle. In fact,

the particular AR(p) model given by (5.58) is a non-stationary process

known as a random walk (see chapter 7).

This procedure can also be adopted for autoregressive models with

longer lag lengths and where the stationarity or otherwise of the process

is less obvious. For example, is the following process for yt stationary?

yt = 3yt−1 − 2.75yt−2 + 0.75yt−3 + ut (5.63)

Again, the first stage is to express this equation using the lag operator

notation, and then taking all the terms in y over to the LHS

yt = 3Lyt − 2.75L2 yt + 0.75L3 yt + ut (5.64)

(1 − 3L + 2.75L2 − 0.75L3)yt = ut (5.65)

The characteristic equation is

1 − 3z + 2.75z2 − 0.75z3 = 0 (5.66)

which fortunately factorises to

(1 − z)(1 − 1.5z)(1 − 0.5z) = 0 (5.67)

so that the roots are z = 1, z = 2/3, and z = 2. Only one of these lies

outside the unit circle and hence the process for yt described by (5.63) is

not stationary.

5.4.2 Wold’s decomposition theorem

Wold’s decomposition theorem states that any stationary series can be de-

composed into the sum of two unrelated processes, a purely deterministic
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part and a purely stochastic part, which will be an MA(∞). A simpler

way of stating this in the context of AR modelling is that any stationary

autoregressive process of order p with no constant and no other terms

can be expressed as an infinite order moving average model. This result is

important for deriving the autocorrelation function for an autoregressive

process.

For the AR(p) model, given in, for example, (5.51) (with μ set to zero for

simplicity) and expressed using the lag polynomial notation, φ(L)yt = ut ,

the Wold decomposition is

yt = ψ(L)ut (5.68)

where ψ(L) = φ(L)−1 = (1 − φ1L − φ2L2 − · · · − φp L p)−1

The characteristics of an autoregressive process are as follows. The (un-

conditional) mean of y is given by

E(yt ) = μ

1 − φ1 − φ2 − · · · − φp
(5.69)

The autocovariances and autocorrelation functions can be obtained by

solving a set of simultaneous equations known as the Yule--Walker equa-

tions. The Yule--Walker equations express the correlogram (the τs) as a

function of the autoregressive coefficients (the φs)

τ1 = φ1 + τ1φ2 + · · · + τp−1φp

τ2 = τ1φ1 + φ2 + · · · + τp−2φp
...

...
... (5.70)

τp = τp−1φ1 + τp−2φ2 + · · · + φp

For any AR model that is stationary, the autocorrelation function will

decay geometrically to zero.1 These characteristics of an autoregressive

process will be derived from first principles below using an illustrative

example.

Example 5.4

Consider the following simple AR(1) model

yt = μ + φ1 yt−1 + ut (5.71)

(i) Calculate the (unconditional) mean yt .

For the remainder of the question, set the constant to zero (μ = 0)

for simplicity.

1 Note that the τs will not follow an exact geometric sequence, but rather the absolute

value of the τs is bounded by a geometric series. This means that the autocorrelation

function does not have to be monotonically decreasing and may change sign.
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(ii) Calculate the (unconditional) variance of yt .

(iii) Derive the autocorrelation function for this process.

Solution

(i) The unconditional mean will be given by the expected value of ex-

pression (5.71)

E(yt ) = E(μ + φ1 yt−1) (5.72)

E(yt ) = μ + φ1E(yt−1) (5.73)

But also

yt−1 = μ + φ1 yt−2 + ut−1 (5.74)

So, replacing yt−1 in (5.73) with the RHS of (5.74)

E(yt ) = μ + φ1(μ + φ1E(yt−2)) (5.75)

E(yt ) = μ + φ1μ + φ2
1E(yt−2) (5.76)

Lagging (5.74) by a further one period

yt−2 = μ + φ1 yt−3 + ut−2 (5.77)

Repeating the steps given above one more time

E(yt ) = μ + φ1μ + φ2
1(μ + φ1E(yt−3)) (5.78)

E(yt ) = μ + φ1μ + φ2
1μ + φ3

1E(yt−3) (5.79)

Hopefully, readers will by now be able to see a pattern emerging.

Making n such substitutions would give

E(yt ) = μ
(
1 + φ1 + φ2

1 + · · · + φn−1
1

) + φt
1E(yt−n) (5.80)

So long as the model is stationary, i.e. |φ1| < 1, then φ∞
1 = 0. Therefore,

taking limits as n → ∞, then limn→∞φt
1E(yt−n) = 0, and so

E(yt ) = μ
(
1 + φ1 + φ2

1 + · · · ) (5.81)

Recall the rule of algebra that the finite sum of an infinite number

of geometrically declining terms in a series is given by ‘first term in

series divided by (1 minus common difference)’, where the common

difference is the quantity that each term in the series is multiplied

by to arrive at the next term. It can thus be stated from (5.81) that

E(yt ) = μ

1 − φ1

(5.82)
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Thus the expected or mean value of an autoregressive process of order

one is given by the intercept parameter divided by one minus the

autoregressive coefficient.

(ii) Calculating now the variance of yt , with μ set to zero

yt = φ1 yt−1 + ut (5.83)

This can be written equivalently as

yt (1 − φ1L) = ut (5.84)

From Wold’s decomposition theorem, the AR(p) can be expressed as

an MA(∞)

yt = (1 − φ1L)−1ut (5.85)

yt = (
1 + φ1L + φ2

1 L2 + · · · )ut (5.86)

or

yt = ut + φ1ut−1 + φ2
1ut−2 + φ3

1ut−3 + · · · (5.87)

So long as |φ1| < 1, i.e. so long as the process for yt is stationary, this

sum will converge.

From the definition of the variance of any random variable y, it is

possible to write

var(yt ) = E[yt − E(yt )][yt − E(yt )] (5.88)

but E(yt ) = 0, since μ is set to zero to obtain (5.83) above. Thus

var(yt ) = E[(yt )(yt )] (5.89)

var(yt ) = E
[(

ut + φ1ut−1 + φ2
1ut−2 + · · · )(ut + φ1ut−1 + φ2

1ut−2 + · · · )]
(5.90)

var(yt ) = E
[
u2

t + φ2
1u2

t−1 + φ4
1u2

t−2 + · · · + cross-products
]

(5.91)

As discussed above, the ‘cross-products’ can be set to zero.

var(yt ) = γ0 = E
[
u2

t + φ2
1u2

t−1 + φ4
1u2

t−2 + · · ·] (5.92)

var(yt ) = σ 2 + φ2
1σ

2 + φ4
1σ

2 + · · · (5.93)

var(yt ) = σ 2
(
1 + φ2

1 + φ4
1 + · · ·) (5.94)

Provided that |φ1| < 1, the infinite sum in (5.94) can be written as

var(yt ) = σ 2(
1 − φ2

1

) (5.95)

(iii) Turning now to the calculation of the autocorrelation function, the

autocovariances must first be calculated. This is achieved by following
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similar algebraic manipulations as for the variance above, starting

with the definition of the autocovariances for a random variable. The

autocovariances for lags 1, 2, 3, . . . , s, will be denoted by γ1, γ2, γ3, . . . ,

γs , as previously.

γ1 = cov (yt , yt−1) = E[yt − E(yt )][yt−1 − E(yt−1)] (5.96)

Since μ has been set to zero, E(yt ) = 0 and E(yt−1) = 0, so

γ1 = E[yt yt−1] (5.97)

under the result above that E(yt ) = E(yt−1) = 0. Thus

γ1 = E
[(

ut + φ1ut−1 + φ2
1ut−2 + · · · )(ut−1 + φ1ut−2

+ φ2
1ut−3 + · · · )] (5.98)

γ1 = E
[
φ1u2

t−1 + φ3
1u2

t−2 + · · · + cross − products
]

(5.99)

Again, the cross-products can be ignored so that

γ1 = φ1σ
2 + φ3

1σ
2 + φ5

1σ
2 + · · · (5.100)

γ1 = φ1σ
2
(
1 + φ2

1 + φ4
1 + · · · ) (5.101)

γ1 = φ1σ
2(

1 − φ2
1

) (5.102)

For the second autocovariance,

γ2 = cov(yt , yt−2) = E[yt − E(yt )][yt−2 − E(yt−2)] (5.103)

Using the same rules as applied above for the lag 1 covariance

γ2 = E[yt yt−2] (5.104)

γ2 = E
[(

ut + φ1ut−1 + φ2
1ut−2 + · · · )(ut−2 + φ1ut−3

+ φ2
1ut−4 + · · · )] (5.105)

γ2 = E
[
φ2

1u2
t−2 + φ4

1u2
t−3 + · · · + cross-products

]
(5.106)

γ2 = φ2
1σ

2 + φ4
1σ

2 + · · · (5.107)

γ2 = φ2
1σ

2
(
1 + φ2

1 + φ4
1 + · · · ) (5.108)

γ2 = φ2
1σ

2(
1 − φ2

1

) (5.109)

By now it should be possible to see a pattern emerging. If these steps

were repeated for γ3, the following expression would be obtained

γ3 = φ3
1σ

2(
1 − φ2

1

) (5.110)
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and for any lag s, the autocovariance would be given by

γs = φs
1σ

2(
1 − φ2

1

) (5.111)

The acf can now be obtained by dividing the covariances by the vari-

ance, so that

τ0 = γ0

γ0

= 1 (5.112)

τ1 = γ1

γ0

=

(
φ1σ

2(
1 − φ2

1

)
)

(
σ 2(

1 − φ2
1

)
) = φ1 (5.113)

τ2 = γ2

γ0

=

(
φ2

1σ
2(

1 − φ2
1

)
)

(
σ 2(

1 − φ2
1

)
) = φ2

1 (5.114)

τ3 = φ3
1 (5.115)

The autocorrelation at lag s is given by

τs = φs
1 (5.116)

which means that corr(yt , yt−s) = φs
1. Note that use of the Yule--Walker

equations would have given the same answer.

5.5 The partial autocorrelation function

The partial autocorrelation function, or pacf (denoted τkk), measures the

correlation between an observation k periods ago and the current ob-

servation, after controlling for observations at intermediate lags (i.e. all

lags < k) -- i.e. the correlation between yt and yt−k , after removing the ef-

fects of yt−k+1, yt−k+2, . . . , yt−1. For example, the pacf for lag 3 would mea-

sure the correlation between yt and yt−3 after controlling for the effects

of yt−1 and yt−2.

At lag 1, the autocorrelation and partial autocorrelation coefficients

are equal, since there are no intermediate lag effects to eliminate. Thus,

τ11 = τ1, where τ1 is the autocorrelation coefficient at lag 1.

At lag 2

τ22 = (
τ2 − τ 2

1

)/(
1 − τ 2

1

)
(5.117)
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where τ1 and τ2 are the autocorrelation coefficients at lags 1 and 2, re-

spectively. For lags greater than two, the formulae are more complex and

hence a presentation of these is beyond the scope of this book. There now

proceeds, however, an intuitive explanation of the characteristic shape of

the pacf for a moving average and for an autoregressive process.

In the case of an autoregressive process of order p, there will be direct

connections between yt and yt−s for s ≤ p, but no direct connections for

s > p. For example, consider the following AR(3) model

yt = φ0 + φ1 yt−1 + φ2 yt−2 + φ3 yt−3 + ut (5.118)

There is a direct connection through the model between yt and yt−1, and

between yt and yt−2, and between yt and yt−3, but not between yt and yt−s ,

for s > 3. Hence the pacf will usually have non-zero partial autocorrelation

coefficients for lags up to the order of the model, but will have zero partial

autocorrelation coefficients thereafter. In the case of the AR(3), only the

first three partial autocorrelation coefficients will be non-zero.

What shape would the partial autocorrelation function take for a mov-

ing average process? One would need to think about the MA model as

being transformed into an AR in order to consider whether yt and yt−k ,

k = 1, 2, . . . , are directly connected. In fact, so long as the MA(q) pro-

cess is invertible, it can be expressed as an AR(∞). Thus a definition of

invertibility is now required.

5.5.1 The invertibility condition

An MA(q) model is typically required to have roots of the characteristic

equation θ (z) = 0 greater than one in absolute value. The invertibility

condition is mathematically the same as the stationarity condition, but

is different in the sense that the former refers to MA rather than AR

processes. This condition prevents the model from exploding under an

AR(∞) representation, so that θ−1(L) converges to zero. Box 5.2 shows the

invertibility condition for an MA(2) model.

5.6 ARMA processes

By combining the AR(p) and MA(q) models, an ARMA(p, q) model is

obtained. Such a model states that the current value of some series y
depends linearly on its own previous values plus a combination of cur-

rent and previous values of a white noise error term. The model could be
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Box 5.2 The invertibility condition for an MA(2) model

In order to examine the shape of the pacf for moving average processes, consider the

following MA(2) process for yt

yt = ut + θ1ut−1 + θ2ut−2 = θ (L)ut (5.119)

Provided that this process is invertible, this MA(2) can be expressed as an AR(∞)

yt =
∞∑

i=1

ci Li yt−i + ut (5.120)

yt = c1 yt−1 + c2 yt−2 + c3 yt−3 + · · · + ut (5.121)

It is now evident when expressed in this way that for a moving average model, there are

direct connections between the current value of y and all of its previous values. Thus,

the partial autocorrelation function for an MA(q) model will decline geometrically, rather

than dropping off to zero after q lags, as is the case for its autocorrelation function. It

could thus be stated that the acf for an AR has the same basic shape as the pacf for

an MA, and the acf for an MA has the same shape as the pacf for an AR.

written

φ(L)yt = μ + θ (L)ut (5.122)

where

φ(L) = 1 − φ1L − φ2L2 − · · · − φp L p and

θ (L) = 1 + θ1L + θ2L2 + · · · + θq Lq

or

yt = μ + φ1 yt−1 + φ2 yt−2 + · · · + φp yt−p + θ1ut−1

+ θ2ut−2 + · · · + θqut−q + ut (5.123)

with

E(ut ) = 0; E
(
u2

t

) = σ 2; E(ut us) = 0, t �= s

The characteristics of an ARMA process will be a combination of those

from the autoregressive (AR) and moving average (MA) parts. Note that

the pacf is particularly useful in this context. The acf alone can distin-

guish between a pure autoregressive and a pure moving average process.

However, an ARMA process will have a geometrically declining acf, as will

a pure AR process. So, the pacf is useful for distinguishing between an

AR(p) process and an ARMA(p, q) process -- the former will have a geomet-

rically declining autocorrelation function, but a partial autocorrelation

function which cuts off to zero after p lags, while the latter will have
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both autocorrelation and partial autocorrelation functions which decline

geometrically.

We can now summarise the defining characteristics of AR, MA and

ARMA processes.

An autoregressive process has:

● a geometrically decaying acf

● a number of non-zero points of pacf = AR order.

A moving average process has:

● number of non-zero points of acf = MA order

● a geometrically decaying pacf.

A combination autoregressive moving average process has:

● a geometrically decaying acf

● a geometrically decaying pacf.

In fact, the mean of an ARMA series is given by

E(yt ) = μ

1 − φ1 − φ2 − · · · − φp
(5.124)

The autocorrelation function will display combinations of behaviour de-

rived from the AR and MA parts, but for lags beyond q, the acf will simply

be identical to the individual AR(p) model, so that the AR part will dom-

inate in the long term. Deriving the acf and pacf for an ARMA process

requires no new algebra, but is tedious and hence is left as an exercise

for interested readers.

5.6.1 Sample acf and pacf plots for standard processes

Figures 5.2--5.8 give some examples of typical processes from the ARMA

family with their characteristic autocorrelation and partial autocorrela-

tion functions. The acf and pacf are not produced analytically from the

relevant formulae for a model of that type, but rather are estimated using

100,000 simulated observations with disturbances drawn from a normal

distribution. Each figure also has 5% (two-sided) rejection bands repre-

sented by dotted lines. These are based on (±1.96/
√

100000) = ±0.0062,

calculated in the same way as given above. Notice how, in each case, the

acf and pacf are identical for the first lag.

In figure 5.2, the MA(1) has an acf that is significant for only lag 1,

while the pacf declines geometrically, and is significant until lag 7. The

acf at lag 1 and all of the pacfs are negative as a result of the negative

coefficient in the MA generating process.
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Figure 5.2 Sample autocorrelation and partial autocorrelation functions for an MA(1) model:

yt = −0.5ut−1 + ut
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Figure 5.3 Sample autocorrelation and partial autocorrelation functions for an MA(2) model:

yt = 0.5ut−1 − 0.25ut−2 + ut
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Figure 5.4 Sample autocorrelation and partial autocorrelation functions for a slowly decaying AR(1)

model: yt = 0.9yt−1 + ut
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Figure 5.5 Sample autocorrelation and partial autocorrelation functions for a more rapidly decaying

AR(1) model: yt = 0.5yt−1 + ut
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Figure 5.6 Sample autocorrelation and partial autocorrelation functions for a more rapidly decaying

AR(1) model with negative coefficient: yt = −0.5yt−1 + ut
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Figure 5.7 Sample autocorrelation and partial autocorrelation functions for a non-stationary model

(i.e. a unit coefficient): yt = yt−1 + ut
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Figure 5.8 Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model:

yt = 0.5yt−1 + 0.5ut−1 + ut

Again, the structures of the acf and pacf in figure 5.3 are as anticipated.

The first two autocorrelation coefficients only are significant, while the

partial autocorrelation coefficients are geometrically declining. Note also

that, since the second coefficient on the lagged error term in the MA

is negative, the acf and pacf alternate between positive and negative. In

the case of the pacf, we term this alternating and declining function a

‘damped sine wave’ or ‘damped sinusoid’.

For the autoregressive model of order 1 with a fairly high coefficient --

i.e. relatively close to 1 -- the autocorrelation function would be expected

to die away relatively slowly, and this is exactly what is observed here in

figure 5.4. Again, as expected for an AR(1), only the first pacf coefficient

is significant, while all others are virtually zero and are not significant.

Figure 5.5 plots an AR(1), which was generated using identical error

terms, but a much smaller autoregressive coefficient. In this case, the

autocorrelation function dies away much more quickly than in the previ-

ous example, and in fact becomes insignificant after around 5 lags.

Figure 5.6 shows the acf and pacf for an identical AR(1) process to that

used for figure 5.5, except that the autoregressive coefficient is now nega-

tive. This results in a damped sinusoidal pattern for the acf, which again
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becomes insignificant after around lag 5. Recalling that the autocorre-

lation coefficient for this AR(1) at lag s is equal to (−0.5)s , this will be

positive for even s, and negative for odd s. Only the first pacf coefficient

is significant (and negative).

Figure 5.7 plots the acf and pacf for a non-stationary series (see

chapter 7 for an extensive discussion) that has a unit coefficient on the

lagged dependent variable. The result is that shocks to y never die away,

and persist indefinitely in the system. Consequently, the acf function re-

mains relatively flat at unity, even up to lag 10. In fact, even by lag 10,

the autocorrelation coefficient has fallen only to 0.9989. Note also that on

some occasions, the acf does die away, rather than looking like figure 5.7,

even for such a non-stationary process, owing to its inherent instability

combined with finite computer precision. The pacf, however, is significant

only for lag 1, correctly suggesting that an autoregressive model with no

moving average term is most appropriate.

Finally, figure 5.8 plots the acf and pacf for a mixed ARMA process.

As one would expect of such a process, both the acf and the pacf decline

geometrically -- the acf as a result of the AR part and the pacf as a result of

the MA part. The coefficients on the AR and MA are, however, sufficiently

small that both acf and pacf coefficients have become insignificant by

lag 6.

5.7 Building ARMA models: the Box–Jenkins approach

Although the existence of ARMA models predates them, Box and Jenkins

(1976) were the first to approach the task of estimating an ARMA model in

a systematic manner. Their approach was a practical and pragmatic one,

involving three steps:

(1) Identification

(2) Estimation

(3) Diagnostic checking.

These steps are now explained in greater detail.

Step 1

This involves determining the order of the model required to capture the dy-

namic features of the data. Graphical procedures are used (plotting the

data over time and plotting the acf and pacf) to determine the most ap-

propriate specification.
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Step 2

This involves estimation of the parameters of the model specified in step 1. This

can be done using least squares or another technique, known as maximum

likelihood, depending on the model.

Step 3

This involves model checking -- i.e. determining whether the model spec-

ified and estimated is adequate. Box and Jenkins suggest two methods:

overfitting and residual diagnostics. Overfitting involves deliberately fitting

a larger model than that required to capture the dynamics of the data

as identified in stage 1. If the model specified at step 1 is adequate, any

extra terms added to the ARMA model would be insignificant. Residual di-

agnostics imply checking the residuals for evidence of linear dependence

which, if present, would suggest that the model originally specified was

inadequate to capture the features of the data. The acf, pacf or Ljung--Box

tests could be used.

It is worth noting that ‘diagnostic testing’ in the Box--Jenkins world es-

sentially involves only autocorrelation tests rather than the whole barrage

of tests outlined in chapter 4. Also, such approaches to determining the ad-

equacy of the model could only reveal a model that is underparameterised

(‘too small’) and would not reveal a model that is overparameterised (‘too

big’).

Examining whether the residuals are free from autocorrelation is much

more commonly used than overfitting, and this may partly have arisen

since for ARMA models, it can give rise to common factors in the overfit-

ted model that make estimation of this model difficult and the statistical

tests ill behaved. For example, if the true model is an ARMA(1,1) and we de-

liberately then fit an ARMA(2,2) there will be a common factor so that not

all of the parameters in the latter model can be identified. This problem

does not arise with pure AR or MA models, only with mixed processes.

It is usually the objective to form a parsimonious model, which is one that

describes all of the features of data of interest using as few parameters

(i.e. as simple a model) as possible. A parsimonious model is desirable

because:

● The residual sum of squares is inversely proportional to the number of

degrees of freedom. A model which contains irrelevant lags of the

variable or of the error term (and therefore unnecessary parameters)

will usually lead to increased coefficient standard errors, implying that

it will be more difficult to find significant relationships in the data.

Whether an increase in the number of variables (i.e. a reduction in
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the number of degrees of freedom) will actually cause the estimated

parameter standard errors to rise or fall will obviously depend on how

much the RSS falls, and on the relative sizes of T and k. If T is very

large relative to k, then the decrease in RSS is likely to outweigh the

reduction in T − k so that the standard errors fall. Hence ‘large’ models

with many parameters are more often chosen when the sample size is

large.

● Models that are profligate might be inclined to fit to data specific fea-

tures, which would not be replicated out-of-sample. This means that the

models may appear to fit the data very well, with perhaps a high value

of R2, but would give very inaccurate forecasts. Another interpretation

of this concept, borrowed from physics, is that of the distinction be-

tween ‘signal’ and ‘noise’. The idea is to fit a model which captures the

signal (the important features of the data, or the underlying trends or

patterns), but which does not try to fit a spurious model to the noise

(the completely random aspect of the series).

5.7.1 Information criteria for ARMA model selection

The identification stage would now typically not be done using graphi-

cal plots of the acf and pacf. The reason is that when ‘messy’ real data is

used, it unfortunately rarely exhibits the simple patterns of figures 5.2--5.8.

This makes the acf and pacf very hard to interpret, and thus it is diffi-

cult to specify a model for the data. Another technique, which removes

some of the subjectivity involved in interpreting the acf and pacf, is to

use what are known as information criteria. Information criteria embody

two factors: a term which is a function of the residual sum of squares

(RSS), and some penalty for the loss of degrees of freedom from adding

extra parameters. So, adding a new variable or an additional lag to a

model will have two competing effects on the information criteria: the

residual sum of squares will fall but the value of the penalty term will

increase.

The object is to choose the number of parameters which minimises the

value of the information criteria. So, adding an extra term will reduce

the value of the criteria only if the fall in the residual sum of squares

is sufficient to more than outweigh the increased value of the penalty

term. There are several different criteria, which vary according to how

stiff the penalty term is. The three most popular information criteria

are Akaike’s (1974) information criterion (AIC), Schwarz’s (1978) Bayesian

information criterion (SBIC), and the Hannan--Quinn criterion (HQIC).
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Algebraically, these are expressed, respectively, as

AIC = ln(σ̂ 2) + 2k

T
(5.125)

SBIC = ln(σ̂ 2) + k

T
ln T (5.126)

HQIC = ln(σ̂ 2) + 2k

T
ln(ln(T )) (5.127)

where σ̂ 2 is the residual variance (also equivalent to the residual sum

of squares divided by the number of observations, T ), k = p + q + 1 is

the total number of parameters estimated and T is the sample size. The

information criteria are actually minimised subject to p ≤ p̄, q ≤ q̄, i.e.

an upper limit is specified on the number of moving average (q̄) and/or

autoregressive ( p̄) terms that will be considered.

It is worth noting that SBIC embodies a much stiffer penalty term than

AIC, while HQIC is somewhere in between. The adjusted R2 measure can

also be viewed as an information criterion, although it is a very soft one,

which would typically select the largest models of all.

5.7.2 Which criterion should be preferred if they suggest different model orders?

SBIC is strongly consistent (but inefficient) and AIC is not consistent, but is

generally more efficient. In other words, SBIC will asymptotically deliver

the correct model order, while AIC will deliver on average too large a

model, even with an infinite amount of data. On the other hand, the

average variation in selected model orders from different samples within

a given population will be greater in the context of SBIC than AIC. Overall,

then, no criterion is definitely superior to others.

5.7.3 ARIMA modelling

ARIMA modelling, as distinct from ARMA modelling, has the additional

letter ‘I’ in the acronym, standing for ‘integrated’. An integrated au-

toregressive process is one whose characteristic equation has a root on

the unit circle. Typically researchers difference the variable as neces-

sary and then build an ARMA model on those differenced variables. An

ARMA(p, q) model in the variable differenced d times is equivalent to an

ARIMA(p, d, q) model on the original data -- see chapter 7 for further de-

tails. For the remainder of this chapter, it is assumed that the data used in

model construction are stationary, or have been suitably transformed to

make them stationary. Thus only ARMA models will be considered further.
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5.8 Constructing ARMA models in EViews

5.8.1 Getting started

This example uses the monthly UK house price series which was already

incorporated in an EViews workfile in chapter 1. There were a total of

196 monthly observations running from February 1991 (recall that the

January observation was ‘lost’ in constructing the lagged value) to May

2007 for the percentage change in house price series.

The objective of this exercise is to build an ARMA model for the house

price changes. Recall that there are three stages involved: identification, es-

timation and diagnostic checking. The first stage is carried out by looking

at the autocorrelation and partial autocorrelation coefficients to identify

any structure in the data.

5.8.2 Estimating the autocorrelation coefficients for up to 12 lags

Double click on the DHP series and then click View and choose Correlo-

gram . . . . In the ‘Correlogram Specification’ window, choose Level (since

the series we are investigating has already been transformed into percent-

age returns or percentage changes) and in the ‘Lags to include’ box, type

12. Click on OK. The output, including relevant test statistics, is given in

screenshot 5.1.

It is clearly evident from the first columns that the series is quite persis-

tent given that it is already in percentage change form. The autocorrela-

tion function dies away quite slowly. Only the first partial autocorrelation

coefficient appears strongly significant. The numerical values of the auto-

correlation and partial autocorrelation coefficients at lags 1--12 are given

in the fourth and fifth columns of the output, with the lag length given

in the third column.

The penultimate column of output gives the statistic resulting from a

Ljung--Box test with number of lags in the sum equal to the row number

(i.e. the number in the third column). The test statistics will follow a χ2(1)

for the first row, a χ2(2) for the second row, and so on. p-values associated

with these test statistics are given in the last column.

Remember that as a rule of thumb, a given autocorrelation coefficient

is classed as significant if it is outside a ±1.96 × 1/(T )1/2 band, where T
is the number of observations. In this case, it would imply that a cor-

relation coefficient is classed as significant if it is bigger than approx-

imately 0.14 or smaller than −0.14. The band is of course wider when

the sampling frequency is monthly, as it is here, rather than daily where

there would be more observations. It can be deduced that the first three
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Screenshot 5.1

Estimating the

correlogram

autocorrelation coefficients and the first two partial autocorrelation co-

efficients are significant under this rule. Since the first acf coefficient is

highly significant, the Ljung--Box joint test statistic rejects the null hy-

pothesis of no autocorrelation at the 1% level for all numbers of lags

considered. It could be concluded that a mixed ARMA process could be

appropriate, although it is hard to precisely determine the appropriate

order given these results. In order to investigate this issue further, the

information criteria are now employed.

5.8.3 Using information criteria to decide on model orders

As demonstrated above, deciding on the appropriate model orders from

autocorrelation functions could be very difficult in practice. An easier way

is to choose the model order that minimises the value of an information

criterion.

An important point to note is that books and statistical packages often

differ in their construction of the test statistic. For example, the formu-

lae given earlier in this chapter for Akaike’s and Schwarz’s Information



236 Introductory Econometrics for Finance

Criteria were

AIC = ln(σ̂ 2) + 2k

T
(5.128)

SBIC = ln(σ̂ 2) + k

T
(ln T ) (5.129)

where σ̂ 2 is the estimator of the variance of regressions disturbances ut , k
is the number of parameters and T is the sample size. When using the

criterion based on the estimated standard errors, the model with the

lowest value of AIC and SBIC should be chosen. However, EViews uses a

formulation of the test statistic derived from the log-likelihood function

value based on a maximum likelihood estimation (see chapter 8). The

corresponding EViews formulae are

AIC	 = −2	/T + 2k

T
(5.130)

SBIC	 = −2	/T + k

T
(ln T ) (5.131)

where l = −T

2
(1 + ln(2π ) + ln(û′û/T ))

Unfortunately, this modification is not benign, since it affects the rela-

tive strength of the penalty term compared with the error variance, some-

times leading different packages to select different model orders for the

same data and criterion!

Suppose that it is thought that ARMA models from order (0,0) to (5,5)

are plausible for the house price changes. This would entail considering

36 models (ARMA(0,0), ARMA(1,0), ARMA(2,0), . . . ARMA(5,5)), i.e. up to five

lags in both the autoregressive and moving average terms.

In EViews, this can be done by separately estimating each of the models

and noting down the value of the information criteria in each case.2 This

would be done in the following way. On the EViews main menu, click

on Quick and choose Estimate Equation . . . . EViews will open an Equa-

tion Specification window. In the Equation Specification editor, type, for

example

dhp c ar(1) ma(1)

For the estimation settings, select LS – Least Squares (NLS and ARMA),

select the whole sample, and click OK -- this will specify an ARMA(1,1).

The output is given in the table below.

2 Alternatively, any reader who knows how to write programs in EViews could set up a

structure to loop over the model orders and calculate all the values of the information

criteria together -- see chapter 12.



Univariate time series modelling and forecasting 237

Dependent Variable: DHP

Method: Least Squares

Date: 08/31/07 Time: 16:09

Sample (adjusted): 1991M03 2007M05

Included observations: 195 after adjustments

Convergence achieved after 19 iterations

MA Backcast: 1991M02

Coefficient Std. Error t-Statistic Prob.

C 0.868177 0.334573 2.594884 0.0102

AR(1) 0.975461 0.019471 50.09854 0.0000

MA(1) −0.909851 0.039596 −22.9784 0.0000

R-squared 0.144695 Mean dependent var 0.635212

Adjusted R-squared 0.135786 S.D. dependent var 1.149146

S.E. of regression 1.068282 Akaike info criterion 2.985245

Sum squared resid 219.1154 Schwarz criterion 3.035599

Log likelihood −288.0614 Hannan-Quinn criter. 3.005633

F-statistic 16.24067 Durbin-Watson stat 1.842823

Prob(F-statistic) 0.000000

Inverted AR Roots .98

Inverted MA Roots .91

In theory, the output would then be interpreted in a similar way to

that discussed in chapter 3. However, in reality it is very difficult to in-

terpret the parameter estimates in the sense of, for example, saying, ‘a

1 unit increase in x leads to a β unit increase in y’. In part because the

construction of ARMA models is not based on any economic or financial

theory, it is often best not to even try to interpret the individual param-

eter estimates, but rather to examine the plausibility of the model as a

whole and to determine whether it describes the data well and produces

accurate forecasts (if this is the objective of the exercise, which it often is).

The inverses of the AR and MA roots of the characteristic equation are

also shown. These can be used to check whether the process implied by the

model is stationary and invertible. For the AR and MA parts of the process

to be stationary and invertible, respectively, the inverted roots in each case

must be smaller than 1 in absolute value, which they are in this case,

although only just. Note also that the header for the EViews output for

ARMA models states the number of iterations that have been used in the

model estimation process. This shows that, in fact, an iterative numerical

optimisation procedure has been employed to estimate the coefficients

(see chapter 8 for further details).
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Repeating these steps for the other ARMA models would give all of

the required values for the information criteria. To give just one more

example, in the case of an ARMA(5,5), the following would be typed in the

Equation Specification editor box:

dhp c ar(1) ar(2) ar(3) ar(4) ar(5) ma(1) ma(2) ma(3) ma(4) ma(5)

Note that, in order to estimate an ARMA(5,5) model, it is necessary to

write out the whole list of terms as above rather than to simply write, for

example, ‘dhp c ar(5) ma(5)’, which would give a model with a fifth lag

of the dependent variable and a fifth lag of the error term but no other

variables. The values of all of the information criteria, calculated using

EViews, are as follows:

Information criteria for ARMA models of the

percentage changes in UK house prices

AIC

p/q 0 1 2 3 4 5

0 3.116 3.086 2.973 2.973 2.977 2.977

1 3.065 2.985 2.965 2.935 2.931 2.938

2 2.951 2.961 2.968 2.924 2.941 2.957

3 2.960 2.968 2.970 2.980 2.937 2.914

4 2.969 2.979 2.931 2.940 2.862 2.924

5 2.984 2.932 2.955 2.986 2.937 2.936

SBIC

p/q 0 1 2 3 4 5

0 3.133 3.120 3.023 3.040 3.061 3.078

1 3.098 3.036 3.032 3.019 3.032 3.056

2 3.002 3.029 3.053 3.025 3.059 3.091

3 3.028 3.053 3.072 3.098 3.072 3.066

4 3.054 3.081 3.049 3.076 3.015 3.094

5 3.086 3.052 3.092 3.049 3.108 3.123

So which model actually minimises the two information criteria? In this

case, the criteria choose different models: AIC selects an ARMA(4,4), while

SBIC selects the smaller ARMA(2,0) model -- i.e. an AR(2). These chosen

models are highlighted in bold in the table. It will always be the case

that SBIC selects a model that is at least as small (i.e. with fewer or the

same number of parameters) as AIC, because the former criterion has a

stricter penalty term. This means that SBIC penalises the incorporation

of additional terms more heavily. Many different models provide almost
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identical values of the information criteria, suggesting that the chosen

models do not provide particularly sharp characterisations of the data and

that a number of other specifications would fit the data almost as well.

5.9 Examples of time series modelling in finance

5.9.1 Covered and uncovered interest parity

The determination of the price of one currency in terms of another (i.e. the

exchange rate) has received a great deal of empirical examination in the

international finance literature. Of these, three hypotheses in particular

are studied -- covered interest parity (CIP), uncovered interest parity (UIP)

and purchasing power parity (PPP). The first two of these will be consid-

ered as illustrative examples in this chapter, while PPP will be discussed in

chapter 7. All three relations are relevant for students of finance, for vio-

lation of one or more of the parities may offer the potential for arbitrage,

or at least will offer further insights into how financial markets operate.

All are discussed briefly here; for a more comprehensive treatment, see

Cuthbertson and Nitsche (2004) or the many references therein.

5.9.2 Covered interest parity

Stated in its simplest terms, CIP implies that, if financial markets are

efficient, it should not be possible to make a riskless profit by borrowing

at a risk-free rate of interest in a domestic currency, switching the funds

borrowed into another (foreign) currency, investing them there at a risk-

free rate and locking in a forward sale to guarantee the rate of exchange

back to the domestic currency. Thus, if CIP holds, it is possible to write

ft − st = (r − r∗)t (5.132)

where ft and st are the log of the forward and spot prices of the domestic

in terms of the foreign currency at time t , r is the domestic interest rate

and r∗ is the foreign interest rate. This is an equilibrium condition which

must hold otherwise there would exist riskless arbitrage opportunities,

and the existence of such arbitrage would ensure that any deviation from

the condition cannot hold indefinitely. It is worth noting that, underlying

CIP are the assumptions that the risk-free rates are truly risk-free -- that

is, there is no possibility for default risk. It is also assumed that there are

no transactions costs, such as broker’s fees, bid--ask spreads, stamp duty,

etc., and that there are no capital controls, so that funds can be moved

without restriction from one currency to another.
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5.9.3 Uncovered interest parity

UIP takes CIP and adds to it a further condition known as ‘forward rate

unbiasedness’ (FRU). Forward rate unbiasedness states that the forward

rate of foreign exchange should be an unbiased predictor of the future

value of the spot rate. If this condition does not hold, again in theory

riskless arbitrage opportunities could exist. UIP, in essence, states that

the expected change in the exchange rate should be equal to the interest

rate differential between that available risk-free in each of the currencies.

Algebraically, this may be stated as

se
t+1 − st = (r − r∗)t (5.133)

where the notation is as above and se
t+1 is the expectation, made at time

t of the spot exchange rate that will prevail at time t + 1.

The literature testing CIP and UIP is huge with literally hundreds of

published papers. Tests of CIP unsurprisingly (for it is a pure arbitrage con-

dition) tend not to reject the hypothesis that the condition holds. Taylor

(1987, 1989) has conducted extensive examinations of CIP, and concluded

that there were historical periods when arbitrage was profitable, particu-

larly during periods where the exchange rates were under management.

Relatively simple tests of UIP and FRU take equations of the form (5.133)

and add intuitively relevant additional terms. If UIP holds, these addi-

tional terms should be insignificant. Ito (1988) tests UIP for the yen/dollar

exchange rate with the three-month forward rate for January 1973 until

February 1985. The sample period is split into three as a consequence

of perceived structural breaks in the series. Strict controls on capital

movements were in force in Japan until 1977, when some were relaxed

and finally removed in 1980. A Chow test confirms Ito’s intuition and

suggests that the three sample periods should be analysed separately.

Two separate regressions are estimated for each of the three sample

sub-periods

st+3 − ft,3 = a + b1(st − ft−3,3) + b2(st−1 − ft−4,3) + ut (5.134)

where st+3 is the spot interest rate prevailing at time t + 3, ft,3 is the for-

ward rate for three periods ahead available at time t , and so on, and ut

is an error term. A natural joint hypothesis to test is H0: a = 0 and b1 =0

and b2 = 0. This hypothesis represents the restriction that the deviation

of the forward rate from the realised rate should have a mean value in-

significantly different from zero (a = 0) and it should be independent of

any information available at time t (b1 = 0 and b2 = 0). All three of these

conditions must be fulfilled for UIP to hold. The second equation that Ito
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Table 5.1 Uncovered interest parity test results

Sample period 1973M1--1977M3 1977M4--1980M12 1981M1--1985M2

Panel A: Estimates and hypothesis tests for

St+3 − ft,3 = a + b1(st − ft−3,3) + b2(st−1 − ft−4,3) + ut

Estimate of a 0.0099 0.0031 0.027

Estimate of b1 0.020 0.24 0.077

Estimate of b2 −0.37 0.16 −0.21

Joint test χ2(3) 23.388 5.248 6.022

P -value for joint test 0.000 0.155 0.111

Panel B: Estimates and hypothesis tests for

St+3 − ft,3 = a + b(st − ft,3) + vt

Estimate of a 0.00 −0.052 −0.89

Estimate of b 0.095 4.18 2.93

Joint test χ2(2) 31.923 22.06 5.39

p-value for joint test 0.000 0.000 0.07

Source: Ito (1988). Reprinted with permission from MIT Press Journals.

tests is

st+3 − ft,3 = a + b(st − ft,3) + vt (5.135)

where vt is an error term and the hypothesis of interest in this case is H0:

a = 0 and b = 0.

Equation (5.134) tests whether past forecast errors have information use-

ful for predicting the difference between the actual exchange rate at time

t + 3, and the value of it that was predicted by the forward rate. Equation

(5.135) tests whether the forward premium has any predictive power for

the difference between the actual exchange rate at time t + 3, and the

value of it that was predicted by the forward rate. The results for the

three sample periods are presented in Ito’s table 3, and are adapted and

reported here in table 5.1.

The main conclusion is that UIP clearly failed to hold throughout the

period of strictest controls, but there is less and less evidence against UIP

as controls were relaxed.

5.10 Exponential smoothing

Exponential smoothing is another modelling technique (not based on the

ARIMA approach) that uses only a linear combination of the previous

values of a series for modelling it and for generating forecasts of its future
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values. Given that only previous values of the series of interest are used,

the only question remaining is how much weight should be attached to

each of the previous observations. Recent observations would be expected

to have the most power in helping to forecast future values of a series. If

this is accepted, a model that places more weight on recent observations

than those further in the past would be desirable. On the other hand,

observations a long way in the past may still contain some information

useful for forecasting future values of a series, which would not be the

case under a centred moving average. An exponential smoothing model

will achieve this, by imposing a geometrically declining weighting scheme

on the lagged values of a series. The equation for the model is

St = αyt + (1 − α)St−1 (5.136)

where α is the smoothing constant, with 0 < α < 1, yt is the current re-

alised value, St is the current smoothed value.

Since α + (1 − α) = 1, St is modelled as a weighted average of the current

observation yt and the previous smoothed value. The model above can be

rewritten to express the exponential weighting scheme more clearly. By

lagging (5.136) by one period, the following expression is obtained

St−1 = αyt−1 + (1 − α)St−2 (5.137)

and lagging again

St−2 = αyt−2 + (1 − α)St−3 (5.138)

Substituting into (5.136) for St−1 from (5.137)

St = αyt + (1 − α)(αyt−1 + (1 − α)St−2) (5.139)

St = αyt + (1 − α)αyt−1 + (1 − α)2St−2 (5.140)

Substituting into (5.140) for St−2 from (5.138)

St = αyt + (1 − α)αyt−1 + (1 − α)2(αyt−2 + (1 − α)St−3) (5.141)

St = αyt + (1 − α)αyt−1 + (1 − α)2αyt−2 + (1 − α)3St−3 (5.142)

T successive substitutions of this kind would lead to

St =
(

T∑
i=0

α(1 − α)i yt−i

)
+ (1 − α)T +1St−1−T (5.143)

Since α 0, the effect of each observation declines geometrically as the

variable moves another observation forward in time. In the limit as T →
∞, (1−α)T S0 → 0, so that the current smoothed value is a geometrically

weighted infinite sum of the previous realisations.
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The forecasts from an exponential smoothing model are simply set to

the current smoothed value, for any number of steps ahead, s

ft,s = St , s = 1, 2, 3, . . . (5.144)

The exponential smoothing model can be seen as a special case of a Box--

Jenkins model, an ARIMA(0,1,1), with MA coefficient (1 − α) -- see Granger

and Newbold (1986, p. 174).

The technique above is known as single or simple exponential smooth-

ing, and it can be modified to allow for trends (Holt’s method) or to allow

for seasonality (Winter’s method) in the underlying variable. These aug-

mented models are not pursued further in this text since there is a much

better way to model the trends (using a unit root process -- see chapter 7)

and the seasonalities (see chapters 1 and 9) of the form that are typically

present in financial data.

Exponential smoothing has several advantages over the slightly more

complex ARMA class of models discussed above. First, exponential smooth-

ing is obviously very simple to use. There is no decision to be made on how

many parameters to estimate (assuming only single exponential smooth-

ing is considered). Thus it is easy to update the model if a new realisation

becomes available.

Among the disadvantages of exponential smoothing is the fact that it

is overly simplistic and inflexible. Exponential smoothing models can be

viewed as but one model from the ARIMA family, which may not necessar-

ily be optimal for capturing any linear dependence in the data. Also, the

forecasts from an exponential smoothing model do not converge on the

long-term mean of the variable as the horizon increases. The upshot is

that long-term forecasts are overly affected by recent events in the history

of the series under investigation and will therefore be sub-optimal.

A discussion of how exponential smoothing models can be estimated

using EViews will be given after the following section on forecasting in

econometrics.

5.11 Forecasting in econometrics

Although the words ‘forecasting’ and ‘prediction’ are sometimes given

different meanings in some studies, in this text the words will be used

synonymously. In this context, prediction or forecasting simply means an

attempt to determine the values that a series is likely to take. Of course, forecasts

might also usefully be made in a cross-sectional environment. Although

the discussion below refers to time series data, some of the arguments

will carry over to the cross-sectional context.
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Determining the forecasting accuracy of a model is an important test of

its adequacy. Some econometricians would go as far as to suggest that the

statistical adequacy of a model in terms of whether it violates the CLRM

assumptions or whether it contains insignificant parameters, is largely

irrelevant if the model produces accurate forecasts. The following sub-

sections of the book discuss why forecasts are made, how they are made

from several important classes of models, how to evaluate the forecasts,

and so on.

5.11.1 Why forecast?

Forecasts are made essentially because they are useful! Financial decisions

often involve a long-term commitment of resources, the returns to which

will depend upon what happens in the future. In this context, the deci-

sions made today will reflect forecasts of the future state of the world,

and the more accurate those forecasts are, the more utility (or money!) is

likely to be gained from acting on them.

Some examples in finance of where forecasts from econometric models

might be useful include:

● Forecasting tomorrow’s return on a particular share

● Forecasting the price of a house given its characteristics

● Forecasting the riskiness of a portfolio over the next year

● Forecasting the volatility of bond returns

● Forecasting the correlation between US and UK stock market movements

tomorrow

● Forecasting the likely number of defaults on a portfolio of home loans.

Again, it is evident that forecasting can apply either in a cross-sectional or

a time series context. It is useful to distinguish between two approaches

to forecasting:

● Econometric (structural) forecasting -- relates a dependent variable to one or

more independent variables. Such models often work well in the long

run, since a long-run relationship between variables often arises from

no-arbitrage or market efficiency conditions. Examples of such forecasts

would include return predictions derived from arbitrage pricing mod-

els, or long-term exchange rate prediction based on purchasing power

parity or uncovered interest parity theory.

● Time series forecasting -- involves trying to forecast the future values of a

series given its previous values and/or previous values of an error term.

The distinction between the two types is somewhat blurred -- for example,

it is not clear where vector autoregressive models (see chapter 6 for an

extensive overview) fit into this classification.



Univariate time series modelling and forecasting 245

In-sample estimation period
Out-of-sample forecast

evaluation period

Jan 1990 Dec 1998 Jan 1999 Dec 1999

Figure 5.9 Use of an in-sample and an out-of-sample period for analysis

It is also worth distinguishing between point and interval forecasts.

Point forecasts predict a single value for the variable of interest, while

interval forecasts provide a range of values in which the future value of

the variable is expected to lie with a given level of confidence.

5.11.2 The difference between in-sample and out-of-sample forecasts

In-sample forecasts are those generated for the same set of data that was

used to estimate the model’s parameters. One would expect the ‘forecasts’

of a model to be relatively good in-sample, for this reason. Therefore, a

sensible approach to model evaluation through an examination of forecast

accuracy is not to use all of the observations in estimating the model

parameters, but rather to hold some observations back. The latter sample,

sometimes known as a holdout sample, would be used to construct out-of-

sample forecasts.

To give an illustration of this distinction, suppose that some monthly

FTSE returns for 120 months (January 1990--December 1999) are available.

It would be possible to use all of them to build the model (and generate

only in-sample forecasts), or some observations could be kept back, as

shown in figure 5.9.

What would be done in this case would be to use data from 1990M1 until

1998M12 to estimate the model parameters, and then the observations for

1999 would be forecasted from the estimated parameters. Of course, where

each of the in-sample and out-of-sample periods should start and finish

is somewhat arbitrary and at the discretion of the researcher. One could

then compare how close the forecasts for the 1999 months were relative to

their actual values that are in the holdout sample. This procedure would

represent a better test of the model than an examination of the in-sample

fit of the model since the information from 1999M1 onwards has not been

used when estimating the model parameters.

5.11.3 Some more terminology: one-step-ahead versus multi-step-ahead

forecasts and rolling versus recursive samples

A one-step-ahead forecast is a forecast generated for the next observation only,

whereas multi-step-ahead forecasts are those generated for 1, 2, 3, . . . , s steps
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ahead, so that the forecasting horizon is for the next s periods. Whether

one-step- or multi-step-ahead forecasts are of interest will be determined

by the forecasting horizon of interest to the researcher.

Suppose that the monthly FTSE data are used as described in the ex-

ample above. If the in-sample estimation period stops in December 1998,

then up to 12-step-ahead forecasts could be produced, giving 12 predictions

that can be compared with the actual values of the series. Comparing the

actual and forecast values in this way is not ideal, for the forecasting hori-

zon is varying from 1 to 12 steps ahead. It might be the case, for example,

that the model produces very good forecasts for short horizons (say, one

or two steps), but that it produces inaccurate forecasts further ahead. It

would not be possible to evaluate whether this was in fact the case or not

since only a single one-step-ahead forecast, a single 2-step-ahead forecast,

and so on, are available. An evaluation of the forecasts would require a

considerably larger holdout sample.

A useful way around this problem is to use a recursive or rolling window,

which generates a series of forecasts for a given number of steps ahead.

A recursive forecasting model would be one where the initial estimation

date is fixed, but additional observations are added one at a time to the

estimation period. A rolling window, on the other hand, is one where the

length of the in-sample period used to estimate the model is fixed, so

that the start date and end date successively increase by one observation.

Suppose now that only one-, two-, and three-step-ahead forecasts are of

interest. They could be produced using the following recursive and rolling

window approaches:

Objective: to produce Data used to estimate model parameters

1-, 2-, 3-step-ahead forecasts for: Rolling window Recursive window

1999M1, M2, M3 1990M1--1998M12 1990M1--1998M12

1999M2, M3, M4 1990M2--1999M1 1990M1--1999M1

1999M3, M4, M5 1990M3--1999M2 1990M1--1999M2

1999M4, M5, M6 1990M4--1999M3 1990M1--1999M3

1999M5, M6, M7 1990M5--1999M4 1990M1--1999M4

1999M6, M7, M8 1990M6--1999M5 1990M1--1999M5

1999M7, M8, M9 1990M7--1999M6 1990M1--1999M6

1999M8, M9, M10 1990M8--1999M7 1990M1--1999M7

1999M9, M10, M11 1990M9--1999M8 1990M1--1999M8

1999M10, M11, M12 1990M10--1999M9 1990M1--1999M9

The sample length for the rolling windows above is always set at 108

observations, while the number of observations used to estimate the
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parameters in the recursive case increases as we move down the table

and through the sample.

5.11.4 Forecasting with time series versus structural models

To understand how to construct forecasts, the idea of conditional expecta-

tions is required. A conditional expectation would be expressed as

E(yt+1 | t )

This expression states that the expected value of y is taken for time t + 1,

conditional upon, or given, (|) all information available up to and includ-

ing time t (t ). Contrast this with the unconditional expectation of y,

which is the expected value of y without any reference to time, i.e. the

unconditional mean of y. The conditional expectations operator is used

to generate forecasts of the series.

How this conditional expectation is evaluated will of course depend on

the model under consideration. Several families of models for forecasting

will be developed in this and subsequent chapters.

A first point to note is that by definition the optimal forecast for a zero

mean white noise process is zero

E(ut+s |t ) = 0 ∀ s > 0 (5.145)

The two simplest forecasting ‘methods’ that can be employed in almost

every situation are shown in box 5.3.

Box 5.3 Naive forecasting methods

(1) Assume no change so that the forecast, f , of the value of y, s steps into the future

is the current value of y

E(yt+s |t ) = yt (5.146)

Such a forecast would be optimal if yt followed a random walk process.

(2) In the absence of a full model, forecasts can be generated using the long-term

average of the series. Forecasts using the unconditional mean would be more useful

than ‘no change’ forecasts for any series that is ‘mean-reverting’ (i.e. stationary).

Time series models are generally better suited to the production of time

series forecasts than structural models. For an illustration of this, consider

the following linear regression model

yt = β1 + β2x2t + β3x3t + · · · + βk xkt + ut (5.147)
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To forecast y, the conditional expectation of its future value is required.

Taking expectations of both sides of (5.147) yields

E(yt |t−1 ) = E(β1 + β2x2t + β3x3t + · · · + βk xkt + ut ) (5.148)

The parameters can be taken through the expectations operator, since

this is a population regression function and therefore they are assumed

known. The following expression would be obtained

E(yt |t−1 ) = β1 + β2E(x2t ) + β3E(x3t ) + · · · + βkE(xkt ) (5.149)

But there is a problem: what are E(x2t ), etc.? Remembering that informa-

tion is available only until time t − 1, the values of these variables are

unknown. It may be possible to forecast them, but this would require

another set of forecasting models for every explanatory variable. To the

extent that forecasting the explanatory variables may be as difficult, or

even more difficult, than forecasting the explained variable, this equation

has achieved nothing! In the absence of a set of forecasts for the explana-

tory variables, one might think of using x̄2, etc., i.e. the mean values of

the explanatory variables, giving

E(yt ) = β1 + β2 x̄2 + β3 x̄3 + · · · + βk x̄k = ȳ ! (5.150)

Thus, if the mean values of the explanatory variables are used as inputs

to the model, all that will be obtained as a forecast is the average value of

y. Forecasting using pure time series models is relatively common, since

it avoids this problem.

5.11.5 Forecasting with ARMA models

Forecasting using ARMA models is a fairly simple exercise in calculating

conditional expectations. Although any consistent and logical notation

could be used, the following conventions will be adopted in this book. Let

ft,s denote a forecast made using an ARMA(p,q) model at time t for s steps

into the future for some series y. The forecasts are generated by what is

known as a forecast function, typically of the form

ft,s =
p∑

i=1

ai ft,s−i +
q∑

j=1

b j ut+s− j (5.151)

where ft,s = yt+s, s ≤ 0; ut+s = 0, s > 0

= ut+s, s ≤ 0

and ai and bi are the autoregressive and moving average coefficients,

respectively.
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A demonstration of how one generates forecasts for separate AR and

MA processes, leading to the general equation (5.151) above, will now be

given.

5.11.6 Forecasting the future value of an MA(q) process

A moving average process has a memory only of length q, and this lim-

its the sensible forecasting horizon. For example, suppose that an MA(3)

model has been estimated

yt = μ + θ1ut−1 + θ2ut−2 + θ3ut−3 + ut (5.152)

Since parameter constancy over time is assumed, if this relationship holds

for the series y at time t , it is also assumed to hold for y at time t + 1, t +
2, . . . , so 1 can be added to each of the time subscripts in (5.152), and 2

added to each of the time subscripts, and then 3, and so on, to arrive at

the following

yt+1 = μ + θ1ut + θ2ut−1 + θ3ut−2 + ut+1 (5.153)

yt+2 = μ + θ1ut+1 + θ2ut + θ3ut−1 + ut+2 (5.154)

yt+3 = μ + θ1ut+2 + θ2ut+1 + θ3ut + ut+3 (5.155)

Suppose that all information up to and including that at time t is available

and that forecasts for 1, 2, . . . , s steps ahead -- i.e. forecasts for y at times

t + 1, t + 2, . . . , t + s are wanted. yt , yt−1, . . . , and ut , ut−1, are known, so

producing the forecasts is just a matter of taking the conditional expec-

tation of (5.153)

ft,1 = E(yt+1|t ) = E(μ + θ1ut + θ2ut−1 + θ3ut−2 + ut+1|t ) (5.156)

where E(yt+1|t ) is a short-hand notation for E(yt+1|t )

ft,1 = E(yt+1|t ) = μ + θ1ut + θ2ut−1 + θ3ut−2 (5.157)

Thus the forecast for y, 1 step ahead, made at time t , is given by this

linear combination of the disturbance terms. Note that it would not be

appropriate to set the values of these disturbance terms to their uncon-

ditional mean of zero. This arises because it is the conditional expectation

of their values that is of interest. Given that all information is known up

to and including that at time t is available, the values of the error terms

up to time t are known. But ut+1 is not known at time t and therefore

E(ut+1|t ) = 0, and so on.
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The forecast for 2 steps ahead is formed by taking the conditional ex-

pectation of (5.154)

ft,2 = E(yt+2|t ) = E(μ + θ1ut+1 + θ2ut + θ3ut−1 + ut+2 | t ) (5.158)

ft,2 = E(yt+2|t ) = μ + θ2ut + θ3ut−1 (5.159)

In the case above, ut+2 is not known since information is available only to

time t , so E(ut+2) is set to zero. Continuing and applying the same rules

to generate 3-, 4-, . . . , s-step-ahead forecasts

ft,3 = E(yt+3|t ) = E(μ + θ1ut+2 + θ2ut+1 + θ3ut + ut+3 | t ) (5.160)

ft,3 = E(yt+3|t ) = μ + θ3ut (5.161)

ft,4 = E(yt+4|t ) = μ (5.162)

ft,s = E(yt+s|t ) = μ ∀ s ≥ 4 (5.163)

As the MA(3) process has a memory of only three periods, all forecasts four

or more steps ahead collapse to the intercept. Obviously, if there had been

no constant term in the model, the forecasts four or more steps ahead for

an MA(3) would be zero.

5.11.7 Forecasting the future value of an AR(p) process

Unlike a moving average process, an autoregressive process has infinite

memory. To illustrate, suppose that an AR(2) model has been estimated

yt = μ + φ1 yt−1 + φ2 yt−2 + ut (5.164)

Again, by appealing to the assumption of parameter stability, this equation

will hold for times t + 1, t + 2, and so on

yt+1 = μ + φ1 yt + φ2 yt−1 + ut+1 (5.165)

yt+2 = μ + φ1 yt+1 + φ2 yt + ut+2 (5.166)

yt+3 = μ + φ1 yt+2 + φ2 yt+1 + ut+3 (5.167)

Producing the one-step-ahead forecast is easy, since all of the information

required is known at time t . Applying the expectations operator to (5.165),

and setting E(ut+1) to zero would lead to

ft,1 = E(yt+1|t ) = E(μ + φ1 yt + φ2 yt−1 + ut+1 | t ) (5.168)

ft,1 = E(yt+1|t ) = μ + φ1 E(yt | t) + φ2 E(yt−1 | t) (5.169)

ft,1 = E(yt+1|t ) = μ + φ1 yt + φ2 yt−1 (5.170)
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Applying the same procedure in order to generate a two-step-ahead fore-

cast

ft,2 = E(yt+2|t ) = E(μ + φ1 yt+1 + φ2 yt + ut+2 | t ) (5.171)

ft,2 = E(yt+2|t ) = μ + φ1 E(yt+1 | t) + φ2 E(yt | t) (5.172)

The case above is now slightly more tricky, since E(yt+1) is not known,

although this in fact is the one-step-ahead forecast, so that (5.172)

becomes

ft,2 = E(yt+2|t ) = μ + φ1 ft,1 + φ2 yt (5.173)

Similarly, for three, four, . . . and s steps ahead, the forecasts will be, re-

spectively, given by

ft,3 = E(yt+3|t ) = E(μ + φ1 yt+2 + φ2 yt+1 + ut+3 | t ) (5.174)

ft,3 = E(yt+3|t ) = μ + φ1 E(yt+2 | t) + φ2 E(yt+1 | t) (5.175)

ft,3 = E(yt+3|t ) = μ + φ1 ft,2 + φ2 ft,1 (5.176)

ft,4 = μ + φ1 ft,3 + φ2 ft,2 (5.177)

etc. so

ft,s = μ + φ1 ft,s−1 + φ2 ft,s−2 (5.178)

Thus the s-step-ahead forecast for an AR(2) process is given by the inter-

cept + the coefficient on the one-period lag multiplied by the time s − 1

forecast + the coefficient on the two-period lag multiplied by the s − 2

forecast.

ARMA(p,q) forecasts can easily be generated in the same way by applying

the rules for their component parts, and using the general formula given

by (5.151).

5.11.8 Determining whether a forecast is accurate or not

For example, suppose that tomorrow’s return on the FTSE is predicted to

be 0.2, and that the outcome is actually −0.4. Is this an accurate forecast?

Clearly, one cannot determine whether a forecasting model is good or

not based upon only one forecast and one realisation. Thus in practice,

forecasts would usually be produced for the whole of the out-of-sample

period, which would then be compared with the actual values, and the

difference between them aggregated in some way. The forecast error for

observation i is defined as the difference between the actual value for

observation i and the forecast made for it. The forecast error, defined

in this way, will be positive (negative) if the forecast was too low (high).

Therefore, it is not possible simply to sum the forecast errors, since the
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Table 5.2 Forecast error aggregation

Steps ahead Forecast Actual Squared error Absolute error

1 0.20 −0.40 (0.20 − −0.40)2 = 0.360 |0.20 − −0.40| = 0.600
2 0.15 0.20 (0.15−0.20)2 = 0.002 |0.15−0.20| = 0.050
3 0.10 0.10 (0.10−0.10)2 = 0.000 |0.10−0.10| = 0.000
4 0.06 −0.10 (0.06 − −0.10)2 = 0.026 |0.06 − −0.10| = 0.160
5 0.04 −0.05 (0.04 − −0.05)2 = 0.008 |0.04 − −0.05| = 0.090

positive and negative errors will cancel one another out. Thus, before the

forecast errors are aggregated, they are usually squared or the absolute

value taken, which renders them all positive. To see how the aggregation

works, consider the example in table 5.2, where forecasts are made for

a series up to 5 steps ahead, and are then compared with the actual

realisations (with all calculations rounded to 3 decimal places).

The mean squared error, MSE, and mean absolute error, MAE, are now

calculated by taking the average of the fourth and fifth columns, respec-

tively

MSE = (0.360 + 0.002 + 0.000 + 0.026 + 0.008)/5 = 0.079 (5.179)

MAE = (0.600 + 0.050 + 0.000 + 0.160 + 0.090)/5 = 0.180 (5.180)

Taken individually, little can be gleaned from considering the size of the

MSE or MAE, for the statistic is unbounded from above (like the residual

sum of squares or RSS). Instead, the MSE or MAE from one model would

be compared with those of other models for the same data and forecast

period, and the model(s) with the lowest value of the error measure would

be argued to be the most accurate.

MSE provides a quadratic loss function, and so may be particularly use-

ful in situations where large forecast errors are disproportionately more

serious than smaller errors. This may, however, also be viewed as a disad-

vantage if large errors are not disproportionately more serious, although

the same critique could also, of course, be applied to the whole least

squares methodology. Indeed Dielman (1986) goes as far as to say that

when there are outliers present, least absolute values should be used to

determine model parameters rather than least squares. Makridakis (1993,

p. 528) argues that mean absolute percentage error (MAPE) is ‘a relative

measure that incorporates the best characteristics among the various ac-

curacy criteria’. Once again, denoting s-step-ahead forecasts of a variable

made at time t as ft,s and the actual value of the variable at time t as yt ,
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then the mean square error can be defined as

MSE = 1

T − (T1 − 1)

T∑
t=T1

(yt+s − ft,s)2 (5.181)

where T is the total sample size (in-sample + out-of-sample), and T1 is the

first out-of-sample forecast observation. Thus in-sample model estimation

initially runs from observation 1 to (T1−1), and observations T1 to T are

available for out-of-sample estimation, i.e. a total holdout sample of T −
(T1 − 1).

Mean absolute error (MAE) measures the average absolute forecast error,

and is given by

MAE = 1

T − (T1 − 1)

T∑
t=T1

|yt+s − ft,s | (5.182)

Adjusted MAPE (AMAPE) or symmetric MAPE corrects for the problem of

asymmetry between the actual and forecast values

AMAPE = 100

T − (T1 − 1)

T∑
t=T1

∣∣∣∣ yt+s − ft,s

yt+s + ft,s

∣∣∣∣ (5.183)

The symmetry in (5.183) arises since the forecast error is divided by twice

the average of the actual and forecast values. So, for example, AMAPE will

be the same whether the forecast is 0.5 and the actual value is 0.3, or

the actual value is 0.5 and the forecast is 0.3. The same is not true of the

standard MAPE formula, where the denominator is simply yt+s , so that

whether yt or ft,s is larger will affect the result

MAPE = 100

T − (T1 − 1)

T∑
t=T1

∣∣∣∣ yt+s − ft,s

yt+s

∣∣∣∣ (5.184)

MAPE also has the attractive additional property compared to MSE that

it can be interpreted as a percentage error, and furthermore, its value is

bounded from below by 0.

Unfortunately, it is not possible to use the adjustment if the series and

the forecasts can take on opposite signs (as they could in the context of

returns forecasts, for example). This is due to the fact that the prediction

and the actual value may, purely by coincidence, take on values that are

almost equal and opposite, thus almost cancelling each other out in the

denominator. This leads to extremely large and erratic values of AMAPE.

In such an instance, it is not possible to use MAPE as a criterion either.

Consider the following example: say we forecast a value of ft,s = 3, but

the out-turn is that yt+s = 0.0001. The addition to total MSE from this one
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observation is given by

1

391
× (0.0001 − 3)2 = 0.0230 (5.185)

This value for the forecast is large, but perfectly feasible since in many

cases it will be well within the range of the data. But the addition to total

MAPE from just this single observation is given by

100

391

∣∣∣∣0.0001 − 3

0.0001

∣∣∣∣ = 7670 (5.186)

MAPE has the advantage that for a random walk in the log levels (i.e. a

zero forecast), the criterion will take the value one (or 100 if we multiply

the formula by 100 to get a percentage, as was the case for the equation

above. So if a forecasting model gives a MAPE smaller than one (or 100),

it is superior to the random walk model. In fact the criterion is also not

reliable if the series can take on absolute values less than one. This point

may seem somewhat obvious, but it is clearly important for the choice of

forecast evaluation criteria.

Another criterion which is popular is Theil’s U -statistic (1966). The met-

ric is defined as follows

U =

√
T∑

t=T1

(
yt+s − ft,s

yt+s

)2

√
T∑

t=T1

(
yt+s − f bt,s

yt+s

)2
(5.187)

where f bt,s is the forecast obtained from a benchmark model (typically

a simple model such as a naive or random walk). A U -statistic of one

implies that the model under consideration and the benchmark model

are equally (in)accurate, while a value of less than one implies that the

model is superior to the benchmark, and vice versa for U > 1. Although

the measure is clearly useful, as Makridakis and Hibon (1995) argue, it is

not without problems since if fbt,s is the same as yt+s , Uwill be infinite

since the denominator will be zero. The value of U will also be influenced

by outliers in a similar vein to MSE and has little intuitive meaning.3

5.11.9 Statistical versus financial or economic loss functions

Many econometric forecasting studies evaluate the models’ success using

statistical loss functions such as those described above. However, it is not

3 Note that the Theil’s U -formula reported by EViews is slightly different.
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necessarily the case that models classed as accurate because they have

small mean squared forecast errors are useful in practical situations. To

give one specific illustration, it has recently been shown (Gerlow, Irwin and

Liu, 1993) that the accuracy of forecasts according to traditional statistical

criteria may give little guide to the potential profitability of employing

those forecasts in a market trading strategy. So models that perform poorly

on statistical grounds may still yield a profit if used for trading, and vice

versa.

On the other hand, models that can accurately forecast the sign of

future returns, or can predict turning points in a series have been found

to be more profitable (Leitch and Tanner, 1991). Two possible indicators

of the ability of a model to predict direction changes irrespective of their

magnitude are those suggested by Pesaran and Timmerman (1992) and

by Refenes (1995). The relevant formulae to compute these measures are,

respectively

% correct sign predictions = 1

T − (T1 − 1)

T∑
t=T1

zt+s (5.188)

where zt+s = 1 if (yt+s ft,s) > 0

zt+s = 0 otherwise

and

% correct direction change predictions = 1

T − (T1 − 1)

T∑
t=T1

zt+s (5.189)

where zt+s = 1 if (yt+s − yt )( ft,s − yt ) > 0

zt+s = 0 otherwise

Thus, in each case, the criteria give the proportion of correctly predicted

signs and directional changes for some given lead time s, respectively.

Considering how strongly each of the three criteria outlined above (MSE,

MAE and proportion of correct sign predictions) penalises large errors

relative to small ones, the criteria can be ordered as follows:

Penalises large errors least → penalises large errors most heavily

Sign prediction → MAE →MSE

MSE penalises large errors disproportionately more heavily than small er-

rors, MAE penalises large errors proportionately equally as heavily as small

errors, while the sign prediction criterion does not penalise large errors

any more than small errors.
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5.11.10 Finance theory and time series analysis

An example of ARIMA model identification, estimation and forecasting in

the context of commodity prices is given by Chu (1978). He finds ARIMA

models useful compared with structural models for short-term forecast-

ing, but also finds that they are less accurate over longer horizons. It also

observed that ARIMA models have limited capacity to forecast unusual

movements in prices.

Chu (1978) argues that, although ARIMA models may appear to be com-

pletely lacking in theoretical motivation, and interpretation, this may not

necessarily be the case. He cites several papers and offers an additional

example to suggest that ARIMA specifications quite often arise naturally

as reduced form equations (see chapter 6) corresponding to some under-

lying structural relationships. In such a case, not only would ARIMA mod-

els be convenient and easy to estimate, they could also be well grounded

in financial or economic theory after all.

5.12 Forecasting using ARMA models in EViews

Once a specific model order has been chosen and the model estimated for

a particular set of data, it may be of interest to use the model to forecast

future values of the series. Suppose that the AR(2) model selected for the

house price percentage changes series were estimated using observations

February 1991--December 2004, leaving 29 remaining observations to con-

struct forecasts for and to test forecast accuracy (for the period January

2005--May 2007).

Once the required model has been estimated and EViews has opened a

window displaying the output, click on the Forecast icon. In this instance,

the sample range to forecast would, of course, be 169--197 (which should

be entered as 2005M01--2007M05). There are two methods available in

EViews for constructing forecasts: dynamic and static. Select the option

Dynamic to calculate multi-step forecasts starting from the first period

in the forecast sample or Static to calculate a sequence of one-step-ahead

forecasts, rolling the sample forwards one observation after each forecast

to use actual rather than forecasted values for lagged dependent variables.

The outputs for the dynamic and static forecasts are given in screenshots

5.2 and 5.3.

The forecasts are plotted using the continuous line, while a confidence

interval is given by the two dotted lines in each case. For the dynamic

forecasts, it is clearly evident that the forecasts quickly converge upon the

long-term unconditional mean value as the horizon increases. Of course,
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Screenshot 5.2

Plot and summary

statistics for the

dynamic forecasts

for the percentage

changes in house

prices using an

AR(2)

this does not occur with the series of one-step-ahead forecasts produced

by the ‘static’ command. Several other useful measures concerning the

forecast errors are displayed in the plot box, including the square root of

the mean squared error (RMSE), the MAE, the MAPE and Theil’s U-statistic.

The MAPE for the dynamic and static forecasts for DHP are well over

100% in both cases, which can sometimes happen for the reasons outlined

above. This indicates that the model forecasts are unable to account for

much of the variability of the out-of-sample part of the data. This is to be

expected as forecasting changes in house prices, along with the changes

in the prices of any other assets, is difficult!

EViews provides another piece of useful information -- a decomposition

of the forecast errors. The mean squared forecast error can be decomposed

into a bias proportion, a variance proportion and a covariance proportion.

The bias component measures the extent to which the mean of the forecasts

is different to the mean of the actual data (i.e. whether the forecasts are

biased). Similarly, the variance component measures the difference between

the variation of the forecasts and the variation of the actual data, while

the covariance component captures any remaining unsystematic part of the
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Screenshot 5.3

Plot and summary

statistics for the

static forecasts for

the percentage

changes in house

prices using an

AR(2)

forecast errors. As one might have expected, the forecasts are not biased.

Accurate forecasts would be unbiased and also have a small variance pro-

portion, so that most of the forecast error should be attributable to the

covariance (unsystematic or residual) component. For further details, see

Granger and Newbold (1986).

A robust forecasting exercise would of course employ a longer out-of-

sample period than the two years or so used here, would perhaps employ

several competing models in parallel, and would also compare the accu-

racy of the predictions by examining the error measures given in the box

after the forecast plots.

5.13 Estimating exponential smoothing models using EViews

This class of models can be easily estimated in EViews by double clicking

on the desired variable in the workfile, so that the spreadsheet for that

variable appears, and selecting Proc on the button bar for that variable

and then Exponential Smoothing. . . . The screen with options will appear

as in screenshot 5.4.
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Screenshot 5.4

Estimating

exponential

smoothing models

There is a variety of smoothing methods available, including single and

double, or various methods to allow for seasonality and trends in the

data. Select Single (exponential smoothing), which is the only smoothing

method that has been discussed in this book, and specify the estimation

sample period as 1991M1 – 2004M12 to leave 29 observations for out-

of-sample forecasting. Clicking OK will give the results in the following

table.

Date: 09/02/07 Time: 14:46

Sample: 1991M02 2004M12

Included observations: 167

Method: Single Exponential

Original Series: DHP

Forecast Series: DHPSM

Parameters: Alpha 0.0760

Sum of Squared Residuals 208.5130

Root Mean Squared Error 1.117399

End of Period Levels: Mean 0.994550
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The output includes the value of the estimated smoothing coefficient

(= 0.076 in this case), together with the RSS for the in-sample estimation

period and the RMSE for the 29 forecasts. The final in-sample smoothed

value will be the forecast for those 29 observations (which in this case

would be 0.994550). EViews has automatically saved the smoothed values

(i.e. the model fitted values) and the forecasts in a series called ‘DHPSM’.

Key concepts
The key terms to be able to define and explain from this chapter are

● ARIMA models ● Ljung--Box test

● invertible MA ● Wold’s decomposition theorem

● autocorrelation function ● partial autocorrelation function

● Box-Jenkins methodology ● information criteria

● exponential smoothing ● recursive window

● rolling window ● out-of-sample

● multi-step forecast ● mean squared error

● mean absolute percentage error

Review questions

1. What are the differences between autoregressive and moving average

models?

2. Why might ARMA models be considered particularly useful for financial

time series? Explain, without using any equations or mathematical

notation, the difference between AR, MA and ARMA processes.

3. Consider the following three models that a researcher suggests might

be a reasonable model of stock market prices

yt = yt−1 + ut (5.190)

yt = 0.5yt−1 + ut (5.191)

yt = 0.8ut−1 + ut (5.192)

(a) What classes of models are these examples of?

(b) What would the autocorrelation function for each of these

processes look like? (You do not need to calculate the acf, simply

consider what shape it might have given the class of model from

which it is drawn.)

(c) Which model is more likely to represent stock market prices from a

theoretical perspective, and why? If any of the three models truly

represented the way stock market prices move, which could
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potentially be used to make money by forecasting future values of

the series?

(d) By making a series of successive substitutions or from your

knowledge of the behaviour of these types of processes, consider

the extent of persistence of shocks in the series in each case.

4. (a) Describe the steps that Box and Jenkins (1976) suggested should

be involved in constructing an ARMA model.

(b) What particular aspect of this methodology has been the subject of

criticism and why?

(c) Describe an alternative procedure that could be used for this

aspect.

5. You obtain the following estimates for an AR(2) model of some returns

data

yt = 0.803yt−1 + 0.682yt−2 + ut

where ut is a white noise error process. By examining the characteristic

equation, check the estimated model for stationarity.

6. A researcher is trying to determine the appropriate order of an ARMA

model to describe some actual data, with 200 observations available.

She has the following figures for the log of the estimated residual

variance (i.e. log (σ̂ 2)) for various candidate models. She has assumed

that an order greater than (3,3) should not be necessary to model the

dynamics of the data. What is the ‘optimal’ model order?

ARMA(p,q) log(σ̂ 2)

model order

(0,0) 0.932

(1,0) 0.864

(0,1) 0.902

(1,1) 0.836

(2,1) 0.801

(1,2) 0.821

(2,2) 0.789

(3,2) 0.773

(2,3) 0.782

(3,3) 0.764

7. How could you determine whether the order you suggested for question

6 was in fact appropriate?

8. ‘Given that the objective of any econometric modelling exercise is to

find the model that most closely ‘fits’ the data, then adding more lags
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to an ARMA model will almost invariably lead to a better fit. Therefore a

large model is best because it will fit the data more closely.’

Comment on the validity (or otherwise) of this statement.

9. (a) You obtain the following sample autocorrelations and partial

autocorrelations for a sample of 100 observations from actual data:

Lag 1 2 3 4 5 6 7 8

acf 0.420 0.104 0.032 −0.206 −0.138 0.042 −0.018 0.074

pacf 0.632 0.381 0.268 0.199 0.205 0.101 0.096 0.082

Can you identify the most appropriate time series process for this

data?

(b) Use the Ljung–Box Q∗ test to determine whether the first three

autocorrelation coefficients taken together are jointly significantly

different from zero.

10. You have estimated the following ARMA(1,1) model for some time

series data

yt = 0.036 + 0.69yt−1 + 0.42ut−1 + ut

Suppose that you have data for time to t− 1, i.e. you know that

yt−1 = 3.4, and ût−1 = − 1.3

(a) Obtain forecasts for the series y for times t, t + 1, and t + 2 using

the estimated ARMA model.

(b) If the actual values for the series turned out to be −0.032, 0.961,

0.203 for t , t + 1, t + 2, calculate the (out-of-sample) mean squared

error.

(c) A colleague suggests that a simple exponential smoothing model

might be more useful for forecasting the series. The estimated

value of the smoothing constant is 0.15, with the most recently

available smoothed value, St−1 being 0.0305. Obtain forecasts for

the series y for times t, t + 1, and t + 2 using this model.

(d) Given your answers to parts (a) to (c) of the question, determine

whether Box–Jenkins or exponential smoothing models give the

most accurate forecasts in this application.

11. (a) Explain what stylised shapes would be expected for the

autocorrelation and partial autocorrelation functions for the

following stochastic processes:

● white noise

● an AR(2)

● an MA(1)

● an ARMA (2,1).
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(b) Consider the following ARMA process.

yt = 0.21 + 1.32yt−1 + 0.58ut−1 + ut

Determine whether the MA part of the process is invertible.

(c) Produce 1-,2-,3- and 4-step-ahead forecasts for the process given in

part (b).

(d) Outline two criteria that are available for evaluating the forecasts

produced in part (c), highlighting the differing characteristics of

each.

(e) What procedure might be used to estimate the parameters of an

ARMA model? Explain, briefly, how such a procedure operates, and

why OLS is not appropriate.

12. (a) Briefly explain any difference you perceive between the

characteristics of macroeconomic and financial data. Which of

these features suggest the use of different econometric tools for

each class of data?

(b) Consider the following autocorrelation and partial autocorrelation

coefficients estimated using 500 observations for a weakly

stationary series, yt :

Lag acf pacf

1 0.307 0.307
2 −0.013 0.264
3 0.086 0.147
4 0.031 0.086
5 −0.197 0.049

Using a simple ‘rule of thumb’, determine which, if any, of the acf

and pacf coefficients are significant at the 5% level. Use both the

Box–Pierce and Ljung–Box statistics to test the joint null hypothesis

that the first five autocorrelation coefficients are jointly zero.

(c) What process would you tentatively suggest could represent the

most appropriate model for the series in part (b)? Explain your

answer.

(d) Two researchers are asked to estimate an ARMA model for a daily

USD/GBP exchange rate return series, denoted xt . Researcher A

uses Schwarz’s criterion for determining the appropriate model

order and arrives at an ARMA(0,1). Researcher B uses Akaike’s

information criterion which deems an ARMA(2,0) to be optimal. The
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estimated models are

A : x̂t = 0.38 + 0.10ut−1

B : x̂t = 0.63 + 0.17xt−1 − 0.09xt−2

where ut is an error term.

You are given the following data for time until day z (i.e. t = z)

xz = 0.31, xz−1 = 0.02, xz−2 = −0.16

uz = −0.02, uz−1 = 0.13, uz−2 = 0.19

Produce forecasts for the next 4 days (i.e. for times z + 1, z + 2,

z + 3, z + 4) from both models.

(e) Outline two methods proposed by Box and Jenkins (1970) for

determining the adequacy of the models proposed in part (d).

(f) Suppose that the actual values of the series x on days z +1, z +2,

z + 3, z + 4 turned out to be 0.62, 0.19, −0.32, 0.72, respectively.

Determine which researcher’s model produced the most accurate

forecasts.

13. Select two of the stock series from the ‘CAPM.XLS’ Excel file, construct

a set of continuously compounded returns, and then perform a

time-series analysis of these returns. The analysis should include

(a) An examination of the autocorrelation and partial autocorrelation

functions.

(b) An estimation of the information criteria for each ARMA model order

from (0,0) to (5,5).

(c) An estimation of the model that you feel most appropriate given the

results that you found from the previous two parts of the question.

(d) The construction of a forecasting framework to compare the

forecasting accuracy of

i. Your chosen ARMA model

ii. An arbitrary ARMA(1,1)

iii. An single exponential smoothing model

iv. A random walk with drift in the log price levels (hint: this is

easiest achieved by treating the returns as an ARMA(0,0) - i.e.

simply estimating a model including only a constant).

(e) Then compare the fitted ARMA model with the models that were

estimated in chapter 4 based on exogenous variables. Which type

of model do you prefer and why?



6
Multivariate models

Learning Outcomes
In this chapter, you will learn how to

● Compare and contrast single equation and systems-based
approaches to building models

● Discuss the cause, consequence and solution to simultaneous
equations bias

● Derive the reduced form equations from a structural model

● Describe several methods for estimating simultaneous
equations models

● Explain the relative advantages and disadvantages of VAR
modelling

● Determine whether an equation from a system is identified

● Estimate optimal lag lengths, impulse responses and variance
decompositions

● Conduct Granger causality tests

● Construct simultaneous equations models and VARs in EViews

6.1 Motivations

All of the structural models that have been considered thus far have been

single equations models of the form

y = Xβ + u (6.1)

One of the assumptions of the classical linear regression model (CLRM)

is that the explanatory variables are non-stochastic, or fixed in repeated

samples. There are various ways of stating this condition, some of which

are slightly more or less strict, but all of which have the same broad

265
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implication. It could also be stated that all of the variables contained in

the X matrix are assumed to be exogenous -- that is, their values are deter-

mined outside that equation. This is a rather simplistic working definition

of exogeneity, although several alternatives are possible; this issue will be

revisited later in the chapter. Another way to state this is that the model

is ‘conditioned on’ the variables in X .

As stated in chapter 2, the X matrix is assumed not to have a probability

distribution. Note also that causality in this model runs from X to y, and

not vice versa, i.e. that changes in the values of the explanatory variables

cause changes in the values of y, but that changes in the value of y will

not impact upon the explanatory variables. On the other hand, y is an

endogenous variable -- that is, its value is determined by (6.1).

The purpose of the first part of this chapter is to investigate one of the

important circumstances under which the assumption presented above

will be violated. The impact on the OLS estimator of such a violation will

then be considered.

To illustrate a situation in which such a phenomenon may arise, con-

sider the following two equations that describe a possible model for the

total aggregate (country-wide) supply of new houses (or any other physical

asset).

Qdt = α + β Pt + γ St + ut (6.2)

Qst = λ + μPt + κTt + vt (6.3)

Qdt = Qst (6.4)

where

Qdt = quantity of new houses demanded at time t
Qst = quantity of new houses supplied (built) at time t
Pt = (average) price of new houses prevailing at time t
St = price of a substitute (e.g. older houses)

Tt = some variable embodying the state of housebuilding technology, ut

and vt are error terms.

Equation (6.2) is an equation for modelling the demand for new houses,

and (6.3) models the supply of new houses. (6.4) is an equilibrium condi-

tion for there to be no excess demand (people willing and able to buy new

houses but cannot) and no excess supply (constructed houses that remain

empty owing to lack of demand).

Assuming that the market always clears, that is, that the market is

always in equilibrium, and dropping the time subscripts for simplicity,
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(6.2)--(6.4) can be written

Q = α + β P + γ S + u (6.5)

Q = λ + μP + κT + v (6.6)

Equations (6.5) and (6.6) together comprise a simultaneous structural form

of the model, or a set of structural equations. These are the equations

incorporating the variables that economic or financial theory suggests

should be related to one another in a relationship of this form. The point

is that price and quantity are determined simultaneously (price affects

quantity and quantity affects price). Thus, in order to sell more houses,

everything else equal, the builder will have to lower the price. Equally, in

order to obtain a higher price for each house, the builder should construct

and expect to sell fewer houses. P and Q are endogenous variables, while

S and T are exogenous.

A set of reduced form equations corresponding to (6.5) and (6.6) can be

obtained by solving (6.5) and (6.6) for Pand for Q (separately). There will

be a reduced form equation for each endogenous variable in the system.

Solving for Q

α + β P + γ S + u = λ + μP + κT + v (6.7)

Solving for P

Q

β
− α

β
− γ S

β
− u

β
= Q

μ
− λ

μ
− κT

μ
− v

μ
(6.8)

Rearranging (6.7)

β P − μP = λ − α + κT − γ S + v − u (6.9)

(β − μ)P = (λ − α) + κT − γ S + (v − u) (6.10)

P = λ − α

β − μ
+ κ

β − μ
T − γ

β − μ
S + v − u

β − μ
(6.11)

Multiplying (6.8) through by βμ and rearranging

μQ − μα − μγ S − μu = βQ − βλ − βκT − βv (6.12)

μQ − βQ = μα − βλ − βκT + μγ S + μu − βv (6.13)

(μ − β)Q = (μα − βλ) − βκT + μγ S + (μu − βv) (6.14)

Q = μα − βλ

μ − β
− βκ

μ − β
T + μγ

μ − β
S + μu − βv

μ − β
(6.15)

(6.11) and (6.15) are the reduced form equations for P and Q. They are the

equations that result from solving the simultaneous structural equations
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given by (6.5) and (6.6). Notice that these reduced form equations have

only exogenous variables on the RHS.

6.2 Simultaneous equations bias

It would not be possible to estimate (6.5) and (6.6) validly using OLS, as they

are clearly related to one another since they both contain P and Q, and

OLS would require them to be estimated separately. But what would have

happened if a researcher had estimated them separately using OLS? Both

equations depend on P . One of the CLRM assumptions was that X and u
are independent (where X is a matrix containing all the variables on the

RHS of the equation), and given also the assumption that E(u) = 0, then

E(X ′u) = 0, i.e. the errors are uncorrelated with the explanatory variables.

But it is clear from (6.11) that P is related to the errors in (6.5) and (6.6) --

i.e. it is stochastic. So this assumption has been violated.

What would be the consequences for the OLS estimator, β̂ if the simul-

taneity were ignored? Recall that

β̂ = (X ′ X )−1 X ′y (6.16)

and that

y = Xβ + u (6.17)

Replacing y in (6.16) with the RHS of (6.17)

β̂ = (X ′ X )−1 X ′(Xβ + u) (6.18)

so that

β̂ = (X ′ X )−1 X ′ Xβ + (X ′ X )−1 X ′u (6.19)

β̂ = β + (X ′ X )−1 X ′u (6.20)

Taking expectations,

E(β̂) = E(β) + E((X ′ X )−1 X ′u) (6.21)

E(β̂) = β + E((X ′ X )−1 X ′u) (6.22)

If the Xs are non-stochastic (i.e. if the assumption had not been violated),

E[(X ′ X )−1 X ′u] = (X ′ X )−1 X ′E[u] = 0, which would be the case in a single

equation system, so that E(β̂) = β in (6.22). The implication is that the

OLS estimator, β̂, would be unbiased.

But, if the equation is part of a system, then E[(X ′ X )−1 X ′u] �= 0, in

general, so that the last term in (6.22) will not drop out, and so it can be
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concluded that application of OLS to structural equations which are part

of a simultaneous system will lead to biased coefficient estimates. This is

known as simultaneity bias or simultaneous equations bias.

Is the OLS estimator still consistent, even though it is biased? No, in

fact, the estimator is inconsistent as well, so that the coefficient estimates

would still be biased even if an infinite amount of data were available,

although proving this would require a level of algebra beyond the scope

of this book.

6.3 So how can simultaneous equations models
be validly estimated?

Taking (6.11) and (6.15), i.e. the reduced form equations, they can be rewrit-

ten as

P = π10 + π11T + π12S + ε1 (6.23)

Q = π20 + π21T + π22S + ε2 (6.24)

where the π coefficients in the reduced form are simply combinations of

the original coefficients, so that

π10 = λ − α

β − μ
, π11 = κ

β − μ
, π12 = −γ

β − μ
, ε1 = v − u

β − μ
,

π20 = μα − βλ

μ − β
, π21 = −βκ

μ − β
, π22 = μγ

μ − β
, ε2 = μu − βv

μ − β

Equations (6.23) and (6.24) can be estimated using OLS since all the RHS

variables are exogenous, so the usual requirements for consistency and

unbiasedness of the OLS estimator will hold (provided that there are no

other misspecifications). Estimates of the πi j coefficients would thus be

obtained. But, the values of the π coefficients are probably not of much

interest; what was wanted were the original parameters in the structural

equations -- α, β, γ, λ, μ, κ. The latter are the parameters whose val-

ues determine how the variables are related to one another according to

financial or economic theory.

6.4 Can the original coefficients be retrieved from the πs?

The short answer to this question is ‘sometimes’, depending upon whether

the equations are identified. Identification is the issue of whether there is

enough information in the reduced form equations to enable the struc-

tural form coefficients to be calculated. Consider the following demand
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and supply equations

Q = α + β P Supply equation (6.25)

Q = λ + μP Demand equation (6.26)

It is impossible to tell which equation is which, so that if one simply ob-

served some quantities of a good sold and the price at which they were

sold, it would not be possible to obtain the estimates of α, β, λ and μ. This

arises since there is insufficient information from the equations to esti-

mate 4 parameters. Only 2 parameters could be estimated here, although

each would be some combination of demand and supply parameters, and

so neither would be of any use. In this case, it would be stated that both

equations are unidentified (or not identified or underidentified). Notice that

this problem would not have arisen with (6.5) and (6.6) since they have

different exogenous variables.

6.4.1 What determines whether an equation is identified or not?

Any one of three possible situations could arise, as shown in box 6.1.

How can it be determined whether an equation is identified or not?

Broadly, the answer to this question depends upon how many and which

variables are present in each structural equation. There are two conditions

that could be examined to determine whether a given equation from a

system is identified -- the order condition and the rank condition:

● The order condition -- is a necessary but not sufficient condition for an

equation to be identified. That is, even if the order condition is satisfied,

the equation might not be identified.

● The rank condition -- is a necessary and sufficient condition for identi-

fication. The structural equations are specified in a matrix form and

the rank of a coefficient matrix of all of the variables excluded from a

Box 6.1 Determining whether an equation is identified

(1) An equation is unidentified, such as (6.25) or (6.26). In the case of an unidentified

equation, structural coefficients cannot be obtained from the reduced form estimates

by any means.

(2) An equation is exactly identified (just identified), such as (6.5) or (6.6). In the case

of a just identified equation, unique structural form coefficient estimates can be

obtained by substitution from the reduced form equations.

(3) If an equation is overidentified, more than one set of structural coefficients can be

obtained from the reduced form. An example of this will be presented later in this

chapter.
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particular equation is examined. An examination of the rank condition

requires some technical algebra beyond the scope of this text.

Even though the order condition is not sufficient to ensure identification

of an equation from a system, the rank condition will not be considered

further here. For relatively simple systems of equations, the two rules

would lead to the same conclusions. Also, in fact, most systems of equa-

tions in economics and finance are overidentified, so that underidentifi-

cation is not a big issue in practice.

6.4.2 Statement of the order condition

There are a number of different ways of stating the order condition; that

employed here is an intuitive one (taken from Ramanathan, 1995, p. 666,

and slightly modified):

Let G denote the number of structural equations. An equation is just

identified if the number of variables excluded from an equation is G− 1,

where ‘excluded’ means the number of all endogenous and exogenous

variables that are not present in this particular equation. If more than

G− 1 are absent, it is over-identified. If less than G− 1 are absent, it is

not identified.

One obvious implication of this rule is that equations in a system can have

differing degrees of identification, as illustrated by the following example.

Example 6.1

In the following system of equations, the Y s are endogenous, while the

Xs are exogenous (with time subscripts suppressed). Determine whether

each equation is overidentified, underidentified, or just identified.

Y1 = α0 + α1Y2 + α3Y3 + α4 X1 + α5 X2 + u1 (6.27)

Y2 = β0 + β1Y3 + β2 X1 + u2 (6.28)

Y3 = γ0 + γ1Y2 + u3 (6.29)

In this case, there are G = 3 equations and 3 endogenous variables. Thus,

if the number of excluded variables is exactly 2, the equation is just iden-

tified. If the number of excluded variables is more than 2, the equation

is overidentified. If the number of excluded variables is less than 2, the

equation is not identified.

The variables that appear in one or more of the three equations are Y1,

Y2, Y3, X1, X2. Applying the order condition to (6.27)--(6.29):
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● Equation (6.27): contains all variables, with none excluded, so that it is

not identified

● Equation (6.28): has variables Y1 and X2 excluded, and so is just identi-

fied

● Equation (6.29): has variables Y1, X1, X2 excluded, and so is overidenti-

fied

6.5 Simultaneous equations in finance

There are of course numerous situations in finance where a simultaneous

equations framework is more relevant than a single equation model. Two

illustrations from the market microstructure literature are presented later

in this chapter, while another, drawn from the banking literature, will be

discussed now.

There has recently been much debate internationally, but especially in

the UK, concerning the effectiveness of competitive forces in the banking

industry. Governments and regulators express concern at the increasing

concentration in the industry, as evidenced by successive waves of merger

activity, and at the enormous profits that many banks made in the late

1990s and early twenty-first century. They argue that such profits result

from a lack of effective competition. However, many (most notably, of

course, the banks themselves!) suggest that such profits are not the result

of excessive concentration or anti-competitive practices, but rather partly

arise owing to recent world prosperity at that phase of the business cycle

(the ‘profits won’t last’ argument) and partly owing to massive cost-cutting

by the banks, given recent technological improvements. These debates

have fuelled a resurgent interest in models of banking profitability and

banking competition. One such model is employed by Shaffer and DiSalvo

(1994) in the context of two banks operating in south central Pennsylvania.

The model is given by

ln qit = a0 + a1 ln Pit + a2 ln Pjt + a3 ln Yt + a4 ln Zt + a5t + ui1t (6.30)

ln T Rit = b0 + b1 ln qit +
3∑

k = 1

bk+1 ln wikt + ui2t (6.31)

where i = 1, 2 are the two banks, q is bank output, Pt is the price of the

output at time t , Yt is a measure of aggregate income at time t , Zt is

the price of a substitute for bank activity at time t , the variable t rep-

resents a time trend, TRit is the total revenue of bank i at time t , wikt
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are the prices of input k (k = 1, 2, 3 for labour, bank deposits, and phys-

ical capital) for bank i at time t and the u are unobservable error terms.

The coefficient estimates are not presented here, but suffice to say that a

simultaneous framework, with the resulting model estimated separately

using annual time series data for each bank, is necessary. Output is a

function of price on the RHS of (6.30), while in (6.31), total revenue,

which is a function of output on the RHS, is obviously related to price.

Therefore, OLS is again an inappropriate estimation technique. Both of

the equations in this system are overidentified, since there are only two

equations, and the income, the substitute for banking activity, and the

trend terms are missing from (6.31), whereas the three input prices are

missing from (6.30).

6.6 A definition of exogeneity

Leamer (1985) defines a variable x as exogenous if the conditional dis-

tribution of y given x does not change with modifications of the process

generating x . Although several slightly different definitions exist, it is pos-

sible to classify two forms of exogeneity -- predeterminedness and strict

exogeneity:

● A predetermined variable is one that is independent of the contempora-

neous and future errors in that equation

● A strictly exogenous variable is one that is independent of all contempo-

raneous, future and past errors in that equation.

6.6.1 Tests for exogeneity

How can a researcher tell whether variables really need to be treated as

endogenous or not? In other words, financial theory might suggest that

there should be a two-way relationship between two or more variables, but

how can it be tested whether a simultaneous equations model is necessary

in practice?

Example 6.2

Consider again (6.27)--(6.29). Equation (6.27) contains Y2 and Y3 -- but are

separate equations required for them, or could the variables Y2 and Y3 be

treated as exogenous variables (in which case, they would be called X3

and X4!)? This can be formally investigated using a Hausman test, which

is calculated as shown in box 6.2.
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Box 6.2 Conducting a Hausman test for exogeneity

(1) Obtain the reduced form equations corresponding to (6.27)–(6.29).

The reduced form equations are obtained as follows.

Substituting in (6.28) for Y3 from (6.29):

Y2 = β0 + β1(γ0 + γ1Y2 + u3) + β2 X1 + u2 (6.32)

Y2 = β0 + β1γ0 + β1γ1Y2 + β1u3 + β2 X1 + u2 (6.33)

Y2(1 − β1γ1) = (β0 + β1γ0) + β2 X1 + (u2 + β1u3) (6.34)

Y2 = (β0 + β1γ0)

(1 − β1γ1)
+ β2 X1

(1 − β1γ1)
+ (u2 + β1u3)

(1 − β1γ1)
(6.35)

(6.35) is the reduced form equation for Y2, since there are no endogenous variables

on the RHS. Substituting in (6.27) for Y3 from (6.29)

Y1 = α0 + α1Y2 + α3(γ0 + γ1Y2 + u3) + α4 X1 + α5 X2 + u1 (6.36)

Y1 = α0 + α1Y2 + α3γ0 + α3γ1Y2 + α3u3 + α4 X1 + α5 X2 + u1 (6.37)

Y1 = (α0 + α3γ0) + (α1 + α3γ1)Y2 + α4 X1 + α5 X2 + (u1 + α3u3) (6.38)

Substituting in (6.38) for Y2 from (6.35):

Y1 = (α0 + α3γ0) + (α1 + α3γ1)

(
(β0 + β1γ0)

(1 − β1γ1)
+ β2 X1

(1 − β1γ1)
+ (u2 + β1u3)

(1 − β1γ1)

)

+ α4 X1 + α5 X2 + (u1 + α3u3) (6.39)

Y1 =
(

α0 + α3γ0 + (α1 + α3γ1)
(β0 + β1γ0)

(1 − β1γ1)

)
+ (α1 + α3γ1)β2 X1

(1 − β1γ1)

+ (α1 + α3γ1)(u2 + β1u3)

(1 − β1γ1)
+ α4 X1 + α5 X2 + (u1 + α3u3) (6.40)

Y1 =
(

α0 + α3γ0 + (α1 + α3γ1)
(β0 + β1γ0)

(1 − β1γ1)

)
+

(
(α1 + α3γ1)β2

(1 − β1γ1)
+ α4

)
X1

+ α5 X2 +
(

(α1 + α3γ1)(u2 + β1u3)

(1 − β1γ1)
+ (u1 + α3u3)

)
(6.41)

(6.41) is the reduced form equation for Y1. Finally, to obtain the reduced form

equation for Y3, substitute in (6.29) for Y2 from (6.35)

Y3=
(

γ0 + γ1(β0 + β1γ0)

(1 − β1γ1)

)
+ γ1β2 X1

(1 − β1γ1)
+

(
γ1(u2 + β1u3)

(1 − β1γ1)
+ u3

)
(6.42)

So, the reduced form equations corresponding to (6.27)–(6.29) are, respectively,

given by (6.41), (6.35) and (6.42). These three equations can also be expressed

using πi j for the coefficients, as discussed above

Y1 = π10 + π11 X1 + π12 X2 + v1 (6.43)

Y2 = π20 + π21 X1 + v2 (6.44)

Y3 = π30 + π31 X1 + v3 (6.45)
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Estimate the reduced form equations (6.43)–(6.45) using OLS, and obtain the fitted

values, Ŷ 1
1 , Ŷ 1

2 , Ŷ 1
3 , where the superfluous superscript 1 denotes the fitted values

from the reduced form estimation.

(2) Run the regression corresponding to (6.27) – i.e. the structural form equation, at

this stage ignoring any possible simultaneity.

(3) Run the regression (6.27) again, but now also including the fitted values from the

reduced form equations, Ŷ 1
2 , Ŷ 1

3 , as additional regressors

Y1 = α0 + α1Y2 + α3Y3 + α4 X1 + α5 X2 + λ2Ŷ 1
2 + λ3Ŷ 1

3 + ε1 (6.46)

(4) Use an F-test to test the joint restriction that λ2 = 0, and λ3 = 0. If the null

hypothesis is rejected, Y2 and Y3 should be treated as endogenous. If λ2 and λ3

are significantly different from zero, there is extra important information for modelling

Y1 from the reduced form equations. On the other hand, if the null is not rejected,

Y2 and Y3 can be treated as exogenous for Y1, and there is no useful additional

information available for Y1 from modelling Y2 and Y3 as endogenous variables.

Steps 2–4 would then be repeated for (6.28) and (6.29).

6.7 Triangular systems

Consider the following system of equations, with time subscripts omitted

for simplicity

Y1 = β10 + γ11 X1 + γ12 X2 + u1 (6.47)

Y2 = β20 + β21Y1 + γ21 X1 + γ22 X2 + u2 (6.48)

Y3 = β30 + β31Y1 + β32Y2 + γ31 X1 + γ32 X2 + u3 (6.49)

Assume that the error terms from each of the three equations are not

correlated with each other. Can the equations be estimated individually

using OLS? At first blush, an appropriate answer to this question might

appear to be, ‘No, because this is a simultaneous equations system.’ But

consider the following:

● Equation (6.47): contains no endogenous variables, so X1 and X2 are not

correlated with u1. So OLS can be used on (6.47).

● Equation (6.48): contains endogenous Y1 together with exogenous X1

and X2. OLS can be used on (6.48) if all the RHS variables in (6.48) are

uncorrelated with that equation’s error term. In fact, Y1 is not corre-

lated with u2 because there is no Y2 term in (6.47). So OLS can be used

on (6.48).

● Equation (6.49): contains both Y1 and Y2; these are required to be un-

correlated with u3. By similar arguments to the above, (6.47) and (6.48)

do not contain Y3. So OLS can be used on (6.49).
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This is known as a recursive or triangular system, which is really a spe-

cial case -- a set of equations that looks like a simultaneous equations

system, but isn’t. In fact, there is not a simultaneity problem here, since

the dependence is not bi-directional, for each equation it all goes one

way.

6.8 Estimation procedures for simultaneous equations systems

Each equation that is part of a recursive system can be estimated

separately using OLS. But in practice, not many systems of equations will

be recursive, so a direct way to address the estimation of equations that

are from a true simultaneous system must be sought. In fact, there are

potentially many methods that can be used, three of which -- indirect

least squares, two-stage least squares and instrumental variables -- will be

detailed here. Each of these will be discussed below.

6.8.1 Indirect least squares (ILS)

Although it is not possible to use OLS directly on the structural equations,

it is possible to validly apply OLS to the reduced form equations. If the sys-

tem is just identified, ILS involves estimating the reduced form equations

using OLS, and then using them to substitute back to obtain the struc-

tural parameters. ILS is intuitive to understand in principle; however, it is

not widely applied because:

(1) Solving back to get the structural parameters can be tedious. For a large

system, the equations may be set up in a matrix form, and to solve

them may therefore require the inversion of a large matrix.

(2) Most simultaneous equations systems are overidentified, and ILS can be used

to obtain coefficients only for just identified equations. For overiden-

tified systems, ILS would not yield unique structural form estimates.

ILS estimators are consistent and asymptotically efficient, but in general

they are biased, so that in finite samples ILS will deliver biased struc-

tural form estimates. In a nutshell, the bias arises from the fact that the

structural form coefficients under ILS estimation are transformations of

the reduced form coefficients. When expectations are taken to test for

unbiasedness, it is in general not the case that the expected value of a

(non-linear) combination of reduced form coefficients will be equal to the

combination of their expected values (see Gujarati, 1995, pp. 704--5 for a

proof).
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6.8.2 Estimation of just identified and overidentified systems using 2SLS

This technique is applicable for the estimation of overidentified systems,

where ILS cannot be used. In fact, it can also be employed for estimating

the coefficients of just identified systems, in which case the method would

yield asymptotically equivalent estimates to those obtained from ILS.

Two-stage least squares (2SLS or TSLS) is done in two stages:

● Stage 1 Obtain and estimate the reduced form equations using OLS.

Save the fitted values for the dependent variables.

● Stage 2 Estimate the structural equations using OLS, but replace any

RHS endogenous variables with their stage 1 fitted values.

Example 6.3

Suppose that (6.27)--(6.29) are required. 2SLS would involve the following

two steps:

● Stage 1 Estimate the reduced form equations (6.43)--(6.45) individually

by OLS and obtain the fitted values, and denote them Ŷ 1
1 , Ŷ 1

2 , Ŷ 1
3 , where

the superfluous superscript 1 indicates that these are the fitted values

from the first stage.

● Stage 2 Replace the RHS endogenous variables with their stage 1 esti-

mated values

Y1 = α0 + α1Ŷ 1
2 + α3Ŷ 1

3 + α4 X1 + α5 X2 + u1 (6.50)

Y2 = β0 + β1Ŷ 1
3 + β2 X1 + u2 (6.51)

Y3 = γ0 + γ1Ŷ 1
2 + u3 (6.52)

where Ŷ 1
2 and Ŷ 1

3 are the fitted values from the reduced form estimation.

Now Ŷ 1
2 and Ŷ 1

3 will not be correlated with u1, Ŷ 1
3 will not be correlated

with u2, and Ŷ 1
2 will not be correlated with u3. The simultaneity problem

has therefore been removed. It is worth noting that the 2SLS estimator

is consistent, but not unbiased.

In a simultaneous equations framework, it is still of concern whether the

usual assumptions of the CLRM are valid or not, although some of the

test statistics require modifications to be applicable in the systems con-

text. Most econometrics packages will automatically make any required

changes. To illustrate one potential consequence of the violation of the

CLRM assumptions, if the disturbances in the structural equations are

autocorrelated, the 2SLS estimator is not even consistent.
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The standard error estimates also need to be modified compared with

their OLS counterparts (again, econometrics software will usually do this

automatically), but once this has been done, the usual t -tests can be used

to test hypotheses about the structural form coefficients. This modification

arises as a result of the use of the reduced form fitted values on the RHS

rather than actual variables, which implies that a modification to the

error variance is required.

6.8.3 Instrumental variables

Broadly, the method of instrumental variables (IV) is another technique

for parameter estimation that can be validly used in the context of a

simultaneous equations system. Recall that the reason that OLS cannot be

used directly on the structural equations is that the endogenous variables

are correlated with the errors.

One solution to this would be not to use Y2 or Y3, but rather to use some

other variables instead. These other variables should be (highly) correlated

with Y2 and Y3, but not correlated with the errors -- such variables would

be known as instruments. Suppose that suitable instruments for Y2 and Y3,

were found and denoted z2 and z3, respectively. The instruments are not

used in the structural equations directly, but rather, regressions of the

following form are run

Y2 = λ1 + λ2z2 + ε1 (6.53)

Y3 = λ3 + λ4z3 + ε2 (6.54)

Obtain the fitted values from (6.53) and (6.54), Ŷ 1
2 and Ŷ 1

3 , and replace Y2

and Y3 with these in the structural equation. It is typical to use more

than one instrument per endogenous variable. If the instruments are the

variables in the reduced form equations, then IV is equivalent to 2SLS, so

that the latter can be viewed as a special case of the former.

6.8.4 What happens if IV or 2SLS are used unnecessarily?

In other words, suppose that one attempted to estimate a simultaneous

system when the variables specified as endogenous were in fact indepen-

dent of one another. The consequences are similar to those of including

irrelevant variables in a single equation OLS model. That is, the coefficient

estimates will still be consistent, but will be inefficient compared to those

that just used OLS directly.
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6.8.5 Other estimation techniques

There are, of course, many other estimation techniques available for

systems of equations, including three-stage least squares (3SLS), full

information maximum likelihood (FIML) and limited information maxi-

mum likelihood (LIML). Three-stage least squares provides a third step in

the estimation process that allows for non-zero covariances between the

error terms in the structural equations. It is asymptotically more efficient

than 2SLS since the latter ignores any information that may be available

concerning the error covariances (and also any additional information

that may be contained in the endogenous variables of other equations).

Full information maximum likelihood involves estimating all of the equa-

tions in the system simultaneously using maximum likelihood (see chap-

ter 8 for a discussion of the principles of maximum likelihood estimation).

Thus under FIML, all of the parameters in all equations are treated jointly,

and an appropriate likelihood function is formed and maximised. Finally,

limited information maximum likelihood involves estimating each equa-

tion separately by maximum likelihood. LIML and 2SLS are asymptotically

equivalent. For further technical details on each of these procedures, see

Greene (2002, chapter 15).

The following section presents an application of the simultaneous equa-

tions approach in finance to the joint modelling of bid--ask spreads and

trading activity in the S&P100 index options market. Two related applica-

tions of this technique that are also worth examining are by Wang et al.

(1997) and by Wang and Yau (2000). The former employs a bivariate sys-

tem to model trading volume and bid--ask spreads and they show using a

Hausman test that the two are indeed simultaneously related and so must

both be treated as endogenous variables and are modelled using 2SLS. The

latter paper employs a trivariate system to model trading volume, spreads

and intra-day volatility.

6.9 An application of a simultaneous equations approach
to modelling bid–ask spreads and trading activity

6.9.1 Introduction

One of the most rapidly growing areas of empirical research in finance is

the study of market microstructure. This research is involved with issues

such as price formation in financial markets, how the structure of the

market may affect the way it operates, determinants of the bid--ask spread,

and so on. One application of simultaneous equations methods in the
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market microstructure literature is a study by George and Longstaff (1993).

Among other issues, this paper considers the questions:

● Is trading activity related to the size of the bid--ask spread?

● How do spreads vary across options, and how is this related to the

volume of contracts traded? ‘Across options’ in this case means for dif-

ferent maturities and strike prices for an option on a given underlying

asset.

This chapter will now examine the George and Longstaff models, results

and conclusions.

6.9.2 The data

The data employed by George and Longstaff comprise options prices on

the S&P100 index, observed on all trading days during 1989. The S&P100

index has been traded on the Chicago Board Options Exchange (CBOE)

since 1983 on a continuous open-outcry auction basis. The option price

as used in the paper is defined as the average of the bid and the ask. The

average bid and ask prices are calculated for each option during the time

2.00p.m.--2.15p.m. (US Central Standard Time) to avoid time-of-day effects,

such as differences in behaviour at the open and the close of the market.

The following are then dropped from the sample for that day to avoid any

effects resulting from stale prices:

● Any options that do not have bid and ask quotes reported during the

1/4 hour

● Any options with fewer than ten trades during the day.

This procedure results in a total of 2,456 observations. A ‘pooled’ regres-

sion is conducted since the data have both time series and cross-sectional

dimensions. That is, the data are measured every trading day and across

options with different strikes and maturities, and the data is stacked in a

single column for analysis.

6.9.3 How might the option price/trading volume and the

bid–ask spread be related?

George and Longstaff argue that the bid--ask spread will be determined

by the interaction of market forces. Since there are many market makers

trading the S&P100 contract on the CBOE, the bid--ask spread will be set

to just cover marginal costs. There are three components of the costs

associated with being a market maker. These are administrative costs,
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inventory holding costs, and ‘risk costs’. George and Longstaff consider

three possibilities for how the bid--ask spread might be determined:

● Market makers equalise spreads across options This is likely to be the case

if order-processing (administrative) costs make up the majority of costs

associated with being a market maker. This could be the case since the

CBOE charges market makers the same fee for each option traded. In

fact, for every contract (100 options) traded, a CBOE fee of 9 cents and

an Options Clearing Corporation (OCC) fee of 10 cents is levied on the

firm that clears the trade.

● The spread might be a constant proportion of the option value This would

be the case if the majority of the market maker’s cost is in inventory

holding costs, since the more expensive options will cost more to hold

and hence the spread would be set wider.

● Market makers might equalise marginal costs across options irrespective of trad-

ing volume This would occur if the riskiness of an unwanted position

were the most important cost facing market makers. Market makers typ-

ically do not hold a particular view on the direction of the market -- they

simply try to make money by buying and selling. Hence, they would like

to be able to offload any unwanted (long or short) positions quickly. But

trading is not continuous, and in fact the average time between trades

in 1989 was approximately five minutes. The longer market makers hold

an option, the higher the risk they face since the higher the probabil-

ity that there will be a large adverse price movement. Thus options

with low trading volumes would command higher spreads since it is

more likely that the market maker would be holding these options for

longer.

In a non-quantitative exploratory analysis, George and Longstaff find that,

comparing across contracts with different maturities, the bid--ask spread

does indeed increase with maturity (as the option with longer maturity

is worth more) and with ‘moneyness’ (that is, an option that is deeper in

the money has a higher spread than one which is less in the money). This

is seen to be true for both call and put options.

6.9.4 The influence of tick-size rules on spreads

The CBOE limits the tick size (the minimum granularity of price quotes),

which will of course place a lower limit on the size of the spread. The tick

sizes are:

● $1/8 for options worth $3 or more

● $1/16 for options worth less than $3.
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6.9.5 The models and results

The intuition that the bid--ask spread and trading volume may be simul-

taneously related arises since a wider spread implies that trading is rel-

atively more expensive so that marginal investors would withdraw from

the market. On the other hand, market makers face additional risk if the

level of trading activity falls, and hence they may be expected to respond

by increasing their fee (the spread). The models developed seek to simul-

taneously determine the size of the bid--ask spread and the time between

trades.

For the calls, the model is:

CBAi = α0 + α1CDUMi + α2Ci + α3CLi + α4Ti + α5CRi + ei (6.55)

CLi = γ0 + γ1CBAi + γ2Ti + γ3T 2
i + γ4 M2

i + vi (6.56)

And symmetrically for the puts:

PBAi = β0 + β1PDUMi + β2 Pi + β3PLi + β4Ti + β5PRi + ui (6.57)

PLi = δ0 + δ1PBAi + δ2Ti + δ3T 2
i + δ4 M2

i + wi (6.58)

where CBAi and PBAi are the call bid--ask spread and the put bid--ask

spread for option i , respectively

Ci and Pi are the call price and put price for option i , respectively

CLi and PLi are the times between trades for the call and put option i ,
respectively

CRi and PRi are the squared deltas of the options

CDUMi and PDUMi are dummy variables to allow for the minimum

tick size

= 0 if Ci or Pi < $3

= 1 if Ci or Pi ≥ $3

T is the time to maturity

T 2 allows for a non-linear relationship between time to maturity and the

spread M2 is the square of moneyness, which is employed in quadratic

form since at-the-money options have a higher trading volume, while

out-of-the-money and in-the-money options both have lower trading

activity

CRi and PRi are measures of risk for the call and put, respectively, given

by the square of their deltas.

Equations (6.55) and (6.56), and then separately (6.57) and (6.58), are esti-

mated using 2SLS. The results are given here in tables 6.1 and 6.2.
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Table 6.1 Call bid–ask spread and trading volume regression

CBAi = α0 + α1CDUMi + α2Ci + α3CLi + α4Ti + α5CRi + ei (6.55)
CLi = γ0 + γ1CBAi + γ2Ti + γ3T2

i + γ4M2
i + vi (6.56)

α0 α1 α2 α3 α4 α5 Adj. R2

0.08362 0.06114 0.01679 0.00902 −0.00228 −0.15378 0.688

(16.80) (8.63) (15.49) (14.01) (−12.31) (−12.52)

γ0 γ1 γ2 γ3 γ4 Adj. R2

−3.8542 46.592 −0.12412 0.00406 0.00866 0.618

(−10.50) (30.49) (−6.01) (14.43) (4.76)

Note: t -ratios in parentheses.

Source: George and Longstaff (1993). Reprinted with the permission of School of

Business Administration, University of Washington.

Table 6.2 Put bid–ask spread and trading volume regression

PBAi = β0 + β1PDUMi + β2 Pi + β3PLi + β4Ti + β5PRi + ui (6.57)
PLi = δ0 + δ1PBAi + δ2Ti + δ3T2

i + δ4M2
i + wi (6.58)

β0 β1 β2 β3 β4 β5 Adj.R2

0.05707 0.03258 0.01726 0.00839 −0.00120 −0.08662 0.675

(15.19) (5.35) (15.90) (12.56) (−7.13) (−7.15)

δ0 δ1 δ2 δ3 δ4 Adj. R2

−2.8932 46.460 −0.15151 0.00339 0.01347 0.517

(−8.42) (34.06) (−7.74) (12.90) (10.86)

Note: t -ratios in parentheses.

Source: George and Longstaff (1993). Reprinted with the permission of School of

Business Administration, University of Washington.

The adjusted R2 ≈ 0.6 for all four equations, indicating that the vari-

ables selected do a good job of explaining the spread and the time between

trades. George and Longstaff argue that strategic market maker behaviour,

which cannot be easily modelled, is important in influencing the spread

and that this precludes a higher adjusted R2.

A next step in examining the empirical plausibility of the estimates is

to consider the sizes, signs and significances of the coefficients. In the call

and put spread regressions, respectively, α1 and β1 measure the tick size

constraint on the spread -- both are statistically significant and positive. α2

and β2 measure the effect of the option price on the spread. As expected,

both of these coefficients are again significant and positive since these are
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inventory or holding costs. The coefficient value of approximately 0.017

implies that a 1 dollar increase in the price of the option will on av-

erage lead to a 1.7 cent increase in the spread. α3 and β3 measure the

effect of trading activity on the spread. Recalling that an inverse trading

activity variable is used in the regressions, again, the coefficients have

their correct sign. That is, as the time between trades increases (that is, as

trading activity falls), the bid--ask spread widens. Furthermore, although

the coefficient values are small, they are statistically significant. In the

put spread regression, for example, the coefficient of approximately 0.009

implies that, even if the time between trades widened from one minute

to one hour, the spread would increase by only 54 cents. α4 and β4 mea-

sure the effect of time to maturity on the spread; both are negative and

statistically significant. The authors argue that this may arise as market

making is a more risky activity for near-maturity options. A possible al-

ternative explanation, which they dismiss after further investigation, is

that the early exercise possibility becomes more likely for very short-dated

options since the loss of time value would be negligible. Finally, α5 and

β5 measure the effect of risk on the spread; in both the call and put

spread regressions, these coefficients are negative and highly statistically

significant. This seems an odd result, which the authors struggle to jus-

tify, for it seems to suggest that more risky options will command lower

spreads.

Turning attention now to the trading activity regressions, γ1 and δ1

measure the effect of the spread size on call and put trading activity,

respectively. Both are positive and statistically significant, indicating that

a rise in the spread will increase the time between trades. The coefficients

are such that a 1 cent increase in the spread would lead to an increase

in the average time between call and put trades of nearly half a minute.

γ2 and δ2 give the effect of an increase in time to maturity, while γ3

and δ3 are coefficients attached to the square of time to maturity. For

both the call and put regressions, the coefficient on the level of time to

maturity is negative and significant, while that on the square is positive

and significant. As time to maturity increases, the squared term would

dominate, and one could therefore conclude that the time between trades

will show a U-shaped relationship with time to maturity. Finally, γ4 and δ4

give the effect of an increase in the square of moneyness (i.e. the effect of

an option going deeper into the money or deeper out of the money) on the

time between trades. For both the call and put regressions, the coefficients

are statistically significant and positive, showing that as the option moves

further from the money in either direction, the time between trades rises.

This is consistent with the authors’ supposition that trade is most active
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in at-the-money options, and less active in both out-of-the-money and in-

the-money options.

6.9.6 Conclusions

The value of the bid--ask spread on S&P100 index options and the time

between trades (a measure of market liquidity) can be usefully modelled

in a simultaneous system with exogenous variables such as the options’

deltas, time to maturity, moneyness, etc.

This study represents a nice example of the use of a simultaneous equa-

tions system, but, in this author’s view, it can be criticised on several

grounds. First, there are no diagnostic tests performed. Second, clearly

the equations are all overidentified, but it is not obvious how the over-

identifying restrictions have been generated. Did they arise from consid-

eration of financial theory? For example, why do the CL and PL equations

not contain the CR and PR variables? Why do the CBA and PBA equations

not contain moneyness or squared maturity variables? The authors could

also have tested for endogeneity of CBA and CL. Finally, the wrong sign on

the highly statistically significant squared deltas is puzzling.

6.10 Simultaneous equations modelling using EViews

What is the relationship between inflation and stock returns? Holding

stocks is often thought to provide a good hedge against inflation, since

the payments to equity holders are not fixed in nominal terms and rep-

resent a claim on real assets (unlike the coupons on bonds, for example).

However, the majority of empirical studies that have investigated the sign

of this relationship have found it to be negative. Various explanations

of this puzzling empirical phenomenon have been proposed, including a

link through real activity, so that real activity is negatively related to in-

flation but positively related to stock returns and therefore stock returns

and inflation vary positively. Clearly, inflation and stock returns ought

to be simultaneously related given that the rate of inflation will affect

the discount rate applied to cashflows and therefore the value of equi-

ties, but the performance of the stock market may also affect consumer

demand and therefore inflation through its impact on householder wealth

(perceived or actual).1

1 Crucially, good econometric models are based on solid financial theory. This model is

clearly not, but represents a simple way to illustrate the estimation and interpretation

of simultaneous equations models using EViews with freely available data!
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This simple example uses the same macroeconomic data as used previ-

ously to estimate this relationship simultaneously. Suppose (without jus-

tification) that we wish to estimate the following model, which does not

allow for dynamic effects or partial adjustments and does not distinguish

between expected and unexpected inflation

inflationt = α0 + α1 returnst + α2 dcreditt + α3 dprodt + α4 dmoney + u1t

(6.59)

returnst = β0 + β1 dprodt + β2 dspreadt + β3 inflationt + β4 rtermt + u2t

(6.60)

where ‘returns’ are stock returns and all of the other variables are defined

as in the previous example in chapter 4.

It is evident that there is feedback between the two equations since

the inflation variable appears in the stock returns equation and vice versa.

Are the equations identified? Since there are two equations, each will be

identified if one variable is missing from that equation. Equation (6.59),

the inflation equation, omits two variables. It does not contain the default

spread or the term spread, and so is over-identified. Equation (6.60), the

stock returns equation, omits two variables as well -- the consumer credit

and money supply variables -- and so is over-identified too. Two-stage least

squares (2SLS) is therefore the appropriate technique to use.

In EViews, to do this we need to specify a list of instruments, which

would be all of the variables from the reduced form equation. In this

case, the reduced form equations would be

inflation = f (constant, dprod, dspread, rterm, dcredit, qrev, dmoney)

(6.61)

returns = g(constant, dprod, dspread, rterm, dcredit, qrev, dmoney)

(6.62)

We can perform both stages of 2SLS in one go, but by default, EViews

estimates each of the two equations in the system separately. To do

this, click Quick, Estimate Equation and then select TSLS – Two Stage

Least Squares (TSNLS and ARMA) from the list of estimation methods.

Then fill in the dialog box as in screenshot 6.1 to estimate the inflation

equation.

Thus the format of writing out the variables in the first window is

as usual, and the full structural equation for inflation as a dependent

variable should be specified here. In the instrument list, include every

variable from the reduced form equation, including the constant, and

click OK.
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The results would then appear as in the following table.

Dependent Variable: INFLATION

Method: Two-Stage Least Squares

Date: 09/02/07 Time: 20:55

Sample (adjusted): 1986M04 2007M04

Included observations: 253 after adjustments

Instrument list: C DCREDIT DPROD RTERM DSPREAD DMONEY

Coefficient Std. Error t-Statistic Prob.

C 0.066248 0.337932 0.196038 0.8447

DPROD 0.068352 0.090839 0.752453 0.4525

DCREDIT 4.77E-07 1.38E-05 0.034545 0.9725

DMONEY 0.027426 0.05882 0.466266 0.6414

RSANDP 0.238047 0.363113 0.655573 0.5127

R-squared −15.398762 Mean dependent var 0.253632

Adjusted R-squared −15.663258 S.D. dependent var 0.269221

S.E. of regression 1.098980 Sum squared resid 299.5236

F-statistic 0.179469 Durbin-Watson stat 1.923274

Prob(F-statistic) 0.948875 Second-Stage SSR 17.39799

Similarly, the dialog box for the rsandp equation would be specified as

in screenshot 6.2. The output for the returns equation is shown in the

following table.

Dependent Variable: RSANDP

Method: Two-Stage Least Squares

Date: 09/02/07 Time: 20:30

Sample (adjusted): 1986M04 2007M04

Included observations: 253 after adjustments

Instrument list: C DCREDIT DPROD RTERM DSPREAD DMONEY

Coefficient Std. Error t-Statistic Prob.

C 0.682709 3.531687 0.193310 0.8469

DPROD −0.242299 0.251263 −0.964322 0.3358

DSPREAD −2.517793 10.57406 −0.238110 0.8120

RTERM 0.138109 1.263541 0.109303 0.9131

INFLATION 0.322398 14.10926 0.02285 0.9818

R-squared 0.006553 Mean dependent var 0.721483

Adjusted R-squared −0.009471 S.D. dependent var 4.355220

S.E. of regression 4.375794 Sum squared resid 4748.599

F-statistic 0.688494 Durbin-Watson stat 2.017386

Prob(F-statistic) 0.600527 Second-Stage SSR 4727.189
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Screenshot 6.1

Estimating the

inflation equation

The results overall are not very enlightening. None of the parameters

is even close to statistical significance in either equation, although inter-

estingly, the fitted relationship between the stock returns and inflation

series is positive (albeit not significantly so). The R̄2 values from both

equations are also negative, so should be interpreted with caution. As the

EViews User’s Guide warns, this can sometimes happen even when there is

an intercept in the regression.

It may also be of relevance to conduct a Hausman test for the endo-

geneity of the inflation and stock return variables. To do this, estimate

the reduced form equations and save the residuals. Then create series of

fitted values by constructing new variables which are equal to the actual

values minus the residuals. Call the fitted value series inflation fit and

rsandp fit. Then estimate the structural equations (separately), adding the

fitted values from the relevant reduced form equations. The two sets of
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Screenshot 6.2

Estimating the

rsandp equation

variables (in EViews format, with the dependent variables first followed

by the lists of independent variables) are as follows.

For the stock returns equation:

rsandp c dprod dspread rterm inflation inflation fit

and for the inflation equation:

inflation c dprod dcredit dmoney rsandp rsandp fit

The conclusion is that the inflation fitted value term is not significant in

the stock return equation and so inflation can be considered exogenous

for stock returns. Thus it would be valid to simply estimate this equation

(minus the fitted value term) on its own using OLS. But the fitted stock

return term is significant in the inflation equation, suggesting that stock

returns are endogenous.
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6.11 Vector autoregressive models

Vector autoregressive models (VARs) were popularised in econometrics by

Sims (1980) as a natural generalisation of univariate autoregressive models

discussed in chapter 5. A VAR is a systems regression model (i.e. there is

more than one dependent variable) that can be considered a kind of hybrid

between the univariate time series models considered in chapter 5 and the

simultaneous equations models developed previously in this chapter. VARs

have often been advocated as an alternative to large-scale simultaneous

equations structural models.

The simplest case that can be entertained is a bivariate VAR, where there

are only two variables, y1t and y2t , each of whose current values depend

on different combinations of the previous k values of both variables, and

error terms

y1t = β10 + β11 y1t−1 + · · · + β1k y1t−k + α11 y2t−1 + · · · + α1k y2t−k + u1t

(6.63)

y2t = β20 + β21 y2t−1 + · · · + β2k y2t−k + α21 y1t−1 + · · · + α2k y1t−k + u2t

(6.64)

where uit is a white noise disturbance term with E(uit ) = 0, (i = 1, 2),

E(u1t u2t ) = 0.

As should already be evident, an important feature of the VAR model

is its flexibility and the ease of generalisation. For example, the model

could be extended to encompass moving average errors, which would be

a multivariate version of an ARMA model, known as a VARMA. Instead of

having only two variables, y1t and y2t , the system could also be expanded

to include g variables, y1t , y2t , y3t , . . . , ygt , each of which has an equation.

Another useful facet of VAR models is the compactness with which the

notation can be expressed. For example, consider the case from above

where k = 1, so that each variable depends only upon the immediately

previous values of y1t and y2t , plus an error term. This could be written as

y1t = β10 + β11 y1t−1 + α11 y2t−1 + u1t (6.65)

y2t = β20 + β21 y2t−1 + α21 y1t−1 + u2t (6.66)

or (
y1t

y2t

)
=

(
β10

β20

)
+

(
β11 α11

α21 β21

)(
y1t−1

y2t−1

)
+

(
u1t

u2t

)
(6.67)

or even more compactly as

yt = β0 + β1 yt−1 + ut

g × 1 g × 1 g × gg × 1 g × 1
(6.68)
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In (6.68), there are g = 2 variables in the system. Extending the model to

the case where there are k lags of each variable in each equation is also

easily accomplished using this notation

yt = β0 + β1 yt−1 + β2 yt−2 + · · · + βk yt−k + ut

g × 1 g × 1 g × gg × 1 g × g g × 1 g × g g × 1 g × 1
(6.69)

The model could be further extended to the case where the model includes

first difference terms and cointegrating relationships (a vector error cor-

rection model (VECM) -- see chapter 7).

6.11.1 Advantages of VAR modelling

VAR models have several advantages compared with univariate time series

models or simultaneous equations structural models:

● The researcher does not need to specify which variables are endoge-

nous or exogenous -- all are endogenous. This is a very important point,

since a requirement for simultaneous equations structural models to

be estimable is that all equations in the system are identified. Essen-

tially, this requirement boils down to a condition that some variables

are treated as exogenous and that the equations contain different RHS

variables. Ideally, this restriction should arise naturally from financial

or economic theory. However, in practice theory will be at best vague in

its suggestions of which variables should be treated as exogenous. This

leaves the researcher with a great deal of discretion concerning how to

classify the variables. Since Hausman-type tests are often not employed

in practice when they should be, the specification of certain variables as

exogenous, required to form identifying restrictions, is likely in many

cases to be invalid. Sims termed these identifying restrictions ‘incred-

ible’. VAR estimation, on the other hand, requires no such restrictions

to be imposed.

● VARs allow the value of a variable to depend on more than just its

own lags or combinations of white noise terms, so VARs are more flexi-

ble than univariate AR models; the latter can be viewed as a restricted

case of VAR models. VAR models can therefore offer a very rich struc-

ture, implying that they may be able to capture more features of the

data.

● Provided that there are no contemporaneous terms on the RHS of the

equations, it is possible to simply use OLS separately on each equation. This

arises from the fact that all variables on the RHS are pre-determined --

that is, at time t , they are known. This implies that there is no possibility



292 Introductory Econometrics for Finance

for feedback from any of the LHS variables to any of the RHS variables.

Pre-determined variables include all exogenous variables and lagged val-

ues of the endogenous variables.

● The forecasts generated by VARs are often better than ‘traditional struc-

tural’ models. It has been argued in a number of articles (see, for exam-

ple, Sims, 1980) that large-scale structural models performed badly in

terms of their out-of-sample forecast accuracy. This could perhaps arise

as a result of the ad hoc nature of the restrictions placed on the struc-

tural models to ensure identification discussed above. McNees (1986)

shows that forecasts for some variables (e.g. the US unemployment rate

and real GNP, etc.) are produced more accurately using VARs than from

several different structural specifications.

6.11.2 Problems with VARs

VAR models of course also have drawbacks and limitations relative to other

model classes:

● VARs are a-theoretical (as are ARMA models), since they use little theoret-

ical information about the relationships between the variables to guide

the specification of the model. On the other hand, valid exclusion re-

strictions that ensure identification of equations from a simultaneous

structural system will inform on the structure of the model. An up-

shot of this is that VARs are less amenable to theoretical analysis and

therefore to policy prescriptions. There also exists an increased possibil-

ity under the VAR approach that a hapless researcher could obtain an

essentially spurious relationship by mining the data. It is also often not

clear how the VAR coefficient estimates should be interpreted.

● How should the appropriate lag lengths for the VAR be determined? There

are several approaches available for dealing with this issue, which will

be discussed below.

● So many parameters! If there are g equations, one for each of g variables

and with k lags of each of the variables in each equation, (g + kg2)

parameters will have to be estimated. For example, if g = 3 and k = 3

there will be 30 parameters to estimate. For relatively small sample sizes,

degrees of freedom will rapidly be used up, implying large standard

errors and therefore wide confidence intervals for model coefficients.

● Should all of the components of the VAR be stationary? Obviously, if one

wishes to use hypothesis tests, either singly or jointly, to examine the

statistical significance of the coefficients, then it is essential that all

of the components in the VAR are stationary. However, many propo-

nents of the VAR approach recommend that differencing to induce
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stationarity should not be done. They would argue that the purpose

of VAR estimation is purely to examine the relationships between the

variables, and that differencing will throw information on any long-run

relationships between the series away. It is also possible to combine lev-

els and first differenced terms in a VECM -- see chapter 7.

6.11.3 Choosing the optimal lag length for a VAR

Often, financial theory will have little to say on what is an appropriate

lag length for a VAR and how long changes in the variables should take

to work through the system. In such instances, there are broadly two

methods that could be used to arrive at the optimal lag length: cross-

equation restrictions and information criteria.

6.11.4 Cross-equation restrictions for VAR lag length selection

A first (but incorrect) response to the question of how to determine the

appropriate lag length would be to use the block F-tests highlighted in

section 6.13 below. These, however, are not appropriate in this case as the

F-test would be used separately for the set of lags in each equation, and

what is required here is a procedure to test the coefficients on a set of

lags on all variables for all equations in the VAR at the same time.

It is worth noting here that in the spirit of VAR estimation (as Sims,

for example, thought that model specification should be conducted), the

models should be as unrestricted as possible. A VAR with different lag

lengths for each equation could be viewed as a restricted VAR. For example,

consider a VAR with 3 lags of both variables in one equation and 4 lags of

each variable in the other equation. This could be viewed as a restricted

model where the coefficient on the fourth lags of each variable in the

first equation have been set to zero.

An alternative approach would be to specify the same number of lags in

each equation and to determine the model order as follows. Suppose that a

VAR estimated using quarterly data has 8 lags of the two variables in each

equation, and it is desired to examine a restriction that the coefficients

on lags 5--8 are jointly zero. This can be done using a likelihood ratio test

(see chapter 8 for more general details concerning such tests). Denote the

variance--covariance matrix of residuals (given by ûû′), as 
̂. The likelihood

ratio test for this joint hypothesis is given by

L R = T [log|
̂r | − log|
̂u|] (6.70)

where |
̂r | is the determinant of the variance--covariance matrix of the

residuals for the restricted model (with 4 lags), |
̂u| is the determinant
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of the variance--covariance matrix of residuals for the unrestricted VAR

(with 8 lags) and T is the sample size. The test statistic is asymptotically

distributed as a χ2 variate with degrees of freedom equal to the total

number of restrictions. In the VAR case above, 4 lags of two variables are

being restricted in each of the 2 equations = a total of 4 × 2 × 2 = 16

restrictions. In the general case of a VAR with g equations, to impose

the restriction that the last q lags have zero coefficients, there would be

g2q restrictions altogether. Intuitively, the test is a multivariate equivalent

to examining the extent to which the RSS rises when a restriction is im-

posed. If 
̂r and 
̂u are ‘close together’, the restriction is supported by the

data.

6.11.5 Information criteria for VAR lag length selection

The likelihood ratio (LR) test explained above is intuitive and fairly easy to

estimate, but has its limitations. Principally, one of the two VARs must be

a special case of the other and, more seriously, only pairwise comparisons

can be made. In the above example, if the most appropriate lag length had

been 7 or even 10, there is no way that this information could be gleaned

from the LR test conducted. One could achieve this only by starting with

a VAR(10), and successively testing one set of lags at a time.

A further disadvantage of the LR test approach is that the χ2 test will

strictly be valid asymptotically only under the assumption that the errors

from each equation are normally distributed. This assumption is unlikely

to be upheld for financial data. An alternative approach to selecting the

appropriate VAR lag length would be to use an information criterion, as

defined in chapter 5 in the context of ARMA model selection. Information

criteria require no such normality assumptions concerning the distribu-

tions of the errors. Instead, the criteria trade off a fall in the RSS of each

equation as more lags are added, with an increase in the value of the

penalty term. The univariate criteria could be applied separately to each

equation but, again, it is usually deemed preferable to require the num-

ber of lags to be the same for each equation. This requires the use of

multivariate versions of the information criteria, which can be defined

as

MAIC = log
∣∣
̂∣∣ + 2k ′/T (6.71)

MSBIC = log
∣∣
̂∣∣ + k ′

T
log(T ) (6.72)

MHQIC = log
∣∣
̂∣∣ + 2k ′

T
log(log(T )) (6.73)
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where again 
̂ is the variance--covariance matrix of residuals, T is the

number of observations and k ′ is the total number of regressors in all

equations, which will be equal to p2k + p for p equations in the VAR sys-

tem, each with k lags of the p variables, plus a constant term in each

equation. As previously, the values of the information criteria are con-

structed for 0, 1, . . . , k̄ lags (up to some pre-specified maximum k̄), and

the chosen number of lags is that number minimising the value of the

given information criterion.

6.12 Does the VAR include contemporaneous terms?

So far, it has been assumed that the VAR specified is of the form

y1t = β10 + β11 y1t−1 + α11 y2t−1 + u1t (6.74)

y2t = β20 + β21 y2t−1 + α21 y1t−1 + u2t (6.75)

so that there are no contemporaneous terms on the RHS of (6.74) or (6.75) --

i.e. there is no term in y2t on the RHS of the equation for y1t and no term

in y1t on the RHS of the equation for y2t . But what if the equations had a

contemporaneous feedback term, as in the following case?

y1t = β10 + β11 y1t−1 + α11 y2t−1 + α12 y2t + u1t (6.76)

y2t = β20 + β21 y2t−1 + α21 y1t−1 + α22 y1t + u2t (6.77)

Equations (6.76) and (6.77) could also be written by stacking up the terms

into matrices and vectors:(
y1t

y2t

)
=

(
β10

β20

)
+

(
β11 α11

α21 β21

)(
y1t−1

y2t−1

)
+

(
α12 0

0 α22

)(
y2t

y1t

)
+

(
u1t

u2t

)

(6.78)

This would be known as a VAR in primitive form, similar to the structural

form for a simultaneous equations model. Some researchers have argued

that the a-theoretical nature of reduced form VARs leaves them unstruc-

tured and their results difficult to interpret theoretically. They argue that

the forms of VAR given previously are merely reduced forms of a more

general structural VAR (such as (6.78)), with the latter being of more in-

terest.

The contemporaneous terms from (6.78) can be taken over to the LHS

and written as(
1 −α12

−α22 1

)(
y1t

y2t

)
=

(
β10

β20

)
+

(
β11 α11

α21 β21

)(
y1t−1

y2t−1

)
+

(
u1t

u2t

)
(6.79)
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or

Ayt = β0 + β1 yt−1 + ut (6.80)

If both sides of (6.80) are pre-multiplied by A−1

yt = A−1β0 + A−1β1 yt−1 + A−1ut (6.81)

or

yt = A0 + A1 yt−1 + et (6.82)

This is known as a standard form VAR, which is akin to the reduced

form from a set of simultaneous equations. This VAR contains only pre-

determined values on the RHS (i.e. variables whose values are known at

time t), and so there is no contemporaneous feedback term. This VAR can

therefore be estimated equation by equation using OLS.

Equation (6.78), the structural or primitive form VAR, is not identified,

since identical pre-determined (lagged) variables appear on the RHS of

both equations. In order to circumvent this problem, a restriction that

one of the coefficients on the contemporaneous terms is zero must be

imposed. In (6.78), either α12 or α22 must be set to zero to obtain a trian-

gular set of VAR equations that can be validly estimated. The choice of

which of these two restrictions to impose is ideally made on theoretical

grounds. For example, if financial theory suggests that the current value

of y1t should affect the current value of y2t but not the other way around,

set α12 = 0, and so on. Another possibility would be to run separate estima-

tions, first imposing α12 = 0 and then α22 = 0, to determine whether the

general features of the results are much changed. It is also very common

to estimate only a reduced form VAR, which is of course perfectly valid

provided that such a formulation is not at odds with the relationships

between variables that financial theory says should hold.

One fundamental weakness of the VAR approach to modelling is that its

a-theoretical nature and the large number of parameters involved make

the estimated models difficult to interpret. In particular, some lagged

variables may have coefficients which change sign across the lags, and

this, together with the interconnectivity of the equations, could render

it difficult to see what effect a given change in a variable would have

upon the future values of the variables in the system. In order to par-

tially alleviate this problem, three sets of statistics are usually constructed

for an estimated VAR model: block significance tests, impulse responses

and variance decompositions. How important an intuitively interpretable

model is will of course depend on the purpose of constructing the model.

Interpretability may not be an issue at all if the purpose of producing the

VAR is to make forecasts.
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Table 6.3 Granger causality tests and implied restrictions on VAR models

Hypothesis Implied restriction

1 Lags of y1t do not explain current y2t β21 = 0 and γ21 = 0 and δ21 = 0
2 Lags of y1t do not explain current y1t β11 = 0 and γ11 = 0 and δ11 = 0
3 Lags of y2t do not explain current y1t β12 = 0 and γ12 = 0 and δ12 = 0
4 Lags of y2t do not explain current y2t β22 = 0 and γ22 = 0 and δ22 = 0

6.13 Block significance and causality tests

It is likely that, when a VAR includes many lags of variables, it will be

difficult to see which sets of variables have significant effects on each

dependent variable and which do not. In order to address this issue, tests

are usually conducted that restrict all of the lags of a particular variable

to zero. For illustration, consider the following bivariate VAR(3)

(
y1t

y2t

)
=

(
α10

α20

)
+

(
β11 β12

β21 β22

)(
y1t−1

y2t−1

)
+

(
γ11 γ12

γ21 γ22

)(
y1t−2

y2t−2

)

+
(

δ11 δ12

δ21 δ22

)(
y1t−3

y2t−3

)
+

(
u1t

u2t

)
(6.83)

This VAR could be written out to express the individual equations as

y1t = α10 + β11 y1t−1 + β12 y2t−1 + γ11 y1t−2 + γ12 y2t−2

+ δ11 y1t−3 + δ12 y2t−3 + u1t
(6.84)

y2t = α20 + β21 y1t−1 + β22 y2t−1 + γ21 y1t−2 + γ22 y2t−2

+ δ21 y1t−3 + δ22 y2t−3 + u2t

One might be interested in testing the hypotheses and their implied re-

strictions on the parameter matrices given in table 6.3.

Assuming that all of the variables in the VAR are stationary, the joint

hypotheses can easily be tested within the F-test framework, since each

individual set of restrictions involves parameters drawn from only one

equation. The equations would be estimated separately using OLS to obtain

the unrestricted RSS, then the restrictions imposed and the models re-

estimated to obtain the restricted RSS. The F-statistic would then take the

usual form described in chapter 3. Thus, evaluation of the significance of

variables in the context of a VAR almost invariably occurs on the basis of

joint tests on all of the lags of a particular variable in an equation, rather

than by examination of individual coefficient estimates.
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In fact, the tests described above could also be referred to as causality

tests. Tests of this form were described by Granger (1969) and a slight vari-

ant due to Sims (1972). Causality tests seek to answer simple questions of

the type, ‘Do changes in y1 cause changes in y2?’ The argument follows

that if y1 causes y2, lags of y1 should be significant in the equation for y2.

If this is the case and not vice versa, it would be said that y1 ‘Granger-

causes’ y2 or that there exists unidirectional causality from y1 to y2. On

the other hand, if y2 causes y1, lags of y2 should be significant in the equa-

tion for y1. If both sets of lags were significant, it would be said that there

was ‘bi-directional causality’ or ‘bi-directional feedback’. If y1 is found to

Granger-cause y2, but not vice versa, it would be said that variable y1 is

strongly exogenous (in the equation for y2). If neither set of lags are sta-

tistically significant in the equation for the other variable, it would be

said that y1 and y2 are independent. Finally, the word ‘causality’ is some-

what of a misnomer, for Granger-causality really means only a correlation

between the current value of one variable and the past values of others;

it does not mean that movements of one variable cause movements of

another.

6.14 VARs with exogenous variables

Consider the following specification for a VAR(1) where Xt is a vector of

exogenous variables and B is a matrix of coefficients

yt = A0 + A1 yt−1 + B Xt + et (6.85)

The components of the vector Xt are known as exogenous variables since

their values are determined outside of the VAR system -- in other words,

there are no equations in the VAR with any of the components of Xt as

dependent variables. Such a model is sometimes termed a VARX, although

it could be viewed as simply a restricted VAR where there are equations

for each of the exogenous variables, but with the coefficients on the RHS

in those equations restricted to zero. Such a restriction may be considered

desirable if theoretical considerations suggest it, although it is clearly not

in the true spirit of VAR modelling, which is not to impose any restrictions

on the model but rather to ‘let the data decide’.

6.15 Impulse responses and variance decompositions

Block F-tests and an examination of causality in a VAR will suggest which

of the variables in the model have statistically significant impacts on the
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Box 6.3 Forecasting with VARs

One of the main advantages of the VAR approach to modelling and forecasting is that

since only lagged variables are used on the right hand side, forecasts of the future

values of the dependent variables can be calculated using only information from within

the system. We could term these unconditional forecasts since they are not

constructed conditional on a particular set of assumed values. However, conversely it

may be useful to produce forecasts of the future values of some variables conditional

upon known values of other variables in the system. For example, it may be the case

that the values of some variables become known before the values of the others. If the

known values of the former are employed, we would anticipate that the forecasts

should be more accurate than if estimated values were used unnecessarily, thus

throwing known information away. Alternatively, conditional forecasts can be employed

for counterfactual analysis based on examining the impact of certain scenarios. For

example, in a trivariate VAR system incorporating monthly stock returns, inflation and

GDP, we could answer the question: ‘What is the likely impact on the stock market over

the next 1–6 months of a 2-percentage point increase in inflation and a 1% rise in

GDP?’

future values of each of the variables in the system. But F-test results will

not, by construction, be able to explain the sign of the relationship or how

long these effects require to take place. That is, F-test results will not reveal

whether changes in the value of a given variable have a positive or negative

effect on other variables in the system, or how long it would take for the

effect of that variable to work through the system. Such information will,

however, be given by an examination of the VAR’s impulse responses and

variance decompositions.

Impulse responses trace out the responsiveness of the dependent variables

in the VAR to shocks to each of the variables. So, for each variable from

each equation separately, a unit shock is applied to the error, and the

effects upon the VAR system over time are noted. Thus, if there are g
variables in a system, a total of g2 impulse responses could be generated.

The way that this is achieved in practice is by expressing the VAR model

as a VMA -- that is, the vector autoregressive model is written as a vector

moving average (in the same way as was done for univariate autoregressive

models in chapter 5). Provided that the system is stable, the shock should

gradually die away.

To illustrate how impulse responses operate, consider the following

bivariate VAR(1)

yt = A1 yt−1 + ut (6.86)

where A1 =
[

0.5 0.3

0.0 0.2

]
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The VAR can also be written out using the elements of the matrices and

vectors as[
y1t

y2t

]
=

[
0.5 0.3

0.0 0.2

][
y1t−1

y2t−1

]
+

[
u1t

u2t

]
(6.87)

Consider the effect at time t = 0, 1, . . . , of a unit shock to y1t at time t = 0

y0 =
[

u10

u20

]
=

[
1

0

]
(6.88)

y1 = A1 y0 =
[

0.5 0.3

0.0 0.2

][
1

0

]
=

[
0.5

0

]
(6.89)

y2 = A1 y1 =
[

0.5 0.3

0.0 0.2

][
0.5

0

]
=

[
0.25

0

]
(6.90)

and so on. It would thus be possible to plot the impulse response functions

of y1t and y2t to a unit shock in y1t . Notice that the effect on y2t is always

zero, since the variable y1t−1 has a zero coefficient attached to it in the

equation for y2t .

Now consider the effect of a unit shock to y2t at time t = 0

y0 =
[

u10

u20

]
=

[
0

1

]
(6.91)

y1 = A1 y0 =
[

0.5 0.3

0.0 0.2

][
0

1

]
=

[
0.3

0.2

]
(6.92)

y2 = A1 y1 =
[

0.5 0.3

0.0 0.2

][
0.3

0.2

]
=

[
0.21

0.04

]
(6.93)

and so on. Although it is probably fairly easy to see what the effects of

shocks to the variables will be in such a simple VAR, the same principles

can be applied in the context of VARs containing more equations or more

lags, where it is much more difficult to see by eye what are the interactions

between the equations.

Variance decompositions offer a slightly different method for examining

VAR system dynamics. They give the proportion of the movements in the

dependent variables that are due to their ‘own’ shocks, versus shocks to

the other variables. A shock to the ith variable will directly affect that

variable of course, but it will also be transmitted to all of the other vari-

ables in the system through the dynamic structure of the VAR. Variance

decompositions determine how much of the s-step-ahead forecast error

variance of a given variable is explained by innovations to each explana-

tory variable for s = 1, 2, . . . In practice, it is usually observed that own
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series shocks explain most of the (forecast) error variance of the series in

a VAR. To some extent, impulse responses and variance decompositions

offer very similar information.

For calculating impulse responses and variance decompositions, the or-

dering of the variables is important. To see why this is the case, recall

that the impulse responses refer to a unit shock to the errors of one VAR

equation alone. This implies that the error terms of all other equations

in the VAR system are held constant. However, this is not realistic since

the error terms are likely to be correlated across equations to some extent.

Thus, assuming that they are completely independent would lead to a mis-

representation of the system dynamics. In practice, the errors will have

a common component that cannot be associated with a single variable

alone.

The usual approach to this difficulty is to generate orthogonalised impulse

responses. In the context of a bivariate VAR, the whole of the common

component of the errors is attributed somewhat arbitrarily to the first

variable in the VAR. In the general case where there are more than

two variables in the VAR, the calculations are more complex but the in-

terpretation is the same. Such a restriction in effect implies an ‘ordering’

of variables, so that the equation for y1t would be estimated first and then

that of y2t , a bit like a recursive or triangular system.

Assuming a particular ordering is necessary to compute the impulse

responses and variance decompositions, although the restriction underly-

ing the ordering used may not be supported by the data. Again, ideally,

financial theory should suggest an ordering (in other words, that move-

ments in some variables are likely to follow, rather than precede, others).

Failing this, the sensitivity of the results to changes in the ordering can

be observed by assuming one ordering, and then exactly reversing it and

re-computing the impulse responses and variance decompositions. It is

also worth noting that the more highly correlated are the residuals from

an estimated equation, the more the variable ordering will be important.

But when the residuals are almost uncorrelated, the ordering of the vari-

ables will make little difference (see Lütkepohl, 1991, chapter 2 for further

details).

Runkle (1987) argues that both impulse responses and variance decom-

positions are notoriously difficult to interpret accurately. He argues that

confidence bands around the impulse responses and variance decomposi-

tions should always be constructed. However, he further states that, even

then, the confidence intervals are typically so wide that sharp inferences

are impossible.
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6.16 VAR model example: the interaction between
property returns and the macroeconomy

6.16.1 Background, data and variables

Brooks and Tsolacos (1999) employ a VAR methodology for investigat-

ing the interaction between the UK property market and various macro-

economic variables. Monthly data, in logarithmic form, are used for the

period from December 1985 to January 1998. The selection of the variables

for inclusion in the VAR model is governed by the time series that are com-

monly included in studies of stock return predictability. It is assumed that

stock returns are related to macroeconomic and business conditions, and

hence time series which may be able to capture both current and future

directions in the broad economy and the business environment are used

in the investigation.

Broadly, there are two ways to measure the value of property-based

assets -- direct measures of property value and equity-based measures. Direct prop-

erty measures are based on periodic appraisals or valuations of the actual

properties in a portfolio by surveyors, while equity-based measures evalu-

ate the worth of properties indirectly by considering the values of stock

market traded property companies. Both sources of data have their draw-

backs. Appraisal-based value measures suffer from valuation biases and in-

accuracies. Surveyors are typically prone to ‘smooth’ valuations over time,

such that the measured returns are too low during property market booms

and too high during periods of property price falls. Additionally, not every

property in the portfolio that comprises the value measure is appraised

during every period, resulting in some stale valuations entering the aggre-

gate valuation, further increasing the degree of excess smoothness of the

recorded property price series. Indirect property vehicles -- property-related

companies traded on stock exchanges -- do not suffer from the above prob-

lems, but are excessively influenced by general stock market movements.

It has been argued, for example, that over three-quarters of the variation

over time in the value of stock exchange traded property companies can be

attributed to general stock market-wide price movements. Therefore, the

value of equity-based property series reflects much more the sentiment

in the general stock market than the sentiment in the property market

specifically.

Brooks and Tsolacos (1999) elect to use the equity-based FTSE Property

Total Return Index to construct property returns. In order to purge the real

estate return series of its general stock market influences, it is common

to regress property returns on a general stock market index (in this case
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the FTA All-Share Index is used), saving the residuals. These residuals are

expected to reflect only the variation in property returns, and thus become

the property market return measure used in subsequent analysis, and

are denoted PROPRES.

Hence, the variables included in the VAR are the property returns (with

general stock market effects removed), the rate of unemployment, nom-

inal interest rates, the spread between the long- and short-term interest

rates, unanticipated inflation and the dividend yield. The motivations for

including these particular variables in the VAR together with the property

series, are as follows:

● The rate of unemployment (denoted UNEM) is included to indicate general

economic conditions. In US research, authors tend to use aggregate

consumption, a variable that has been built into asset pricing models

and examined as a determinant of stock returns. Data for this variable

and for alternative variables such as GDP are not available on a monthly

basis in the UK. Monthly data are available for industrial production

series but other studies have not shown any evidence that industrial

production affects real estate returns. As a result, this series was not

considered as a potential causal variable.

● Short-term nominal interest rates (denoted SIR) are assumed to contain

information about future economic conditions and to capture the state

of investment opportunities. It was found in previous studies that short-

term interest rates have a very significant negative influence on property

stock returns.

● Interest rate spreads (denoted SPREAD), i.e. the yield curve, are usually

measured as the difference in the returns between long-term Treasury

Bonds (of maturity, say, 10 or 20 years), and the one-month or three-

month Treasury Bill rate. It has been argued that the yield curve has

extra predictive power, beyond that contained in the short-term inter-

est rate, and can help predict GDP up to four years ahead. It has also

been suggested that the term structure also affects real estate market

returns.

● Inflation rate influences are also considered important in the pricing

of stocks. For example, it has been argued that unanticipated inflation

could be a source of economic risk and as a result, a risk premium will

also be added if the stock of firms has exposure to unanticipated infla-

tion. The unanticipated inflation variable (denoted UNINFL) is defined as

the difference between the realised inflation rate, computed as the per-

centage change in the Retail Price Index (RPI), and an estimated series

of expected inflation. The latter series was produced by fitting an ARMA



304 Introductory Econometrics for Finance

model to the actual series and making a one-period(month)-ahead fore-

cast, then rolling the sample forward one period, and re-estimating

the parameters and making another one-step-ahead forecast, and

so on.

● Dividend yields (denoted DIVY) have been widely used to model stock

market returns, and also real estate property returns, based on the

assumption that movements in the dividend yield series are related to

long-term business conditions and that they capture some predictable

components of returns.

All variables to be included in the VAR are required to be stationary in

order to carry out joint significance tests on the lags of the variables.

Hence, all variables are subjected to augmented Dickey--Fuller (ADF) tests

(see chapter 7). Evidence that the log of the RPI and the log of the un-

employment rate both contain a unit root is observed. Therefore, the first

differences of these variables are used in subsequent analysis. The remain-

ing four variables led to rejection of the null hypothesis of a unit root in

the log-levels, and hence these variables were not first differenced.

6.16.2 Methodology

A reduced form VAR is employed and therefore each equation can ef-

fectively be estimated using OLS. For a VAR to be unrestricted, it is re-

quired that the same number of lags of all of the variables is used in all

equations. Therefore, in order to determine the appropriate lag lengths,

the multivariate generalisation of Akaike’s information criterion (AIC)

is used.

Within the framework of the VAR system of equations, the significance

of all the lags of each of the individual variables is examined jointly with

an F -test. Since several lags of the variables are included in each of the

equations of the system, the coefficients on individual lags may not ap-

pear significant for all lags, and may have signs and degrees of significance

that vary with the lag length. However, F -tests will be able to establish

whether all of the lags of a particular variable are jointly significant. In or-

der to consider further the effect of the macroeconomy on the real estate

returns index, the impact multipliers (orthogonalised impulse responses)

are also calculated for the estimated VAR model. Two standard error bands

are calculated using the Monte Carlo integration approach employed by

McCue and Kling (1994), and based on Doan (1994). The forecast error vari-

ance is also decomposed to determine the proportion of the movements

in the real estate series that are a consequence of its own shocks rather

than shocks to other variables.
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Table 6.4 Marginal significance levels associated with joint F-tests

Lags of variable
Dependent

variable SIR DIVY SPREAD UNEM UNINFL PROPRES

SIR 0.0000 0.0091 0.0242 0.0327 0.2126 0.0000

DIVY 0.5025 0.0000 0.6212 0.4217 0.5654 0.4033

SPREAD 0.2779 0.1328 0.0000 0.4372 0.6563 0.0007

UNEM 0.3410 0.3026 0.1151 0.0000 0.0758 0.2765

UNINFL 0.3057 0.5146 0.3420 0.4793 0.0004 0.3885

PROPRES 0.5537 0.1614 0.5537 0.8922 0.7222 0.0000

The test is that all 14 lags have no explanatory power for that particular equation in

the VAR.

Source: Brooks and Tsolacos (1999).

6.16.3 Results

The number of lags that minimises the value of Akaike’s information

criterion is 14, consistent with the 15 lags used by McCue and Kling (1994).

There are thus (1 + 14 × 6) = 85 variables in each equation, implying 59

degrees of freedom. F-tests for the null hypothesis that all of the lags of a

given variable are jointly insignificant in a given equation are presented

in table 6.4.

In contrast to a number of US studies which have used similar vari-

ables, it is found to be difficult to explain the variation in the UK real

estate returns index using macroeconomic factors, as the last row of

table 6.4 shows. Of all the lagged variables in the real estate equation,

only the lags of the real estate returns themselves are highly significant,

and the dividend yield variable is significant only at the 20% level. No

other variables have any significant explanatory power for the real estate

returns. Therefore, based on the F-tests, an initial conclusion is that the

variation in property returns, net of stock market influences, cannot be

explained by any of the main macroeconomic or financial variables used

in existing research. One possible explanation for this might be that, in

the UK, these variables do not convey the information about the macro-

economy and business conditions assumed to determine the intertempo-

ral behaviour of property returns. It is possible that property returns may

reflect property market influences, such as rents, yields or capitalisation

rates, rather than macroeconomic or financial variables. However, again

the use of monthly data limits the set of both macroeconomic and prop-

erty market variables that can be used in the quantitative analysis of real

estate returns in the UK.
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Table 6.5 Variance decompositions for the property sector index residuals

Explained by innovations in

SIR DIVY SPREAD UNEM UNINFL PROPRES

Months ahead I II I II I II I II I II I II

1 0.0 0.8 0.0 38.2 0.0 9.1 0.0 0.7 0.0 0.2 100.0 51.0

2 0.2 0.8 0.2 35.1 0.2 12.3 0.4 1.4 1.6 2.9 97.5 47.5

3 3.8 2.5 0.4 29.4 0.2 17.8 1.0 1.5 2.3 3.0 92.3 45.8

4 3.7 2.1 5.3 22.3 1.4 18.5 1.6 1.1 4.8 4.4 83.3 51.5

12 2.8 3.1 15.5 8.7 15.3 19.5 3.3 5.1 17.0 13.5 46.1 50.0

24 8.2 6.3 6.8 3.9 38.0 36.2 5.5 14.7 18.1 16.9 23.4 22.0

Source: Brooks and Tsolacos (1999).

It appears, however, that lagged values of the real estate variable have

explanatory power for some other variables in the system. These results

are shown in the last column of table 6.4. The property sector appears

to help in explaining variations in the term structure and short-term

interest rates, and moreover since these variables are not significant in

the property index equation, it is possible to state further that the prop-

erty residual series Granger-causes the short-term interest rate and the

term spread. This is a bizarre result. The fact that property returns are

explained by own lagged values -- i.e. that is there is interdependency be-

tween neighbouring data points (observations) -- may reflect the way that

property market information is produced and reflected in the property

return indices.

Table 6.5 gives variance decompositions for the property returns index

equation of the VAR for 1, 2, 3, 4, 12 and 24 steps ahead for the two

variable orderings:

Order I: PROPRES, DIVY, UNINFL, UNEM, SPREAD, SIR

Order II: SIR, SPREAD, UNEM, UNINFL, DIVY, PROPRES.

Unfortunately, the ordering of the variables is important in the decom-

position. Thus two orderings are applied, which are the exact opposite of

one another, and the sensitivity of the result is considered. It is clear that

by the two-year forecasting horizon, the variable ordering has become al-

most irrelevant in most cases. An interesting feature of the results is that

shocks to the term spread and unexpected inflation together account for

over 50% of the variation in the real estate series. The short-term interest

rate and dividend yield shocks account for only 10--15% of the variance of
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the property index. One possible explanation for the difference in results

between the F-tests and the variance decomposition is that the former

is a causality test and the latter is effectively an exogeneity test. Hence

the latter implies the stronger restriction that both current and lagged

shocks to the explanatory variables do not influence the current value of

the dependent variable of the property equation. Another way of stating

this is that the term structure and unexpected inflation have a contempo-

raneous rather than a lagged effect on the property index, which implies

insignificant F-test statistics but explanatory power in the variance decom-

position. Therefore, although the F-tests did not establish any significant

effects, the error variance decompositions show evidence of a contempora-

neous relationship between PROPRES and both SPREAD and UNINFL. The

lack of lagged effects could be taken to imply speedy adjustment of the

market to changes in these variables.

Figures 6.1 and 6.2 give the impulse responses for PROPRES associated

with separate unit shocks to unexpected inflation and the dividend yield,
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as examples (as stated above, a total of 36 impulse responses could be

calculated since there are 6 variables in the system).

Considering the signs of the responses, innovations to unexpected

inflation (figure 6.1) always have a negative impact on the real estate

index, since the impulse response is negative, and the effect of the shock

does not die down, even after 24 months. Increasing stock dividend yields

(figure 6.2) have a negative impact for the first three periods, but beyond

that, the shock appears to have worked its way out of the system.

6.16.4 Conclusions

The conclusion from the VAR methodology adopted in the Brooks and

Tsolacos paper is that overall, UK real estate returns are difficult to ex-

plain on the basis of the information contained in the set of the variables

used in existing studies based on non-UK data. The results are not strongly

suggestive of any significant influences of these variables on the variation

of the filtered property returns series. There is, however, some evidence

that the interest rate term structure and unexpected inflation have a con-

temporaneous effect on property returns, in agreement with the results

of a number of previous studies.

6.17 VAR estimation in EViews

By way of illustration, a VAR is estimated in order to examine whether

there are lead--lag relationships for the returns to three exchange rates

against the US dollar -- the euro, the British pound and the Japanese yen.

The data are daily and run from 7 July 2002 to 7 July 2007, giving a total of

1,827 observations. The data are contained in the Excel file ‘currencies.xls’.

First Create a new workfile, called ‘currencies.wf1’, and import the three

currency series. Construct a set of continuously compounded percentage

returns called ‘reur’, ‘rgbp’ and ‘rjpy’. VAR estimation in EViews can be ac-

complished by clicking on the Quick menu and then Estimate VAR. The

VAR inputs screen appears as in screenshot 6.3.

In the Endogenous variables box, type the three variable names, reur

rgbp rjpy. In the Exogenous box, leave the default ‘C’ and in the Lag

Interval box, enter 1 2 to estimate a VAR(2), just as an example. The output

appears in a neatly organised table as shown on the following page, with

one column for each equation in the first and second panels, and a single

column of statistics that describes the system as a whole in the third. So

values of the information criteria are given separately for each equation

in the second panel and jointly for the model as a whole in the third.
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Vector Autoregression Estimates

Date: 09/03/07 Time: 21:54

Sample (adjusted): 7/10/2002 7/07/2007

Included observations: 1824 after adjustments

Standard errors in ( ) & t-statistics in [ ]

REUR RGBP RJPY

REUR(−1) 0.031460 0.016776 0.040970
(0.03681) (0.03234) (0.03444)
[0.85471] [0.51875] [1.18944]

REUR(−2) 0.011377 0.045542 0.030551
(0.03661) (0.03217) (0.03426)
[0.31073] [1.41574] [0.89167]

RGBP(−1) −0.070259 0.040547 −0.060907
(0.04051) (0.03559) (0.03791)

[−1.73453] [1.13933] [−1.60683]

RGBP(-2) 0.026719 −0.015074 −0.019407
(0.04043) (0.03552) (0.03784)
[0.66083] [−0.42433] [−0.51293]

RJPY(-1) −0.020698 −0.029766 0.011809
(0.03000) (0.02636) (0.02807)

[−0.68994] [−1.12932] [0.42063]

RJPY(-2) −0.014817 −0.000392 0.035524
(0.03000) (0.02635) (0.02807)

[−0.49396] [−0.01489] [1.26557]

C −0.017229 −0.012878 0.002187
(0.01100) (0.00967) (0.01030)

[−1.56609] [−1.33229] [0.21239]

R-squared 0.003403 0.004040 0.003797
Adj. R-squared 0.000112 0.000751 0.000507
Sum sq. resids 399.0767 308.0701 349.4794
S.E. equation 0.468652 0.411763 0.438564
F-statistic 1.034126 1.228431 1.154191
Log likelihood −1202.238 −966.1886 −1081.208
Akaike AIC 1.325919 1.067093 1.193210
Schwarz SC 1.347060 1.088234 1.214351
Mean dependent −0.017389 −0.014450 0.002161
S.D. dependent 0.468679 0.411918 0.438676

Determinant resid covariance (dof adj.) 0.002214
Determinant resid covariance 0.002189
Log likelihood −2179.054
Akaike information criterion 2.412339
Schwarz criterion 2.475763



310 Introductory Econometrics for Finance

Screenshot 6.3

VAR inputs screen

We will shortly discuss the interpretation of the output, but the exam-

ple so far has assumed that we know the appropriate lag length for the VAR.

However, in practice, the first step in the construction of any VAR model,

once the variables that will enter the VAR have been decided, will be to

determine the appropriate lag length. This can be achieved in a variety

of ways, but one of the easiest is to employ a multivariate information

criterion. In EViews, this can be done easily from the EViews VAR output

we have by clicking View/Lag Structure/Lag Length Criteria. . . . You will

be invited to specify the maximum number of lags to entertain including

in the model, and for this example, arbitrarily select 10. The output in

the following table would be observed.

EViews presents the values of various information criteria and other

methods for determining the lag order. In this case, the Schwartz and

Hannan--Quinn criteria both select a zero order as optimal, while Akaike’s

criterion chooses a VAR(1). Estimate a VAR(1) and examine the results.

Does the model look as if it fits the data well? Why or why not?
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VAR Lag Order Selection Criteria

Endogenous variables: REUR RGBP RJPY

Exogenous variables: C

Date: 09/03/07 Time: 21:58

Sample: 7/07/2002 7/07/2007

Included observations: 1816

Lag LogL LR FPE AIC SC HQ

0 −2192.395 NA 0.002252 2.417836 2.426929∗ 2.421191∗

1 −2175.917 32.88475 0.002234∗ 2.409600∗ 2.445973 2.423020

2 −2170.888 10.01901 0.002244 2.413973 2.477625 2.437459

3 −2167.760 6.221021 0.002258 2.420441 2.511372 2.453992

4 −2158.361 18.66447 0.002257 2.420001 2.538212 2.463617

5 −2151.563 13.47494 0.002263 2.422426 2.567917 2.476109

6 −2145.132 12.72714 0.002269 2.425256 2.598026 2.489004

7 −2141.412 7.349932 0.002282 2.431071 2.631120 2.504884

8 −2131.693 19.17197 0.002281 2.430278 2.657607 2.514157

9 −2121.823 19.43540∗ 0.002278 2.429320 2.683929 2.523264

10 −2119.745 4.084453 0.002296 2.436944 2.718832 2.540953

∗ indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Next, run a Granger causality test by clicking View/Lag Structure/

Granger Causality/Block Exogeneity Tests. The table of statistics will

appear immediately as on the following page.

The results, unsurprisingly, show very little evidence of lead--lag interac-

tions between the series. Since we have estimated a tri-variate VAR, three

panels are displayed, with one for each dependent variable in the sys-

tem. None of the results shows any causality that is significant at the 5%

level, although there is causality from the pound to the euro and from the

pound to the yen that is almost significant at the 10% level, but no causal-

ity in the opposite direction and no causality between the euro--dollar and

the yen--dollar in either direction. These results might be interpreted as

suggesting that information is incorporated slightly more quickly in the

pound--dollar rate than in the euro--dollar or yen--dollar rates.

It is worth also noting that the term ‘Granger causality’ is something of

a misnomer since a finding of ‘causality’ does not mean that movements
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VAR Granger Causality/Block Exogeneity Wald Tests

Date: 09/04/07 Time: 13:50

Sample: 7/07/2002 7/07/2007

Included observations: 1825

Dependent variable: REUR

Excluded Chi-sq df Prob.

RGBP 2.617817 1 0.1057

RJPY 0.473950 1 0.4912

All 3.529180 2 0.1713

Dependent variable: RGBP

Excluded Chi-sq df Prob.

REUR 0.188122 1 0.6645

RJPY 1.150696 1 0.2834

All 1.164752 2 0.5586

Dependent variable: RJPY

Excluded Chi-sq df Prob.

REUR 1.206092 1 0.2721

RGBP 2.424066 1 0.1195

All 2.435252 2 0.2959

in one variable physically cause movements in another. For example, in

the above analysis, if movements in the euro--dollar market were found

to Granger-cause movements in the pound--dollar market, this would not

have meant that the pound--dollar rate changed as a direct result of, or

because of, movements in the euro--dollar market. Rather, causality simply

implies a chronological ordering of movements in the series. It could validly be

stated that movements in the pound--dollar rate appear to lead those of

the euro--dollar rate, and so on.

The EViews manual suggests that block F-test restrictions can be per-

formed by estimating the VAR equations individually using OLS and then

by using the View then Lag Structure then Lag Exclusion Tests. EViews

tests for whether the parameters for a given lag of all the variables in a

particular equation can be restricted to zero.
To obtain the impulse responses for the estimated model, simply click

the Impulse on the button bar above the VAR object and a new dialog box

will appear as in screenshot 6.4.
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Screenshot 6.4

Constructing the

VAR impulse

responses

By default, EViews will offer to estimate and plot all of the responses

to separate shocks of all of the variables in the order that the variables

were listed in the estimation window, using ten steps and confidence

intervals generated using analytic formulae. If 20 steps ahead had been

selected, with ‘combined response graphs’, you would see the graphs in

the format in screenshot 6.5 (obviously they appear small on the page

and the colour has been lost, but the originals are much clearer). As one

would expect given the parameter estimates and the Granger causality

test results, again few linkages between the series are established here.

The responses to the shocks are very small, except for the response of a

variable to its own shock, and they die down to almost nothing after the

first lag.

Plots of the variance decompositions can also be generated by clicking

on View and then Variance Decomposition. A similar plot for the variance

decompositions would appear as in screenshot 6.6.

There is little again that can be seen from these variance decomposition

graphs that appear small on a printed page apart from the fact that the
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Screenshot 6.5

Combined impulse

response graphs

behaviour is observed to settle down to a steady state very quickly. Inter-

estingly, while the percentage of the errors that is attributable to own

shocks is 100% in the case of the euro rate, for the pound, the euro series

explains around 55% of the variation in returns, and for the yen, the euro

series explains around 30% of the variation.

We should remember that the ordering of the variables has an effect

on the impulse responses and variance decompositions, and when, as in

this case, theory does not suggest an obvious ordering of the series, some

sensitivity analysis should be undertaken. This can be achieved by clicking

on the ‘Impulse Definition’ tab when the window that creates the impulses

is open. A window entitled ‘Ordering for Cholesky’ should be apparent,

and it would be possible to reverse the order of variables or to select any

other order desired. For the variance decompositions, the ‘Ordering for

Cholesky’ box is observed in the window for creating the decompositions

without having to select another tab.
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Screenshot 6.6

Variance

decomposition

graphs

Key concepts
The key terms to be able to define and explain from this chapter are

● endogenous variable ● exogenous variable

● simultaneous equations bias ● identified

● order condition ● rank condition

● Hausman test ● reduced form

● structural form ● instrumental variables

● indirect least squares ● two-stage least squares

● vector autoregression ● Granger causality

● impulse response ● variance decomposition

Review questions

1. Consider the following simultaneous equations system

y1t = α0 + α1 y2t + α2 y3t + α3 X1t + α4 X2t + u1t (6.94)

y2t = β0 + β1 y3t + β2 X1t + β3 X3t + u2t (6.95)

y3t = γ0 + γ1 y1t + γ2 X2t + γ3 X3t + u3t (6.96)
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(a) Derive the reduced form equations corresponding to (6.94)–(6.96).

(b) What do you understand by the term ‘identification’? Describe a rule

for determining whether a system of equations is identified. Apply

this rule to (6.94–6.96). Does this rule guarantee that estimates of

the structural parameters can be obtained?

(c) Which would you consider the more serious misspecification: treating

exogenous variables as endogenous, or treating endogenous

variables as exogenous? Explain your answer.

(d) Describe a method of obtaining the structural form coefficients

corresponding to an overidentified system.

(e) Using EViews, estimate a VAR model for the interest rate series

used in the principal components example of chapter 3. Use a

method for selecting the lag length in the VAR optimally. Determine

whether certain maturities lead or lag others, by conducting Granger

causality tests and plotting impulse responses and variance

decompositions. Is there any evidence that new information is

reflected more quickly in some maturities than others?

2. Consider the following system of two equations

y1t = α0 + α1 y2t + α2 X1t + α3 X2t + u1t (6.97)

y2t = β0 + β1 y1t + β2 X1t + u2t (6.98)

(a) Explain, with reference to these equations, the undesirable

consequences that would arise if (6.97) and (6.98) were estimated

separately using OLS.

(b) What would be the effect upon your answer to (a) if the variable y1t

had not appeared in (6.98)?

(c) State the order condition for determining whether an equation which

is part of a system is identified. Use this condition to determine

whether (6.97) or (6.98) or both or neither are identified.

(d) Explain whether indirect least squares (ILS) or two-stage least

squares (2SLS) could be used to obtain the parameters of (6.97)

and (6.98). Describe how each of these two procedures (ILS and

2SLS) are used to calculate the parameters of an equation. Compare

and evaluate the usefulness of ILS, 2SLS and IV.

(e) Explain briefly the Hausman procedure for testing for exogeneity.

3. Explain, using an example if you consider it appropriate, what you

understand by the equivalent terms ‘recursive equations’ and ‘triangular

system’. Can a triangular system be validly estimated using OLS?

Explain your answer.
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4. Consider the following vector autoregressive model

yt = β0 +
k∑

i=1

βi yt−i + ut (6.99)

where yt is a p × 1 vector of variables determined by k lags of all p
variables in the system, ut is a p× 1 vector of error terms, β0 is a p× 1

vector of constant term coefficients and βi are p × p matrices of

coefficients on the i th lag of y.

(a) If p = 2, and k = 3, write out all the equations of the VAR in full,

carefully defining any new notation you use that is not given in the

question.

(b) Why have VARs become popular for application in economics and

finance, relative to structural models derived from some underlying

theory?

(c) Discuss any weaknesses you perceive in the VAR approach to

econometric modelling.

(d) Two researchers, using the same set of data but working

independently, arrive at different lag lengths for the VAR equation

(6.99). Describe and evaluate two methods for determining which of

the lag lengths is more appropriate.

5. Define carefully the following terms

● Simultaneous equations system

● Exogenous variables

● Endogenous variables

● Structural form model

● Reduced form model



7
Modelling long-run relationships in finance

Learning Outcomes
In this chapter, you will learn how to

● Highlight the problems that may occur if non-stationary data
are used in their levels form

● Test for unit roots

● Examine whether systems of variables are cointegrated

● Estimate error correction and vector error correction models

● Explain the intuition behind Johansen’s test for cointegration

● Describe how to test hypotheses in the Johansen framework

● Construct models for long-run relationships between variables
in EViews

7.1 Stationarity and unit root testing

7.1.1 Why are tests for non-stationarity necessary?

There are several reasons why the concept of non-stationarity is important

and why it is essential that variables that are non-stationary be treated dif-

ferently from those that are stationary. Two definitions of non-stationarity

were presented at the start of chapter 5. For the purpose of the analysis in

this chapter, a stationary series can be defined as one with a constant mean,

constant variance and constant autocovariances for each given lag. Therefore,

the discussion in this chapter relates to the concept of weak stationarity.

An examination of whether a series can be viewed as stationary or not is

essential for the following reasons:

● The stationarity or otherwise of a series can strongly influence its behaviour

and properties. To offer one illustration, the word ‘shock’ is usually used

318
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to denote a change or an unexpected change in a variable or perhaps

simply the value of the error term during a particular time period. For a

stationary series, ‘shocks’ to the system will gradually die away. That is,

a shock during time t will have a smaller effect in time t + 1, a smaller

effect still in time t + 2, and so on. This can be contrasted with the case

of non-stationary data, where the persistence of shocks will always be

infinite, so that for a non-stationary series, the effect of a shock during

time t will not have a smaller effect in time t + 1, and in time t + 2,

etc.

● The use of non-stationary data can lead to spurious regressions. If two

stationary variables are generated as independent random series, when

one of those variables is regressed on the other, the t -ratio on the slope

coefficient would be expected not to be significantly different from zero,

and the value of R2 would be expected to be very low. This seems ob-

vious, for the variables are not related to one another. However, if two

variables are trending over time, a regression of one on the other could

have a high R2 even if the two are totally unrelated. So, if standard

regression techniques are applied to non-stationary data, the end result

could be a regression that ‘looks’ good under standard measures (signif-

icant coefficient estimates and a high R2), but which is really valueless.

Such a model would be termed a ‘spurious regression’.

To give an illustration of this, two independent sets of non-stationary

variables, y and x , were generated with sample size 500, one regressed

on the other and the R2 noted. This was repeated 1,000 times to obtain

1,000 R2 values. A histogram of these values is given in figure 7.1.

As figure 7.1 shows, although one would have expected the R2 val-

ues for each regression to be close to zero, since the explained and
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explanatory variables in each case are independent of one another, in

fact R2 takes on values across the whole range. For one set of data, R2

is bigger than 0.9, while it is bigger than 0.5 over 16% of the time!

● If the variables employed in a regression model are not stationary, then

it can be proved that the standard assumptions for asymptotic analysis

will not be valid. In other words, the usual ‘t -ratios’ will not follow a

t -distribution, and the F -statistic will not follow an F -distribution, and

so on. Using the same simulated data as used to produce figure 7.1,

figure 7.2 plots a histogram of the estimated t -ratio on the slope coeffi-

cient for each set of data.

In general, if one variable is regressed on another unrelated variable,

the t-ratio on the slope coefficient will follow a t-distribution. For a

sample of size 500, this implies that 95% of the time, the t-ratio will

lie between ±2. As figure 7.2 shows quite dramatically, however, the

standard t-ratio in a regression of non-stationary variables can take on

enormously large values. In fact, in the above example, the t-ratio is

bigger than 2 in absolute value over 98% of the time, when it should

be bigger than 2 in absolute value only approximately 5% of the time!

Clearly, it is therefore not possible to validly undertake hypothesis tests

about the regression parameters if the data are non-stationary.

7.1.2 Two types of non-stationarity

There are two models that have been frequently used to characterise the

non-stationarity, the random walk model with drift

yt = μ + yt−1 + ut (7.1)
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and the trend-stationary process -- so-called because it is stationary around

a linear trend

yt = α + βt + ut (7.2)

where ut is a white noise disturbance term in both cases.

Note that the model (7.1) could be generalised to the case where yt is

an explosive process

yt = μ + φyt−1 + ut (7.3)

where φ > 1. Typically, this case is ignored and φ = 1 is used to char-

acterise the non-stationarity because φ > 1 does not describe many data

series in economics and finance, but φ = 1 has been found to describe

accurately many financial and economic time series. Moreover, φ > 1 has

an intuitively unappealing property: shocks to the system are not only

persistent through time, they are propagated so that a given shock will

have an increasingly large influence. In other words, the effect of a shock

during time t will have a larger effect in time t + 1, a larger effect still in

time t + 2, and so on. To see this, consider the general case of an AR(1)

with no drift

yt = φyt−1 + ut (7.4)

Let φ take any value for now. Lagging (7.4) one and then two periods

yt−1 = φyt−2 + ut−1 (7.5)

yt−2 = φyt−3 + ut−2 (7.6)

Substituting into (7.4) from (7.5) for yt−1 yields

yt = φ(φyt−2 + ut−1) + ut (7.7)

yt = φ2 yt−2 + φut−1 + ut (7.8)

Substituting again for yt−2 from (7.6)

yt = φ2(φyt−3 + ut−2) + φut−1 + ut (7.9)

yt = φ3 yt−3 + φ2ut−2 + φut−1 + ut (7.10)

T successive substitutions of this type lead to

yt = φT +1 yt−(T +1) + φut−1 + φ2ut−2 + φ3ut−3 + · · · + φT ut−T + ut (7.11)

There are three possible cases:

(1) φ < 1 ⇒ φT → 0 as T → ∞
So the shocks to the system gradually die away -- this is the stationary

case.
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(2) φ = 1 ⇒ φT = 1 ∀ T
So shocks persist in the system and never die away. The following is

obtained

yt = y0 +
∞∑

t=0

ut as T →∞ (7.12)

So the current value of y is just an infinite sum of past shocks plus

some starting value of y0. This is known as the unit root case, for the

root of the characteristic equation would be unity.

(3) φ > 1. Now given shocks become more influential as time goes on,

since if φ > 1, φ3 > φ2 > φ, etc. This is the explosive case which, for the

reasons listed above, will not be considered as a plausible description

of the data.

Going back to the two characterisations of non-stationarity, the random

walk with drift

yt = μ + yt−1 + ut (7.13)

and the trend-stationary process

yt = α + βt + ut (7.14)

The two will require different treatments to induce stationarity. The

second case is known as deterministic non-stationarity and de-trending is

required. In other words, if it is believed that only this class of non-

stationarity is present, a regression of the form given in (7.14) would be

run, and any subsequent estimation would be done on the residuals from

(7.14), which would have had the linear trend removed.

The first case is known as stochastic non-stationarity, where there is a

stochastic trend in the data. Letting �yt = yt − yt−1 and Lyt = yt−1 so that

(1 − L) yt = yt − Lyt = yt − yt−1. If (7.13) is taken and yt−1 subtracted from

both sides

yt − yt−1 = μ + ut (7.15)

(1 − L) yt = μ + ut (7.16)

� yt = μ + ut (7.17)

There now exists a new variable �yt , which will be stationary. It would be

said that stationarity has been induced by ‘differencing once’. It should

also be apparent from the representation given by (7.16) why yt is also

known as a unit root process: i.e. that the root of the characteristic equation

(1− z) = 0, will be unity.
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Although trend-stationary and difference-stationary series are both

‘trending’ over time, the correct approach needs to be used in each case. If

first differences of a trend-stationary series were taken, it would ‘remove’

the non-stationarity, but at the expense of introducing an MA(1) structure

into the errors. To see this, consider the trend-stationary model

yt = α + βt + ut (7.18)

This model can be expressed for time t − 1, which would be obtained by

removing 1 from all of the time subscripts in (7.18)

yt−1 = α + β(t − 1) + ut−1 (7.19)

Subtracting (7.19) from (7.18) gives

�yt = β + ut − ut−1 (7.20)

Not only is this a moving average in the errors that has been created,

it is a non-invertible MA (i.e. one that cannot be expressed as an autore-

gressive process). Thus the series, �yt would in this case have some very

undesirable properties.

Conversely if one tried to de-trend a series which has stochastic trend,

then the non-stationarity would not be removed. Clearly then, it is not

always obvious which way to proceed. One possibility is to nest both cases

in a more general model and to test that. For example, consider the model

�yt = α0 + α1t + (γ − 1)yt−1 + ut (7.21)

Although again, of course the t -ratios in (7.21) will not follow a

t-distribution. Such a model could allow for both deterministic and

stochastic non-stationarity. However, this book will now concentrate on

the stochastic stationarity model since it is the model that has been found

to best describe most non-stationary financial and economic time series.

Consider again the simplest stochastic trend model

yt = yt−1 + ut (7.22)

or

�yt = ut (7.23)

This concept can be generalised to consider the case where the series

contains more than one ‘unit root’. That is, the first difference operator,

�, would need to be applied more than once to induce stationarity. This

situation will be described later in this chapter.

Arguably the best way to understand the ideas discussed above is to

consider some diagrams showing the typical properties of certain relevant
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types of processes. Figure 7.3 plots a white noise (pure random) process,

while figures 7.4 and 7.5 plot a random walk versus a random walk with

drift and a deterministic trend process, respectively.

Comparing these three figures gives a good idea of the differences be-

tween the properties of a stationary, a stochastic trend and a deterministic

trend process. In figure 7.3, a white noise process visibly has no trending

behaviour, and it frequently crosses its mean value of zero. The random

walk (thick line) and random walk with drift (faint line) processes of fig-

ure 7.4 exhibit ‘long swings’ away from their mean value, which they cross

very rarely. A comparison of the two lines in this graph reveals that the

positive drift leads to a series that is more likely to rise over time than to

fall; obviously, the effect of the drift on the series becomes greater and
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greater the further the two processes are tracked. Finally, the determin-

istic trend process of figure 7.5 clearly does not have a constant mean,

and exhibits completely random fluctuations about its upward trend. If

the trend were removed from the series, a plot similar to the white noise

process of figure 7.3 would result. In this author’s opinion, more time se-

ries in finance and economics look like figure 7.4 than either figure 7.3 or

7.5. Consequently, as stated above, the stochastic trend model will be the

focus of the remainder of this chapter.

Finally, figure 7.6 plots the value of an autoregressive process of order

1 with different values of the autoregressive coefficient as given by (7.4).
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Values of φ = 0 (i.e. a white noise process), φ = 0.8 (i.e. a stationary AR(1))

and φ = 1 (i.e. a random walk) are plotted over time.

7.1.3 Some more definitions and terminology

If a non-stationary series, yt must be differenced d times before it becomes

stationary, then it is said to be integrated of order d . This would be written

yt ∼ I(d). So if yt ∼ I(d) then �d yt ∼ I(0). This latter piece of terminology

states that applying the difference operator, �, d times, leads to an I(0)

process, i.e. a process with no unit roots. In fact, applying the difference

operator more than d times to an I(d) process will still result in a station-

ary series (but with an MA error structure). An I(0) series is a stationary

series, while an I (1) series contains one unit root. For example, consider

the random walk

yt = yt−1 + ut (7.24)

An I(2) series contains two unit roots and so would require differencing

twice to induce stationarity. I(1) and I(2) series can wander a long way

from their mean value and cross this mean value rarely, while I(0) series

should cross the mean frequently. The majority of financial and economic

time series contain a single unit root, although some are stationary and

some have been argued to possibly contain two unit roots (series such

as nominal consumer prices and nominal wages). The efficient markets

hypothesis together with rational expectations suggest that asset prices

(or the natural logarithms of asset prices) should follow a random walk or

a random walk with drift, so that their differences are unpredictable (or

only predictable to their long-term average value).

To see what types of data generating process could lead to an I(2) series,

consider the equation

yt = 2yt−1 − yt−2 + ut (7.25)

taking all of the terms in y over to the LHS, and then applying the lag

operator notation

yt − 2yt−1 + yt−2 = ut (7.26)

(1 − 2L + L2)yt = ut (7.27)

(1 − L)(1 − L)yt = ut (7.28)

It should be evident now that this process for yt contains two unit roots,

and would require differencing twice to induce stationarity.
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What would happen if yt in (7.25) were differenced only once? Taking

first differences of (7.25), i.e. subtracting yt−1 from both sides

yt − yt−1 = yt−1 − yt−2 + ut (7.29)

yt − yt−1 = (yt − yt−1)−1 + ut (7.30)

�yt = �yt−1 + ut (7.31)

(1 − L)�yt = ut (7.32)

First differencing would therefore have removed one of the unit roots, but

there is still a unit root remaining in the new variable, �yt .

7.1.4 Testing for a unit root

One immediately obvious (but inappropriate) method that readers may

think of to test for a unit root would be to examine the autocorrelation

function of the series of interest. However, although shocks to a unit root

process will remain in the system indefinitely, the acf for a unit root pro-

cess (a random walk) will often be seen to decay away very slowly to zero.

Thus, such a process may be mistaken for a highly persistent but station-

ary process. Hence it is not possible to use the acf or pacf to determine

whether a series is characterised by a unit root or not. Furthermore, even

if the true data generating process for yt contains a unit root, the results

of the tests for a given sample could lead one to believe that the process is

stationary. Therefore, what is required is some kind of formal hypothesis

testing procedure that answers the question, ‘given the sample of data to

hand, is it plausible that the true data generating process for y contains

one or more unit roots?’

The early and pioneering work on testing for a unit root in time series

was done by Dickey and Fuller (Fuller, 1976; Dickey and Fuller, 1979).

The basic objective of the test is to examine the null hypothesis that

φ = 1 in

yt = φyt−1 + ut (7.33)

against the one-sided alternative φ < 1. Thus the hypotheses of interest

are H0: series contains a unit root versus H1: series is stationary.

In practice, the following regression is employed, rather than (7.33), for

ease of computation and interpretation

�yt = ψyt−1 + ut (7.34)

so that a test of φ = 1 is equivalent to a test of ψ = 0 (since φ − 1 = ψ ).

Dickey--Fuller (DF) tests are also known as τ -tests, and can be conducted

allowing for an intercept, or an intercept and deterministic trend, or
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Table 7.1 Critical values for DF tests (Fuller, 1976, p. 373)

Significance level 10% 5% 1%

CV for constant but no trend −2.57 −2.86 −3.43

CV for constant and trend −3.12 −3.41 −3.96

neither, in the test regression. The model for the unit root test in each

case is

yt = φyt−1 + μ + λt + ut (7.35)

The tests can also be written, by subtracting yt−1 from each side of the

equation, as

�yt = ψyt−1 + μ + λt + ut (7.36)

In another paper, Dickey and Fuller (1981) provide a set of additional

test statistics and their critical values for joint tests of the significance of

the lagged y, and the constant and trend terms. These are not examined

further here. The test statistics for the original DF tests are defined as

test statistic = ψ̂

ˆSE(ψ̂)
(7.37)

The test statistics do not follow the usual t -distribution under the null

hypothesis, since the null is one of non-stationarity, but rather they follow

a non-standard distribution. Critical values are derived from simulations

experiments in, for example, Fuller (1976); see also chapter 12 in this book.

Relevant examples of the distribution are shown in table 7.1. A full set of

Dickey--Fuller (DF) critical values is given in the appendix of statistical

tables at the end of this book. A discussion and example of how such

critical values (CV) are derived using simulations methods are presented

in chapter 12.

Comparing these with the standard normal critical values, it can be

seen that the DF critical values are much bigger in absolute terms (i.e.

more negative). Thus more evidence against the null hypothesis is required

in the context of unit root tests than under standard t -tests. This arises

partly from the inherent instability of the unit root process, the fatter

distribution of the t -ratios in the context of non-stationary data (see figure

7.2), and the resulting uncertainty in inference. The null hypothesis of a

unit root is rejected in favour of the stationary alternative in each case if

the test statistic is more negative than the critical value.
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The tests above are valid only if ut is white noise. In particular, ut is

assumed not to be autocorrelated, but would be so if there was autocor-

relation in the dependent variable of the regression (�yt ) which has not

been modelled. If this is the case, the test would be ‘oversized’, mean-

ing that the true size of the test (the proportion of times a correct

null hypothesis is incorrectly rejected) would be higher than the nom-

inal size used (e.g. 5%). The solution is to ‘augment’ the test using p
lags of the dependent variable. The alternative model in case (i) is now

written

�yt = ψyt−1 +
p∑

i=1

αi�yt−i + ut (7.38)

The lags of �yt now ‘soak up’ any dynamic structure present in the depen-

dent variable, to ensure that ut is not autocorrelated. The test is known as

an augmented Dickey--Fuller (ADF) test and is still conducted on ψ , and

the same critical values from the DF tables are used as before.

A problem now arises in determining the optimal number of lags of

the dependent variable. Although several ways of choosing p have been

proposed, they are all somewhat arbitrary, and are thus not presented

here. Instead, the following two simple rules of thumb are suggested.

First, the frequency of the data can be used to decide. So, for example, if the

data are monthly, use 12 lags, if the data are quarterly, use 4 lags, and

so on. Clearly, there would not be an obvious choice for the number of

lags to use in a regression containing higher frequency financial data (e.g.

hourly or daily)! Second, an information criterion can be used to decide. So

choose the number of lags that minimises the value of an information

criterion, as outlined in chapter 6.

It is quite important to attempt to use an optimal number of lags of the

dependent variable in the test regression, and to examine the sensitivity

of the outcome of the test to the lag length chosen. In most cases, hope-

fully the conclusion will not be qualitatively altered by small changes in

p, but sometimes it will. Including too few lags will not remove all of

the autocorrelation, thus biasing the results, while using too many will

increase the coefficient standard errors. The latter effect arises since an

increase in the number of parameters to estimate uses up degrees of free-

dom. Therefore, everything else being equal, the absolute values of the

test statistics will be reduced. This will result in a reduction in the power

of the test, implying that for a stationary process the null hypothesis of a

unit root will be rejected less frequently than would otherwise have been

the case.
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7.1.5 Testing for higher orders of integration

Consider the simple regression

�yt = ψyt−1 + ut (7.39)

H0: ψ = 0 is tested against H1: ψ < 0.

If H0 is rejected, it would simply be concluded that yt does not contain

a unit root. But what should be the conclusion if H0 is not rejected?

The series contains a unit root, but is that it? No! What if yt ∼ I(2)? The

null hypothesis would still not have been rejected. It is now necessary to

perform a test of

H0 : yt ∼ I(2) vs. H1 : yt ∼ I(1)

�2 yt (= �yt − �yt−1) would now be regressed on �yt−1 (plus lags of �2 yt to

augment the test if necessary). Thus, testing H0: �yt ∼ I(1) is equivalent to

H0: yt ∼ I(2). So in this case, if H0 is not rejected (very unlikely in practice),

it would be concluded that yt is at least I(2). If H0 is rejected, it would be

concluded that yt contains a single unit root. The tests should continue

for a further unit root until H0 is rejected.

Dickey and Pantula (1987) have argued that an ordering of the tests

as described above (i.e. testing for I(1), then I(2), and so on) is, strictly

speaking, invalid. The theoretically correct approach would be to start by

assuming some highest plausible order of integration (e.g. I(2)), and to test

I(2) against I(1). If I(2) is rejected, then test I(1) against I(0). In practice,

however, to the author’s knowledge, no financial time series contain more

than a single unit root, so that this matter is of less concern in finance.

7.1.6 Phillips–Perron (PP) tests

Phillips and Perron have developed a more comprehensive theory of unit

root non-stationarity. The tests are similar to ADF tests, but they incorpo-

rate an automatic correction to the DF procedure to allow for autocorre-

lated residuals. The tests often give the same conclusions as, and suffer

from most of the same important limitations as, the ADF tests.

7.1.7 Criticisms of Dickey–Fuller- and Phillips–Perron-type tests

The most important criticism that has been levelled at unit root tests

is that their power is low if the process is stationary but with a root

close to the non-stationary boundary. So, for example, consider an AR(1)

data generating process with coefficient 0.95. If the true data generating

process is

yt = 0.95yt−1 + ut (7.40)
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Box 7.1 Stationarity tests

Stationarity tests have stationarity under the null hypothesis, thus reversing the null

and alternatives under the Dickey–Fuller approach. Thus, under stationarity tests, the

data will appear stationary by default if there is little information in the sample. One

such stationarity test is the KPSS test (Kwaitkowski et al., 1992). The computation of

the test statistic is not discussed here but the test is available within the EViews

software. The results of these tests can be compared with the ADF/PP procedure to

see if the same conclusion is obtained. The null and alternative hypotheses under

each testing approach are as follows:

ADF/PP KPSS
H0 : yt ∼ I (1) H0 : yt ∼ I (0)

H1 : yt ∼ I (0) H1 : yt ∼ I (1)

There are four possible outcomes:

(1) Reject H0 and Do not reject H0

(2) Do not Reject H0 and Reject H0

(3) Reject H0 and Reject H0

(4) Do not reject H0 and Do not reject H0

For the conclusions to be robust, the results should fall under outcomes 1 or 2, which

would be the case when both tests concluded that the series is stationary or

non-stationary, respectively. Outcomes 3 or 4 imply conflicting results. The joint use of

stationarity and unit root tests is known as confirmatory data analysis.

the null hypothesis of a unit root should be rejected. It has been thus

argued that the tests are poor at deciding, for example, whether φ = 1 or

φ = 0.95, especially with small sample sizes. The source of this problem

is that, under the classical hypothesis-testing framework, the null hypoth-

esis is never accepted, it is simply stated that it is either rejected or not

rejected. This means that a failure to reject the null hypothesis could oc-

cur either because the null was correct, or because there is insufficient

information in the sample to enable rejection. One way to get around this

problem is to use a stationarity test as well as a unit root test, as described

in box 7.1.

7.2 Testing for unit roots in EViews

This example uses the same data on UK house prices as employed in chap-

ter 5. Assuming that the data have been loaded, and the variables are

defined as in chapter 5, double click on the icon next to the name of the

series that you want to perform the unit root test on, so that a spreadsheet
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appears containing the observations on that series. Open the raw house

price series, ‘hp’ by clicking on the hp icon. Next, click on the View but-

ton on the button bar above the spreadsheet and then Unit Root Test. . . .

You will then be presented with a menu containing various options, as in

screenshot 7.1.

Screenshot 7.1

Options menu for

unit root tests

From this, choose the following options:

(1) Test Type Augmented Dickey--Fuller

(2) Test for Unit Root in Levels

(3) Include in test equation Intercept

(4) Maximum lags 12

and click OK.

This will obviously perform an augmented Dickey--Fuller (ADF) test with

up to 12 lags of the dependent variable in a regression equation on the

raw data series with a constant but no trend in the test equation. EViews

presents a large number of options here -- for example, instead of the
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Dickey--Fuller series, we could run the Phillips--Perron or KPSS tests as

described above. Or, if we find that the levels of the series are non-

stationary, we could repeat the analysis on the first differences directly

from this menu rather than having to create the first differenced series

separately. We can also choose between various methods for determining

the optimum lag length in an augmented Dickey--Fuller test, with the

Schwarz criterion being the default. The results for the raw house price

series would appear as in the following table.

Null Hypothesis: HP has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic based on SIC, MAXLAG=11)

t-Statistic Prob.∗

Augmented Dickey-Fuller test statistic 2.707012 1.0000

Test critical values: 1% level −3.464101

5% level −2.876277

10% level −2.574704

∗MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(HP)

Method: Least Squares

Date: 09/05/07 Time: 21:15

Sample (adjusted): 1991M04 2007M05

Included observations: 194 after adjustments

Coefficient Std. Error t-Statistic Prob.

HP(-1) 0.004890 0.001806 2.707012 0.0074

D(HP(-1)) 0.220916 0.070007 3.155634 0.0019

D(HP(-2)) 0.291059 0.070711 4.116164 0.0001

C −99.91536 155.1872 −0.643838 0.5205

R-squared 0.303246 Mean dependent var 663.3590

Adjusted R-squared 0.292244 S.D. dependent var 1081.701

S.E. of regression 910.0161 Akaike info criterion 16.48520

Sum squared resid 1.57E+08 Schwarz criterion 16.55258

Log likelihood −1595.065 Hannan-Quinn criter. 16.51249

F-statistic 27.56430 Durbin-Watson stat 2.010299

Prob(F-statistic) 0.000000

The value of the test statistic and the relevant critical values given the

type of test equation (e.g. whether there is a constant and/or trend in-

cluded) and sample size, are given in the first panel of the output above.
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Schwarz’s criterion has in this case chosen to include 2 lags of the depen-

dent variable in the test regression. Clearly, the test statistic is not more

negative than the critical value, so the null hypothesis of a unit root in

the house price series cannot be rejected. The remainder of the output

presents the estimation results. Since the dependent variable in this re-

gression is non-stationary, it is not appropriate to examine the coefficient

standard errors or their t -ratios in the test regression.

Now repeat all of the above steps for the first difference of the house

price series (use the ‘First Difference’ option in the unit root testing win-

dow rather than using the level of the dhp series). The output would

appear as in the following table

Null Hypothesis: D(HP) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic based on SIC, MAXLAG=11)

t-Statistic Prob.∗

Augmented Dickey-Fuller test statistic −5.112531 0.0000

Test critical values: 1% level −3.464101

5% level −2.876277

10% level −2.574704

∗MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(HP,2)

Method: Least Squares

Date: 09/05/07 Time: 21:20

Sample (adjusted): 1991M04 2007M05

Included observations: 194 after adjustments

Coefficient Std. Error t-Statistic Prob.

D(HP(-1)) −0.374773 0.073305 −5.112531 0.0000

D(HP(-1),2) −0.346556 0.068786 −5.038192 0.0000

C 259.6274 81.58188 3.182415 0.0017

R-squared 0.372994 Mean dependent var 9.661185

Adjusted R-squared 0.366429 S.D. dependent var 1162.061

S.E. of regression 924.9679 Akaike info criterion 16.51274

Sum squared resid 1.63E+08 Schwarz criterion 16.56327

Log likelihood −1598.736 Hannan-Quinn criter. 16.53320

F-statistic 56.81124 Durbin-Watson stat 2.045299

Prob(F-statistic) 0.000000
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In this case, as one would expect, the test statistic is more negative than

the critical value and hence the null hypothesis of a unit root in the first

differences is convincingly rejected. For completeness, run a unit root test

on the levels of the dhp series, which are the percentage changes rather

than the absolute differences in prices. You should find that these are also

stationary.

Finally, run the KPSS test on the hp levels series by selecting it from

the ‘Test Type’ box in the unit root testing window. You should observe

now that the test statistic exceeds the critical value, even at the 1% level,

so that the null hypothesis of a stationary series is strongly rejected, thus

confirming the result of the unit root test previously conducted on the

same series.

7.3 Cointegration

In most cases, if two variables that are I(1) are linearly combined, then the

combination will also be I(1). More generally, if variables with differing

orders of integration are combined, the combination will have an order of

integration equal to the largest. If Xi,t ∼ I(di ) for i = 1, 2, 3, . . . , k so that

there are k variables each integrated of order di , and letting

zt =
k∑

i=1

αi Xi,t (7.41)

Then zt ∼ I(max di ). zt in this context is simply a linear combination of

the k variables Xi . Rearranging (7.41)

X1,t =
k∑

i=2

βi Xi,t + z′
t (7.42)

where βi = − αi
α1

, z′
t = zt

α1
, i = 2, . . . , k. All that has been done is to take one

of the variables, X1,t , and to rearrange (7.41) to make it the subject. It could

also be said that the equation has been normalised on X1,t . But viewed

another way, (7.42) is just a regression equation where z′
t is a disturbance

term. These disturbances would have some very undesirable properties:

in general, z′
t will not be stationary and is autocorrelated if all of the Xi

are I(1).

As a further illustration, consider the following regression model con-

taining variables yt , x2t , x3t which are all I(1)

yt = β1 + β2x2t + β3x3t + ut (7.43)

For the estimated model, the SRF would be written

yt = β̂1 + β̂2x2t + β̂3x3t + ût (7.44)
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Taking everything except the residuals to the LHS

yt − β̂1 − β̂2x2t − β̂3x3t = ût (7.45)

Again, the residuals when expressed in this way can be considered a linear

combination of the variables. Typically, this linear combination of I(1)

variables will itself be I(1), but it would obviously be desirable to obtain

residuals that are I(0). Under what circumstances will this be the case?

The answer is that a linear combination of I(1) variables will be I(0), in

other words stationary, if the variables are cointegrated.

7.3.1 Definition of cointegration (Engle and Granger, 1987)

Let wt be a k × 1 vector of variables, then the components of wt are inte-

grated of order (d, b) if:

(1) All components of wt are I(d)

(2) There is at least one vector of coefficients α such that

α′wt ∼ I(d − b)

In practice, many financial variables contain one unit root, and are thus

I(1), so that the remainder of this chapter will restrict analysis to the case

where d = b = 1. In this context, a set of variables is defined as cointe-

grated if a linear combination of them is stationary. Many time series

are non-stationary but ‘move together’ over time -- that is, there exist

some influences on the series (for example, market forces), which imply

that the two series are bound by some relationship in the long run. A

cointegrating relationship may also be seen as a long-term or equilibrium

phenomenon, since it is possible that cointegrating variables may devi-

ate from their relationship in the short run, but their association would

return in the long run.

7.3.2 Examples of possible cointegrating relationships in finance

Financial theory should suggest where two or more variables would be

expected to hold some long-run relationship with one another. There are

many examples in finance of areas where cointegration might be expected

to hold, including:

● Spot and futures prices for a given commodity or asset

● Ratio of relative prices and an exchange rate

● Equity prices and dividends.

In all three cases, market forces arising from no-arbitrage conditions

suggest that there should be an equilibrium relationship between the
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series concerned. The easiest way to understand this notion is perhaps

to consider what would be the effect if the series were not cointegrated.

If there were no cointegration, there would be no long-run relationship

binding the series together, so that the series could wander apart without

bound. Such an effect would arise since all linear combinations of the se-

ries would be non-stationary, and hence would not have a constant mean

that would be returned to frequently.

Spot and futures prices may be expected to be cointegrated since they

are obviously prices for the same asset at different points in time, and

hence will be affected in very similar ways by given pieces of information.

The long-run relationship between spot and futures prices would be given

by the cost of carry.

Purchasing power parity (PPP) theory states that a given representative

basket of goods and services should cost the same wherever it is bought

when converted into a common currency. Further discussion of PPP occurs

in section 7.9, but for now suffice it to say that PPP implies that the

ratio of relative prices in two countries and the exchange rate between

them should be cointegrated. If they did not cointegrate, assuming zero

transactions costs, it would be profitable to buy goods in one country, sell

them in another, and convert the money obtained back to the currency

of the original country.

Finally, if it is assumed that some stock in a particular company is

held to perpetuity (i.e. for ever), then the only return that would accrue

to that investor would be in the form of an infinite stream of future

dividend payments. Hence the discounted dividend model argues that

the appropriate price to pay for a share today is the present value of all

future dividends. Hence, it may be argued that one would not expect

current prices to ‘move out of line’ with future anticipated dividends in

the long run, thus implying that share prices and dividends should be

cointegrated.

An interesting question to ask is whether a potentially cointegrating

regression should be estimated using the levels of the variables or the

logarithms of the levels of the variables. Financial theory may provide an

answer as to the more appropriate functional form, but fortunately even

if not, Hendry and Juselius (2000) note that if a set of series is cointegrated

in levels, they will also be cointegrated in log levels.

7.4 Equilibrium correction or error correction models

When the concept of non-stationarity was first considered in the 1970s, a

usual response was to independently take the first differences of each of
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the I(1) variables and then to use these first differences in any subsequent

modelling process. In the context of univariate modelling (e.g. the con-

struction of ARMA models), this is entirely the correct approach. However,

when the relationship between variables is important, such a procedure

is inadvisable. While this approach is statistically valid, it does have the

problem that pure first difference models have no long-run solution. For

example, consider two series, yt and xt , that are both I(1). The model that

one may consider estimating is

�yt = β�xt + ut (7.46)

One definition of the long run that is employed in econometrics implies

that the variables have converged upon some long-term values and are

no longer changing, thus yt = yt−1 = y; xt = xt−1 = x . Hence all the dif-

ference terms will be zero in (7.46), i.e. �yt = 0; �xt = 0, and thus every-

thing in the equation cancels. Model (7.46) has no long-run solution and it

therefore has nothing to say about whether x and y have an equilibrium

relationship (see chapter 4).

Fortunately, there is a class of models that can overcome this problem by

using combinations of first differenced and lagged levels of cointegrated

variables. For example, consider the following equation

�yt = β1�xt + β2(yt−1 − γ xt−1) + ut (7.47)

This model is known as an error correction model or an equilibrium correction

model, and yt−1 − γ xt−1 is known as the error correction term. Provided that

yt and xt are cointegrated with cointegrating coefficient γ , then (yt−1 −
γ xt−1) will be I(0) even though the constituents are I(1). It is thus valid

to use OLS and standard procedures for statistical inference on (7.47). It is

of course possible to have an intercept in either the cointegrating term

(e.g. yt−1 − α − γ xt−1) or in the model for �yt (e.g. �yt = β0 + β1�xt +
β2(yt−1 − γ xt−1) + ut ) or both. Whether a constant is included or not could

be determined on the basis of financial theory, considering the arguments

on the importance of a constant discussed in chapter 4.

The error correction model is sometimes termed an equilibrium correc-

tion model, and the two terms will be used synonymously for the purposes

of this book. Error correction models are interpreted as follows. y is pur-

ported to change between t − 1 and t as a result of changes in the values

of the explanatory variable(s), x , between t − 1 and t , and also in part to

correct for any disequilibrium that existed during the previous period.

Note that the error correction term (yt−1 − γ xt−1) appears in (7.47) with

a lag. It would be implausible for the term to appear without any lag

(i.e. as yt − γ xt ), for this would imply that y changes between t − 1 and
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t in response to a disequilibrium at time t . γ defines the long-run rela-

tionship between x and y, while β1 describes the short-run relationship

between changes in x and changes in y. Broadly, β2 describes the speed

of adjustment back to equilibrium, and its strict definition is that it mea-

sures the proportion of last period’s equilibrium error that is corrected

for.

Of course, an error correction model can be estimated for more than

two variables. For example, if there were three variables, xt , wt , yt , that

were cointegrated, a possible error correction model would be

�yt = β1�xt + β2�wt + β3(yt−1 − γ1xt−1 − γ2wt−1) + ut (7.48)

The Granger representation theorem states that if there exists a dynamic lin-

ear model with stationary disturbances and the data are I(1), then the

variables must be cointegrated of order (1,1).

7.5 Testing for cointegration in regression:
a residuals-based approach

The model for the equilibrium correction term can be generalised further

to include k variables (y and the k − 1 xs)

yt = β1 + β2x2t + β3x3t + · · · + βk xkt + ut (7.49)

ut should be I(0) if the variables yt , x2t , . . . xkt are cointegrated, but ut will

still be non-stationary if they are not.

Thus it is necessary to test the residuals of (7.49) to see whether they

are non-stationary or stationary. The DF or ADF test can be used on ût ,

using a regression of the form

�ût = ψ ût−1 + vt (7.50)

with vt an iid error term.

However, since this is a test on residuals of a model, ût , then the critical

values are changed compared to a DF or an ADF test on a series of raw

data. Engle and Granger (1987) have tabulated a new set of critical values

for this application and hence the test is known as the Engle--Granger

(EG) test. The reason that modified critical values are required is that

the test is now operating on the residuals of an estimated model rather

than on raw data. The residuals have been constructed from a particular

set of coefficient estimates, and the sampling estimation error in those

coefficients will change the distribution of the test statistic. Engle and

Yoo (1987) tabulate a new set of critical values that are larger in absolute
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value (i.e. more negative) than the DF critical values, also given at the end

of this book. The critical values also become more negative as the number

of variables in the potentially cointegrating regression increases.

It is also possible to use the Durbin--Watson (DW) test statistic or the

Phillips--Perron (PP) approach to test for non-stationarity of ût . If the DW

test is applied to the residuals of the potentially cointegrating regression,

it is known as the Cointegrating Regression Durbin Watson (CRDW). Under

the null hypothesis of a unit root in the errors, CRDW ≈ 0, so the null

of a unit root is rejected if the CRDW statistic is larger than the relevant

critical value (which is approximately 0.5).

What are the null and alternative hypotheses for any unit root test

applied to the residuals of a potentially cointegrating regression?

H0 : ût ∼ I(1)

H1 : ût ∼ I(0).

Thus, under the null hypothesis there is a unit root in the potentially coin-

tegrating regression residuals, while under the alternative, the residuals

are stationary. Under the null hypothesis, therefore, a stationary linear

combination of the non-stationary variables has not been found. Hence,

if this null hypothesis is not rejected, there is no cointegration. The ap-

propriate strategy for econometric modelling in this case would be to

employ specifications in first differences only. Such models would have

no long-run equilibrium solution, but this would not matter since no

cointegration implies that there is no long-run relationship anyway.

On the other hand, if the null of a unit root in the potentially coin-

tegrating regression’s residuals is rejected, it would be concluded that a

stationary linear combination of the non-stationary variables had been

found. Therefore, the variables would be classed as cointegrated. The ap-

propriate strategy for econometric modelling in this case would be to form

and estimate an error correction model, using a method described below.

Box 7.2 Multiple cointegrating relationships

In the case where there are only two variables in an equation, yt , and xt , say, there can

be at most only one linear combination of yt , and xt that is stationary – i.e. at most

one cointegrating relationship. However, suppose that there are k variables in a system

(ignoring any constant term), denoted yt , x2t , . . . xkt . In this case, there may be up to r
linearly independent cointegrating relationships (where r ≤ k − 1). This potentially

presents a problem for the OLS regression approach described above, which is capable

of finding at most one cointegrating relationship no matter how many variables there

are in the system. And if there are multiple cointegrating relationships, how can one

know if there are others, or whether the ‘best’ or strongest cointegrating relationship
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has been found? An OLS regression will find the minimum variance stationary linear

combination of the variables,1 but there may be other linear combinations of the

variables that have more intuitive appeal. The answer to this problem is to use a

systems approach to cointegration, which will allow determination of all r cointegrating

relationships. One such approach is Johansen’s method – see section 7.8.

7.6 Methods of parameter estimation in cointegrated systems

What should be the modelling strategy if the data at hand are thought

to be non-stationary and possibly cointegrated? There are (at least) three

methods that could be used: Engle--Granger, Engle--Yoo and Johansen. The

first and third of these will be considered in some detail below.

7.6.1 The Engle–Granger 2-step method

This is a single equation technique, which is conducted as follows:

Step 1

Make sure that all the individual variables are I(1). Then estimate the

cointegrating regression using OLS. Note that it is not possible to perform

any inferences on the coefficient estimates in this regression -- all that

can be done is to estimate the parameter values. Save the residuals of the

cointegrating regression, ût . Test these residuals to ensure that they are

I(0). If they are I(0), proceed to Step 2; if they are I(1), estimate a model

containing only first differences.

Step 2

Use the step 1 residuals as one variable in the error correction model, e.g.

�yt = β1�xt + β2(ût−1) + vt (7.51)

where ût−1 = yt−1 − τ̂ xt−1. The stationary, linear combination of non-

stationary variables is also known as the cointegrating vector. In this case,

the cointegrating vector would be [1 − τ̂ ]. Additionally, any linear transfor-

mation of the cointegrating vector will also be a cointegrating vector. So,

for example, −10yt−1 + 10τ̂ xt−1 will also be stationary. In (7.45) above, the

cointegrating vector would be [1 − β̂1 − β̂2 − β̂3]. It is now valid to perform

1 Readers who are familiar with the literature on hedging with futures will recognise

that running an OLS regression will minimise the variance of the hedged portfolio, i.e.

it will minimise the regression’s residual variance, and the situation here is analogous.
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inferences in the second-stage regression, i.e. concerning the parameters

β1 and β2 (provided that there are no other forms of misspecification, of

course), since all variables in this regression are stationary.

The Engle--Granger 2-step method suffers from a number of problems:

(1) The usual finite sample problem of a lack of power in unit root and

cointegration tests discussed above.

(2) There could be a simultaneous equations bias if the causality between

y and x runs in both directions, but this single equation approach

requires the researcher to normalise on one variable (i.e. to specify

one variable as the dependent variable and the others as independent

variables). The researcher is forced to treat y and x asymmetrically,

even though there may have been no theoretical reason for doing so. A

further issue is the following. Suppose that the following specification

had been estimated as a potential cointegrating regression

yt = α1 + β1xt + u1t (7.52)

What if instead the following equation was estimated?

xt = α2 + β2 yt + u2t (7.53)

If it is found that u1t ∼ I(0), does this imply automatically that u2t ∼
I(0)? The answer in theory is ‘yes’, but in practice different conclusions

may be reached in finite samples. Also, if there is an error in the model

specification at stage 1, this will be carried through to the cointegra-

tion test at stage 2, as a consequence of the sequential nature of the

computation of the cointegration test statistic.

(3) It is not possible to perform any hypothesis tests about the actual coin-

tegrating relationship estimated at stage 1.

Problems 1 and 2 are small sample problems that should disappear asymp-

totically. Problem 3 is addressed by another method due to Engle and Yoo.

There is also another alternative technique, which overcomes problems 2

and 3 by adopting a different approach based on estimation of a VAR

system -- see section 7.8.

7.6.2 The Engle and Yoo 3-step method

The Engle and Yoo (1987) 3-step procedure takes its first two steps from

Engle--Granger (EG). Engle and Yoo then add a third step giving updated

estimates of the cointegrating vector and its standard errors. The Engle

and Yoo (EY) third step is algebraically technical and additionally, EY suf-

fers from all of the remaining problems of the EG approach. There is



Modelling long-run relationships in finance 343

arguably a far superior procedure available to remedy the lack of testabil-

ity of hypotheses concerning the cointegrating relationship -- namely, the

Johansen (1988) procedure. For these reasons, the Engle--Yoo procedure is

rarely employed in empirical applications and is not considered further

here.

There now follows an application of the Engle--Granger procedure in

the context of spot and futures markets.

7.7 Lead–lag and long-term relationships between spot
and futures markets

7.7.1 Background

If the markets are frictionless and functioning efficiently, changes in the

(log of the) spot price of a financial asset and its corresponding changes in

the (log of the) futures price would be expected to be perfectly contempo-

raneously correlated and not to be cross-autocorrelated. Mathematically,

these notions would be represented as

corr(�log( ft ), � ln(st )) ≈ 1 (a)

corr(�log( ft ), � ln(st−k)) ≈ 0 ∀ k > 0 (b)

corr(�log( ft− j ), � ln(st )) ≈ 0 ∀ j > 0 (c)

In other words, changes in spot prices and changes in futures prices are

expected to occur at the same time (condition (a)). The current change in

the futures price is also expected not to be related to previous changes

in the spot price (condition (b)), and the current change in the spot price

is expected not to be related to previous changes in the futures price

(condition (c)). The changes in the log of the spot and futures prices are

also of course known as the spot and futures returns.

For the case when the underlying asset is a stock index, the equilibrium

relationship between the spot and futures prices is known as the cost of

carry model, given by

F∗
t = St e(r−d)(T −t) (7.54)

where F∗
t is the fair futures price, St is the spot price, r is a continuously

compounded risk-free rate of interest, d is the continuously compounded

yield in terms of dividends derived from the stock index until the fu-

tures contract matures, and (T − t ) is the time to maturity of the futures

contract. Taking logarithms of both sides of (7.54) gives

f ∗
t = st +(r − d)(T − t) (7.55)
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Table 7.2 DF tests on log-prices and returns for high frequency
FTSE data

Futures Spot

Dickey--Fuller statistics −0.1329 −0.7335

for log-price data

Dickey--Fuller statistics −84.9968 −114.1803

for returns data

where f ∗
t is the log of the fair futures price and st is the log of the spot

price. Equation (7.55) suggests that the long-term relationship between

the logs of the spot and futures prices should be one to one. Thus the

basis, defined as the difference between the futures and spot prices (and if

necessary adjusted for the cost of carry) should be stationary, for if it could

wander without bound, arbitrage opportunities would arise, which would

be assumed to be quickly acted upon by traders such that the relationship

between spot and futures prices will be brought back to equilibrium.

The notion that there should not be any lead--lag relationships between

the spot and futures prices and that there should be a long-term one to

one relationship between the logs of spot and futures prices can be tested

using simple linear regressions and cointegration analysis. This book will

now examine the results of two related papers -- Tse (1995), who employs

daily data on the Nikkei Stock Average (NSA) and its futures contract, and

Brooks, Rew and Ritson (2001), who examine high-frequency data from

the FTSE 100 stock index and index futures contract.

The data employed by Tse (1995) consists of 1,055 daily observations

on NSA stock index and stock index futures values from December 1988

to April 1993. The data employed by Brooks et al. comprises 13,035 ten-

minutely observations for all trading days in the period June 1996--May

1997, provided by FTSE International. In order to form a statistically ade-

quate model, the variables should first be checked as to whether they can

be considered stationary. The results of applying a Dickey--Fuller (DF) test

to the logs of the spot and futures prices of the 10-minutely FTSE data are

shown in table 7.2.

As one might anticipate, both studies conclude that the two log-price se-

ries contain a unit root, while the returns are stationary. Of course, it may

be necessary to augment the tests by adding lags of the dependent variable

to allow for autocorrelation in the errors (i.e. an Augmented Dickey--Fuller

or ADF test). Results for such tests are not presented, since the conclusions

are not altered. A statistically valid model would therefore be one in the

returns. However, a formulation containing only first differences has no
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Table 7.3 Estimated potentially cointegrating
equation and test for cointegration for
high frequency FTSE data

Coefficient Estimated value

γ̂0 0.1345

γ̂1 0.9834

DF test on residuals Test statistic

ẑt −14.7303

Source: Brooks, Rew and Ritson (2001).

long-run equilibrium solution. Additionally, theory suggests that the two

series should have a long--run relationship. The solution is therefore to see

whether there exists a cointegrating relationship between ft and st which

would mean that it is valid to include levels terms along with returns in

this framework. This is tested by examining whether the residuals, ẑt , of

a regression of the form

st = γ0 + γ1 ft + zt (7.56)

are stationary, using a Dickey--Fuller test, where zt is the error term. The

coefficient values for the estimated (7.56) and the DF test statistic are given

in table 7.3.

Clearly, the residuals from the cointegrating regression can be consid-

ered stationary. Note also that the estimated slope coefficient in the coin-

tegrating regression takes on a value close to unity, as predicted from the

theory. It is not possible to formally test whether the true population co-

efficient could be one, however, since there is no way in this framework

to test hypotheses about the cointegrating relationship.

The final stage in building an error correction model using the Engle--

Granger 2-step approach is to use a lag of the first-stage residuals, ẑt , as the

equilibrium correction term in the general equation. The overall model is

� log st = β0 + δẑt−1 + β1� ln st−1 + α1� ln ft−1 + vt (7.57)

where vt is an error term. The coefficient estimates for this model are

presented in table 7.4.

Consider first the signs and significances of the coefficients (these can

now be interpreted validly since all variables used in this model are sta-

tionary). α̂1 is positive and highly significant, indicating that the futures

market does indeed lead the spot market, since lagged changes in futures

prices lead to a positive change in the subsequent spot price. β̂1 is positive
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Table 7.4 Estimated error correction model for high
frequency FTSE data

Coefficient Estimated value t-ratio

β̂0 9.6713E−06 1.6083

δ̂ −0.8388 −5.1298

β̂1 0.1799 19.2886

α̂1 0.1312 20.4946

Source: Brooks, Rew and Ritson (2001).

Table 7.5 Comparison of out-of-sample forecasting accuracy

ECM ECM-COC ARIMA VAR

RMSE 0.0004382 0.0004350 0.0004531 0.0004510

MAE 0.4259 0.4255 0.4382 0.4378

% Correct direction 67.69% 68.75% 64.36% 66.80%

Source: Brooks, Rew and Ritson (2001).

and highly significant, indicating on average a positive autocorrelation in

spot returns. δ̂, the coefficient on the error correction term, is negative

and significant, indicating that if the difference between the logs of the

spot and futures prices is positive in one period, the spot price will fall

during the next period to restore equilibrium, and vice versa.

7.7.2 Forecasting spot returns

Both Brooks, Rew and Ritson (2001) and Tse (1995) show that it is possible

to use an error correction formulation to model changes in the log of a

stock index. An obvious related question to ask is whether such a model

can be used to forecast the future value of the spot series for a holdout

sample of data not used previously for model estimation. Both sets of re-

searchers employ forecasts from three other models for comparison with

the forecasts of the error correction model. These are an error correc-

tion model with an additional term that allows for the cost of carry, an

ARMA model (with lag length chosen using an information criterion) and

an unrestricted VAR model (with lag length chosen using a multivariate

information criterion).

The results are evaluated by comparing their root-mean squared errors,

mean absolute errors and percentage of correct direction predictions. The

forecasting results from the Brooks, Rew and Ritson paper are given in

table 7.5.
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It can be seen from table 7.5 that the error correction models have

both the lowest mean squared and mean absolute errors, and the highest

proportion of correct direction predictions. There is, however, little to

choose between the models, and all four have over 60% of the signs of the

next returns predicted correctly.

It is clear that on statistical grounds the out-of-sample forecasting per-

formances of the error correction models are better than those of their

competitors, but this does not necessarily mean that such forecasts have

any practical use. Many studies have questioned the usefulness of statisti-

cal measures of forecast accuracy as indicators of the profitability of using

these forecasts in a practical trading setting (see, for example, Leitch and

Tanner, 1991). Brooks, Rew and Ritson (2001) investigate this proposition

directly by developing a set of trading rules based on the forecasts of the

error correction model with the cost of carry term, the best statistical

forecasting model. The trading period is an out-of-sample data series not

used in model estimation, running from 1 May--30 May 1997. The ECM-COC

model yields 10-minutely one-step-ahead forecasts. The trading strategy in-

volves analysing the forecast for the spot return, and incorporating the

decision dictated by the trading rules described below. It is assumed that

the original investment is £1,000, and if the holding in the stock index

is zero, the investment earns the risk-free rate. Five trading strategies are

employed, and their profitabilities are compared with that obtained by

passively buying and holding the index. There are of course an infinite

number of strategies that could be adopted for a given set of spot return

forecasts, but Brooks, Rew and Ritson use the following:

● Liquid trading strategy This trading strategy involves making a round-

trip trade (i.e. a purchase and sale of the FTSE 100 stocks) every 10

minutes that the return is predicted to be positive by the model. If the

return is predicted to be negative by the model, no trade is executed

and the investment earns the risk-free rate.

● Buy-and-hold while forecast positive strategy This strategy allows the trader

to continue holding the index if the return at the next predicted invest-

ment period is positive, rather than making a round-trip transaction for

each period.

● Filter strategy: better predicted return than average This strategy involves

purchasing the index only if the predicted returns are greater than the

average positive return (there is no trade for negative returns therefore

the average is only taken of the positive returns).

● Filter strategy: better predicted return than first decile This strategy is

similar to the previous one, but rather than utilising the average as
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Table 7.6 Trading profitability of the error correction model with cost of carry

Terminal Terminal Return(%)

wealth Return(%) wealth (£) annualised Number

Trading strategy (£) annualised with slippage with slippage of trades

Passive investment 1040.92 4.09 1040.92 4.09 1

{49.08} {49.08}
Liquid trading 1156.21 15.62 1056.38 5.64 583

{187.44} {67.68}
Buy-and-Hold while 1156.21 15.62 1055.77 5.58 383

forecast positive {187.44} {66.96}
Filter I 1144.51 14.45 1123.57 12.36 135

{173.40} {148.32}
Filter II 1100.01 10.00 1046.17 4.62 65

{120.00} {55.44}
Filter III 1019.82 1.98 1003.23 0.32 8

{23.76} {3.84}

Source: Brooks, Rew and Ritson (2001).

previously, only the returns predicted to be in the top 10% of all re-

turns are traded on.

● Filter strategy: high arbitrary cutoff An arbitrary filter of 0.0075% is im-

posed, which will result in trades only for returns that are predicted to

be extremely large for a 10-minute interval.

The results from employing each of the strategies using the forecasts

for the spot returns obtained from the ECM-COC model are presented in

table 7.6.

The test month of May 1997 was a particularly bullish one, with a pure

buy-and-hold-the-index strategy netting a return of 4%, or almost 50% on

an annualised basis. Ideally, the forecasting exercise would be conducted

over a much longer period than one month, and preferably over different

market conditions. However, this was simply impossible due to the lack of

availability of very high frequency data over a long time period. Clearly,

the forecasts have some market timing ability in the sense that they seem

to ensure trades that, on average, would have invested in the index when

it rose, but be out of the market when it fell. The most profitable trading

strategies in gross terms are those that trade on the basis of every positive

spot return forecast, and all rules except the strictest filter make more

money than a passive investment. The strict filter appears not to work

well since it is out of the index for too long during a period when the

market is rising strongly.
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However, the picture of immense profitability painted thus far is some-

what misleading for two reasons: slippage time and transactions costs.

First, it is unreasonable to assume that trades can be executed in the

market the minute they are requested, since it may take some time to

find counterparties for all the trades required to ‘buy the index’. (Note,

of course, that in practice, a similar returns profile to the index can be

achieved with a very much smaller number of stocks.) Brooks, Rew and

Ritson therefore allow for ten minutes of ‘slippage time’, which assumes

that it takes ten minutes from when the trade order is placed to when it

is executed. Second, it is unrealistic to consider gross profitability, since

transactions costs in the spot market are non-negligible and the strategies

examined suggested a lot of trades. Sutcliffe (1997, p. 47) suggests that

total round-trip transactions costs for FTSE stocks are of the order of

1.7% of the investment.

The effect of slippage time is to make the forecasts less useful than they

would otherwise have been. For example, if the spot price is forecast to

rise, and it does, it may have already risen and then stopped rising by the

time that the order is executed, so that the forecasts lose their market

timing ability. Terminal wealth appears to fall substantially when slippage

time is allowed for, with the monthly return falling by between 1.5% and

10%, depending on the trading rule.

Finally, if transactions costs are allowed for, none of the trading rules

can outperform the passive investment strategy, and all in fact make sub-

stantial losses.

7.7.3 Conclusions

If the markets are frictionless and functioning efficiently, changes in the

spot price of a financial asset and its corresponding futures price would

be expected to be perfectly contemporaneously correlated and not to be

cross-autocorrelated. Many academic studies, however, have documented

that the futures market systematically ‘leads’ the spot market, reflecting

news more quickly as a result of the fact that the stock index is not a

single entity. The latter implies that:

● Some components of the index are infrequently traded, implying that

the observed index value contains ‘stale’ component prices

● It is more expensive to transact in the spot market and hence the spot

market reacts more slowly to news

● Stock market indices are recalculated only every minute so that new

information takes longer to be reflected in the index.
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Clearly, such spot market impediments cannot explain the inter-daily

lead--lag relationships documented by Tse (1995). In any case, however,

since it appears impossible to profit from these relationships, their exis-

tence is entirely consistent with the absence of arbitrage opportunities

and is in accordance with modern definitions of the efficient markets

hypothesis.

7.8 Testing for and estimating cointegrating systems using the
Johansen technique based on VARs

Suppose that a set of g variables (g ≥ 2) are under consideration that

are I(1) and which are thought may be cointegrated. A VAR with k lags

containing these variables could be set up:

yt = β1 yt−1 + β2 yt−2 + · · · + βk yt−k + ut

g × 1 g × g g × 1 g × g g × 1 g × g g × 1 g × 1
(7.58)

In order to use the Johansen test, the VAR (7.58) above needs to be turned

into a vector error correction model (VECM) of the form

�yt = �yt−k + �1�yt−1 + �2�yt−2 + · · · + �k−1�yt−(k−1) + ut (7.59)

where � = (
∑k

i=1 βi ) − Ig and �i = (
∑i

j=1 β j ) − Ig

This VAR contains g variables in first differenced form on the LHS, and

k − 1 lags of the dependent variables (differences) on the RHS, each with

a � coefficient matrix attached to it. In fact, the Johansen test can be

affected by the lag length employed in the VECM, and so it is useful to

attempt to select the lag length optimally, as outlined in chapter 6. The

Johansen test centres around an examination of the � matrix. � can

be interpreted as a long-run coefficient matrix, since in equilibrium, all

the �yt−i will be zero, and setting the error terms, ut , to their expected

value of zero will leave �yt−k = 0. Notice the comparability between this

set of equations and the testing equation for an ADF test, which has a first

differenced term as the dependent variable, together with a lagged levels

term and lagged differences on the RHS.

The test for cointegration between the ys is calculated by looking at the

rank of the � matrix via its eigenvalues.2 The rank of a matrix is equal

to the number of its characteristic roots (eigenvalues) that are different

2 Strictly, the eigenvalues used in the test statistics are taken from rank-restricted product

moment matrices and not of � itself.
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from zero (see the appendix at the end of this book for some algebra

and examples). The eigenvalues, denoted λi are put in ascending order

λ1 ≥ λ2 ≥ . . . ≥ λg If the λs are roots, in this context they must be less than

1 in absolute value and positive, and λ1 will be the largest (i.e. the closest to

one), while λg will be the smallest (i.e. the closest to zero). If the variables

are not cointegrated, the rank of � will not be significantly different from

zero, so λi ≈ 0 ∀ i . The test statistics actually incorporate ln(1 − λi ), rather

than the λi themselves, but still, when λi = 0, ln(1 − λi ) = 0.

Suppose now that rank (�) = 1, then ln(1 − λ1) will be negative and

ln(1 − λi ) = 0 ∀ i > 1. If the eigenvalue i is non-zero, then ln(1 − λi ) <

0 ∀ i > 1. That is, for � to have a rank of 1, the largest eigenvalue must

be significantly non-zero, while others will not be significantly different

from zero.

There are two test statistics for cointegration under the Johansen ap-

proach, which are formulated as

λtrace(r ) = −T
g∑

i=r+1

ln(1 − λ̂i ) (7.60)

and

λmax(r, r + 1) = −T ln(1 − λ̂r+1) (7.61)

where r is the number of cointegrating vectors under the null hypothesis

and λ̂i is the estimated value for the ith ordered eigenvalue from the �

matrix. Intuitively, the larger is λ̂i , the more large and negative will be

ln(1 − λ̂i ) and hence the larger will be the test statistic. Each eigenvalue

will have associated with it a different cointegrating vector, which will

be eigenvectors. A significantly non-zero eigenvalue indicates a significant

cointegrating vector.

λtrace is a joint test where the null is that the number of cointegrat-

ing vectors is less than or equal to r against an unspecified or general

alternative that there are more than r . It starts with p eigenvalues, and

then successively the largest is removed. λtrace = 0 when all the λi = 0, for

i = 1, . . . , g.

λmax conducts separate tests on each eigenvalue, and has as its null

hypothesis that the number of cointegrating vectors is r against an alter-

native of r + 1.

Johansen and Juselius (1990) provide critical values for the two statis-

tics. The distribution of the test statistics is non-standard, and the critical
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values depend on the value of g − r , the number of non-stationary compo-

nents and whether constants are included in each of the equations. Inter-

cepts can be included either in the cointegrating vectors themselves or as

additional terms in the VAR. The latter is equivalent to including a trend in

the data generating processes for the levels of the series. Osterwald-Lenum

(1992) provides a more complete set of critical values for the Johansen test,

some of which are also given in the appendix of statistical tables at the

end of this book.

If the test statistic is greater than the critical value from Johansen’s

tables, reject the null hypothesis that there are r cointegrating vectors

in favour of the alternative that there are r + 1 (for λtrace) or more than

r (for λmax). The testing is conducted in a sequence and under the null,

r = 0, 1, . . . , g − 1 so that the hypotheses for λmax are

H0 : r = 0 versus H1 : 0 < r ≤ g
H0 : r = 1 versus H1 : 1 < r ≤ g
H0 : r = 2 versus H1 : 2 < r ≤ g

...
...

...

H0 : r = g − 1 versus H1 : r = g

The first test involves a null hypothesis of no cointegrating vectors (corre-

sponding to � having zero rank). If this null is not rejected, it would

be concluded that there are no cointegrating vectors and the testing

would be completed. However, if H0 : r = 0 is rejected, the null that there

is one cointegrating vector (i.e. H0 : r = 1) would be tested and so on.

Thus the value of r is continually increased until the null is no longer

rejected.

But how does this correspond to a test of the rank of the � matrix? r is

the rank of �. � cannot be of full rank (g) since this would correspond to

the original yt being stationary. If � has zero rank, then by analogy to the

univariate case, �yt depends only on �yt− j and not on yt−1, so that there

is no long-run relationship between the elements of yt−1. Hence there is

no cointegration. For 1 < rank(�) < g, there are r cointegrating vectors. �

is then defined as the product of two matrices, α and β ′, of dimension

(g × r ) and (r × g), respectively, i.e.

� = αβ ′ (7.62)

The matrix β gives the cointegrating vectors, while α gives the amount

of each cointegrating vector entering each equation of the VECM, also

known as the ‘adjustment parameters’.
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For example, suppose that g = 4, so that the system contains four vari-

ables. The elements of the � matrix would be written

� =

⎛
⎜⎜⎝

π11 π12 π13 π14

π21 π22 π23 π24

π31 π32 π33 π34

π41 π42 π43 π44

⎞
⎟⎟⎠ (7.63)

If r = 1, so that there is one cointegrating vector, then α and β will be

(4 × 1)

� = αβ ′ =

⎛
⎜⎜⎝

α11

α12

α13

α14

⎞
⎟⎟⎠ (β11 β12 β13 β14) (7.64)

If r = 2, so that there are two cointegrating vectors, then α and β will be

(4 × 2)

� = αβ ′ =

⎛
⎜⎜⎝

α11 α21

α12 α22

α13 α23

α14 α24

⎞
⎟⎟⎠

(
β11 β12 β13 β14

β21 β22 β23 β24

)
(7.65)

and so on for r = 3, . . .

Suppose now that g = 4, and r = 1, as in (7.64) above, so that there are

four variables in the system, y1, y2, y3, and y4, that exhibit one cointegrat-

ing vector. Then �yt−k will be given by

� =

⎛
⎜⎜⎝

α11

α12

α13

α14

⎞
⎟⎟⎠ (β11 β12 β13 β14 )

⎛
⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎠

t−k

(7.66)

Equation (7.66) can also be written

� =

⎛
⎜⎜⎝

α11

α12

α13

α14

⎞
⎟⎟⎠ (β11 y1 + β12 y2 + β13 y3 + β14 y4)t−k (7.67)

Given (7.67), it is possible to write out the separate equations for each

variable �yt . It is also common to ‘normalise’ on a particular variable, so

that the coefficient on that variable in the cointegrating vector is one.

For example, normalising on y1 would make the cointegrating term in
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the equation for �y1

α11

(
y1 + β12

β11

y2 + β13

β11

y3 + β14

β11

y4

)
t−k

, etc.

Finally, it must be noted that the above description is not exactly how the

Johansen procedure works, but is an intuitive approximation to it.

7.8.1 Hypothesis testing using Johansen

Engle--Granger did not permit the testing of hypotheses on the cointegrat-

ing relationships themselves, but the Johansen setup does permit the test-

ing of hypotheses about the equilibrium relationships between the vari-

ables. Johansen allows a researcher to test a hypothesis about one or more

coefficients in the cointegrating relationship by viewing the hypothesis as

a restriction on the � matrix. If there exist r cointegrating vectors, only

these linear combinations or linear transformations of them, or combina-

tions of the cointegrating vectors, will be stationary. In fact, the matrix of

cointegrating vectors β can be multiplied by any non-singular conformable

matrix to obtain a new set of cointegrating vectors.

A set of required long-run coefficient values or relationships between

the coefficients does not necessarily imply that the cointegrating vectors

have to be restricted. This is because any combination of cointegrating

vectors is also a cointegrating vector. So it may be possible to combine

the cointegrating vectors thus far obtained to provide a new one or, in

general, a new set, having the required properties. The simpler and fewer

are the required properties, the more likely that this recombination pro-

cess (called renormalisation) will automatically yield cointegrating vectors

with the required properties. However, as the restrictions become more

numerous or involve more of the coefficients of the vectors, it will eventu-

ally become impossible to satisfy all of them by renormalisation. After this

point, all other linear combinations of the variables will be non-stationary.

If the restriction does not affect the model much, i.e. if the restriction is

not binding, then the eigenvectors should not change much following im-

position of the restriction. A test statistic to test this hypothesis is given

by

test statistic = −T
r∑

i=1

[ln(1 − λi ) − ln(1 − λi
∗)] ∼ χ2(m) (7.68)

where λ∗
i are the characteristic roots of the restricted model, λi are the

characteristic roots of the unrestricted model, r is the number of non-

zero characteristic roots in the unrestricted model and m is the number

of restrictions.
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Restrictions are actually imposed by substituting them into the relevant

α or β matrices as appropriate, so that tests can be conducted on either the

cointegrating vectors or their loadings in each equation in the system (or

both). For example, considering (7.63)--(7.65) above, it may be that theory

suggests that the coefficients on the loadings of the cointegrating vector(s)

in each equation should take on certain values, in which case it would be

relevant to test restrictions on the elements of α (e.g. α11 = 1, α23 = −1,

etc.). Equally, it may be of interest to examine whether only a sub-set

of the variables in yt is actually required to obtain a stationary linear

combination. In that case, it would be appropriate to test restrictions of

elements of β. For example, to test the hypothesis that y4 is not necessary

to form a long-run relationship, set β14 = 0, β24 = 0, etc.).

For an excellent detailed treatment of cointegration in the context of

both single equation and multiple equation models, see Harris (1995).

Several applications of tests for cointegration and modelling cointegrated

systems in finance will now be given.

7.9 Purchasing power parity

Purchasing power parity (PPP) states that the equilibrium or long-run ex-

change rate between two countries is equal to the ratio of their relative

price levels. Purchasing power parity implies that the real exchange rate,

Qt , is stationary. The real exchange rate can be defined as

Qt = Et Pt
∗

Pt
(7.69)

where Et is the nominal exchange rate in domestic currency per unit of

foreign currency, Pt is the domestic price level and Pt
∗ is the foreign price

level. Taking logarithms of (7.69) and rearranging, another way of stating

the PPP relation is obtained

et − pt + pt
∗ = qt (7.70)

where the lower case letters in (7.70) denote logarithmic transforms of the

corresponding upper case letters used in (7.69). A necessary and sufficient

condition for PPP to hold is that the variables on the LHS of (7.70) -- that is

the log of the exchange rate between countries A and B, and the logs of

the price levels in countries A and B be cointegrated with cointegrating

vector [1 − 1 1].

A test of this form is conducted by Chen (1995) using monthly data

from Belgium, France, Germany, Italy and the Netherlands over the
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Table 7.7 Cointegration tests of PPP with European data

Tests for

cointegration between r = 0 r ≤ 1 r ≤ 2 α1 α2

FRF--DEM 34.63∗ 17.10 6.26 1.33 −2.50

FRF--ITL 52.69∗ 15.81 5.43 2.65 −2.52

FRF--NLG 68.10∗ 16.37 6.42 0.58 −0.80

FRF--BEF 52.54∗ 26.09∗ 3.63 0.78 −1.15

DEM--ITL 42.59∗ 20.76∗ 4.79 5.80 −2.25

DEM--NLG 50.25∗ 17.79 3.28 0.12 −0.25

DEM--BEF 69.13∗ 27.13∗ 4.52 0.87 −0.52

ITL--NLG 37.51∗ 14.22 5.05 0.55 −0.71

ITL--BEF 69.24∗ 32.16∗ 7.15 0.73 −1.28

NLG--BEF 64.52∗ 21.97∗ 3.88 1.69 −2.17

Critical values 31.52 17.95 8.18 -- --

Notes: FRF -- French franc; DEM -- German mark; NLG -- Dutch guilder; ITL -- Italian

lira; BEF -- Belgian franc.

Source: Chen (1995). Reprinted with the permission of Taylor & Francis Ltd

<www.tandf.co.uk>.

period April 1973 to December 1990. Pair-wise evaluations of the exis-

tence or otherwise of cointegration are examined for all combinations

of these countries (10 country pairs). Since there are three variables in

the system (the log exchange rate and the two log nominal price series)

in each case, and that the variables in their log-levels forms are non-

stationary, there can be at most two linearly independent cointegrating

relationships for each country pair. The results of applying Johansen’s

trace test are presented in Chen’s table 1, adapted and presented here as

table 7.7.

As can be seen from the results, the null hypothesis of no cointegrating

vectors is rejected for all country pairs, and the null of one or fewer coin-

tegrating vectors is rejected for France--Belgium, Germany--Italy, Germany--

Belgium, Italy--Belgium, Netherlands--Belgium. In no cases is the null of

two or less cointegrating vectors rejected. It is therefore concluded that

the PPP hypothesis is upheld and that there are either one or two cointe-

grating relationships between the series depending on the country pair.

Estimates of α1 and α2 are given in the last two columns of table 7.7. PPP

suggests that the estimated values of these coefficients should be 1 and

−1, respectively. In most cases, the coefficient estimates are a long way

from these expected values. Of course, it would be possible to impose this

restriction and to test it in the Johansen framework as discussed above,

but Chen does not conduct this analysis.
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7.10 Cointegration between international bond markets

Often, investors will hold bonds from more than one national market in

the expectation of achieving a reduction in risk via the resulting diver-

sification. If international bond markets are very strongly correlated in

the long run, diversification will be less effective than if the bond mar-

kets operated independently of one another. An important indication of

the degree to which long-run diversification is available to international

bond market investors is given by determining whether the markets are

cointegrated. This book will now study two examples from the academic

literature that consider this issue: Clare, Maras and Thomas (1995), and

Mills and Mills (1991).

7.10.1 Cointegration between international bond markets: a univariate approach

Clare, Maras and Thomas (1995) use the Dickey--Fuller and Engle--Granger

single-equation method to test for cointegration using a pair-wise analy-

sis of four countries’ bond market indices: US, UK, Germany and Japan.

Monthly Salomon Brothers’ total return government bond index data from

January 1978 to April 1990 are employed. An application of the Dickey--

Fuller test to the log of the indices reveals the following results (adapted

from their table 1), given in table 7.8.

Neither the critical values, nor a statement of whether a constant or

trend are included in the test regressions, are offered in the paper. Nev-

ertheless, the results are clear. Recall that the null hypothesis of a unit

root is rejected if the test statistic is smaller (more negative) than the crit-

ical value. For samples of the size given here, the 5% critical value would

Table 7.8 DF tests for international bond indices

Panel A: test on log-index for country DF Statistic

Germany −0.395

Japan −0.799

UK −0.884

US 0.174

Panel B: test on log-returns for country

Germany −10.37

Japan −10.11

UK −10.56

US −10.64

Source: Clare, Maras and Thomas (1995). Reprinted with

the permission of Blackwell Publishers.
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Table 7.9 Cointegration tests for pairs of international bond indices

UK-- UK-- Germany-- Germany-- Japan-- 5% Critical

Test Germany Japan UK--US Japan US US value

CRDW 0.189 0.197 0.097 0.230 0.169 0.139 0.386

DF 2.970 2.770 2.020 3.180 2.160 2.160 3.370

ADF 3.160 2.900 1.800 3.360 1.640 1.890 3.170

Source: Clare, Maras and Thomas (1995). Reprinted with the permission of Blackwell

Publishers.

be somewhere between −1.95 and −3.50. It is thus demonstrated quite

conclusively that the logarithms of the indices are non-stationary, while

taking the first difference of the logs (that is, constructing the returns)

induces stationarity.

Given that all logs of the indices in all four cases are shown to be

I(1), the next stage in the analysis is to test for cointegration by forming

a potentially cointegrating regression and testing its residuals for non-

stationarity. Clare, Maras and Thomas use regressions of the form

Bi = α0 + α1 B j + u (7.71)

with time subscripts suppressed and where Bi and B j represent the log-

bond indices for any two countries i and j . The results are presented in

their tables 3 and 4, which are combined into table 7.9 here. They offer

results from applying 7 different tests, while we present results only for

the Cointegrating Regression Durbin Watson (CRDW), Dickey--Fuller and

Augmented Dickey--Fuller tests (although the lag lengths for the latter are

not given) are presented here.

In this case, the null hypothesis of a unit root in the residuals from

regression (7.71) cannot be rejected. The conclusion is therefore that there

is no cointegration between any pair of bond indices in this sample.

7.10.2 Cointegration between international bond markets:

a multivariate approach

Mills and Mills (1991) also consider the issue of cointegration or non-

cointegration between the same four international bond markets. How-

ever, unlike Clare, Maras and Thomas, who use bond price indices, Mills

and Mills employ daily closing observations on the redemption yields. The

latter’s sample period runs from 1 April 1986 to 29 December 1989, giving

960 observations. They employ a Dickey--Fuller-type regression procedure

to test the individual series for non-stationarity and conclude that all four

yields series are I(1).
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Table 7.10 Johansen tests for cointegration between international bond yields

Critical values
r (number of cointegrating

vectors under the null hypothesis) Test statistic 10% 5%

0 22.06 35.6 38.6

1 10.58 21.2 23.8

2 2.52 10.3 12.0

3 0.12 2.9 4.2

Source: Mills and Mills (1991). Reprinted with the permission of Blackwell Publishers.

The Johansen systems procedure is then used to test for cointegration

between the series. Unlike the Clare, Maras and Thomas paper, Mills and

Mills (1991) consider all four indices together rather than investigating

them in a pair-wise fashion. Therefore, since there are four variables in

the system (the redemption yield for each country), i.e. g = 4, there can be

at most three linearly independent cointegrating vectors, i.e., r ≤ 3. The

trace statistic is employed, and it takes the form

λtrace(r ) = −T
g∑

i=r+1

ln(1 − λ̂i ) (7.72)

where λi are the ordered eigenvalues. The results are presented in their

table 2, which is modified slightly here, and presented in table 7.10.

Looking at the first row under the heading, it can be seen that the test

statistic is smaller than the critical value, so the null hypothesis that r = 0

cannot be rejected, even at the 10% level. It is thus not necessary to look

at the remaining rows of the table. Hence, reassuringly, the conclusion

from this analysis is the same as that of Clare, Maras and Thomas -- i.e.

that there are no cointegrating vectors.

Given that there are no linear combinations of the yields that are sta-

tionary, and therefore that there is no error correction representation,

Mills and Mills then continue to estimate a VAR for the first differences

of the yields. The VAR is of the form

�Xt =
k∑

i=1

�i�Xt−i + vt (7.73)

where:

Xt =

⎡
⎢⎢⎣

X (US)t

X (UK)t

X (WG)t

X (JAP)t

⎤
⎥⎥⎦ , �i =

⎡
⎢⎢⎣

�11i �12i �13i �14i

�21i �22i �23i �24i

�31i �32i �33i �34i

�41i �42i �43i �44i

⎤
⎥⎥⎦ , vt =

⎡
⎢⎢⎣

v1t

v2t

v3t

v4t

⎤
⎥⎥⎦
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Table 7.11 Variance decompositions for VAR of international bond yields

Explained by movements in
Explaining Days

movements in ahead US UK Germany Japan

US 1 95.6 2.4 1.7 0.3

5 94.2 2.8 2.3 0.7

10 92.9 3.1 2.9 1.1

20 92.8 3.2 2.9 1.1

UK 1 0.0 98.3 0.0 1.7

5 1.7 96.2 0.2 1.9

10 2.2 94.6 0.9 2.3

20 2.2 94.6 0.9 2.3

Germany 1 0.0 3.4 94.6 2.0

5 6.6 6.6 84.8 3.0

10 8.3 6.5 82.9 3.6

20 8.4 6.5 82.7 3.7

Japan 1 0.0 0.0 1.4 100.0

5 1.3 1.4 1.1 96.2

10 1.5 2.1 1.8 94.6

20 1.6 2.2 1.9 94.2

Source: Mills and Mills (1991). Reprinted with the permission of Blackwell Publishers.

They set k, the number of lags of each change in the yield in each regres-

sion, to 8, arguing that likelihood ratio tests rejected the possibility of

smaller numbers of lags. Unfortunately, and as one may anticipate for a

regression of daily yield changes, the R2 values for the VAR equations are

low, ranging from 0.04 for the US to 0.17 for Germany. Variance decompo-

sitions and impulse responses are calculated for the estimated VAR. Two

orderings of the variables are employed: one based on a previous study

and one based on the chronology of the opening (and closing) of the fi-

nancial markets considered: Japan → Germany → UK → US. Only results

for the latter, adapted from tables 4 and 5 of Mills and Mills (1991), are

presented here. The variance decompositions and impulse responses for

the VARs are given in tables 7.11 and 7.12, respectively.

As one may expect from the low R2 of the VAR equations, and the

lack of cointegration, the bond markets seem very independent of one

another. The variance decompositions, which show the proportion of the

movements in the dependent variables that are due to their ‘own’ shocks,

versus shocks to the other variables, seem to suggest that the US, UK

and Japanese markets are to a certain extent exogenous in this system.

That is, little of the movement of the US, UK or Japanese series can be
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Table 7.12 Impulse responses for VAR of international bond yields

Response of US to innovations in

Days after shock US UK Germany Japan

0 0.98 0.00 0.00 0.00

1 0.06 0.01 −0.10 0.05

2 −0.02 0.02 −0.14 0.07

3 0.09 −0.04 0.09 0.08

4 −0.02 −0.03 0.02 0.09

10 −0.03 −0.01 −0.02 −0.01

20 0.00 0.00 −0.10 −0.01

Response of UK to innovations in

Days after shock US UK Germany Japan

0 0.19 0.97 0.00 0.00

1 0.16 0.07 0.01 −0.06

2 −0.01 −0.01 −0.05 0.09

3 0.06 0.04 0.06 0.05

4 0.05 −0.01 0.02 0.07

10 0.01 0.01 −0.04 −0.01

20 0.00 0.00 −0.01 0.00

Response of Germany to innovations in

Days after shock US UK Germany Japan

0 0.07 0.06 0.95 0.00

1 0.13 0.05 0.11 0.02

2 0.04 0.03 0.00 0.00

3 0.02 0.00 0.00 0.01

4 0.01 0.00 0.00 0.09

10 0.01 0.01 −0.01 0.02

20 0.00 0.00 0.00 0.00

Response of Japan to innovations in

Days after shock US UK Germany Japan

0 0.03 0.05 0.12 0.97

1 0.06 0.02 0.07 0.04

2 0.02 0.02 0.00 0.21

3 0.01 0.02 0.06 0.07

4 0.02 0.03 0.07 0.06

10 0.01 0.01 0.01 0.04

20 0.00 0.00 0.00 0.01

Source: Mills and Mills (1991). Reprinted with the permission of

Blackwell Publishers.
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explained by movements other than their own bond yields. In the German

case, however, after 20 days, only 83% of movements in the German yield

are explained by German shocks. The German yield seems particularly

influenced by US (8.4% after 20 days) and UK (6.5% after 20 days) shocks.

It also seems that Japanese shocks have the least influence on the bond

yields of other markets.

A similar pattern emerges from the impulse response functions, which

show the effect of a unit shock applied separately to the error of each

equation of the VAR. The markets appear relatively independent of one

another, and also informationally efficient in the sense that shocks work

through the system very quickly. There is never a response of more than

10% to shocks in any series three days after they have happened; in most

cases, the shocks have worked through the system in two days. Such a

result implies that the possibility of making excess returns by trading in

one market on the basis of ‘old news’ from another appears very unlikely.

7.10.3 Cointegration in international bond markets: conclusions

A single set of conclusions can be drawn from both of these papers. Both

approaches have suggested that international bond markets are not coin-

tegrated. This implies that investors can gain substantial diversification

benefits. This is in contrast to results reported for other markets, such

as foreign exchange (Baillie and Bollerslev, 1989), commodities (Baillie,

1989), and equities (Taylor and Tonks, 1989). Clare, Maras and Thomas

(1995) suggest that the lack of long-term integration between the mar-

kets may be due to ‘institutional idiosyncrasies’, such as heterogeneous

maturity and taxation structures, and differing investment cultures, is-

suance patterns and macroeconomic policies between countries, which

imply that the markets operate largely independently of one another.

7.11 Testing the expectations hypothesis of the term structure
of interest rates

The following notation replicates that employed by Campbell and Shiller

(1991) in their seminal paper. The single, linear expectations theory of

the term structure used to represent the expectations hypothesis (here-

after EH), defines a relationship between an n-period interest rate or yield,

denoted R(n)
t , and an m-period interest rate, denoted R(m)

t , where n > m.

Hence R(n)
t is the interest rate or yield on a longer-term instrument relative

to a shorter-term interest rate or yield, R(m)
t . More precisely, the EH states
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that the expected return from investing in an n-period rate will equal the

expected return from investing in m-period rates up to n − m periods in

the future plus a constant risk-premium, c, which can be expressed as

R(n)
t = 1

q

q−1∑
i=0

Et R(m)
t+mi + c (7.74)

where q = n/m. Consequently, the longer-term interest rate, R(n)
t , can be

expressed as a weighted-average of current and expected shorter-term in-

terest rates, R(m)
t , plus a constant risk premium, c. If (7.74) is considered,

it can be seen that by subtracting R(m)
t from both sides of the relationship

we have

R(n)
t − R(m)

t = 1

q

q−1∑
i=0

j=i∑
j=1

Et
[
�(m) R(m)

t+ jm

] + c (7.75)

Examination of (7.75) generates some interesting restrictions. If the inter-

est rates under analysis, say R(n)
t and R(m)

t , are I(1) series, then, by defini-

tion, �R(n)
t and �R(m)

t will be stationary series. There is a general accep-

tance that interest rates, Treasury Bill yields, etc. are well described as I(1)

processes and this can be seen in Campbell and Shiller (1988) and Stock

and Watson (1988). Further, since c is a constant then it is by definition a

stationary series. Consequently, if the EH is to hold, given that c and �R(m)
t

are I(0) implying that the RHS of (7.75) is stationary, then R(n)
t − R(m)

t must

by definition be stationary, otherwise we will have an inconsistency in

the order of integration between the RHS and LHS of the relationship.

R(n)
t − R(m)

t is commonly known as the spread between the n-period and

m-period rates, denoted S(n,m)
t , which in turn gives an indication of the

slope of the term structure. Consequently, it follows that if the EH is to

hold, then the spread will be found to be stationary and therefore R(n)
t

and R(m)
t will cointegrate with a cointegrating vector (1, −1) for [R(n)

t , R(m)
t ].

Therefore, the integrated process driving each of the two rates is common

to both and hence it can be said that the rates have a common stochas-

tic trend. As a result, since the EH predicts that each interest rate series

will cointegrate with the one-period interest rate, it must be true that

the stochastic process driving all the rates is the same as that driving the

one-period rate, i.e. any combination of rates formed to create a spread

should be found to cointegrate with a cointegrating vector (1, −1).

Many examinations of the expectations hypothesis of the term structure

have been conducted in the literature, and still no overall consensus ap-

pears to have emerged concerning its validity. One such study that tested
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Table 7.13 Tests of the expectations hypothesis using the US zero coupon yield curve
with monthly data

Lag length Hypothesis

Sample period Interest rates included of VAR is λmax λtrace

1952M1--1978M12 Xt = [Rt R(6)
t ]′ 2 r = 0 47.54∗∗∗ 49.82∗∗∗

r ≤ 1 2.28 2.28

1952M1--1987M2 Xt = [Rt R(120)
t ]′ 2 r = 0 40.66∗∗∗ 43.73∗∗∗

r ≤ 1 3.07 3.07

1952M1--1987M2 Xt = [Rt R(60)
t R(120)

t ]′ 2 r = 0 40.13∗∗∗ 42.63∗∗∗

r ≤ 1 2.50 2.50

1973M5--1987M2 Xt = [Rt R(60)
t R(120)

t R(180)
t R

(240)
t ]′ 7 r = 0 34.78∗∗∗ 75.50∗∗∗

r ≤ 1 23.31∗ 40.72

r ≤ 2 11.94 17.41

r ≤ 3 3.80 5.47

r ≤ 4 1.66 1.66

Notes: ∗,∗∗ and ∗∗∗ denote significance at the 20%, 10% and 5% levels, respectively; r
is the number of cointegrating vectors under the null hypothesis.

Source: Shea (1992). Reprinted with the permission of American Statistical

Association. All rights reserved.

the expectations hypothesis using a standard data-set due to McCulloch

(1987) was conducted by Shea (1992). The data comprises a zero coupon

term structure for various maturities from 1 month to 25 years, covering

the period January 1952--February 1987. Various techniques are employed

in Shea’s paper, while only his application of the Johansen technique is

discussed here. A vector Xt containing the interest rate at each of the

maturities is constructed

Xt = [
Rt R(2)

t . . . R(n)
t

]′
(7.76)

where Rt denotes the spot interest rate. It is argued that each of the ele-

ments of this vector is non-stationary, and hence the Johansen approach

is used to model the system of interest rates and to test for cointegra-

tion between the rates. Both the λmax and λtrace statistics are employed,

corresponding to the use of the maximum eigenvalue and the cumu-

lated eigenvalues, respectively. Shea tests for cointegration between vari-

ous combinations of the interest rates, measured as returns to maturity.

A selection of Shea’s results is presented in table 7.13.

The results below, together with the other results presented by Shea,

seem to suggest that the interest rates at different maturities are typi-

cally cointegrated, usually with one cointegrating vector. As one may have
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expected, the cointegration becomes weaker in the cases where the anal-

ysis involves rates a long way apart on the maturity spectrum. However,

cointegration between the rates is a necessary but not sufficient condition

for the expectations hypothesis of the term structure to be vindicated by

the data. Validity of the expectations hypothesis also requires that any

combination of rates formed to create a spread should be found to cointe-

grate with a cointegrating vector (1, −1). When comparable restrictions are

placed on the β estimates associated with the cointegrating vectors, they

are typically rejected, suggesting only limited support for the expectations

hypothesis.

7.12 Testing for cointegration and modelling cointegrated
systems using EViews

The S&P500 spot and futures series that were discussed in chapters 2 and 3

will now be examined for cointegration using EViews. If the two series are

cointegrated, this means that the spot and futures prices have a long-term

relationship, which prevents them from wandering apart without bound.

To test for cointegration using the Engle--Granger approach, the residuals

of a regression of the spot price on the futures price are examined.3 Create

two new variables, for the log of the spot series and the log of the futures

series, and call them ‘lspot’ and ‘lfutures’ respectively. Then generate a

new equation object and run the regression:

LSPOT C LFUTURES

Note again that it is not valid to examine anything other than the coeffi-

cient values in this regression. The residuals of this regression are found

in the object called RESID. First, if you click on the Resids tab, you will

see a plot of the levels of the residuals (blue line), which looks much more

like a stationary series than the original spot series (the red line corre-

sponding to the actual values of y) looks. The plot should appear as in

screenshot 7.2.

Generate a new series that will keep these residuals in an object for

later use:

STATRESIDS = RESID

3 Note that it is common to run a regression of the log of the spot price on the log of the

futures rather than a regression in levels; the main reason for using logarithms is

that the differences of the logs are returns, whereas this is not true for the

levels.
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Screenshot 7.2

Actual, Fitted and

Residual plot to

check for

stationarity

This is required since every time a regression is run, the RESID object is up-

dated (overwritten) to contain the residuals of the most recently conducted

regression. Perform the ADF Test on the residual series STATRESIDS. As-

suming again that up to 12 lags are permitted, and that a constant but

not a trend are employed in a regression on the levels of the series, the

results are:

Null Hypothesis: STATRESIDS has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=12)

t-Statistic Prob.∗

Augmented Dickey-Fuller test statistic −8.050542 0.0000

Test critical values: 1% level −3.534868

5% level −2.906923

10% level −2.591006

∗MacKinnon (1996) one-sided p-values.
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Augmented Dickey-Fuller Test Equation

Dependent Variable: D(STATRESIDS)

Method: Least Squares

Date: 09/06/07 Time: 10:55

Sample (adjusted): 2002M03 2007M07

Included observations: 65 after adjustments

Coefficient Std. Error t-Statistic Prob.

STATRESIDS(-1) −1.027830 0.127672 −8.050542 0.000000

C 0.000352 0.003976 0.088500 0.929800

R-squared 0.507086 Mean dependent var −0.000387

Adjusted R-squared 0.499262 S.D. dependent var 0.045283

S.E. of regression 0.032044 Akaike info criterion −4.013146

Sum squared resid 0.064688 Schwarz criterion −3.946241

Log likelihood 132.4272 Hannan-Quinn criter. −3.986748

F-statistic 64.81123 Durbin-Watson stat 1.935995

Prob(F-statistic) 0.000000

Since the test statistic (−8.05) is more negative than the critical values,

even at the 1% level, the null hypothesis of a unit root in the test regres-

sion residuals is strongly rejected. We would thus conclude that the two

series are cointegrated. This means that an error correction model (ECM)

can be estimated, as there is a linear combination of the spot and futures

prices that would be stationary. The ECM would be the appropriate model

rather than a model in pure first difference form because it would en-

able us to capture the long-run relationship between the series as well as

the short-run one. We could now estimate an error correction model by

running the regression4

rspot c rfutures statresids(−1)

Although the Engle--Granger approach is evidently very easy to use, as

outlined above, one of its major drawbacks is that it can estimate only

up to one cointegrating relationship between the variables. In the spot-

futures example, there can be at most one cointegrating relationship since

there are only two variables in the system. But in other situations, if there

are more variables, there could potentially be more than one linearly

independent cointegrating relationship. Thus, it is appropriate instead to

examine the issue of cointegration within the Johansen VAR framework.

4 If you run this regression, you will see that the estimated ECM results from this

example are not entirely plausible but may have resulted from the relatively short

sample period employed!
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The application we will now examine centres on whether the yields

on treasury bills of different maturities are cointegrated. Re-open the

‘macro.wf1’ workfile that was used in chapter 3. There are six interest

rate series corresponding to three and six months, and one, three, five

and ten years. Each series has a name in the file starting with the letters

‘ustb’. The first step in any cointegration analysis is to ensure that the

variables are all non-stationary in their levels form, so confirm that this

is the case for each of the six series, by running a unit root test on

each one.

Next, to run the cointegration test, highlight the six series and then

click Quick/Group Statistics/Cointegration Test. A box should then appear

with the names of the six series in it. Click OK, and then the following

list of options will appear (screenshot 7.3).

Screenshot 7.3

Johansen

cointegration test

The differences between models 1 to 6 centre on whether an intercept or

a trend or both are included in the potentially cointegrating relationship

and/or the VAR. It is usually a good idea to examine the sensitivity of the

result to the type of specification used, so select Option 6 which will do

this and click OK. The results appear as in the following table
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Date: 09/06/07 Time: 11:43

Sample: 1986M03 2007M04

Included observations: 249

Series: USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M

Lags interval: 1 to 4

Selected (0.05 level*) Number of Cointegrating Relations by Model

Data Trend: None None Linear Linear Quadratic

Test Type No Intercept Intercept Intercept Intercept Intercept

No Trend No Trend No Trend Trend Trend

Trace 4 3 4 4 6

Max-Eig 3 2 2 1 1

∗Critical values based on MacKinnon-Haug-Michelis (1999)

Information Criteria by Rank and Model

Data Trend: None None Linear Linear Quadratic

Rank or No Intercept Intercept Intercept Intercept Intercept

No. of CEs No Trend No Trend No Trend Trend Trend

Log Likelihood by Rank (rows) and Model (columns)

0 1667.058 1667.058 1667.807 1667.807 1668.036

1 1690.466 1691.363 1691.975 1692.170 1692.369

2 1707.508 1709.254 1709.789 1710.177 1710.363

3 1719.820 1722.473 1722.932 1726.801 1726.981

4 1728.513 1731.269 1731.728 1738.760 1738.905

5 1733.904 1737.304 1737.588 1746.100 1746.238

6 1734.344 1738.096 1738.096 1751.143 1751.143

Akaike Information Criteria by Rank (rows) and Model (columns)

0 −12.23340 −12.23340 −12.19122 −12.19122 −12.14487

1 −12.32503 −12.32420 −12.28896 −12.28249 −12.24393

2 −12.36552 −12.36349 −12.33566 −12.32271 −12.29208

3 −12.36803∗ −12.36524 −12.34484 −12.35182 −12.32916

4 −12.34147 −12.33148 −12.31910 −12.34345 −12.32856

5 −12.28838 −12.27553 −12.26979 −12.29799 −12.29107

6 −12.19553 −12.17748 −12.17748 −12.23408 −12.23408

Schwarz Criteria by Rank (rows) and Model (columns)

0 −10.19921∗ −10.19921∗ −10.07227 −10.07227 −9.941161

1 −10.12132 −10.10637 −10.00049 −9.979903 −9.870707

2 −9.992303 −9.962013 −9.877676 −9.836474 −9.749338

3 −9.825294 −9.780129 −9.717344 −9.681945 −9.616911

4 −9.629218 −9.562721 −9.522087 −9.489935 −9.446787

5 −9.406616 −9.323131 −9.303259 −9.260836 −9.239781

6 −9.144249 −9.041435 −9.041435 −9.013282 −9.013282
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The results across the six types of model and the type of test (the ‘trace’

or ‘max’ statistics) are a little mixed concerning the number of cointegrat-

ing vectors (the top panel) but they do at least all suggest that the series

are cointegrated -- in other words, all specifications suggest that there is

at least one cointegrating vector. The following three panels all provide

information that could be used to determine the appropriate lag length

for the VAR. The values of the log-likelihood function could be used to

run tests of whether a VAR of a given order could be restricted to a VAR

of lower order; AIC and SBIC values are provided in the final two pan-

els. Fortunately, which ever model is used concerning whether intercepts

and/or trends are incorporated, AIC selects a VAR with 3 lags and SBIC a

VAR with 0 lags. Note that the difference in optimal model order could be

attributed to the relatively small sample size available with this monthly

sample compared with the number of observations that would have been

available were daily data used, implying that the penalty term in SBIC is

more severe on extra parameters in this case.

So, in order to see the estimated models, click View/Cointegration Test

and select Option 3 (Intercept (no trend) in CE and test VAR), changing

the ‘Lag Intervals’ to 1 3, and clicking OK. EViews produces a very large

quantity of output, as shown in the following table.5

Date: 09/06/07 Time: 13:20

Sample (adjusted): 1986M07 2007M04

Included observations: 250 after adjustments

Trend assumption: Linear deterministic trend

Series: USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M

Lags interval (in first differences): 1 to 3

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05

No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.185263 158.6048 95.75366 0.0000

At most 1∗ 0.140313 107.3823 69.81889 0.0000

At most 2∗ 0.136686 69.58558 47.85613 0.0001

At most 3∗ 0.082784 32.84123 29.79707 0.0216

At most 4 0.039342 11.23816 15.49471 0.1973

At most 5 0.004804 1.203994 3.841466 0.2725

Trace test indicates 4 cointegrating eqn(s) at the 0.05 level
∗denotes rejection of the hypothesis at the 0.05 level
∗∗MacKinnon-Haug-Michelis (1999) p-values

5 Estimated cointegrating vectors and loadings are provided by EViews for 2--5

cointegrating vectors as well, but these are not shown to preserve space.
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Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05

No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.185263 51.22249 40.07757 0.0019

At most 1∗ 0.140313 37.79673 33.87687 0.0161

At most 2∗ 0.136686 36.74434 27.58434 0.0025

At most 3∗ 0.082784 21.60308 21.13162 0.0429

At most 4 0.039342 10.03416 14.26460 0.2097

At most 5 0.004804 1.203994 3.841466 0.2725

Max-eigenvalue test indicates 4 cointegrating eqn(s) at the 0.05 level
∗denotes rejection of the hypothesis at the 0.05 level
∗∗MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegrating Coefficients (normalized by b′∗S11∗b = I):

USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M

2.775295 −6.449084 −14.79360 1.880919 −4.947415 21.32095

2.879835 0.532476 −0.398215 −7.247578 0.964089 3.797348

6.676821 −15.83409 1.422340 21.39804 −20.73661 6.834275

−7.351465 −9.144157 −3.832074 −6.082384 15.06649 11.51678

1.301354 0.034196 3.251778 8.469627 −8.131063 −4.915350

−2.919091 1.146874 0.663058 −1.465376 3.350202 −1.422377

Unrestricted Adjustment Coefficients (alpha):

D(USTB10Y) 0.030774 0.009498 0.038434 −0.042215 0.004975 0.012630

D(USTB1Y) 0.047301 −0.013791 0.037992 −0.050510 −0.012189 0.004599

D(USTB3M) 0.063889 −0.028097 0.004484 −0.031763 −0.003831 0.001249

D(USTB3Y) 0.042465 0.014245 0.035935 −0.062930 −0.006964 0.010137

D(USTB5Y) 0.039796 0.018413 0.041033 −0.058324 0.001649 0.010563

D(USTB6M) 0.042840 −0.029492 0.018767 −0.046406 −0.006399 0.002473

1 Cointegrating Equation(s): Log likelihood 1656.437

Normalized cointegrating coefficients (standard error in parentheses)

USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M

1.000000 −2.323747 −5.330461 0.677737 −1.782662 7.682407

(0.93269) (0.78256) (0.92410) (0.56663) (1.28762)
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Adjustment coefficients (standard error in parentheses)

D(USTB10Y) 0.085407

(0.04875)

D(USTB1Y) 0.131273

(0.04510)

D(USTB3M) 0.177312

(0.03501)

D(USTB3Y) 0.117854

(0.05468)

D(USTB5Y) 0.110446

(0.05369)

D(USTB6M) 0.118894

(0.03889)

2 Cointegrating Equation(s): Log likelihood 1675.335

Normalized cointegrating coefficients (standard error in parentheses)

USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M

1.000000 0.000000 −0.520964 −2.281223 0.178708 1.787640

(0.76929) (0.77005) (0.53441) (0.97474)

0.000000 1.000000 2.069717 −1.273357 0.844055 −2.536751

(0.43972) (0.44016) (0.30546) (0.55716)

Adjustment coefficients (standard error in parentheses)

D(USTB10Y) 0.112760 −0.193408

(0.07021) (0.11360)

D(USTB1Y) 0.091558 −0.312389

(0.06490) (0.10500)

D(USTB3M) 0.096396 −0.426988

(0.04991) (0.08076)

D(USTB3Y) 0.158877 −0.266278

(0.07871) (0.12735)

D(USTB5Y) 0.163472 −0.246844

(0.07722) (0.12494)

D(USTB6M) 0.033962 −0.291983

(0.05551) (0.08981)

Note: Table truncated.
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The first two panels of the table show the results for the λtrace and λmax

statistics respectively. The second column in each case presents the or-

dered eigenvalues, the third column the test statistic, the fourth column

the critical value and the final column the p-value. Examining the trace

test, if we look at the first row after the headers, the statistic of 158.6048

considerably exceeds the critical value (of 95) and so the null of no coin-

tegrating vectors is rejected. If we then move to the next row, the test

statistic (107.3823) again exceeds the critical value so that the null of at

most one cointegrating vector is also rejected. This continues, until we do

not reject the null hypothesis of at most four cointegrating vectors at the

5% level, and this is the conclusion. The max test, shown in the second

panel, confirms this result.

The unrestricted coefficient values are the estimated values of coeffi-

cients in the cointegrating vector, and these are presented in the third

panel. However, it is sometimes useful to normalise the coefficient values

to set the coefficient value on one of them to unity, as would be the case in

the cointegrating regression under the Engle--Granger approach. The nor-

malisation will be done by EViews with respect to the first variable given

in the variable list (i.e. which ever variable you listed first in the system

will by default be given a coefficient of 1 in the normalised cointegrating

vector). Panel 6 of the table presents the estimates if there were only one

cointegrating vector, which has been normalised so that the coefficient on

the ten-year bond yield is unity. The adjustment coefficients, or loadings

in each regression (i.e. the ‘amount of the cointegrating vector’ in each

equation), are also given in this panel. In the next panel, the same format

is used (i.e. the normalised cointegrating vectors are presented and then

the adjustment parameters) but under the assumption that there are two

cointegrating vectors, and this proceeds until the situation where there

are five cointegrating vectors, the maximum number possible for a system

containing six variables.

In order to see the whole VECM model, select Proc/Make Vector

Autoregression. . . . Starting on the default ‘Basics’ tab, in ‘VAR type’, se-

lect Vector Error Correction, and in the ‘Lag Intervals for D(Endogenous):’

box, type 1 3. Then click on the cointegration tab and leave the default

as 1 cointegrating vector for simplicity in the ‘Rank’ box and option 3 to

have an intercept but no trend in the cointegrating equation and the VAR.

When OK is clicked, the output for the entire VECM will be seen.

It is sometimes of interest to test hypotheses about either the parame-

ters in the cointegrating vector or their loadings in the VECM. To do this
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from the ‘Vector Error Correction Estimates’ screen, click the Estimate

button and click on the VEC Restrictions tab.

In EViews, restrictions concerning the cointegrating relationships em-

bodied in β are denoted by B(i,j), where B(i,j) represents the jth coefficient

in the ith cointegrating relationship (screenshot 7.4).

Screenshot 7.4

VAR specification for

Johansen tests

In this case, we are allowing for only one cointegrating relationship, so

suppose that we want to test the hypothesis that the three-month and six-

month yields do not appear in the cointegrating equation. We could test

this by specifying the restriction that their parameters are zero, which in

EViews terminology would be achieved by writing B(1,3) = 0, B(1,6) = 0 in

the ‘VEC Coefficient Restrictions’ box and clicking OK. EViews will then

show the value of the test statistic, followed by the restricted cointegrating

vector and the VECM. To preseve space, only the test statistic and restricted

cointegrating vector are shown in the following table.

In this case, there are two restrictions, so that the test statistic follows

a χ2 distribution with 2 degrees of freedom. In this case, the p-value for

the test is 0.001, and so the restrictions are not supported by the data and
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Vector Error Correction Estimates

Date: 09/06/07 Time: 14:04

Sample (adjusted): 1986M07 2007M04

Included observations: 250 after adjustments

Standard errors in ( ) & t-statistics in [ ]

Cointegration Restrictions:

B(1,3) = 0, B(1,6) = 0

Convergence achieved after 38 iterations.

Not all cointegrating vectors are identified

LR test for binding restrictions (rank = 1):

Chi-square(2) 13.50308

Probability 0.001169

Cointegrating Eq: CointEq1

USTB10Y(-1) −0.088263

USTB1Y(-1) −2.365941

USTB3M(-1) 0.000000

USTB3Y(-1) 5.381347

USTB5Y(-1) −3.149580

USTB6M(-1) 0.000000

C 0.923034

Note: Table truncated

we would conclude that the cointegrating relationship must also include

the short end of the yield curve.

When performing hypothesis tests concerning the adjustment coeffi-

cients (i.e. the loadings in each equation), the restrictions are denoted by

A(i, j), which is the coefficient on the cointegrating vector for the ith

variable in the jth cointegrating relation. For example, A(2, 1) = 0 would

test the null that the equation for the second variable in the order that

they were listed in the original specification (USTB1Y in this case) does

not include the first cointegrating vector, and so on. Examining some

restrictions of this type is left as an exercise.

Key concepts
The key terms to be able to define and explain from this chapter are

● non-stationary ● explosive process

● unit root ● spurious regression

● augmented Dickey--Fuller test ● cointegration

● error correction model ● Engle--Granger 2-step approach

● Johansen technique ● vector error correction model

● eigenvalues
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Review questions

1. (a) What kinds of variables are likely to be non-stationary? How can

such variables be made stationary?

(b) Why is it in general important to test for non-stationarity in time

series data before attempting to build an empirical model?

(c) Define the following terms and describe the processes that they

represent

(i) Weak stationarity

(ii) Strict stationarity

(iii) Deterministic trend

(iv) Stochastic trend.

2. A researcher wants to test the order of integration of some time series

data. He decides to use the DF test. He estimates a regression of the

form

�yt = μ + ψyt−1 + ut

and obtains the estimate ψ̂ = −0.02 with standard error = 0.31.

(a) What are the null and alternative hypotheses for this test?

(b) Given the data, and a critical value of −2.88, perform the test.

(c) What is the conclusion from this test and what should be the next

step?

(d) Why is it not valid to compare the estimated test statistic with the

corresponding critical value from a t-distribution, even though the test

statistic takes the form of the usual t-ratio?

3. Using the same regression as for question 2, but on a different set of

data, the researcher now obtains the estimate ψ̂ = −0.52 with standard

error = 0.16.

(a) Perform the test.

(b) What is the conclusion, and what should be the next step?

(c) Another researcher suggests that there may be a problem with this

methodology since it assumes that the disturbances (ut ) are white

noise. Suggest a possible source of difficulty and how the researcher

might in practice get around it.

4. (a) Consider a series of values for the spot and futures prices of a given

commodity. In the context of these series, explain the concept of

cointegration. Discuss how a researcher might test for cointegration

between the variables using the Engle–Granger approach. Explain

also the steps involved in the formulation of an error correction

model.
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(b) Give a further example from finance where cointegration between a

set of variables may be expected. Explain, by reference to the

implication of non-cointegration, why cointegration between the

series might be expected.

5. (a) Briefly outline Johansen’s methodology for testing for cointegration

between a set of variables in the context of a VAR.

(b) A researcher uses the Johansen procedure and obtains the following

test statistics (and critical values):

r λmax 95% critical value

0 38.962 33.178

1 29.148 27.169

2 16.304 20.278

3 8.861 14.036

4 1.994 3.962

Determine the number of cointegrating vectors.

(c) ‘If two series are cointegrated, it is not possible to make inferences

regarding the cointegrating relationship using the Engle–Granger

technique since the residuals from the cointegrating regression are

likely to be autocorrelated.’ How does Johansen circumvent this

problem to test hypotheses about the cointegrating relationship?

(d) Give one or more examples from the academic finance literature of

where the Johansen systems technique has been employed. What

were the main results and conclusions of this research?

(e) Compare the Johansen maximal eigenvalue test with the test based

on the trace statistic. State clearly the null and alternative

hypotheses in each case.

6. (a) Suppose that a researcher has a set of three variables,

yt (t = 1, . . . , T ), i.e. yt denotes a p-variate, or p × 1 vector, that she

wishes to test for the existence of cointegrating relationships using

the Johansen procedure.

What is the implication of finding that the rank of the appropriate

matrix takes on a value of

(i) 0 (ii) 1 (iii) 2 (iv) 3?

(b) The researcher obtains results for the Johansen test using the

variables outlined in part (a) as follows:

r λmax 5% critical value

0 38.65 30.26

1 26.91 23.84

2 10.67 17.72

3 8.55 10.71
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Determine the number of cointegrating vectors, explaining your

answer.

7. Compare and contrast the Engle–Granger and Johansen methodologies

for testing for cointegration and modelling cointegrated systems. Which,

in your view, represents the superior approach and why?

8. In EViews, open the ‘currencies.wf1’ file that will be discussed in detail

in the following chapter. Determine whether the exchange rate series (in

their raw levels forms) are non-stationary. If that is the case, test for

cointegration between them using both the Engle–Granger and Johansen

approaches. Would you have expected the series to cointegrate? Why or

why not?



8
Modelling volatility and correlation

Learning Outcomes
In this chapter, you will learn how to

● Discuss the features of data that motivate the use of GARCH
models

● Explain how conditional volatility models are estimated

● Test for ‘ARCH-effects’ in time series data

● Produce forecasts from GARCH models

● Contrast various models from the GARCH family

● Discuss the three hypothesis testing procedures available under
maximum likelihood estimation

● Construct multivariate conditional volatility models and
compare between alternative specifications

● Estimate univariate and multivariate GARCH models in EViews

8.1 Motivations: an excursion into non-linearity land

All of the models that have been discussed in chapters 2--7 of this book

have been linear in nature -- that is, the model is linear in the parameters,

so that there is one parameter multiplied by each variable in the model.

For example, a structural model could be something like

y = β1 + β2x2 + β3x3 + β4x4 + u (8.1)

or more compactly y = Xβ + u. It was additionally assumed that ut ∼
N(0, σ 2).

The linear paradigm as described above is a useful one. The properties

of linear estimators are very well researched and very well understood.

Many models that appear, prima facie, to be non-linear, can be made linear

379



380 Introductory Econometrics for Finance

by taking logarithms or some other suitable transformation. However, it

is likely that many relationships in finance are intrinsically non-linear.

As Campbell, Lo and MacKinlay (1997) state, the payoffs to options are

non-linear in some of the input variables, and investors’ willingness to

trade off returns and risks are also non-linear. These observations provide

clear motivations for consideration of non-linear models in a variety of

circumstances in order to capture better the relevant features of the data.

Linear structural (and time series) models such as (8.1) are also unable

to explain a number of important features common to much financial

data, including:

● Leptokurtosis -- that is, the tendency for financial asset returns to have

distributions that exhibit fat tails and excess peakedness at the mean.

● Volatility clustering or volatility pooling -- the tendency for volatility in

financial markets to appear in bunches. Thus large returns (of either

sign) are expected to follow large returns, and small returns (of

either sign) to follow small returns. A plausible explanation for this

phenomenon, which seems to be an almost universal feature of asset

return series in finance, is that the information arrivals which drive

price changes themselves occur in bunches rather than being evenly

spaced over time.

● Leverage effects -- the tendency for volatility to rise more following a large

price fall than following a price rise of the same magnitude.

Campbell, Lo and MacKinlay (1997) broadly define a non-linear data gen-

erating process as one where the current value of the series is related

non-linearly to current and previous values of the error term

yt = f (ut , ut−1, ut−2, . . .) (8.2)

where ut is an iid error term and f is a non-linear function. According to

Campbell, Lo and MacKinlay, a more workable and slightly more specific

definition of a non-linear model is given by the equation

yt = g(ut−1, ut−2, . . .) + ut σ 2(ut−1, ut−2, . . .) (8.3)

where g is a function of past error terms only, and σ 2 can be interpreted

as a variance term, since it is multiplied by the current value of the error.

Campbell, Lo and MacKinlay usefully characterise models with non-linear

g(•) as being non-linear in mean, while those with non-linear σ (•)2 are

characterised as being non-linear in variance.

Models can be linear in mean and variance (e.g. the CLRM, ARMA mod-

els) or linear in mean, but non-linear in variance (e.g. GARCH models).
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Models could also be classified as non-linear in mean but linear in variance

(e.g. bicorrelations models, a simple example of which is of the following

form (see Brooks and Hinich, 1999))

yt = α0 + α1 yt−1 yt−2 + ut (8.4)

Finally, models can be non-linear in both mean and variance (e.g. the

hybrid threshold model with GARCH errors employed by Brooks, 2001).

8.1.1 Types of non-linear models

There are an infinite number of different types of non-linear model. How-

ever, only a small number of non-linear models have been found to be

useful for modelling financial data. The most popular non-linear finan-

cial models are the ARCH or GARCH models used for modelling and fore-

casting volatility, and switching models, which allow the behaviour of a

series to follow different processes at different points in time. Models for

volatility and correlation will be discussed in this chapter, with switching

models being covered in chapter 9.

8.1.2 Testing for non-linearity

How can it be determined whether a non-linear model may potentially be

appropriate for the data? The answer to this question should come at least

in part from financial theory: a non-linear model should be used where

financial theory suggests that the relationship between variables should

be such as to require a non-linear model. But the linear versus non-linear

choice may also be made partly on statistical grounds -- deciding whether

a linear specification is sufficient to describe all of the most important

features of the data at hand.

So what tools are available to detect non-linear behaviour in financial

time series? Unfortunately, ‘traditional’ tools of time series analysis (such

as estimates of the autocorrelation or partial autocorrelation function, or

‘spectral analysis’, which involves looking at the data in the frequency

domain) are likely to be of little use. Such tools may find no evidence of

linear structure in the data, but this would not necessarily imply that the

same observations are independent of one another.

However, there are a number of tests for non-linear patterns in time

series that are available to the researcher. These tests can broadly be split

into two types: general tests and specific tests. General tests, also some-

times called ‘portmanteau’ tests, are usually designed to detect many de-

partures from randomness in data. The implication is that such tests will
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detect a variety of non-linear structures in data, although these tests are

unlikely to tell the researcher which type of non-linearity is present! Per-

haps the simplest general test for non-linearity is Ramsey’s RESET test

discussed in chapter 4, although there are many other popular tests avail-

able. One of the most widely used tests is known as the BDS test (see Brock

et al., 1996) named after the three authors who first developed it. BDS is

a pure hypothesis test. That is, it has as its null hypothesis that the data

are pure noise (completely random), and it has been argued to have power

to detect a variety of departures from randomness -- linear or non-linear

stochastic processes, deterministic chaos, etc. (see Brock et al., 1991). The

BDS test follows a standard normal distribution under the null hypothe-

sis. The details of this test, and others, are technical and beyond the scope

of this book, although computer code for BDS estimation is now widely

available free of charge on the Internet.

As well as applying the BDS test to raw data in an attempt to ‘see if

there is anything there’, another suggested use of the test is as a model

diagnostic. The idea is that a proposed model (e.g. a linear model, GARCH,

or some other non-linear model) is estimated, and the test applied to the

(standardised) residuals in order to ‘see what is left’. If the proposed model

is adequate, the standardised residuals should be white noise, while if the

postulated model is insufficient to capture all of the relevant features of

the data, the BDS test statistic for the standardised residuals will be statis-

tically significant. This is an excellent idea in theory, but has difficulties in

practice. First, if the postulated model is a non-linear one (such as GARCH),

the asymptotic distribution of the test statistic will be altered, so that it

will no longer follow a normal distribution. This requires new critical val-

ues to be constructed via simulation for every type of non-linear model

whose residuals are to be tested. More seriously, if a non-linear model is

fitted to the data, any remaining structure is typically garbled, resulting

in the test either being unable to detect additional structure present in

the data (see Brooks and Henry, 2000) or selecting as adequate a model

which is not even in the correct class for that data generating process (see

Brooks and Heravi, 1999).

The BDS test is available in EViews. To run it on a given series, simply

open the series to be tested (which may be a set of raw data or residuals

from an estimated model) so that it appears as a spreadsheet. Then se-

lect the View menu and BDS Independence Test . . . . You will then be

offered various options. Further details are given in the EViews User’s

Guide.

Other popular tests for non-linear structure in time series data include

the bispectrum test due to Hinich (1982), the bicorrelation test (see Hsieh,
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1993; Hinich, 1996; or Brooks and Hinich, 1999 for its multivariate gener-

alisation).

Most applications of the above tests conclude that there is non-linear

dependence in financial asset returns series, but that the dependence

is best characterised by a GARCH-type process (see Hinich and Patterson,

1985; Baillie and Bollerslev, 1989; Brooks, 1996; and the references therein

for applications of non-linearity tests to financial data).

Specific tests, on the other hand, are usually designed to have power

to find specific types of non-linear structure. Specific tests are unlikely to

detect other forms of non-linearities in the data, but their results will by

definition offer a class of models that should be relevant for the data at

hand. Examples of specific tests will be offered later in this and subsequent

chapters.

8.2 Models for volatility

Modelling and forecasting stock market volatility has been the subject of

vast empirical and theoretical investigation over the past decade or so

by academics and practitioners alike. There are a number of motivations

for this line of inquiry. Arguably, volatility is one of the most important

concepts in the whole of finance. Volatility, as measured by the standard

deviation or variance of returns, is often used as a crude measure of

the total risk of financial assets. Many value-at-risk models for measuring

market risk require the estimation or forecast of a volatility parameter.

The volatility of stock market prices also enters directly into the Black--

Scholes formula for deriving the prices of traded options.

The next few sections will discuss various models that are appropriate

to capture the stylised features of volatility, discussed below, that have

been observed in the literature.

8.3 Historical volatility

The simplest model for volatility is the historical estimate. Historical

volatility simply involves calculating the variance (or standard deviation)

of returns in the usual way over some historical period, and this then

becomes the volatility forecast for all future periods. The historical aver-

age variance (or standard deviation) was traditionally used as the volatil-

ity input to options pricing models, although there is a growing body

of evidence suggesting that the use of volatility predicted from more
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sophisticated time series models will lead to more accurate option val-

uations (see, for example, Akgiray, 1989; or Chu and Freund, 1996). Histor-

ical volatility is still useful as a benchmark for comparing the forecasting

ability of more complex time models.

8.4 Implied volatility models

All pricing models for financial options require a volatility estimate or

forecast as an input. Given the price of a traded option obtained from

transactions data, it is possible to determine the volatility forecast over

the lifetime of the option implied by the option’s valuation. For example,

if the standard Black--Scholes model is used, the option price, the time

to maturity, a risk-free rate of interest, the strike price and the current

value of the underlying asset, are all either specified in the details of the

options contracts or are available from market data. Therefore, given all

of these quantities, it is possible to use a numerical procedure, such as the

method of bisections or Newton--Raphson to derive the volatility implied

by the option (see Watsham and Parramore, 2004). This implied volatility

is the market’s forecast of the volatility of underlying asset returns over

the lifetime of the option.

8.5 Exponentially weighted moving average models

The exponentially weighted moving average (EWMA) is essentially a sim-

ple extension of the historical average volatility measure, which allows

more recent observations to have a stronger impact on the forecast of

volatility than older data points. Under an EWMA specification, the latest

observation carries the largest weight, and weights associated with previ-

ous observations decline exponentially over time. This approach has two

advantages over the simple historical model. First, volatility is in practice

likely to be affected more by recent events, which carry more weight,

than events further in the past. Second, the effect on volatility of a sin-

gle given observation declines at an exponential rate as weights attached

to recent events fall. On the other hand, the simple historical approach

could lead to an abrupt change in volatility once the shock falls out of

the measurement sample. And if the shock is still included in a relatively

long measurement sample period, then an abnormally large observation

will imply that the forecast will remain at an artificially high level even if

the market is subsequently tranquil. The exponentially weighted moving
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average model can be expressed in several ways, e.g.

σ 2
t = (1 − λ)

∞∑
j=0

λ j (rt− j − r̄ )2 (8.5)

where σ 2
t is the estimate of the variance for period t , which also becomes

the forecast of future volatility for all periods, r̄ is the average return

estimated over the observations and λ is the ‘decay factor’, which de-

termines how much weight is given to recent versus older observations.

The decay factor could be estimated, but in many studies is set at 0.94

as recommended by RiskMetrics, producers of popular risk measurement

software. Note also that RiskMetrics and many academic papers assume

that the average return, r̄ , is zero. For data that is of daily frequency or

higher, this is not an unreasonable assumption, and is likely to lead to

negligible loss of accuracy since it will typically be very small. Obviously,

in practice, an infinite number of observations will not be available on

the series, so that the sum in (8.5) must be truncated at some fixed lag. As

with exponential smoothing models, the forecast from an EWMA model

for all prediction horizons is the most recent weighted average estimate.

It is worth noting two important limitations of EWMA models. First,

while there are several methods that could be used to compute the EWMA,

the crucial element in each case is to remember that when the infinite

sum in (8.5) is replaced with a finite sum of observable data, the weights

from the given expression will now sum to less than one. In the case of

small samples, this could make a large difference to the computed EWMA

and thus a correction may be necessary. Second, most time-series mod-

els, such as GARCH (see below), will have forecasts that tend towards the

unconditional variance of the series as the prediction horizon increases.

This is a good property for a volatility forecasting model to have, since

it is well known that volatility series are ‘mean-reverting’. This implies

that if they are currently at a high level relative to their historic average,

they will have a tendency to fall back towards their average level, while

if they are at a low level relative to their historic average, they will have

a tendency to rise back towards the average. This feature is accounted for

in GARCH volatility forecasting models, but not by EWMAs.

8.6 Autoregressive volatility models

Autoregressive volatility models are a relatively simple example from the

class of stochastic volatility specifications. The idea is that a time se-

ries of observations on some volatility proxy are obtained. The standard
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Box--Jenkins-type procedures for estimating autoregressive (or ARMA) mod-

els can then be applied to this series. If the quantity of interest in the study

is a daily volatility estimate, two natural proxies have been employed in

the literature: squared daily returns, or daily range estimators. Produc-

ing a series of daily squared returns trivially involves taking a column of

observed returns and squaring each observation. The squared return at

each point in time, t , then becomes the daily volatility estimate for day

t . A range estimator typically involves calculating the log of the ratio of

the highest observed price to the lowest observed price for trading day t ,
which then becomes the volatility estimate for day t

σ 2
t = log

(
hight

lowt

)
(8.6)

Given either the squared daily return or the range estimator, a standard

autoregressive model is estimated, with the coefficients βi estimated us-

ing OLS (or maximum likelihood -- see below). The forecasts are also pro-

duced in the usual fashion discussed in chapter 5 in the context of ARMA

models

σ 2
t = β0 +

p∑
j=1

β jσ
2
t− j + εt (8.7)

8.7 Autoregressive conditionally heteroscedastic (ARCH) models

One particular non-linear model in widespread usage in finance is known

as an ‘ARCH’ model (ARCH stands for ‘autoregressive conditionally het-

eroscedastic’). To see why this class of models is useful, recall that a typi-

cal structural model could be expressed by an equation of the form given

in (8.1) above with ut ∼ N(0, σ 2). The assumption of the CLRM that the

variance of the errors is constant is known as homoscedasticity (i.e. it is

assumed that var(ut ) = σ 2). If the variance of the errors is not constant,

this would be known as heteroscedasticity. As was explained in chapter 4,

if the errors are heteroscedastic, but assumed homoscedastic, an implica-

tion would be that standard error estimates could be wrong. It is unlikely

in the context of financial time series that the variance of the errors will

be constant over time, and hence it makes sense to consider a model that

does not assume that the variance is constant, and which describes how

the variance of the errors evolves.

Another important feature of many series of financial asset returns

that provides a motivation for the ARCH class of models, is known as

‘volatility clustering’ or ‘volatility pooling’. Volatility clustering describes
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the tendency of large changes in asset prices (of either sign) to follow

large changes and small changes (of either sign) to follow small changes.

In other words, the current level of volatility tends to be positively corre-

lated with its level during the immediately preceding periods. This phe-

nomenon is demonstrated in figure 8.1, which plots daily S&P500 returns

for January 1990--December 1999.

The important point to note from figure 8.1 is that volatility occurs in

bursts. There appears to have been a prolonged period of relative tranquil-

ity in the market during the mid-1990s, evidenced by only relatively small

positive and negative returns. On the other hand, during mid-1997 to late

1998, there was far more volatility, when many large positive and large

negative returns were observed during a short space of time. Abusing the

terminology slightly, it could be stated that ‘volatility is autocorrelated’.

How could this phenomenon, which is common to many series of finan-

cial asset returns, be parameterised (modelled)? One approach is to use

an ARCH model. To understand how the model works, a definition of the

conditional variance of a random variable, ut , is required. The distinction

between the conditional and unconditional variances of a random variable

is exactly the same as that of the conditional and unconditional mean.

The conditional variance of ut may be denoted σ 2
t , which is written as

σ 2
t = var(ut | ut−1, ut−2, . . .) = E[(ut − E(ut ))

2 | ut−1, ut−2, . . .] (8.8)

It is usually assumed that E(ut ) = 0, so

σ 2
t = var(ut | ut−1, ut−2, . . .) = E

[
u2

t |ut−1, ut−2, . . .
]

(8.9)

Equation (8.9) states that the conditional variance of a zero mean nor-

mally distributed random variable ut is equal to the conditional expected
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value of the square of ut . Under the ARCH model, the ‘autocorrelation in

volatility’ is modelled by allowing the conditional variance of the error

term, σ 2
t , to depend on the immediately previous value of the squared

error

σ 2
t = α0 + α1u2

t−1 (8.10)

The above model is known as an ARCH(1), since the conditional variance

depends on only one lagged squared error. Notice that (8.10) is only a par-

tial model, since nothing has been said yet about the conditional mean.

Under ARCH, the conditional mean equation (which describes how the

dependent variable, yt , varies over time) could take almost any form that

the researcher wishes. One example of a full model would be

yt = β1 + β2x2t + β3x3t + β4x4t + ut ut ∼ N
(
0, σ 2

t

)
(8.11)

σ 2
t = α0 + α1u2

t−1 (8.12)

The model given by (8.11) and (8.12) could easily be extended to the general

case where the error variance depends on q lags of squared errors, which

would be known as an ARCH(q) model:

σ 2
t = α0 + α1u2

t−1 + α2u2
t−2 + · · · + αqu2

t−q (8.13)

Instead of calling the conditional variance σ 2
t , in the literature it is often

called ht , so that the model would be written

yt = β1 + β2x2t + β3x3t + β4x4t + ut ut ∼ N(0, ht ) (8.14)

ht = α0 + α1u2
t−1 + α2u2

t−2 + · · · + αqu2
t−q (8.15)

The remainder of this chapter will use σ 2
t to denote the conditional vari-

ance at time t , except for computer instructions where ht will be used

since it is easier not to use Greek letters.

8.7.1 Another way of expressing ARCH models

For illustration, consider an ARCH(1). The model can be expressed in two

ways that look different but are in fact identical. The first is as given in

(8.11) and (8.12) above. The second way would be as follows

yt = β1 + β2x2t + β3x3t + β4x4t + ut (8.16)

ut = vtσt vt ∼ N(0, 1) (8.17)

σ 2
t = α0 + α1u2

t−1 (8.18)

The form of the model given in (8.11) and (8.12) is more commonly pre-

sented, although specifying the model as in (8.16)--(8.18) is required in
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order to use a GARCH process in a simulation study (see chapter 12). To

show that the two methods for expressing the model are equivalent, con-

sider that in (8.17), vt is normally distributed with zero mean and unit

variance, so that ut will also be normally distributed with zero mean and

variance σ 2
t .

8.7.2 Non-negativity constraints

Since ht is a conditional variance, its value must always be strictly posi-

tive; a negative variance at any point in time would be meaningless. The

variables on the RHS of the conditional variance equation are all squares

of lagged errors, and so by definition will not be negative. In order to

ensure that these always result in positive conditional variance estimates,

all of the coefficients in the conditional variance are usually required to

be non-negative. If one or more of the coefficients were to take on a neg-

ative value, then for a sufficiently large lagged squared innovation term

attached to that coefficient, the fitted value from the model for the con-

ditional variance could be negative. This would clearly be nonsensical. So,

for example, in the case of (8.18), the non-negativity condition would be

α0 ≥ 0 and α1 ≥ 0. More generally, for an ARCH(q) model, all coefficients

would be required to be non-negative: αi ≥ 0 ∀ i = 0, 1, 2, . . . , q . In fact,

this is a sufficient but not necessary condition for non-negativity of the

conditional variance (i.e. it is a slightly stronger condition than is actually

necessary).

8.7.3 Testing for ‘ARCH effects’

A test for determining whether ‘ARCH-effects’ are present in the residuals

of an estimated model may be conducted using the steps outlined in

box 8.1.

Thus, the test is one of a joint null hypothesis that all q lags of the

squared residuals have coefficient values that are not significantly differ-

ent from zero. If the value of the test statistic is greater than the critical

value from the χ2 distribution, then reject the null hypothesis. The test

can also be thought of as a test for autocorrelation in the squared residu-

als. As well as testing the residuals of an estimated model, the ARCH test

is frequently applied to raw returns data.

8.7.4 Testing for ‘ARCH effects’ in exchange rate returns using EViews

Before estimating a GARCH-type model, it is sensible first to compute the

Engle (1982) test for ARCH effects to make sure that this class of models is

appropriate for the data. This exercise (and the remaining exercises of this

chapter), will employ returns on the daily exchange rates where there are



390 Introductory Econometrics for Finance

Box 8.1 Testing for ‘ARCH effects’

(1) Run any postulated linear regression of the form given in the equation above, e.g.

yt = β1 + β2x2t + β3x3t + β4x4t + ut (8.19)

saving the residuals, ût .

(2) Square the residuals, and regress them on q own lags to test for ARCH of order q,

i.e. run the regression

û2
t = γ0 + γ1û2

t−1 + γ2û2
t−2 + · · · + γq û2

t−q + vt (8.20)

where vt is an error term.

Obtain R2 from this regression.

(3) The test statistic is defined as TR2 (the number of observations multiplied by the

coefficient of multiple correlation) from the last regression, and is distributed as a

χ 2(q).

(4) The null and alternative hypotheses are

H0 : γ1 = 0 and γ2 = 0 and γ3 = 0 and . . . and γq = 0

H1 : γ1 �= 0 or γ2 �= 0 or γ3 �= 0 or . . . or γq �= 0

1,827 observations. Models of this kind are inevitably more data intensive

than those based on simple linear regressions, and hence, everything else

being equal, they work better when the data are sampled daily rather

than at a lower frequency.

A test for the presence of ARCH in the residuals is calculated by regress-

ing the squared residuals on a constant and p lags, where p is set by the

user. As an example, assume that p is set to 5. The first step is to esti-

mate a linear model so that the residuals can be tested for ARCH. From

the main menu, select Quick and then select Estimate Equation. In the

Equation Specification Editor, input rgbp c ar(1) ma(1) which will estimate

an ARMA(1,1) for the pound-dollar returns.1 Select the Least Squares (NLA

and ARMA) procedure to estimate the model, using the whole sample

period and press the OK button (output not shown).

The next step is to click on View from the Equation Window and to

select Residual Tests and then Heteroskedasticity Tests . . . . In the ‘Test

type’ box, choose ARCH and the number of lags to include is 5, and press

OK. The output below shows the Engle test results.

1 Note that the (1,1) order has been chosen entirely arbitrarily at this stage. However, it is

important to give some thought to the type and order of model used even if it is not of

direct interest in the problem at hand (which will later be termed the ‘conditional

mean’ equation), since the variance is measured around the mean and therefore any

mis-specification in the mean is likely to lead to a mis-specified variance.
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Heteroskedasticity Test: ARCH

F-statistic 5.909063 Prob. F(5,1814) 0.0000

Obs*R-squared 29.16797 Prob. Chi-Square(5) 0.0000

Test Equation:

Dependent Variable: RESID∧2
Method: Least Squares

Date: 09/06/07 Time: 14:41

Sample (adjusted): 7/14/2002 7/07/2007

Included observations: 1820 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 0.154689 0.011369 13.60633 0.0000

RESID∧2(-1) 0.118068 0.023475 5.029627 0.0000

RESID∧2(-2) −0.006579 0.023625 −0.278463 0.7807

RESID∧2(-3) 0.029000 0.023617 1.227920 0.2196

RESID∧2(-4) −0.032744 0.023623 −1.386086 0.1659

RESID∧2(-5) −0.020316 0.023438 −0.866798 0.3862

R-squared 0.016026 Mean dependent var 0.169496

Adjusted R-squared 0.013314 S.D. dependent var 0.344448

S.E. of regression 0.342147 Akaike info criterion 0.696140

Sum squared resid 212.3554 Schwarz criterion 0.714293

Log likelihood −627.4872 Hannan-Quinn criter. 0.702837

F-statistic 5.909063 Durbin-Watson stat 1.995904

Prob(F-statistic) 0.000020

Both the F -version and the LM-statistic are very significant, suggesting the

presence of ARCH in the pound--dollar returns.

8.7.5 Limitations of ARCH(q) models

ARCH provided a framework for the analysis and development of time

series models of volatility. However, ARCH models themselves have rarely

been used in the last decade or more, since they bring with them a num-

ber of difficulties:

● How should the value of q, the number of lags of the squared residual

in the model, be decided? One approach to this problem would be the

use of a likelihood ratio test, discussed later in this chapter, although

there is no clearly best approach.

● The value of q, the number of lags of the squared error that are required

to capture all of the dependence in the conditional variance, might

be very large. This would result in a large conditional variance model

that was not parsimonious. Engle (1982) circumvented this problem by
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specifying an arbitrary linearly declining lag length on an ARCH(4)

σ 2
t = γ0 + γ1

(
0.4û2

t−1 + 0.3û2
t−2 + 0.2û2

t−3 + 0.1û2
t−4

)
(8.21)

such that only two parameters are required in the conditional variance

equation (γ0 and γ1), rather than the five which would be required for

an unrestricted ARCH(4).

● Non-negativity constraints might be violated. Everything else equal, the more

parameters there are in the conditional variance equation, the more

likely it is that one or more of them will have negative estimated values.

A natural extension of an ARCH(q) model which overcomes some of these

problems is a GARCH model. In contrast with ARCH, GARCH models are

extremely widely employed in practice.

8.8 Generalised ARCH (GARCH) models

The GARCH model was developed independently by Bollerslev (1986) and

Taylor (1986). The GARCH model allows the conditional variance to be de-

pendent upon previous own lags, so that the conditional variance equa-

tion in the simplest case is now

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.22)

This is a GARCH(1,1) model. σ 2
t is known as the conditional variance since

it is a one-period ahead estimate for the variance calculated based on any

past information thought relevant. Using the GARCH model it is possible

to interpret the current fitted variance, ht , as a weighted function of a

long-term average value (dependent on α0), information about volatility

during the previous period (α1u2
t−1) and the fitted variance from the model

during the previous period (βσt−1
2). Note that the GARCH model can be

expressed in a form that shows that it is effectively an ARMA model for

the conditional variance. To see this, consider that the squared return at

time t relative to the conditional variance is given by

εt = u2
t − σ 2

t (8.23)

or

σ 2
t = u2

t − εt (8.24)

Using the latter expression to substitute in for the conditional variance

in (8.22)

u2
t − εt = α0 + α1u2

t−1 + β
(
u2

t−1 − εt−1

)
(8.25)



Modelling volatility and correlation 393

Rearranging

u2
t = α0 + α1u2

t−1 + βu2
t−1 − βεt−1 + εt (8.26)

so that

u2
t = α0 + (α1 + β)u2

t−1 − βεt−1 + εt (8.27)

This final expression is an ARMA(1,1) process for the squared errors.

Why is GARCH a better and therefore a far more widely used model than

ARCH? The answer is that the former is more parsimonious, and avoids

overfitting. Consequently, the model is less likely to breach non-negativity

constraints. In order to illustrate why the model is parsimonious, first take

the conditional variance equation in the GARCH(1,1) case, subtract 1 from

each of the time subscripts of the conditional variance equation in (8.22),

so that the following expression would be obtained

σ 2
t−1 = α0 + α1u2

t−2 + βσ 2
t−2 (8.28)

and subtracting 1 from each of the time subscripts again

σ 2
t−2 = α0 + α1u2

t−3 + βσ 2
t−3 (8.29)

Substituting into (8.22) for σ 2
t−1

σ 2
t = α0 + α1u2

t−1 + β
(
α0 + α1u2

t−2 + βσ 2
t−2

)
(8.30)

σ 2
t = α0 + α1u2

t−1 + α0β + α1βu2
t−2 + β2σ 2

t−2 (8.31)

Now substituting into (8.31) for σ 2
t−2

σ 2
t = α0 + α1u2

t−1 + α0β + α1βu2
t−2 + β2

(
α0 + α1u2

t−3 + βσ 2
t−3

)
(8.32)

σ 2
t = α0 + α1u2

t−1 + α0β + α1βu2
t−2 + α0β

2 + α1β
2u2

t−3 + β3σ 2
t−3 (8.33)

σ 2
t = α0(1 + β + β2) + α1u2

t−1(1 + βL + β2L2) + β3σ 2
t−3 (8.34)

An infinite number of successive substitutions of this kind would yield

σ 2
t = α0(1 + β + β2 + · · ·) + α1u2

t−1(1 + βL + β2L2 + · · ·) + β∞σ 2
0 (8.35)

The first expression on the RHS of (8.35) is simply a constant, and as the

number of observations tends to infinity, β∞ will tend to zero. Hence, the

GARCH(1,1) model can be written as

σ 2
t = γ0 + α1u2

t−1(1 + βL + β2L2 + · · ·) (8.36)

= γ0 + γ1u2
t−1 + γ2u2

t−2 + · · · , (8.37)

which is a restricted infinite order ARCH model. Thus the GARCH(1,1)

model, containing only three parameters in the conditional variance
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equation, is a very parsimonious model, that allows an infinite number

of past squared errors to influence the current conditional variance.

The GARCH(1,1) model can be extended to a GARCH(p,q) formulation,

where the current conditional variance is parameterised to depend upon

q lags of the squared error and p lags of the conditional variance

σ 2
t = α0 + α1u2

t−1 + α2u2
t−2 + · · · + αqu2

t−q + β1σ
2
t−1

+ β2σ
2
t−2 + · · · + βpσ

2
t−p (8.38)

σ 2
t = α0 +

q∑
i=1

αi u
2
t−i +

p∑
j=1

β jσ
2
t− j (8.39)

But in general a GARCH(1,1) model will be sufficient to capture the volatil-

ity clustering in the data, and rarely is any higher order model estimated

or even entertained in the academic finance literature.

8.8.1 The unconditional variance under a GARCH specification

The conditional variance is changing, but the unconditional variance of

ut is constant and given by

var(ut ) = α0

1 − (α1 + β)
(8.40)

so long as α1 + β < 1. For α1 + β ≥ 1, the unconditional variance of ut

is not defined, and this would be termed ‘non-stationarity in variance’.

α1 + β = 1 would be known as a ‘unit root in variance’, also termed ‘In-

tegrated GARCH’ or IGARCH. Non-stationarity in variance does not have a

strong theoretical motivation for its existence, as would be the case for

non-stationarity in the mean (e.g. of a price series). Furthermore, a GARCH

model whose coefficients imply non-stationarity in variance would have

some highly undesirable properties. One illustration of these relates to the

forecasts of variance made from such models. For stationary GARCH mod-

els, conditional variance forecasts converge upon the long-term average

value of the variance as the prediction horizon increases (see below). For

IGARCH processes, this convergence will not happen, while for α1 + β > 1,

the conditional variance forecast will tend to infinity as the forecast hori-

zon increases!

8.9 Estimation of ARCH/GARCH models

Since the model is no longer of the usual linear form, OLS cannot be used

for GARCH model estimation. There are a variety of reasons for this, but

the simplest and most fundamental is that OLS minimises the residual
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Box 8.2 Estimating an ARCH or GARCH model

(1) Specify the appropriate equations for the mean and the variance – e.g. an

AR(1)-GARCH(1,1) model

yt = μ + φyt−1 + ut , ut ∼ N
(

0, σ 2
t

)
(8.41)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.42)

(2) Specify the log-likelihood function (LLF) to maximise under a normality assumption

for the disturbances

L = − T

2
log(2π ) − 1

2

T∑
t=1

log
(
σ 2

t

) −1

2

T∑
t=1

(yt − μ − φyt−1)2/σ 2
t (8.43)

(3) The computer will maximise the function and generate parameter values that

maximise the LLF and will construct their standard errors.

sum of squares. The RSS depends only on the parameters in the condi-

tional mean equation, and not the conditional variance, and hence RSS

minimisation is no longer an appropriate objective.

In order to estimate models from the GARCH family, another technique

known as maximum likelihood is employed. Essentially, the method works

by finding the most likely values of the parameters given the actual data.

More specifically, a log-likelihood function is formed and the values of the

parameters that maximise it are sought. Maximum likelihood estimation

can be employed to find parameter values for both linear and non-linear

models. The steps involved in actually estimating an ARCH or GARCH

model are shown in box 8.2.

The following section will elaborate on points 2 and 3 above, explaining

how the LLF is derived.

8.9.1 Parameter estimation using maximum likelihood

As stated above, under maximum likelihood estimation, a set of parame-

ter values are chosen that are most likely to have produced the observed

data. This is done by first forming a likelihood function, denoted LF. LF will

be a multiplicative function of the actual data, which will consequently

be difficult to maximise with respect to the parameters. Therefore, its log-

arithm is taken in order to turn LF into an additive function of the sample

data, i.e. the LLF. A derivation of the maximum likelihood (ML) estimator

in the context of the simple bivariate regression model with homoscedas-

ticity is given in the appendix to this chapter. Essentially, deriving the ML

estimators involves differentiating the LLF with respect to the parameters.

But how does this help in estimating heteroscedastic models? How can the
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method outlined in the appendix for homoscedastic models be modified

for application to GARCH model estimation?

In the context of conditional heteroscedasticity models, the model is

yt = μ + φyt−1 + ut , ut ∼ N(0, σ 2
t ), so that the variance of the errors has

been modified from being assumed constant, σ 2, to being time-varying,

σ 2
t , with the equation for the conditional variance as previously. The LLF

relevant for a GARCH model can be constructed in the same way as for

the homoscedastic case by replacing

T

2
log σ 2

with the equivalent for time-varying variance

1

2

T∑
t=1

log σ 2
t

and replacing σ 2 in the denominator of the last part of the expression

with σ 2
t (see the appendix to this chapter). Derivation of this result from

first principles is beyond the scope of this text, but the log-likelihood

function for the above model with time-varying conditional variance and

normally distributed errors is given by (8.43) in box 8.2.

Intuitively, maximising the LLF involves jointly minimising

T∑
t=1

log σ 2
t

and

T∑
t=1

(yt − μ − φyt−1)2

σ 2
t

(since these terms appear preceded with a negative sign in the LLF, and

−T

2
log(2π )

is just a constant with respect to the parameters). Minimising these terms

jointly also implies minimising the error variance, as described in chap-

ter 3. Unfortunately, maximising the LLF for a model with time-varying

variances is trickier than in the homoscedastic case. Analytical derivatives

of the LLF in (8.43) with respect to the parameters have been developed,

but only in the context of the simplest examples of GARCH specifications.

Moreover, the resulting formulae are complex, so a numerical procedure

is often used instead to maximise the log-likelihood function.

Essentially, all methods work by ‘searching’ over the parameter-space

until the values of the parameters that maximise the log-likelihood
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A C
B

l(  )

Figure 8.2

The problem of local

optima in maximum

likelihood

estimation

function are found. EViews employs an iterative technique for maximising

the LLF. This means that, given a set of initial guesses for the parameter

estimates, these parameter values are updated at each iteration until the

program determines that an optimum has been reached. If the LLF has

only one maximum with respect to the parameter values, any optimisa-

tion method should be able to find it -- although some methods will take

longer than others. A detailed presentation of the various methods avail-

able is beyond the scope of this book. However, as is often the case with

non-linear models such as GARCH, the LLF can have many local maxima,

so that different algorithms could find different local maxima of the LLF.

Hence readers should be warned that different optimisation procedures

could lead to different coefficient estimates and especially different esti-

mates of the standard errors (see Brooks, Burke and Persand, 2001 or 2003

for details). In such instances, a good set of initial parameter guesses is

essential.

Local optima or multimodalities in the likelihood surface present po-

tentially serious drawbacks with the maximum likelihood approach to

estimating the parameters of a GARCH model, as shown in figure 8.2.

Suppose that the model contains only one parameter, θ , so that the log-

likelihood function is to be maximised with respect to this one parameter.

In figure 8.2, the value of the LLF for each value of θ is denoted l(θ ).

Clearly, l(θ ) reaches a global maximum when θ = C , and a local maximum

when θ = A. This demonstrates the importance of good initial guesses for

the parameters. Any initial guesses to the left of B are likely to lead

to the selection of A rather than C . The situation is likely to be even

worse in practice, since the log-likelihood function will be maximised

with respect to several parameters, rather than one, and there could be
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Box 8.3 Using maximum likelihood estimation in practice

(1) Set up the LLF.

(2) Use regression to get initial estimates for the mean parameters.

(3) Choose some initial guesses for the conditional variance parameters. In most

software packages, the default initial values for the conditional variance

parameters would be zero. This is unfortunate since zero parameter values often

yield a local maximum of the likelihood function. So if possible, set plausible initial

values away from zero.

(4) Specify a convergence criterion – either by criterion or by value. When ‘by criterion’

is selected, the package will continue to search for ‘better’ parameter values that

give a higher value of the LLF until the change in the value of the LLF between

iterations is less than the specified convergence criterion. Choosing ‘by value’ will

lead to the software searching until the change in the coefficient estimates are

small enough. The default convergence criterion for EViews is 0.001, which means

that convergence is achieved and the program will stop searching if the biggest

percentage change in any of the coefficient estimates for the most recent iteration

is smaller than 0.1%.

many local optima. Another possibility that would make optimisation

difficult is when the LLF is flat around the maximum. So, for example, if

the peak corresponding to C in figure 8.2, were flat rather than sharp, a

range of values for θ could lead to very similar values for the LLF, making

it difficult to choose between them.

So, to explain again in more detail, the optimisation is done in the way

shown in box 8.3.

The optimisation methods employed by EViews are based on the deter-

mination of the first and second derivatives of the log-likelihood function

with respect to the parameter values at each iteration, known as the gra-

dient and Hessian (the matrix of second derivatives of the LLF w.r.t the

parameters), respectively. An algorithm for optimisation due to Berndt,

Hall, Hall and Hausman (1974), known as BHHH, is available in EViews.

BHHH employs only first derivatives (calculated numerically rather than

analytically) and approximations to the second derivatives are calculated.

Not calculating the actual Hessian at each iteration at each time step in-

creases computational speed, but the approximation may be poor when

the LLF is a long way from its maximum value, requiring more iterations

to reach the optimum. The Marquardt algorithm, available in EViews, is a

modification of BHHH (both of which are variants on the Gauss--Newton

method) that incorporates a ‘correction’, the effect of which is to push the

coefficient estimates more quickly to their optimal values. All of these op-

timisation methods are described in detail in Press et al. (1992).
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8.9.2 Non-normality and maximum likelihood

Recall that the conditional normality assumption for ut is essential in

specifying the likelihood function. It is possible to test for non-normality

using the following representation

ut = vtσt,vt ∼ N
(
0, 1

)
(8.44)

σt =
√

α0 + α1u2
t−1 + βσ 2

t−1 (8.45)

Note that one would not expect ut to be normally distributed -- it is a

N(0, σ 2
t ) disturbance term from the regression model, which will imply it

is likely to have fat tails. A plausible method to test for normality would

be to construct the statistic

vt = ut

σt
(8.46)

which would be the model disturbance at each point in time t divided

by the conditional standard deviation at that point in time. Thus, it is

the vt that are assumed to be normally distributed, not ut . The sample

counterpart would be

v̂t = ût

σ̂t
(8.47)

which is known as a standardised residual. Whether the v̂t are normal can

be examined using any standard normality test, such as the Bera--Jarque.

Typically, v̂t are still found to be leptokurtic, although less so than the ût .

The upshot is that the GARCH model is able to capture some, although not

all, of the leptokurtosis in the unconditional distribution of asset returns.

Is it a problem if v̂t are not normally distributed? Well, the answer is

‘not really’. Even if the conditional normality assumption does not hold,

the parameter estimates will still be consistent if the equations for the

mean and variance are correctly specified. However, in the context of non-

normality, the usual standard error estimates will be inappropriate, and

a different variance--covariance matrix estimator that is robust to non-

normality, due to Bollerslev and Wooldridge (1992), should be used. This

procedure (i.e. maximum likelihood with Bollerslev--Wooldridge standard

errors) is known as quasi-maximum likelihood, or QML.

8.9.3 Estimating GARCH models in EViews

To estimate a GARCH-type model, open the equation specification di-

alog by selecting Quick/Estimate Equation or by selecting Object/New

Object/Equation . . . . Select ARCH from the ‘Estimation Settings’ selection

box. The window in screenshot 8.1 will open.
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Screenshot 8.1

Estimating a

GARCH-type model

It is necessary to specify both the mean and the variance equations, as

well as the estimation technique and sample.

The mean equation

The specification of the mean equation should be entered in the depen-

dent variable edit box. Enter the specification by listing the dependent

variable followed by the regressors. The constant term ‘C’ should also be

included. If your specification includes an ARCH-M term (see later in this

chapter), you should click on the appropriate button in the upper RHS

of the dialog box to select the conditional standard deviation, the condi-

tional variance, or the log of the conditional variance.

The variance equation

The edit box labelled ‘Variance regressors’ is where variables that are to be

included in the variance specification should be listed. Note that EViews

will always include a constant in the conditional variance, so that it is

not necessary to add ‘C’ to the variance regressor list. Similarly, it is not
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necessary to include the ARCH or GARCH terms in this box as they will be

dealt with in other parts of the dialog box. Instead, enter here any exoge-

nous variables or dummies that you wish to include in the conditional

variance equation, or (as is usually the case), just leave this box blank.

Variance and distribution specification

Under the ‘Variance and distribution Specification’ label, choose the num-

ber of ARCH and GARCH terms. The default is to estimate with one ARCH

and one GARCH term (i.e. one lag of the squared errors and one lag of

the conditional variance, respectively). To estimate the standard GARCH

model, leave the default ‘GARCH/TARCH’. The other entries in this box

describe more complicated variants of the standard GARCH specification,

which are described in later sections of this chapter.

Estimation options

EViews provides a number of optional estimation settings. Clicking on the

Options tab gives the options in screenshot 8.2 to be filled out as required.

Screenshot 8.2

GARCH model

estimation options
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The Heteroskedasticity Consistent Covariance option is used to compute

the quasi-maximum likelihood (QML) covariances and standard errors us-

ing the methods described by Bollerslev and Wooldridge (1992). This op-

tion should be used if you suspect that the residuals are not conditionally

normally distributed. Note that the parameter estimates will be (virtually)

unchanged if this option is selected; only the estimated covariance matrix

will be altered.

The log-likelihood functions for ARCH models are often not well behaved

so that convergence may not be achieved with the default estimation set-

tings. It is possible in EViews to select the iterative algorithm (Marquardt,

BHHH/Gauss Newton), to change starting values, to increase the maximum

number of iterations or to adjust the convergence criteria. For example,

if convergence is not achieved, or implausible parameter estimates are

obtained, it is sensible to re-do the estimation using a different set of

starting values and/or a different optimisation algorithm.

Once the model has been estimated, EViews provides a variety of

pieces of information and procedures for inference and diagnostic check-

ing. For example, the following options are available on the View

button:

● Actual, Fitted, Residual

The residuals are displayed in various forms, such as table, graphs and

standardised residuals.

● GARCH graph

This graph plots the one-step ahead standard deviation, σt , or the con-

ditional variance, σ 2
t for each observation in the sample.

● Covariance Matrix

● Coefficient Tests

● Residual Tests/Correlogram-Q statistics

● Residual Tests/Correlogram Squared Residuals

● Residual Tests/Histogram-Normality Test

● Residual Tests/ARCH LM Test.

ARCH model procedures

These options are all available by pressing the ‘Proc’ button following the

estimation of a GARCH-type model:

● Make Residual Series

● Make GARCH Variance Series

● Forecast.
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Estimating the GARCH(1,1) model for the yen--dollar (‘rjpy’) series using

the instructions as listed above, and the default settings elsewhere would

yield the results:

Dependent Variable: RJPY

Method: ML -- ARCH (Marquardt) -- Normal distribution

Date: 09/06/07 Time: 18:02

Sample (adjusted): 7/08/2002 7/07/2007

Included observations: 1826 after adjustments

Convergence achieved after 10 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)∗RESID(−1)∧2 + C(4)∗GARCH(−1)

Coefficient Std. Error z-Statistic Prob.

C 0.005518 0.009396 0.587333 0.5570

Variance Equation

C 0.001345 0.000526 2.558748 0.0105

RESID(−1)∧2 0.028436 0.004108 6.922465 0.0000

GARCH(−1) 0.964139 0.005528 174.3976 0.0000

R-squared −0.000091 Mean dependent var 0.001328

Adjusted R-squared −0.001738 S.D. dependent var 0.439632

S.E. of regression 0.440014 Akaike info criterion 1.139389

Sum squared resid 352.7611 Schwarz criterion 1.151459

Log likelihood −1036.262 Hannan-Quinn criter. 1.143841

Durbin-Watson stat 1.981759

The coefficients on both the lagged squared residual and lagged con-

ditional variance terms in the conditional variance equation are highly

statistically significant. Also, as is typical of GARCH model estimates for

financial asset returns data, the sum of the coefficients on the lagged

squared error and lagged conditional variance is very close to unity (ap-

proximately 0.99). This implies that shocks to the conditional variance

will be highly persistent. This can be seen by considering the equations

for forecasting future values of the conditional variance using a GARCH

model given in a subsequent section. A large sum of these coefficients

will imply that a large positive or a large negative return will lead future

forecasts of the variance to be high for a protracted period. The individual

conditional variance coefficients are also as one would expect. The vari-

ance intercept term ‘C’ is very small, and the ‘ARCH parameter’ is around
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0.03 while the coefficient on the lagged conditional variance (‘GARCH’) is

larger at 0.96.

8.10 Extensions to the basic GARCH model

Since the GARCH model was developed, a huge number of extensions and

variants have been proposed. A couple of the most important examples

will be highlighted here. Interested readers who wish to investigate further

are directed to a comprehensive survey by Bollerslev et al. (1992).

Many of the extensions to the GARCH model have been suggested as

a consequence of perceived problems with standard GARCH(p, q) mod-

els. First, the non-negativity conditions may be violated by the estimated

model. The only way to avoid this for sure would be to place artifi-

cial constraints on the model coefficients in order to force them to be

non-negative. Second, GARCH models cannot account for leverage effects

(explained below), although they can account for volatility clustering

and leptokurtosis in a series. Finally, the model does not allow for any

direct feedback between the conditional variance and the conditional

mean.

Some of the most widely used and influential modifications to the

model will now be examined. These may remove some of the restrictions

or limitations of the basic model.

8.11 Asymmetric GARCH models

One of the primary restrictions of GARCH models is that they enforce

a symmetric response of volatility to positive and negative shocks. This

arises since the conditional variance in equations such as (8.39) is a func-

tion of the magnitudes of the lagged residuals and not their signs (in

other words, by squaring the lagged error in (8.39), the sign is lost). How-

ever, it has been argued that a negative shock to financial time series is

likely to cause volatility to rise by more than a positive shock of the same

magnitude. In the case of equity returns, such asymmetries are typically

attributed to leverage effects, whereby a fall in the value of a firm’s stock

causes the firm’s debt to equity ratio to rise. This leads shareholders, who

bear the residual risk of the firm, to perceive their future cashflow stream

as being relatively more risky.

An alternative view is provided by the ‘volatility-feedback’ hypothesis.

Assuming constant dividends, if expected returns increase when stock



Modelling volatility and correlation 405

price volatility increases, then stock prices should fall when volatility rises.

Although asymmetries in returns series other than equities cannot be

attributed to changing leverage, there is equally no reason to suppose

that such asymmetries only exist in equity returns.

Two popular asymmetric formulations are explained below: the GJR

model, named after the authors Glosten, Jagannathan and Runkle

(1993), and the exponential GARCH (EGARCH) model proposed by Nelson

(1991).

8.12 The GJR model

The GJR model is a simple extension of GARCH with an additional term

added to account for possible asymmetries. The conditional variance is

now given by

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 + γ u2

t−1 It−1 (8.48)

where It−1 = 1 if ut−1 < 0

= 0 otherwise

For a leverage effect, we would see γ > 0. Notice now that the condition

for non-negativity will be α0 > 0, α1 > 0, β ≥ 0, and α1 + γ ≥ 0. That is,

the model is still admissible, even if γ < 0, provided that α1 + γ ≥ 0.

Example 8.1

To offer an illustration of the GJR approach, using monthly S&P500 re-

turns from December 1979 until June 1998, the following results would

be obtained, with t -ratios in parentheses

yt = 0.172 (8.49)

(3.198)

σ 2
t = 1.243 + 0.015u2

t−1 + 0.498σ 2
t−1 + 0.604u2

t−1 It−1 (8.50)

(16.372) (0.437) (14.999) (5.772)

Note that the asymmetry term, γ , has the correct sign and is significant. To

see how volatility rises more after a large negative shock than a large posi-

tive one, suppose that σ 2
t−1 = 0.823, and consider ût−1 = ±0.5. If ût−1 = 0.5,

this implies that σ 2
t = 1.65. However, a shock of the same magnitude but

of opposite sign, ût−1 = −0.5, implies that the fitted conditional variance

for time t will be σ 2
t = 1.80.
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8.13 The EGARCH model

The exponential GARCH model was proposed by Nelson (1991). There are

various ways to express the conditional variance equation, but one possi-

ble specification is given by

ln
(
σ 2

t

) = ω + β ln
(
σ 2

t−1

) + γ
ut−1√
σ 2

t−1

+ α

⎡
⎣ |ut−1|√

σ 2
t−1

−
√

2

π

⎤
⎦ (8.51)

The model has several advantages over the pure GARCH specification. First,

since the log(σ 2
t ) is modelled, then even if the parameters are negative, σ 2

t

will be positive. There is thus no need to artificially impose non-negativity

constraints on the model parameters. Second, asymmetries are allowed for

under the EGARCH formulation, since if the relationship between volatil-

ity and returns is negative, γ , will be negative.

Note that in the original formulation, Nelson assumed a Generalised

Error Distribution (GED) structure for the errors. GED is a very broad

family of distributions that can be used for many types of series. However,

owing to its computational ease and intuitive interpretation, almost all

applications of EGARCH employ conditionally normal errors as discussed

above rather than using GED.

8.14 GJR and EGARCH in EViews

The main menu screen for GARCH estimation demonstrates that a num-

ber of variants on the standard GARCH model are available. Arguably most

important of these are asymmetric models, such as the TGARCH (‘thresh-

old’ GARCH), which is also known as the GJR model, and the EGARCH

model. To estimate a GJR model in EViews, from the GARCH model equa-

tion specification screen (screenshot 8.1 above), change the ‘Threshold

Order’ number from 0 to 1. To estimate an EGARCH model, change the

‘GARCH/TARCH’ model estimation default to ‘EGARCH’.

Coefficient estimates for each of these specifications using the daily

Japanese yen--US dollar returns data are given in the next two out-

put tables, respectively. For both specifications, the asymmetry terms

(‘(RESID<0)∗ ARCH(1)’ in the GJR model and ‘RESID(−1)/@SQRT(GARCH

(−1))’) are not statistically significant (although it is almost significant

in the case of the EGARCH model). Also in both cases, the coefficient

estimates are negative, suggesting that positive shocks imply a higher

next period conditional variance than negative shocks of the same sign.



Dependent Variable: RJPY

Method: ML -- ARCH (Marquardt) -- Normal distribution

Date: 09/06/07 Time: 18:20

Sample (adjusted): 7/08/2002 7/07/2007

Included observations: 1826 after adjustments

Convergence achieved after 9 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)∗RESID(−1)∧2 + C(4)∗RESID(−1)∧2∗(RESID(−1)<0)

+ C(5)∗GARCH(−1)

Coefficient Std. Error z-Statistic Prob.

C 0.005588 0.009602 0.581934 0.5606

Variance Equation

C 0.001361 0.000544 2.503534 0.0123

RESID(−1)∧2 0.029036 0.005373 5.404209 0.0000

RESID(−1)∧2∗(RESID(-1)<0) −0.001027 0.006140 −0.167301 0.8671

GARCH(−1) 0.963989 0.005644 170.7852 0.0000

R-squared −0.000094 Mean dependent var 0.001328

Adjusted R-squared −0.002291 S.D. dependent var 0.439632

S.E. of regression 0.440135 Akaike info criterion 1.140477

Sum squared resid 352.7622 Schwarz criterion 1.155564

Log likelihood −1036.256 Hannan-Quinn criter. 1.146042

Durbin-Watson stat 1.981753

Dependent Variable: RJPY

Method: ML -- ARCH (Marquardt) -- Normal distribution

Date: 09/06/07 Time: 18:18

Sample (adjusted): 7/08/2002 7/07/2007

Included observations: 1826 after adjustments

Convergence achieved after 12 iterations

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(2) + C(3)∗ABS(RESID(−1)/ SQRT(GARCH(−1)))

+ C(4)∗RESID(−1)/ SQRT(GARCH(−1)) + C(5)∗LOG(GARCH(−1))

Coefficient Std. Error z-Statistic Prob.

C 0.003756 0.010025 0.374722 0.7079

Variance Equation

C(2) −1.262782 0.194243 −6.501047 0.0000

C(3) 0.214215 0.034226 6.258919 0.0000

C(4) −0.046461 0.024983 −1.859751 0.0629

C(5) 0.329164 0.112572 2.924037 0.0035

R-squared −0.000031 Mean dependent var 0.001328

Adjusted R-squared −0.002227 S.D. dependent var 0.439632

S.E. of regression 0.440121 Akaike info criterion 1.183216

Sum squared resid 352.7398 Schwarz criterion 1.198303

Log likelihood −1075.276 Hannan-Quinn criter. 1.188781

Durbin-Watson stat 1.981879
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This is the opposite to what would have been expected in the case of the

application of a GARCH model to a set of stock returns. But arguably,

neither the leverage effect or volatility feedback explanations for asymmetries

in the context of stocks apply here. For a positive return shock, this implies

more yen per dollar and therefore a strengthening dollar and a weakening

yen. Thus the results suggest that a strengthening dollar (weakening yen)

leads to higher next period volatility than when the yen strengthens by

the same amount.

8.15 Tests for asymmetries in volatility

Engle and Ng (1993) have proposed a set of tests for asymmetry in volatility,

known as sign and size bias tests. The Engle and Ng tests should thus be

used to determine whether an asymmetric model is required for a given

series, or whether the symmetric GARCH model can be deemed adequate.

In practice, the Engle--Ng tests are usually applied to the residuals of a

GARCH fit to the returns data. Define S−
t−1 as an indicator dummy that

takes the value 1 if ût−1 < 0 and zero otherwise. The test for sign bias is

based on the significance or otherwise of φ1 in

û2
t = φ0 + φ1S−

t−1 + υt (8.52)

where υt is an iid error term. If positive and negative shocks to ût−1 im-

pact differently upon the conditional variance, then φ1 will be statistically

significant.

It could also be the case that the magnitude or size of the shock will

affect whether the response of volatility to shocks is symmetric or not.

In this case, a negative size bias test would be conducted, based on a

regression where S−
t−1 is now used as a slope dummy variable. Negative

size bias is argued to be present if φ1 is statistically significant in the

regression

û2
t = φ0 + φ1S−

t−1ut−1 + υt (8.53)

Finally, defining S+
t−1 = 1 − S−

t−1, so that S+
t−1 picks out the observations

with positive innovations, Engle and Ng propose a joint test for sign and

size bias based on the regression

û2
t = φ0 + φ1S−

t−1 + φ2S−
t−1ut−1 + φ3S+

t−1ut−1 + υt (8.54)

Significance of φ1 indicates the presence of sign bias, where positive

and negative shocks have differing impacts upon future volatility, com-

pared with the symmetric response required by the standard GARCH
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formulation. On the other hand, the significance of φ2 or φ3 would suggest

the presence of size bias, where not only the sign but the magnitude of

the shock is important. A joint test statistic is formulated in the standard

fashion by calculating TR2 from regression (8.54), which will asymptoti-

cally follow a χ2 distribution with 3 degrees of freedom under the null

hypothesis of no asymmetric effects.

8.15.1 News impact curves

A pictorial representation of the degree of asymmetry of volatility to pos-

itive and negative shocks is given by the news impact curve introduced

by Pagan and Schwert (1990). The news impact curve plots the next-period

volatility (σ 2
t ) that would arise from various positive and negative values

of ut−1, given an estimated model. The curves are drawn by using the esti-

mated conditional variance equation for the model under consideration,

with its given coefficient estimates, and with the lagged conditional vari-

ance set to the unconditional variance. Then, successive values of ut−1 are

used in the equation to determine what the corresponding values of σ 2
t

derived from the model would be. For example, consider the GARCH and

GJR model estimates given above for the S&P500 data from EViews. Values

of ut−1 in the range (−1, +1) are substituted into the equations in each

case to investigate the impact on the conditional variance during the next

period. The resulting news impact curves for the GARCH and GJR models

are given in figure 8.3.

As can be seen from figure 8.3, the GARCH news impact curve (the

grey line) is of course symmetrical about zero, so that a shock of given

magnitude will have the same impact on the future conditional variance

whatever its sign. On the other hand, the GJR news impact curve (the black

line) is asymmetric, with negative shocks having more impact on future

volatility than positive shocks of the same magnitude. It can also be seen

that a negative shock of given magnitude will have a bigger impact under

GJR than would be implied by a GARCH model, while a positive shock of

given magnitude will have more impact under GARCH than GJR. The latter

result arises as a result of the reduction in the value of α1, the coefficient

on the lagged squared error, when the asymmetry term is included in the

model.

8.16 GARCH-in-mean

Most models used in finance suppose that investors should be rewarded

for taking additional risk by obtaining a higher return. One way to
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operationalise this concept is to let the return of a security be partly

determined by its risk. Engle, Lilien and Robins (1987) suggested an

ARCH-M specification, where the conditional variance of asset returns en-

ters into the conditional mean equation. Since GARCH models are now

considerably more popular than ARCH, it is more common to estimate

a GARCH-M model. An example of a GARCH-M model is given by the

specification

yt = μ + δσt−1 + ut , ut ∼ N
(
0, σ 2

t

)
(8.55)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.56)

If δ is positive and statistically significant, then increased risk, given

by an increase in the conditional variance, leads to a rise in the mean

return. Thus δ can be interpreted as a risk premium. In some empiri-

cal applications, the conditional variance term, σ 2
t−1, appears directly in

the conditional mean equation, rather than in square root form, σt−1.

Also, in some applications the term is contemporaneous, σ 2
t , rather than

lagged.

8.16.1 GARCH-M estimation in EViews

The GARCH-M model with the conditional standard deviation term in the

mean, estimated using the rjpy data in EViews from the main GARCH

menu as described above, would give the following results:
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Dependent Variable: RJPY

Method: ML -- ARCH (Marquardt) -- Normal distribution

Date: 09/06/07 Time: 18:58

Sample (adjusted): 7/08/2002 7/07/2007

Included observations: 1826 after adjustments

Convergence achieved after 18 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = C(3) + C(4)∗RESID(−1)∧2 + C(5)∗GARCH(−1)

Coefficient Std. Error z-Statistic Prob.

SQRT(GARCH) −0.068943 0.124958 −0.551729 0.5811

C 0.033279 0.051802 0.642436 0.5206

Variance Equation

C 0.001373 0.000529 2.594929 0.0095

RESID(−1)∧2 0.028886 0.004150 6.960374 0.0000

GARCH(−1) 0.963568 0.005580 172.6828 0.0000

R-squared 0.000034 Mean dependent var 0.001328

Adjusted R-squared −0.002162 S.D. dependent var 0.439632

S.E. of regression 0.440107 Akaike info criterion 1.140302

Sum squared resid 352.7170 Schwarz criterion 1.155390

Log likelihood −1036.096 Hannan-Quinn criter. 1.145867

F-statistic 0.015541 Durbin-Watson stat 1.982106

Prob(F-statistic) 0.999526

In this case, the estimated parameter on the mean equation has a neg-

ative sign but is not statistically significant. We would thus conclude that

for these currency returns, there is no feedback from the conditional vari-

ance to the conditional mean.

8.17 Uses of GARCH-type models including volatility forecasting

Essentially GARCH models are useful because they can be used to model

the volatility of a series over time. It is possible to combine together more

than one of the time series models that have been considered so far in

this book, to obtain more complex ‘hybrid’ models. Such models can ac-

count for a number of important features of financial series at the same

time -- e.g. an ARMA--EGARCH(1,1)-M model; the potential complexity of

the model is limited only by the imagination!

GARCH-type models can be used to forecast volatility. GARCH is a model

to describe movements in the conditional variance of an error term,
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ut , which may not appear particularly useful. But it is possible to show

that

var (yt | yt−1, yt−2, . . .) = var (ut | ut−1, ut−2, . . .) (8.57)

So the conditional variance of y, given its previous values, is the same as

the conditional variance of u, given its previous values. Hence, modelling

σ 2
t will give models and forecasts for the variance of yt as well. Thus, if

the dependent variable in a regression, yt is an asset return series, fore-

casts of σ 2
t will be forecasts of the future variance of yt . So one primary

usage of GARCH-type models is in forecasting volatility. This can be use-

ful in, for example, the pricing of financial options where volatility is an

input to the pricing model. For example, the value of a ‘plain vanilla’ call

option is a function of the current value of the underlying, the strike

price, the time to maturity, the risk free interest rate and volatility. The

required volatility, to obtain an appropriate options price, is really the

volatility of the underlying asset expected over the lifetime of the option.

As stated previously, it is possible to use a simple historical average mea-

sure as the forecast of future volatility, but another method that seems

more appropriate would be to use a time series model such as GARCH to

compute the volatility forecasts. The forecasting ability of various mod-

els is considered in a paper by Day and Lewis (1992), discussed in detail

below.

Producing forecasts from models of the GARCH class is relatively simple,

and the algebra involved is very similar to that required to obtain forecasts

from ARMA models. An illustration is given by example 8.2.

Example 8.2

Consider the following GARCH(1,1) model

yt = μ + ut , ut ∼ N(0, σ 2
t ) (8.58)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.59)

Suppose that the researcher had estimated the above GARCH model for

a series of returns on a stock index and obtained the following param-

eter estimates: μ̂ = 0.0023, α̂0 = 0.0172, β̂ = 0.7811, α̂1 = 0.1251. If the

researcher has data available up to and including time T , write down

a set of equations in σ 2
t and u2

t and their lagged values, which could

be employed to produce one-, two-, and three-step-ahead forecasts for the

conditional variance of yt .

What is needed is to generate forecasts of σT +1
2|�T , σT +2

2|�T , . . . ,

σT +s
2|�T where �T denotes all information available up to and including
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observation T . For time T , the conditional variance equation is given by

(8.59). Adding one to each of the time subscripts of this equation, and

then two, and then three would yield equations (8.60)--(8.62)

σT +1
2 = α0 + α1u2

T + βσ 2
T (8.60)

σT +2
2 = α0 + α1u2

T +1 + βσ 2
T +1 (8.61)

σT +3
2 = α0 + α1u2

T +2 + βσ 2
T +2 (8.62)

Let σ
f 2

1,T be the one-step-ahead forecast for σ 2 made at time T . This is easy

to calculate since, at time T , the values of all the terms on the RHS are

known. σ
f 2

1,T would be obtained by taking the conditional expectation of

(8.60).

Given σ
f 2

1,T , how is σ
f 2

2,T , the two-step-ahead forecast for σ 2 made at time

T , calculated?

σ
f 2

1,T = α0 + α1u2
T + βσ 2

T (8.63)

From (8.61), it is possible to write

σ
f 2

2,T = α0 + α1E(u2
T +1 | �T ) + βσ

f 2

1,T (8.64)

where E(u2
T +1 | �T ) is the expectation, made at time T , of u2

T +1, which is

the squared disturbance term. It is necessary to find E(u2
T +1 | �T ), using the

expression for the variance of a random variable ut . The model assumes

that the series ut has zero mean, so that the variance can be written

var (ut ) = E[(ut − E(ut ))
2] = E

(
u2

t

)
. (8.65)

The conditional variance of ut is σ 2
t , so

σ 2
t | �t = E(ut )

2 (8.66)

Turning this argument around, and applying it to the problem at hand

E(uT +1 | �t )
2 = σ 2

T +1 (8.67)

but σ 2
T +1 is not known at time T , so it is replaced with the forecast for it,

σ
f 2

1,T , so that (8.64) becomes

σ
f 2

2,T = α0 + α1σ
f 2

1,T + βσ
f 2

1,T (8.68)

σ
f 2

2,T = α0 + (α1 + β)σ
f 2

1,T (8.69)

What about the three-step-ahead forecast?
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By similar arguments,

σ
f 2

3,T = ET
(
α0 + α1u2

T +2 + βσ 2
T +2

)
(8.70)

σ
f 2

3,T = α0 + (α1 + β)σ
f 2

2,T (8.71)

σ
f 2

3,T = α0 + (α1 + β)
[
α0 + (α1 + β)σ

f 2

1,T

]
(8.72)

σ
f 2

3,T = α0 + α0(α1 + β) + (α1 + β)2σ
f 2

1,T (8.73)

Any s-step-ahead forecasts would be produced by

σ
f 2

s,T = α0

s−1∑
i=1

(α1 + β)i−1 + (α1 + β)s−1σ
f 2

1,T (8.74)

for any value of s ≥ 2.

It is worth noting at this point that variances, and therefore variance

forecasts, are additive over time. This is a very useful property. Suppose,

for example, that using daily foreign exchange returns, one-, two-, three-,

four-, and five-step-ahead variance forecasts have been produced, i.e. a

forecast has been constructed for each day of the next trading week.

The forecasted variance for the whole week would simply be the sum of

the five daily variance forecasts. If the standard deviation is the required

volatility estimate rather than the variance, simply take the square root

of the variance forecasts. Note also, however, that standard deviations are

not additive. Hence, if daily standard deviations are the required volatil-

ity measure, they must be squared to turn them to variances. Then the

variances would be added and the square root taken to obtain a weekly

standard deviation.

8.17.1 Forecasting from GARCH models with EViews

Forecasts from any of the GARCH models that can be estimated using

EViews are obtained by using only a sub-sample of available data for model

estimation, and then by clicking on the ‘Forecast’ button that appears

after the estimation of the required model has been completed. Suppose,

for example, we stopped the estimation of the GARCH(1,1) model for the

Japanese yen returns on 6 July 2005 so as to keep the last two years of data

for forecasting (i.e. the ‘Forecast sample’ is 7/07/2005 7/07/2007. Then click

Proc/Forecast . . . and the dialog box in screenshot 8.3 will then appear.

Again, several options are available, including providing a name for the

conditional mean and for the conditional variance forecasts, or whether to

produce static (a series of rolling single-step-ahead) or dynamic (multiple-

step-ahead) forecasts. The dynamic and static forecast plots that would be

produced are given in screenshots 8.4 and 8.5.



Screenshot 8.3

Forecasting from

GARCH models

Screenshot 8.4

Dynamic forecasts

of the conditional

variance
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Screenshot 8.5

Static forecasts of

the conditional

variance

GARCH(1,1) Dynamic forecasts (2 years ahead)

The dynamic forecasts show a completely flat forecast structure for the

mean (since the conditional mean equation includes only a constant

term), while at the end of the in-sample estimation period, the value

of the conditional variance was at a historically low level relative to

its unconditional average. Therefore, the forecasts converge upon their

long-term mean value from below as the forecast horizon increases. No-

tice also that there are no ±2-standard error band confidence intervals

for the conditional variance forecasts; to compute these would require

some kind of estimate of the variance of variance, which is beyond the

scope of this book (and beyond the capability of the built-in functions

of the EViews software). The conditional variance forecasts provide the

basis for the standard error bands that are given by the dotted red lines

around the conditional mean forecast. Because the conditional variance

forecasts rise gradually as the forecast horizon increases, so the standard

error bands widen slightly. The forecast evaluation statistics that are pre-

sented in the box to the right of the graphs are for the conditional mean

forecasts.
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GARCH(1,1) Static forecasts (1 month ahead – 22 days)

It is evident that the variance forecasts gradually fall over the out-of-

sample period, although since these are a series of rolling one-step ahead

forecasts for the conditional variance, they show much more volatility

than for the dynamic forecasts. This volatility also results in more vari-

ability in the standard error bars around the conditional mean forecasts.

Predictions can be similarly produced for any member of the GARCH

family that is estimable with the software.

8.18 Testing non-linear restrictions or testing hypotheses about
non-linear models

The usual t- and F-tests are still valid in the context of non-linear mod-

els, but they are not flexible enough. For example, suppose that it is of

interest to test a hypothesis that α1β = 1. Now that the model class has

been extended to non-linear models, there is no reason to suppose that

relevant restrictions are only linear.

Under OLS estimation, the F-test procedure works by examining the de-

gree to which the RSS rises when the restrictions are imposed. In very

general terms, hypothesis testing under ML works in a similar fashion --

that is, the procedure works by examining the degree to which the maxi-

mal value of the LLF falls upon imposing the restriction. If the LLF falls ‘a

lot’, it would be concluded that the restrictions are not supported by the

data and thus the hypothesis should be rejected.

There are three hypothesis testing procedures based on maximum like-

lihood principles: Wald, Likelihood ratio and Lagrange Multiplier. To illus-

trate briefly how each of these operates, consider a single parameter, θ to

be estimated, and denote the ML estimate as θ̂ and a restricted estimate

as θ̃ . Denoting the maximised value of the LLF by unconstrained ML as

L(θ̂ ) and the constrained optimum as L(θ̃ ), the three testing procedures

can be illustrated as in figure 8.4.

The tests all require the measurement of the ‘distance’ between the

points A (representing the unconstrained maximised value of the log like-

lihood function) and B (representing the constrained value). The vertical

distance forms the basis of the LR test. Twice this vertical distance is given

by 2[L(θ̂ ) − L(θ̃ )] = 2ln[l(θ̂ )/l(θ̃ )], where L denotes the log-likelihood func-

tion, and l denotes the likelihood function. The Wald test is based on

the horizontal distance between θ̂ and θ̃ , while the LM test compares the

slopes of the curve at A and B. At A, the unrestricted maximum of the log-

likelihood function, the slope of the curve is zero. But is it ‘significantly
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B

A

L(  )

L(  )ˆ

L(  )˜

˜ ˆ

Figure 8.4

Three approaches to

hypothesis testing

under maximum

likelihood

steep’ at L(θ̃ ), i.e. at point B ? The steeper the curve is at B, the less likely

the restriction is to be supported by the data.

Expressions for LM test statistics involve the first and second derivatives

of the log-likelihood function with respect to the parameters at the con-

strained estimate. The first derivatives of the log-likelihood function are

collectively known as the score vector, measuring the slope of the LLF for

each possible value of the parameters. The expected values of the second

derivatives comprise the information matrix, measuring the peakedness

of the LLF, and how much higher the LLF value is at the optimum than in

other places. This matrix of second derivatives is also used to construct

the coefficient standard errors. The LM test involves estimating only a re-

stricted regression, since the slope of the LLF at the maximum will be zero

by definition. Since the restricted regression is usually easier to estimate

than the unrestricted case, LM tests are usually the easiest of the three

procedures to employ in practice. The reason that restricted regressions

are usually simpler is that imposing the restrictions often means that

some components in the model will be set to zero or combined under the

null hypothesis, so that there are fewer parameters to estimate. The Wald

test involves estimating only an unrestricted regression, and the usual OLS

t-tests and F-tests are examples of Wald tests (since again, only unrestricted

estimation occurs).

Of the three approaches to hypothesis testing in the maximum-

likelihood framework, the likelihood ratio test is the most intuitively ap-

pealing, and therefore a deeper examination of it will be the subject of

the following section; see Ghosh (1991, section 10.3) for further details.
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8.18.1 Likelihood ratio tests

Likelihood ratio (LR) tests involve estimation under the null hypothesis and

under the alternative, so that two models are estimated: an unrestricted

model and a model where the restrictions have been imposed. The max-

imised values of the LLF for the restricted and unrestricted cases are ‘com-

pared’. Suppose that the unconstrained model has been estimated and that

a given maximised value of the LLF, denoted Lu , has been achieved. Sup-

pose also that the model has been estimated imposing the constraint(s)

and a new value of the LLF obtained, denoted Lr . The LR test statistic

asymptotically follows a Chi-squared distribution and is given by

LR = −2(Lr − Lu) ∼ χ2(m) (8.75)

where m = number of restrictions. Note that the maximised value of the

log-likelihood function will always be at least as big for the unrestricted

model as for the restricted model, so that Lr ≤ Lu . This rule is intuitive

and comparable to the effect of imposing a restriction on a linear model

estimated by OLS, that RRSS ≥ URSS. Similarly, the equality between Lr

and Lu will hold only when the restriction was already present in the

data. Note, however, that the usual F -test is in fact a Wald test, and not a

LR test -- that is, it can be calculated using an unrestricted model only. The

F-test approach based on comparing RSS arises conveniently as a result of

the OLS algebra.

Example 8.3

A GARCH model is estimated and a maximised LLF of 66.85 is obtained.

Suppose that a researcher wishes to test whether β = 0 in (8.77)

yt = μ + φyt−1 + ut , ut ∼ N
(
0, σ 2

t

)
(8.76)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.77)

The model is estimated imposing the restriction and the maximised LLF

falls to 64.54. Is the restriction supported by the data, which would corre-

spond to the situation where an ARCH(1) specification was sufficient? The

test statistic is given by

LR = −2(64.54 − 66.85) = 4.62 (8.78)

The test follows a χ2(1) = 3.84 at 5%, so that the null is marginally rejected.

It would thus be concluded that an ARCH(1) model, with no lag of the

conditional variance in the variance equation, is not quite sufficient to

describe the dependence in volatility over time.
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8.19 Volatility forecasting: some examples and results
from the literature

There is a vast and relatively new literature that attempts to compare

the accuracies of various models for producing out-of-sample volatility

forecasts. Akgiray (1989), for example, finds the GARCH model superior to

ARCH, exponentially weighted moving average and historical mean models

for forecasting monthly US stock index volatility. A similar result concern-

ing the apparent superiority of GARCH is observed by West and Cho (1995)

using one-step-ahead forecasts of dollar exchange rate volatility, although

for longer horizons, the model behaves no better than their alternatives.

Pagan and Schwert (1990) compare GARCH, EGARCH, Markov switching

regime and three non-parametric models for forecasting monthly US stock

return volatilities. The EGARCH followed by the GARCH models perform

moderately; the remaining models produce very poor predictions. Franses

and van Dijk (1996) compare three members of the GARCH family (stan-

dard GARCH, QGARCH and the GJR model) for forecasting the weekly

volatility of various European stock market indices. They find that the

non-linear GARCH models were unable to beat the standard GARCH model.

Finally, Brailsford and Faff (1996) find GJR and GARCH models slightly su-

perior to various simpler models for predicting Australian monthly stock

index volatility. The conclusion arising from this growing body of research

is that forecasting volatility is a ‘notoriously difficult task’ (Brailsford and

Faff, 1996, p. 419), although it appears that conditional heteroscedastic-

ity models are among the best that are currently available. In particular,

more complex non-linear and non-parametric models are inferior in pre-

diction to simpler models, a result echoed in an earlier paper by Dimson

and Marsh (1990) in the context of relatively complex versus parsimonious

linear models. Finally, Brooks (1998), considers whether measures of mar-

ket volume can assist in improving volatility forecast accuracy, finding

that they cannot.

A particularly clear example of the style and content of this class of re-

search is given by Day and Lewis (1992). The Day and Lewis study will there-

fore now be examined in depth. The purpose of their paper is to consider

the out-of-sample forecasting performance of GARCH and EGARCH models

for predicting stock index volatility. The forecasts from these economet-

ric models are compared with those given from an ‘implied volatility’.

As discussed above, implied volatility is the market’s expectation of the

‘average’ level of volatility of an underlying asset over the life of the op-

tion that is implied by the current traded price of the option. Given an

assumed model for pricing options, such as the Black--Scholes, all of the
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inputs to the model except for volatility can be observed directly from

the market or are specified in the terms of the option contract. Thus, it is

possible, using an iterative search procedure such as the Newton--Raphson

method (see, for example, Watsham and Parramore, 2004), to ‘back out’

the volatility of the underlying asset from the option’s price. An impor-

tant question for research is whether implied or econometric models pro-

duce more accurate forecasts of the volatility of the underlying asset. If

the options and underlying asset markets are informationally efficient,

econometric volatility forecasting models based on past realised values of

underlying volatility should have no incremental explanatory power for

future values of volatility of the underlying asset. On the other hand, if

econometric models do hold additional information useful for forecasting

future volatility, it is possible that such forecasts could be turned into a

profitable trading rule.

The data employed by Day and Lewis comprise weekly closing prices

(Wednesday to Wednesday, and Friday to Friday) for the S&P100 Index op-

tion and the underlying index from 11 March 1983--31 December 1989.

They employ both mid-week to mid-week returns and Friday to Friday re-

turns to determine whether weekend effects have any significant impact

on the latter. They argue that Friday returns contain expiration effects

since implied volatilities are seen to jump on the Friday of the week of ex-

piration. This issue is not of direct interest to this book, and consequently

only the mid-week to mid-week results will be shown here.

The models that Day and Lewis employ are as follows. First, for the

conditional mean of the time series models, they employ a GARCH-M

specification for the excess of the market return over a risk-free proxy

RMt − RFt = λ0 + λ1

√
ht + ut (8.79)

where RMt denotes the return on the market portfolio, and RFt denotes

the risk-free rate. Note that Day and Lewis denote the conditional variance

by h2
t , while this is modified to the standard ht here. Also, the notation σ 2

t

will be used to denote implied volatility estimates. For the variance, two

specifications are employed: a ‘plain vanilla’ GARCH(1,1) and an EGARCH

ht = α0 + α1u2
t−1 + β1ht−1 (8.80)

or

ln(ht ) = α0 + β1 ln(ht−1) + α1

(
θ

ut−1√
ht−1

+ γ

[∣∣∣∣∣
ut−1√
ht−1

∣∣∣∣∣ −
(

2

π

)1/2
])

(8.81)
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One way to test whether implied or GARCH-type volatility models perform

best is to add a lagged value of the implied volatility estimate (σ 2
t−1) to

(8.80) and (8.81). A ‘hybrid’ or ‘encompassing’ specification would thus

result. Equation (8.80) becomes

ht = α0 + α1u2
t−1 + β1ht−1 + δσ 2

t−1 (8.82)

and (8.81) becomes

ln(ht ) = α0 + β1 ln(ht−1)

+ α1

(
θ

ut−1√
ht−1

+ γ

[∣∣∣∣ ut−1√
ht−1

∣∣∣∣ −
(

2

π

)1/2
])

+ δ ln
(
σ 2

t−1

)
(8.83)

The tests of interest are given by H0 : δ = 0 in (8.82) or (8.83). If these

null hypotheses cannot be rejected, the conclusion would be that im-

plied volatility contains no incremental information useful for explaining

volatility than that derived from a GARCH model. At the same time, H0:

α1 = 0 and β1 = 0 in (8.82), and H0 : α1 = 0 and β1 = 0 and θ = 0 and

γ = 0 in (8.83) are also tested. If this second set of restrictions holds, then

(8.82) and (8.83) collapse to

ht = α0 + δσ 2
t−1 (8.82′)

and

ln
(
ht

) = α0 + δ ln
(
σ 2

t−1

)
(8.83′)

These sets of restrictions on (8.82) and (8.83) test whether the lagged

squared error and lagged conditional variance from a GARCH model con-

tain any additional explanatory power once implied volatility is included

in the specification. All of these restrictions can be tested fairly easily

using a likelihood ratio test. The results of such a test are presented in

table 8.1.

It appears from the coefficient estimates and their standard errors un-

der the specification (8.82) that the implied volatility term (δ) is statistically

significant, while the GARCH terms (α1 and β1) are not. However, the test

statistics given in the final column are both greater than their correspond-

ing χ2 critical values, indicating that both GARCH and implied volatility

have incremental power for modelling the underlying stock volatility. A

similar analysis is undertaken in Day and Lewis that compares EGARCH

with implied volatility. The results are presented here in table 8.2.

The EGARCH results tell a very similar story to those of the GARCH spec-

ifications. Neither the lagged information from the EGARCH specification

nor the lagged implied volatility terms can be suppressed, according to the
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Table 8.1 GARCH versus implied volatility

RMt − RFt = λ0 + λ1

√
ht + ut (8.79)

ht = α0 + α1u2
t−1 + β1ht−1 (8.80)

ht = α0 + α1u2
t−1 + β1ht−1 + δσ 2

t−1 (8.82)

ht = α0 + δσ 2
t−1 (8.82′)

Equation for

variance λ0 λ1 α0 × 10−4 α1 β1 δ Log-L χ2

(8.80) 0.0072 0.071 5.428 0.093 0.854 − 767.321 17.77

(0.005) (0.01) (1.65) (0.84) (8.17)

(8.82) 0.0015 0.043 2.065 0.266 −0.068 0.318 776.204 −
(0.028) (0.02) (2.98) (1.17) (−0.59) (3.00)

(8.82′) 0.0056 −0.184 0.993 − − 0.581 764.394 23.62

(0.001) (−0.001) (1.50) (2.94)

Notes: t-ratios in parentheses, Log-L denotes the maximised value of the log-

likelihood function in each case. χ2 denotes the value of the test statistic,

which follows a χ 2(1) in the case of (8.82) restricted to (8.80), and a χ2(2) in the case

of (8.82) restricted to (8.82′).
Source: Day and Lewis (1992). Reprinted with the permission of Elsevier Science.

Table 8.2 EGARCH versus implied volatility

RMt − RFt = λ0 + λ1

√
ht + ut (8.79)

ln(ht ) = α0 + β1 ln(ht−1) + α1

(
θ

ut−1√
ht−1

+ γ

[∣∣∣∣ ut−1√
ht−1

∣∣∣∣ −
(

2

π

)1/2
])

(8.81)

ln(ht ) = α0 + β1 ln(ht−1) + α1

(
θ

ut−1√
ht−1

+ γ

[∣∣∣∣ ut−1√
ht−1

∣∣∣∣ −
(

2

π

)1/2
])

+ δ ln
(
σ 2

t−1

)
(8.83)

ln(ht ) = α0 + δ ln
(
σ 2

t−1

)
(8.83′)

Equation for

variance λ0 λ1 α0 × 10−4 β1 θ γ δ Log-L χ2

(8.81) −0.0026 0.094 −3.62 0.529 0.273 0.357 − 776.436 8.09

(−0.03) (0.25) (−2.90) (3.26) (−4.13) (3.17)

(8.83) 0.0035 −0.076 −2.28 0.373 −0.282 0.210 0.351 780.480 −
(0.56) (−0.24) (−1.82) (1.48) (−4.34) (1.89) (1.82)

(8.83′) 0.0047 −0.139 −2.76 − − − 0.667 765.034 30.89

(0.71) (−0.43) (−2.30) (4.01)

Notes: t-ratios in parentheses, Log-L denotes the maximised value of the log-

likelihood function in each case. χ2 denotes the value of the test statistic, which

follows a χ 2(1) in the case of (8.83) restricted to (8.81), and a χ2(3) in the case of

(8.83) restricted to (8.83′).
Source: Day and Lewis (1992). Reprinted with the permission of Elsevier Science.
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likelihood ratio statistics. In specification (8.83), both the EGARCH terms

and the implied volatility coefficients are marginally significant.

However, the tests given above do not represent a true test of the pre-

dictive ability of the models, since all of the observations were used in

both estimating and testing the models. Hence the authors proceed to

conduct an out-of-sample forecasting test. There are a total of 729 data

points in their sample. They use the first 410 to estimate the models, and

then make a one-step-ahead forecast of the following week’s volatility. They

then roll the sample forward one observation at a time, constructing a

new one-step-ahead forecast at each stage.

They evaluate the forecasts in two ways. The first is by regressing the

realised volatility series on the forecasts plus a constant

σ 2
t+1 = b0 + b1σ

2
f t + ξt+1 (8.84)

where σ 2
t+1 is the ‘actual’ value of volatility at time t + 1, and σ 2

f t is the

value forecasted for it during period t . Perfectly accurate forecasts would

imply b0 = 0 and b1 = 1. The second method is via a set of forecast encom-

passing tests. Essentially, these operate by regressing the realised volatility

on the forecasts generated by several models. The forecast series that have

significant coefficients are concluded to encompass those of models whose

coefficients are not significant.

But what is volatility? In other words, with what measure of realised or

‘ex post’ volatility should the forecasts be compared? This is a question that

received very little attention in the literature until recently. A common

method employed is to assume, for a daily volatility forecasting exercise,

that the relevant ex post measure is the square of that day’s return. For

any random variable rt , its conditional variance can be expressed as

var(rt ) = E[rt − E(rt )]
2 (8.85)

As stated previously, it is typical, and not unreasonable for relatively high

frequency data, to assume that E(rt ) is zero, so that the expression for the

variance reduces to

var(rt ) = E
[
r2

t

]
(8.86)

Andersen and Bollerslev (1998) argue that squared daily returns provide

a very noisy proxy for the true volatility, and a much better proxy for

the day’s variance would be to compute the volatility for the day from

intra-daily data. For example, a superior daily variance measure could

be obtained by taking hourly returns, squaring them and adding them

up. The reason that the use of higher frequency data provides a better

measure of ex post volatility is simply that it employs more information.
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By using only daily data to compute a daily volatility measure, effectively

only two observations on the underlying price series are employed. If the

daily closing price is the same one day as the next, the squared return and

therefore the volatility would be calculated to be zero, when there may

have been substantial intra-day fluctuations. Hansen and Lunde (2006) go

further and suggest that even the ranking of models by volatility forecast

accuracy could be inconsistent if the evaluation uses a poor proxy for the

true, underlying volatility.

Day and Lewis use two measures of ex post volatility in their study (for

which the frequency of data employed in the models is weekly):

(1) The square of the weekly return on the index, which they call SR

(2) The variance of the week’s daily returns multiplied by the number of

trading days in that week, which they call WV.

The Andersen and Bollerslev argument implies that the latter measure is

likely to be superior, and therefore that more emphasis should be placed

on those results.

The results for the separate regressions of realised volatility on a con-

stant and the forecast are given in table 8.3.

The coefficient estimates for b0 given in table 8.3 can be interpreted as

indicators of whether the respective forecasting approaches are biased. In

all cases, the b0 coefficients are close to zero. Only for the historic volatility

forecasts and the implied volatility forecast when the ex post measure is the

squared weekly return, are the estimates statistically significant. Positive

coefficient estimates would suggest that on average the forecasts are too

low. The estimated b1 coefficients are in all cases a long way from unity,

except for the GARCH (with daily variance ex post volatility) and EGARCH

(with squared weekly variance as ex post measure) models. Finally, the R2

values are very small (all less than 10%, and most less than 3%), suggesting

that the forecast series do a poor job of explaining the variability of the

realised volatility measure.

The forecast encompassing regressions are based on a procedure due to

Fair and Shiller (1990) that seeks to determine whether differing sets of

forecasts contain different sets of information from one another. The test

regression is of the form

σ 2
t+1 = b0 + b1σ

2
I t + b2σ

2
Gt + b3σ

2
Et + b4σ

2
Ht + ξt+1 (8.87)

with results presented in table 8.4.

The sizes and significances of the coefficients in table 8.4 are of interest.

The most salient feature is the lack of significance of most of the fore-

cast series. In the first comparison, neither the implied nor the GARCH



Table 8.3 Out-of-sample predictive power for weekly volatility forecasts

σ 2
t+1 = b0 + b1σ

2
f t + ξt+1 (8.84)

Proxy for ex

Forecasting model post volatility b0 b1 R2

Historic SR 0.0004 0.129 0.094

(5.60) (21.18)

Historic WV 0.0005 0.154 0.024

(2.90) (7.58)

GARCH SR 0.0002 0.671 0.039

(1.02) (2.10)

GARCH WV 0.0002 1.074 0.018

(1.07) (3.34)

EGARCH SR 0.0000 1.075 0.022

(0.05) (2.06)

EGARCH WV −0.0001 1.529 0.008

(−0.48) (2.58)

Implied volatility SR 0.0022 0.357 0.037

(2.22) (1.82)

Implied volatility WV 0.0005 0.718 0.026

(0.389) (1.95)

Notes: ‘Historic’ refers to the use of a simple historical average of the squared returns

to forecast volatility; t-ratios in parentheses; SR and WV refer to the square of the

weekly return on the S&P100, and the variance of the week’s daily returns

multiplied by the number of trading days in that week, respectively.

Source: Day and Lewis (1992). Reprinted with the permission of Elsevier Science.

Table 8.4 Comparisons of the relative information content of out-of-sample volatility
forecasts

σ 2
t+1 = b0 + b1σ

2
I t + b2σ

2
Gt + b3σ

2
Et + b4σ

2
Ht + ξt+1 (8.87)

Forecast comparisons b0 b1 b2 b3 b4 R2

Implied versus GARCH −0.00010 0.601 0.298 − − 0.027

(−0.09) (1.03) (0.42)

Implied versus GARCH 0.00018 0.632 −0.243 − 0.123 0.038

versus Historical (1.15) (1.02) (−0.28) (7.01)

Implied versus EGARCH −0.00001 0.695 − 0.176 − 0.026

(−0.07) (1.62) (0.27)

Implied versus EGARCH 0.00026 0.590 −0.374 − 0.118 0.038

versus Historical (1.37) (1.45) (−0.57) (7.74)

GARCH versus EGARCH 0.00005 − 1.070 −0.001 − 0.018

(0.370) (2.78) (−0.00)

Notes: t-ratios in parentheses; the ex post measure used in this table is the variance

of the week’s daily returns multiplied by the number of trading days in that week.

Source: Day and Lewis (1992). Reprinted with the permission of Elsevier Science.
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forecast series have statistically significant coefficients. When historical

volatility is added, its coefficient is positive and statistically significant.

An identical pattern emerges when forecasts from implied and EGARCH

models are compared: that is, neither forecast series is significant, but

when a simple historical average series is added, its coefficient is signif-

icant. It is clear from this, and from the last row of table 8.4, that the

asymmetry term in the EGARCH model has no additional explanatory

power compared with that embodied in the symmetric GARCH model.

Again, all of the R2 values are very low (less than 4%).

The conclusion reached from this study (which is broadly in line with

many others) is that within sample, the results suggest that implied

volatility contains extra information not contained in the GARCH/EGARCH

specifications. But the out-of-sample results suggest that predicting volatil-

ity is a difficult task!

8.20 Stochastic volatility models revisited

Under the heading of models for time-varying volatilities, only approaches

based on the GARCH class of models have been discussed thus far. Another

class of models is also available, known as stochastic volatility (SV) models.

It is a common misconception that GARCH-type specifications are sorts

of stochastic volatility models. However, as the name suggests, stochastic

volatility models differ from GARCH principally in that the conditional

variance equation of a GARCH specification is completely deterministic

given all information available up to that of the previous period. In other

words, there is no error term in the variance equation of a GARCH model,

only in the mean equation.

Stochastic volatility models contain a second error term, which enters

into the conditional variance equation. A very simple example of a stochas-

tic volatility model would be the autoregressive volatility specification de-

scribed in section 8.6. This model is simple to understand and simple to

estimate, because it requires that we have an observable measure of volatil-

ity which is then simply used as any other variable in an autoregressive

model. However, the term ‘stochastic volatility’ is usually associated with

a different formulation, a possible example of which would be

yt = μ + utσt , ut ∼ N (0, 1) (8.88)

log
(
σ 2

t

) = α0 + β1 log
(
σ 2

t−1

) + σηηt (8.89)

where ηt is another N(0,1) random variable that is independent of ut . Here

the volatility is latent rather than observed, and so is modelled indirectly.
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Stochastic volatility models are closely related to the financial theories

used in the options pricing literature. Early work by Black and Scholes

(1973) had assumed that volatility is constant through time. Such an as-

sumption was made largely for simplicity, although it could hardly be

considered realistic. One unappealing side-effect of employing a model

with the embedded assumption that volatility is fixed, is that options

deep in-the-money and far out-of-the-money are underpriced relative to

actual traded prices. This empirical observation provided part of the gen-

esis for stochastic volatility models, where the logarithm of an unobserved

variance process is modelled by a linear stochastic specification, such

as an autoregressive model. The primary advantage of stochastic volatil-

ity models is that they can be viewed as discrete time approximations

to the continuous time models employed in options pricing frameworks

(see, for example, Hull and White, 1987). However, such models are hard

to estimate. For reviews of (univariate) stochastic volatility models, see

Taylor (1994), Ghysels et al. (1995) or Shephard (1996) and the references

therein.

While stochastic volatility models have been widely employed in the

mathematical options pricing literature, they have not been popular

in empirical discrete-time financial applications, probably owing to the

complexity involved in the process of estimating the model parameters

(see Harvey, Ruiz and Shephard, 1994). So, while GARCH-type models are

further from their continuous time theoretical underpinnings than

stochastic volatility, they are much simpler to estimate using maximum

likelihood. A relatively simple modification to the maximum likelihood

procedure used for GARCH model estimation is not available, and hence

stochastic volatility models are not discussed further here.

8.21 Forecasting covariances and correlations

A major limitation of the volatility models examined above is that they are

entirely univariate in nature -- that is, they model the conditional variance

of each series entirely independently of all other series. This is potentially

an important limitation for two reasons. First, to the extent that there

may be ‘volatility spillovers’ between markets or assets (a tendency for

volatility to change in one market or asset following a change in the

volatility of another), the univariate model will be misspecified. Second,

it is often the case in finance that the covariances between series are of

interest, as well as the variances of the individual series themselves. The

calculation of hedge ratios, portfolio value at risk estimates, CAPM betas,
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and so on, all require covariances as inputs. Multivariate GARCH models

can potentially overcome both of these deficiencies with their univariate

counterparts. Multivariate extensions to GARCH models can be used to

forecast the volatilities of the component series, just as with univariate

models. In addition, because multivariate models give estimates for the

conditional covariances as well as the conditional variances, they have a

number of other potentially useful applications.

Several papers have investigated the forecasting ability of various mod-

els incorporating correlations. Siegel (1997), for example, finds that im-

plied correlation forecasts from traded options encompass all information

embodied in the historical returns (although he does not consider EWMA-

or GARCH-based models). Walter and Lopez (2000), on the other hand, find

that implied correlation is generally less useful for predicting the future

correlation between the underlying assets’ returns than forecasts derived

from GARCH models. Finally, Gibson and Boyer (1998) find that a diago-

nal GARCH and a Markov switching approach provide better correlation

forecasts than simpler models in the sense that the latter produce smaller

profits when the forecasts are employed in a trading strategy.

8.22 Covariance modelling and forecasting in finance: some examples

8.22.1 The estimation of conditional betas

The CAPM beta for asset i is defined as the ratio of the covariance be-

tween the market portfolio return and the asset return, to the variance of

the market portfolio return. Betas are typically constructed using a set of

historical data on market variances and covariances. However, like most

other problems in finance, beta estimation conducted in this fashion is

backward-looking, when investors should really be concerned with the

beta that will prevail in the future over the time that the investor is con-

sidering holding the asset. Multivariate GARCH models provide a simple

method for estimating conditional (or time-varying) betas. Then forecasts

of the covariance between the asset and the market portfolio returns and

forecasts of the variance of the market portfolio are made from the model,

so that the beta is a forecast, whose value will vary over time

βi,t = σim,t

σ 2
m,t

(8.90)

where βi,t is the time-varying beta estimate at time t for stock i , σim,t is

the covariance between market returns and returns to stock i at time t
and σ 2

m,t is the variance of the market return at time t .
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8.22.2 Dynamic hedge ratios

Although there are many techniques available for reducing and manag-

ing risk, the simplest and perhaps the most widely used, is hedging with

futures contracts. A hedge is achieved by taking opposite positions in

spot and futures markets simultaneously, so that any loss sustained from

an adverse price movement in one market should to some degree be

offset by a favourable price movement in the other. The ratio of the num-

ber of units of the futures asset that are purchased relative to the number

of units of the spot asset is known as the hedge ratio. Since risk in this

context is usually measured as the volatility of portfolio returns, an in-

tuitively plausible strategy might be to choose that hedge ratio which

minimises the variance of the returns of a portfolio containing the spot

and futures position; this is known as the optimal hedge ratio. The optimal

value of the hedge ratio may be determined in the usual way, following

Hull (2005) by first defining:

�S = change in spot price S, during the life of the hedge �F = change

in futures price, F, during the life of the hedge σs = standard deviation

of �SσF = standard deviation of �Fp = correlation coefficient between

�S and �Fh = hedge ratio

For a short hedge (i.e. long in the asset and short in the futures contract),

the change in the value of the hedger’s position during the life of the

hedge will be given by (�S − h�F), while for a long hedge, the appropriate

expression will be (h�F − �S).

The variances of the two hedged portfolios (long spot and short futures

or long futures and short spot) are the same. These can be obtained from

var(h�F − �S)

Remembering the rules for manipulating the variance operator, this can

be written

var(�S) + var(h�F) − 2cov(�S, h�F)

or

var(�S) + h2var(�F) − 2hcov(�S, �F)

Hence the variance of the change in the value of the hedged position is

given by

v = σ 2
s + h2σ 2

F − 2hpσsσF (8.91)

Minimising this expression w.r.t. h would give

h = p
σs

σF
(8.92)
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Again, according to this formula, the optimal hedge ratio is time-

invariant, and would be calculated using historical data. However, what

if the standard deviations are changing over time? The standard devia-

tions and the correlation between movements in the spot and futures

series could be forecast from a multivariate GARCH model, so that the

expression above is replaced by

ht = pt
σs,t

σF,t
(8.93)

Various models are available for covariance or correlation forecasting, and

several will be discussed below.

8.23 Historical covariance and correlation

In exactly the same fashion as for volatility, the historical covariance or

correlation between two series can be calculated in the standard way using

a set of historical data.

8.24 Implied covariance models

Implied covariances can be calculated using options whose payoffs are

dependent on more than one underlying asset. The relatively small num-

ber of such options that exist limits the circumstances in which implied

covariances can be calculated. Examples include rainbow options, ‘crack-

spread’ options for different grades of oil, and currency options. In the

latter case, the implied variance of the cross-currency returns xy is given

by

σ̃ 2(xy) = σ̃ 2(x) + σ̃ 2(y) − 2σ̃ (x, y) (8.94)

where σ̃ 2(x) and σ̃ 2(y) are the implied variances of the x and y returns,

respectively, and σ̃ (x, y) is the implied covariance between x and y. By sub-

stituting the observed option implied volatilities of the three currencies

into (8.94), the implied covariance is obtained via

σ̃ (x, y) = σ̃ 2(x) + σ̃ 2(y) − σ̃ 2(xy)

2
(8.95)

So, for instance, if the implied covariance between USD/DEM and USD/JPY

is of interest, then the implied variances of the returns of USD/DEM and

USD/JPY, as well as the returns of the cross-currency DEM/JPY, are required

so as to obtain the implied covariance using (8.94).
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8.25 Exponentially weighted moving average model for covariances

Again, as for the case of volatility modelling, an EWMA specification is

available that gives more weight in the calculation of covariance to recent

observations than the estimate based on the simple average. The EWMA

model estimate for covariance at time t and the forecast for subsequent

periods may be written

σ (x, y)t = (1 − λ)
∞∑

i=0

λi xt−i yt−i (8.96)

with λ(0 < λ < 1) again denoting the decay factor, determining the rela-

tive weights attached to recent versus less recent observations.

8.26 Multivariate GARCH models

Multivariate GARCH models are in spirit very similar to their univari-

ate counterparts, except that the former also specify equations for how

the covariances move over time. Several different multivariate GARCH for-

mulations have been proposed in the literature, including the VECH, the

diagonal VECH and the BEKK models. Each of these is discussed in turn

below; for a more detailed discussion, see Kroner and Ng (1998). In each

case, it is assumed below for simplicity that there are two assets, whose

return variances and covariances are to be modelled. For an excellent sur-

vey of multivariate GARCH models, see Bauwens, Laurent and Rombouts

(2006).2

8.26.1 The VECH model

A common specification of the VECH model, initially due to Bollerslev,

Engle and Wooldridge (1988), is

VECH(Ht ) = C + AVECH(�t−1�
′
t−1) + BVECH(Ht−1)

�t |ψt−1 ∼ N (0, Ht ), (8.97)

where Ht is a 2 × 2 conditional variance--covariance matrix, �t is a 2 × 1

innovation (disturbance) vector, ψt−1 represents the information set at

time t − 1, C is a 3 × 1 parameter vector, A and B are 3 × 3 parameter

matrices and VECH (·) denotes the column-stacking operator applied to the

upper portion of the symmetric matrix. The model requires the estimation

2 It is also worth noting that there also exists a class of multivariate stochastic volatility

models. These were originally proposed by Harvey, Ruiz and Shephard (1994), although

see also Brooks (2006).
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of 21 parameters (C has 3 elements, A and B each have 9 elements). In

order to gain a better understanding of how the VECH model works, the

elements are written out below. Define

Ht =
[

h11t h12t

h21t h22t

]
, �t =

[
u1t

u2t

]
, C =

⎡
⎣ c11

c21

c31

⎤
⎦ ,

A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ , B =

⎡
⎣b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤
⎦ ,

The VECH operator takes the ‘upper triangular’ portion of a matrix, and

stacks each element into a vector with a single column. For example, in

the case of VECH(Ht ), this becomes

VECH(Ht ) =

⎡
⎢⎣

h11t

h22t

h12t

⎤
⎥⎦

where hiit represent the conditional variances at time t of the two-asset

return series (i = 1, 2) used in the model, and hi jt (i �= j) represent the con-

ditional covariances between the asset returns. In the case of VECH(�t�
′
t ),

this can be expressed as

VECH(�t�
′
t ) = VECH

([
u1t

u2t

][
u1t u2t

])

= VECH

(
u2

1t u1t u2t

u1t u2t u2
2t

)

=

⎡
⎢⎣

u2
1t

u2
2t

u1t u2t

⎤
⎥⎦

The VECH model in full is given by

h11t = c11 + a11u2
1t−1 + a12u2

2t−1 + a13u1t−1u2t−1 + b11h11t−1

+ b12h22t−1 + b13h12t−1 (8.98)

h22t = c21 + a21u2
1t−1 + a22u2

2t−1 + a23u1t−1u2t−1 + b21h11t−1

+ b22h22t−1 + b23h12t−1 (8.99)

h12t = c31 + a31u2
1t−1 + a32u2

2t−1 + a33u1t−1u2t−1 + b31h11t−1

+ b32h22t−1 + b33h12t−1 (8.100)

Thus, it is clear that the conditional variances and conditional covariances

depend on the lagged values of all of the conditional variances of, and
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conditional covariances between, all of the asset returns in the series, as

well as the lagged squared errors and the error cross-products. Estimation

of such a model would be quite a formidable task, even in the two-asset

case considered here.

8.26.2 The diagonal VECH model

Even in the simple case of two assets, the conditional variance and covari-

ance equations for the unrestricted VECH model contain 21 parameters. As

the number of assets employed in the model increases, the estimation of

the VECH model can quickly become infeasible. Hence the VECH model’s

conditional variance--covariance matrix has been restricted to the form

developed by Bollerslev, Engle and Wooldridge (1988), in which A and B
are assumed to be diagonal. This reduces the number of parameters to

be estimated to 9 (now A and B each have 3 elements) and the model,

known as a diagonal VECH, is now characterised by

hi j,t = ωi j + αi j ui,t−1u j,t−1 + βi j hi j,t−1 for i, j = 1, 2, (8.101)

where ωi j , αi j and βi j are parameters. The diagonal VECH multivariate

GARCH model could also be expressed as an infinite order multivariate

ARCH model, where the covariance is expressed as a geometrically de-

clining weighted average of past cross products of unexpected returns,

with recent observations carrying higher weights. An alternative solution

to the dimensionality problem would be to use orthogonal GARCH or

factor GARCH models (see Alexander, 2001). A disadvantage of the VECH

model is that there is no guarantee of a positive semi-definite covariance

matrix.

A variance--covariance or correlation matrix must always be ‘positive

semi-definite’, and in the case where all the returns in a particular series

are all the same so that their variance is zero is disregarded, then the

matrix will be positive definite. Among other things, this means that

the variance--covariance matrix will have all positive numbers on the

leading diagonal, and will be symmetrical about this leading diagonal.

These properties are intuitively appealing as well as important from a

mathematical point of view, for variances can never be negative, and the

covariance between two series is the same irrespective of which of the

two series is taken first, and positive definiteness ensures that this is

the case.

A positive definite correlations matrix is also important for many ap-

plications in finance -- for example, from a risk management point of

view. It is this property which ensures that, whatever the weight of each

series in the asset portfolio, an estimated value-at-risk is always positive.
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Fortunately, this desirable property is automatically a feature of time-

invariant correlations matrices which are computed directly using actual

data. An anomaly arises when either the correlation matrix is estimated

using a non-linear optimisation procedure (as multivariate GARCH mod-

els are), or when modified values for some of the correlations are used by

the risk manager. The resulting modified correlation matrix may or may

not be positive definite, depending on the values of the correlations that

are put in, and the values of the remaining correlations. If, by chance,

the matrix is not positive definite, the upshot is that for some weightings

of the individual assets in the portfolio, the estimated portfolio variance

could be negative.

8.26.3 The BEKK model

The BEKK model (Engle and Kroner, 1995) addresses the difficulty with

VECH of ensuring that the H matrix is always positive definite. It is rep-

resented by

Ht = W ′W + A′ Ht−1 A + B ′�t−1�
′
t−1 B (8.102)

where A, and B are 2 × 2 matrices of parameters and W is an upper tri-

angular matrix of parameters. The positive definiteness of the covariance

matrix is ensured owing to the quadratic nature of the terms on the

equation’s RHS.

8.26.4 Model estimation for multivariate GARCH

Under the assumption of conditional normality, the parameters of the

multivariate GARCH models of any of the above specifications can be es-

timated by maximising the log-likelihood function

�(θ ) = −TN

2
log 2π − 1

2

T∑
t=1

(
log |Ht | + �′

t H−1
t �t

)
(8.103)

where θ denotes all the unknown parameters to be estimated, N is

the number of assets (i.e. the number of series in the system) and T
is the number of observations and all other notation is as above. The

maximum-likelihood estimate for θ is asymptotically normal, and thus

traditional procedures for statistical inference are applicable. Further de-

tails on maximum-likelihood estimation in the context of multivariate

GARCH models are beyond the scope of this book. But suffice to say that

the additional complexity and extra parameters involved compared with

univariate models make estimation a computationally more difficult task,

although the principles are essentially the same.
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8.27 A multivariate GARCH model for the CAPM with
time-varying covariances

Bollerslev, Engle and Wooldridge (1988) estimate a multivariate GARCH

model for returns to US Treasury Bills, gilts and stocks. The data employed

comprised calculated quarterly excess holding period returns for 6-month

US Treasury bills, 20-year US Treasury bonds and a Center for Research

in Security Prices record of the return on the New York Stock Exchange

(NYSE) value-weighted index. The data run from 1959Q1 to 1984Q2 -- a

total of 102 observations.

A multivariate GARCH-M model of the diagonal VECH type is employed,

with coefficients estimated by maximum likelihood, and the Berndt et al.

(1974) algorithm is used. The coefficient estimates are easiest presented in

the following equations for the conditional mean and variance equations,

respectively

∣∣∣∣∣∣
y1t

y2t

y3t

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

0.070
(0.032)

−4.342
(1.030)

−3.117
(0.710)

∣∣∣∣∣∣∣∣∣
+ 0.499

(0.160)

∑
j

ω j t−1

∣∣∣∣∣∣
h1 j t

h2 j t

h3 j t

∣∣∣∣∣∣ +
∣∣∣∣∣∣
ε1t

ε2t

ε3t

∣∣∣∣∣∣ (8.104)

∣∣∣∣∣∣∣∣∣∣∣∣

h11t

h12t

h22t

h13t

h23t

h33t

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.011
(0.004)

0.176
(0.062)

13.305
(6.372)

0.018
(0.009)

5.143
(2.820)

2.083
(1.466)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.445ε2
1t−1

(0.105)

0.233ε1t−1ε2t−1
(0.092)

0.188ε2
2t−1

(0.113)

0.197ε1t−1ε3t−1
(0.132)

0.165ε2t−1ε3t−1
(0.093)

0.078ε2
3t−1

(0.066)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.466h11t−1
(0.056)

0.598h12t−1
(0.052)

0.441h22t−1
(0.215)

−0.362h13t−1
(0.361)

−0.348h23t−1
(0.338)

0.469h33t−1
(0.333)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(8.105)

Source: Bollerslev, Engle and Wooldridge (1988). Reprinted with the permission

of University of Chicago Press.

where y jt are the returns, ω j t−1 are a set vector of value weights at time

t − 1, i = 1, 2, 3, refers to bills, bonds and stocks, respectively and stan-

dard errors are given in parentheses. Consider now the implications of

the signs, sizes and significances of the coefficient estimates in (8.104)

and (8.105). The coefficient of 0.499 in the conditional mean equation

gives an aggregate measure of relative risk aversion, also interpreted as

representing the market trade-off between return and risk. This condi-

tional variance-in-mean coefficient gives the required additional return as

compensation for taking an additional unit of variance (risk). The inter-

cept coefficients in the conditional mean equation for bonds and stocks
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are very negative and highly statistically significant. The authors argue

that this is to be expected since favourable tax treatments for investing

in longer-term assets encourages investors to hold them even at relatively

low rates of return.

The dynamic structure in the conditional variance and covariance equa-

tions is strongest for bills and bonds, and very weak for stocks, as indicated

by their respective statistical significances. In fact, none of the parameters

in the conditional variance or covariance equations for the stock return

equations is significant at the 5% level. The unconditional covariance be-

tween bills and bonds is positive, while that between bills and stocks,

and between bonds and stocks, is negative. This arises since, in the lat-

ter two cases, the lagged conditional covariance parameters are negative

and larger in absolute value than those of the corresponding lagged error

cross-products.

Finally, the degree of persistence in the conditional variance (given by

α1 + β), which embodies the degree of clustering in volatility, is relatively

large for the bills equation, but surprisingly small for bonds and stocks,

given the results of other relevant papers in this literature.

8.28 Estimating a time-varying hedge ratio for FTSE
stock index returns

A paper by Brooks, Henry and Persand (2002) compared the effectiveness

of hedging on the basis of hedge ratios derived from various multivariate

GARCH specifications and other, simpler techniques. Some of their main

results are discussed below.

8.28.1 Background

There has been much empirical research into the calculation of opti-

mal hedge ratios. The general consensus is that the use of multivariate

generalised autoregressive conditionally heteroscedastic (MGARCH) mod-

els yields superior performances, evidenced by lower portfolio volatilities,

than either time-invariant or rolling ordinary least squares (OLS) hedges.

Cecchetti, Cumby and Figlewski (1988), Myers and Thompson (1989) and

Baillie and Myers (1991), for example, argue that commodity prices are

characterised by time-varying covariance matrices. As news about spot

and futures prices arrives to the market in discrete bunches, the condi-

tional covariance matrix, and hence the optimal hedging ratio, becomes

time-varying. Baillie and Myers (1991) and Kroner and Sultan (1993), inter

alia, employ MGARCH models to capture time-variation in the covariance

matrix and to estimate the resulting hedge ratio.
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8.28.2 Notation

Let St and Ft represent the logarithms of the stock index and stock index

futures prices, respectively. The actual return on a spot position held from

time t − 1 to t is �St = St − St−1 similarly, the actual return on a futures

position is �Ft = Ft − Ft−1. However at time t − 1 the expected return,

Et−1(Rt ), of the portfolio comprising one unit of the stock index and β

units of the futures contract may be written as

Et−1(Rt ) = Et−1(�St ) − βt−1 Et−1(�Ft ) (8.106)

where βt−1 is the hedge ratio determined at time t − 1, for employment

in period t . The variance of the expected return, h p,t , of the portfolio may

be written as

h p,t = hs,t + β2
t−1hF,t − 2βt−1hSF, t (8.107)

where h p,t , hs,t and hF,t represent the conditional variances of the portfolio

and the spot and futures positions, respectively and hSF,t represents the

conditional covariance between the spot and futures position. β∗
t−1, the op-

timal number of futures contracts in the investor’s portfolio, i.e. the opti-

mal hedge ratio, is given by

β∗
t−1 = −hSF,t

hF,t
(8.108)

If the conditional variance--covariance matrix is time-invariant (and if St

and Ft are not cointegrated) then an estimate of β∗, the constant optimal

hedge ratio, may be obtained from the estimated slope coefficient b in

the regression

�St = a + b�Ft + ut (8.109)

The OLS estimate of the optimal hedge ratio could be given by b = hSF /hF .

8.28.3 Data and results

The data employed in the Brooks, Henry and Persand (2002) study com-

prises 3,580 daily observations on the FTSE 100 stock index and stock index

futures contract spanning the period 1 January 1985--9 April 1999. Several

approaches to estimating the optimal hedge ratio are investigated.

The hedging effectiveness is first evaluated in-sample, that is, where

the hedges are constructed and evaluated using the same set of data.

The out-of-sample hedging effectiveness for a 1-day hedging horizon is

also investigated by forming one-step-ahead forecasts of the conditional

variance of the futures series and the conditional covariance between the

spot and futures series. These forecasts are then translated into hedge
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Table 8.5 Hedging effectiveness: summary statistics for portfolio returns

In-sample

Symmetric Asymmetric

Unhedged Naive hedge time-varying hedge time-varying hedge

β = 0 β = −1 βt = hF S,t

hF,t
βt = hF S,t

hF,t
(1) (2) (3) (4) (5)

Return 0.0389 −0.0003 0.0061 0.0060

{2.3713} {−0.0351} {0.9562} {0.9580}
Variance 0.8286 0.1718 0.1240 0.1211

Out-of-sample

Symmetric Asymmetric

Unhedged Naive hedge time-varying hedge time-varying hedge

β = 0 β = −1 βt = hF S,t

hF,t
βt = hF S,t

hF,t

Return 0.0819 −0.0004 0.0120 0.0140

{1.4958} {0.0216} {0.7761} {0.9083}
Variance 1.4972 0.1696 0.1186 0.1188

Note: t-ratios displayed as {.}.
Source: Brooks, Henry and Persand (2002).

ratios using (8.108). The hedging performance of a BEKK formulation is

examined, and also a BEKK model including asymmetry terms (in the same

style as GJR models). The returns and variances for the various hedging

strategies are presented in table 8.5.

The simplest approach, presented in column (2), is that of no hedge at

all. In this case, the portfolio simply comprises a long position in the cash

market. Such an approach is able to achieve significant positive returns in

sample, but with a large variability of portfolio returns. Although none of

the alternative strategies generate returns that are significantly different

from zero, either in-sample or out-of-sample, it is clear from columns (3)--

(5) of table 8.5 that any hedge generates significantly less return variability

than none at all.

The ‘naive’ hedge, which takes one short futures contract for every spot

unit, but does not allow the hedge to time-vary, generates a reduction

in variance of the order of 80% in-sample and nearly 90% out-of-sample

relative to the unhedged position. Allowing the hedge ratio to be time-

varying and determined from a symmetric multivariate GARCH model

leads to a further reduction as a proportion of the unhedged variance of

5% and 2% for the in-sample and holdout sample, respectively. Allowing

for an asymmetric response of the conditional variance to positive and
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Figure 8.5

Source: Brooks,

Henry and Persand

(2002). Time-varying

hedge ratios derived

from symmetric and

asymmetric BEKK

models for FTSE

returns.

negative shocks yields a very modest reduction in variance (a further 0.5%

of the initial value) in-sample, and virtually no change out-of-sample.

Figure 8.5 graphs the time-varying hedge ratio from the symmetric and

asymmetric MGARCH models. The optimal hedge ratio is never greater

than 0.96 futures contracts per index contract, with an average value of

0.82 futures contracts sold per long index contract. The variance of the

estimated optimal hedge ratio is 0.0019. Moreover the optimal hedge ratio

series obtained through the estimation of the asymmetric GARCH model

appears stationary. An ADF test of the null hypothesis β∗
t−1 ∼ I(1) (i.e. that

the optimal hedge ratio from the asymmetric BEKK model contains a

unit root) was strongly rejected by the data (ADF statistic = −5.7215,

5% Critical value = −2.8630). The time-varying hedge requires the sale

(purchase) of fewer futures contracts per long (short) index contract and

hence would save the firm wishing to hedge a short exposure money rela-

tive to the time-invariant hedge. One possible interpretation of the better

performance of the dynamic strategies over the naive hedge is that the dy-

namic hedge uses short-run information, while the naive hedge is driven

by long-run considerations and an assumption that the relationship be-

tween spot and futures price movements is 1:1.

Brooks, Henry and Persand also investigate the hedging performances

of the various models using a modern risk management approach. They

find, once again, that the time-varying hedge results in a considerable
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improvement, but that allowing for asymmetries results in only a very

modest incremental reduction in hedged portfolio risk.

8.29 Estimating multivariate GARCH models using EViews

In previous versions of the software, multivariate GARCH models could

only be estimated in EViews by writing the required instructions, but

now they are available using the menus. To estimate such a model, first

you need to create a system that contains the variables to be used. High-

light the three variables ‘reur’, ‘rgbp’, and ‘rjpy’ and then right click

the mouse. Choose Open/as System . . . ;Click Object/New Object and then

click System. Screenshot 8.6 will appear.

Screenshot 8.6

Making a system

Since no explanatory variables will be used in the conditional mean

equation, all of the default choices can be retained, so just click OK.

A system box containing the three equations with just intercepts will

be seen. Then click Proc/Estimate . . . for the ‘System Estimation’ window.

Change the ‘Estimation method’ to ARCH – Conditional Heteroscedastic-

ity. EViews permits the estimation of 3 important classes of multivariate

GARCH model: the diagonal VECH, the constant conditional correlation,
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and the diagonal BEKK models. For the error distribution, either a mul-

tivariate normal or a multivariate Student’s t can be used. Additional

exogenous variables can be incorporated into the variance equation, and

asymmetries can be allowed for. Leaving all of these options as the defaults

and clicking OK would yield the following results.3

System: UNTITLED

Estimation Method: ARCH Maximum Likelihood (Marquardt)

Covariance specification: Diagonal VECH

Date: 09/06/07 Time: 20:27

Sample: 7/08/2002 7/07/2007

Included observations: 1826

Total system (balanced) observations 5478

Presample covariance: backcast (parameter = 0.7)

Convergence achieved after 97 iterations

Coefficient Std. Error z-Statistic Prob.

C(1) −0.024107 0.008980 −2.684689 0.0073

C(2) −0.014243 0.008861 −1.607411 0.1080

C(3) 0.005420 0.009368 0.578572 0.5629

Variance Equation Coefficients

C(4) 0.006725 0.000697 9.651785 0.0000

C(5) 0.054984 0.004840 11.36043 0.0000

C(6) 0.004792 0.000979 4.895613 0.0000

C(7) 0.129606 0.007495 17.29127 0.0000

C(8) 0.030076 0.003945 7.624554 0.0000

C(9) 0.006344 0.001276 4.971912 0.0000

C(10) 0.031130 0.002706 11.50347 0.0000

C(11) 0.047425 0.004734 10.01774 0.0000

C(12) 0.022325 0.004061 5.497348 0.0000

C(13) 0.121511 0.012267 9.905618 0.0000

C(14) 0.059994 0.007375 8.135074 0.0000

C(15) 0.034482 0.005079 6.788698 0.0000

C(16) 0.937158 0.004929 190.1436 0.0000

C(17) 0.560650 0.034187 16.39950 0.0000

C(18) 0.933618 0.011479 81.33616 0.0000

C(19) 0.127121 0.039195 3.243308 0.0012

C(20) 0.582251 0.047292 12.31189 0.0000

C(21) 0.931788 0.010298 90.47833 0.0000

Log likelihood −1935.756 Schwarz criterion 2.206582

Avg. log likelihood −0.353369 Hannan-Quinn criter. 2.166590

Akaike info criterion 2.143216

3 The complexity of this model means that it takes longer to estimate than any of the

univariate GARCH or other models examined previously.
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Equation: REUR = C(1)

R-squared −0.000151 Mean dependent var −0.018327

Adjusted R-squared −0.000151 S.D. dependent var 0.469930

S.E. of regression 0.469965 Sum squared resid 403.0827

Prob(F-statistic) 2.050379

Equation: RGBP = C(2)

R-squared −0.000006 Mean dependent var −0.015282

Adjusted R-squared −0.000006 S.D. dependent var 0.413105

S.E. of regression 0.413106 Sum squared resid 311.4487

Prob(F-statistic) 1.918603

Equation: RJPY = C(3)

R-squared −0.000087 Mean dependent var 0.001328

Adjusted R-squared −0.000087 S.D. dependent var 0.439632

S.E. of regression 0.439651 Sum squared resid 352.7596

Prob(F-statistic) 1.981767

Covariance specification: Diagonal VECH

GARCH = M + A1.∗RESID(−1)∗RESID(−1)′ + B1.∗GARCH(−1)

M is an indefinite matrix

A1 is an indefinite matrix

B1 is an indefinite matrix

Transformed Variance Coefficients

Coefficient Std. Error z-Statistic Prob.

M(1,1) 0.006725 0.000697 9.651785 0.0000

M(1,2) 0.054984 0.004840 11.36043 0.0000

M(1,3) 0.004792 0.000979 4.895613 0.0000

M(2,2) 0.129606 0.007495 17.29127 0.0000

M(2,3) 0.030076 0.003945 7.624554 0.0000

M(3,3) 0.006344 0.001276 4.971912 0.0000

A1(1,1) 0.031130 0.002706 11.50347 0.0000

A1(1,2) 0.047425 0.004734 10.01774 0.0000

A1(1,3) 0.022325 0.004061 5.497348 0.0000

A1(2,2) 0.121511 0.012267 9.905618 0.0000

A1(2,3) 0.059994 0.007375 8.135074 0.0000

A1(3,3) 0.034482 0.005079 6.788698 0.0000

B1(1,1) 0.937158 0.004929 190.1436 0.0000

B1(1,2) 0.560650 0.034187 16.39950 0.0000

B1(1,3) 0.933618 0.011479 81.33616 0.0000

B1(2,2) 0.127121 0.039195 3.243308 0.0012

B1(2,3) 0.582251 0.047292 12.31189 0.0000

B1(3,3) 0.931788 0.010298 90.47833 0.0000
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The first panel of the table presents the conditional mean estimates; in

this example, only intercepts were used in the mean equations. The next

panel shows the variance equation coefficients, followed by some mea-

sures of goodness of fit for the model as a whole and then for each indi-

vidual mean equation. The final panel presents the transformed variance

coefficients, which in this case are identical to the panel of variance co-

efficients since no transformation is conducted with normal errors (these

would only be different if a Student’s t specification were used). It is evi-

dent that the parameter estimates are all both plausible and statistically

significant.

There are a number of useful further steps that can be conducted once

the model has been estimated, all of which are available by clicking the

‘View’ button. For example, we can plot the series of residuals, or estimate

the correlations between them. Or by clicking on ‘Conditional variance’,

we can list or plot the values of the conditional variances and covariances

over time. We can also test for autocorrelation and normality of the errors.

Key concepts
The key terms to be able to define and explain from this chapter are

● non-linearity ● GARCH model

● conditional variance ● Wald test

● maximum likelihood ● likelihood ratio test

● lagrange multiplier test ● GJR specification

● asymmetry in volatility ● exponentially weighted

● constant conditional correlation moving average

● diagonal VECH ● BEKK model

● news impact curve ● GARCH-in-mean

● volatility clustering

Appendix: Parameter estimation using maximum likelihood

For simplicity, this appendix will consider by way of illustration the bivari-

ate regression case with homoscedastic errors (i.e. assuming that there is

no ARCH and that the variance of the errors is constant over time). Sup-

pose that the linear regression model of interest is of the form

yt = β1 + β2xt + ut (8A.1)

Assuming that ut ∼ N(0, σ 2), then yt ∼ N(β1 + β2xt , σ
2) so that the prob-

ability density function for a normally distributed random variable with
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this mean and variance is given by

f (yt | β1 + β2xt , σ
2) = 1

σ
√

2π
exp

{
−1

2

(yt − β1 − β2xt )
2

σ 2

}
(8A.2)

The probability density is a function of the data given the parameters.

Successive values of yt would trace out the familiar bell-shaped curve of

the normal distribution. Since the ys are iid, the joint probability density

function (pdf) for all the ys can be expressed as a product of the individual

density functions

f (y1, y2, . . . , yT | β1 + β2x1, β1 + β2x2, . . . , β1 + β2xT , σ 2)

= f (y1 | β1 + β2x2, σ
2) f (y2 | β1 + β2x2, σ

2) . . . f (yT | β1 + β2xT, σ
2)

=
T∏

t=1

f (yt | β1 + β2xt , σ
2) for t = 1, . . . , T (8A.3)

The term on the LHS of this expression is known as the joint density

and the terms on the RHS are known as the marginal densities. This result

follows from the independence of the y values, in the same way as un-

der elementary probability, for three independent events A, B and C, the

probability of A, B and C all happening is the probability of A multiplied

by the probability of B multiplied by the probability of C. Equation (8A.3)

shows the probability of obtaining all of the values of y that did occur.

Substituting into (8A.3) for every yt from (8A.2), and using the result that

Aex1 × Aex2 × · · · AexT = AT (ex1 × ex2 × · · · × exT ) = AT e(x1+x2+ ···+xT ), the fol-

lowing expression is obtained

f (y1, y2, . . . , yT | β1 + β2xt , σ
2)

= 1

σ T (
√

2π )T
exp

{
−1

2

T∑
t=1

(yt − β1 − β2xt )
2

σ 2

}
(8A.4)

This is the joint density of all of the ys given the values of xt , β1, β2 and

σ 2. However, the typical situation that occurs in practice is the reverse of

the above situation -- that is, the xt and yt are given and β1, β2, σ 2 are to be

estimated. If this is the case, then f (•) is known as a likelihood function,

denoted LF(β1, β2, σ 2), which would be written

L F(β1, β2, σ
2) = 1

σ T (
√

2π )T
exp

{
−1

2

T∑
t=1

(yt − β1 − β2xt )
2

σ 2

}
(8A.5)

Maximum likelihood estimation involves choosing parameter values (β1,

β2, σ 2) that maximise this function. Doing this ensures that the values of

the parameters are chosen that maximise the likelihood that we would
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have actually observed the ys that we did. It is necessary to differentiate

(8A.5) w.r.t. β1, β2, σ 2, but (8A.5) is a product containing T terms, and so

would be difficult to differentiate.

Fortunately, since max
x

f (x) = max
x

ln( f (x)), logs of (8A.5) can be taken,

and the resulting expression differentiated, knowing that the same opti-

mal values for the parameters will be chosen in both cases. Then, using

the various laws for transforming functions containing logarithms, the

log-likelihood function, LLF is obtained

LLF = −T ln σ − T

2
ln(2π ) − 1

2

T∑
t=1

(yt − β1 − β2xt )
2

σ 2
(8A.6)

which is equivalent to

LLF = −T

2
ln σ 2 − T

2
ln(2π ) − 1

2

T∑
t=1

(yt − β1 − β2xt )
2

σ 2
(8A.7)

Only the first part of the RHS of (8A.6) has been changed in (8A.7) to make

σ 2 appear in that part of the expression rather than σ .

Remembering the result that

∂

∂x
(ln(x)) = 1

x

and differentiating (8A.7) w.r.t. β1, β2, σ 2, the following expressions for

the first derivatives are obtained

∂LLF

∂β1

= −1

2

∑ (yt − β1 − β2xt ).2. − 1

σ 2
(8A.8)

∂LLF

∂β2

= −1

2

∑ (yt − β1 − β2xt ).2. − xt

σ 2
(8A.9)

∂LLF

∂σ 2
= −T

2

1

σ 2
+ 1

2

∑ (yt − β1 − β2xt )
2

σ 4
(8A.10)

Setting (8A.8)--(8A.10) to zero to minimise the functions, and placing hats

above the parameters to denote the maximum likelihood estimators, from

(8A.8)

∑
(yt − β̂1 − β̂2xt ) = 0 (8A.11)∑
yt −

∑
β̂1 −

∑
β̂2xt = 0 (8A.12)∑

yt − T β̂1 − β̂2

∑
xt = 0 (8A.13)

1

T

∑
yt − β̂1 − β̂2

1

T

∑
xt = 0 (8A.14)
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Recall that

1

T

∑
yt = ȳt

the mean of y and similarly for x , an estimator for β̂1 can finally be derived

β̂1 = ȳ − β̂2 x̄ (8A.15)

From (8A.9)

∑
(yt − β̂1 − β̂2xt )xt = 0 (8A.16)

∑
yt xt −

∑
β̂1xt −

∑
β̂2x2

t = 0 (8A.17)

∑
yt xt − β̂1

∑
xt − β̂2

∑
x2

t = 0 (8A.18)

β̂2

∑
x2

t =
∑

yt xt − (ȳ − β̂2 x̄)
∑

xt (8A.19)

β̂2

∑
x2

t =
∑

yt xt − T xy + β̂2T x̄2 (8A.20)

β̂2

( ∑
x2

t −T x̄2
) =

∑
yt xt − T xy (8A.21)

β̂2 =
∑

yt xt − T xy( ∑
x2

t −T x̄2
) (8A.22)

From (8A.10)

T

σ̂ 2
= 1

σ̂ 4

∑
(yt − β̂1 − β̂2xt )

2 (8A.23)

Rearranging,

σ̂ 2 = 1

T

∑
(yt − β̂1 − β̂2xt )

2 (8A.24)

But the term in parentheses on the RHS of (8A.24) is the residual for time

t (i.e. the actual minus the fitted value), so

σ̂ 2 = 1

T

∑
û2

t (8A.25)

How do these formulae compare with the OLS estimators? (8A.15) and

(8A.22) are identical to those of OLS. So maximum likelihood and OLS

will deliver identical estimates of the intercept and slope coefficients.
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However, the estimate of σ̂ 2 in (8A.25) is different. The OLS estimator

was

σ̂ 2 = 1

T − k

∑
û2

t (8A.26)

and it was also shown that the OLS estimator is unbiased. Therefore, the

ML estimator of the error variance must be biased, although it is consis-

tent, since as T → ∞, T − k ≈ T .

Note that the derivation above could also have been conducted using

matrix rather than sigma algebra. The resulting estimators for the inter-

cept and slope coefficients would still be identical to those of OLS, while

the estimate of the error variance would again be biased. It is also worth

noting that the ML estimator is consistent and asymptotically efficient.

Derivation of the ML estimator for the GARCH LLF is algebraically difficult

and therefore beyond the scope of this book.

Review questions

1. (a) What stylised features of financial data cannot be explained using

linear time series models?

(b) Which of these features could be modelled using a GARCH(1,1)

process?

(c) Why, in recent empirical research, have researchers preferred

GARCH(1,1) models to pure ARCH(p)?

(d) Describe two extensions to the original GARCH model. What

additional characteristics of financial data might they be able to

capture?

(e) Consider the following GARCH(1,1) model

yt = μ + ut , ut ∼ N
(
0, σ 2

t

)
(8.110)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (8.111)

If yt is a daily stock return series, what range of values are likely for

the coefficients μ, α0, α1 and β?

(f) Suppose that a researcher wanted to test the null hypothesis that

α1 + β = 1 in the equation for part (e). Explain how this might be

achieved within the maximum likelihood framework.

(g) Suppose now that the researcher had estimated the above GARCH

model for a series of returns on a stock index and obtained the

following parameter estimates: μ̂ = 0.0023, α̂0 = 0.0172,

β̂ = 0.9811, α̂1 = 0.1251. If the researcher has data available up to



Modelling volatility and correlation 449

and including time T , write down a set of equations in σ 2
t and u2

t

their lagged values, which could be employed to produce one-, two-,

and three-step-ahead forecasts for the conditional variance of yt .

(h) Suppose now that the coefficient estimate of β̂ for this model is

0.98 instead. By re-considering the forecast expressions you derived

in part (g), explain what would happen to the forecasts in this case.

2. (a) Discuss briefly the principles behind maximum likelihood.

(b) Describe briefly the three hypothesis testing procedures that are

available under maximum likelihood estimation. Which is likely to be

the easiest to calculate in practice, and why?

(c) OLS and maximum likelihood are used to estimate the parameters of

a standard linear regression model. Will they give the same

estimates? Explain your answer.

3. (a) Distinguish between the terms ‘conditional variance’ and

‘unconditional variance’. Which of the two is more likely to be

relevant for producing:

i. 1-step-ahead volatility forecasts

ii. 20-step-ahead volatility forecasts.

(a) If ut follows a GARCH(1,1) process, what would be the likely result if

a regression of the form (8.110) were estimated using OLS and

assuming a constant conditional variance?

(b) Compare and contrast the following models for volatility, noting their

strengths and weaknesses:

i. Historical volatility

ii. EWMA

iii. GARCH(1,1)

iv. Implied volatility.

4. Suppose that a researcher is interested in modelling the correlation

between the returns of the NYSE and LSE markets.

(a) Write down a simple diagonal VECH model for this problem. Discuss

the values for the coefficient estimates that you would expect.

(b) Suppose that weekly correlation forecasts for two weeks ahead are

required. Describe a procedure for constructing such forecasts from

a set of daily returns data for the two market indices.

(c) What other approaches to correlation modelling are available?

(d) What are the strengths and weaknesses of multivariate GARCH

models relative to the alternatives that you propose in part (c)?

5. (a) What is a news impact curve? Using a spreadsheet or otherwise,

construct the news impact curve for the following estimated EGARCH

and GARCH models, setting the lagged conditional variance to the
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value of the unconditional variance (estimated from the sample data

rather than the mode parameter estimates), which is 0.096

σ 2
t = α0 + α1u2

t−1 + α2σ
2
t−1 (8.112)

log
(
σ 2

t

) = α0 + α1

ut−1√
σ 2

t−1

+ α2 log
(
σ 2

t−1

)

+ α3

⎡
⎣ |ut−1 |√

σ 2
t−1

−
√

2

π

⎤
⎦ (8.113)

GARCH EGARCH

μ −0.0130 −0.0278

(0.0669) (0.0855)

α0 0.0019 0.0823

(0.0017) (0.5728)

α1 0.1022∗∗ −0.0214

(0.0333) (0.0332)

α2 0.9050∗∗ 0.9639∗∗

(0.0175) (0.0136)

α3 − 0.2326∗∗

(0.0795)

(b) In fact, the models in part (a) were estimated using daily foreign

exchange returns. How can financial theory explain the patterns

observed in the news impact curves?

6. Using EViews, estimate a multivariate GARCH model for the spot and

futures returns series in ‘sandphedge.wf1’. Note that these series are

somewhat short for multivariate GARCH model estimation. Save the

fitted conditional variances and covariances, and then use these to

construct the time-varying optimal hedge ratios. Compare this plot with

the unconditional hedge ratio calculated in chapter 2.



9
Switching models

Learning Outcomes
In this chapter, you will learn how to

● Use intercept and slope dummy variables to allow for seasonal
behaviour in time series

● Motivate the use of regime switching models in financial
econometrics

● Specify and explain the logic behind Markov switching models

● Compare and contrast Markov switching and threshold
autoregressive models

● Describe the intuition behind the estimation of regime
switching models

9.1 Motivations

Many financial and economic time series seem to undergo episodes in

which the behaviour of the series changes quite dramatically compared

to that exhibited previously. The behaviour of a series could change over

time in terms of its mean value, its volatility, or to what extent its current

value is related to its previous value. The behaviour may change once and

for all, usually known as a ‘structural break’ in a series. Or it may change

for a period of time before reverting back to its original behaviour or

switching to yet another style of behaviour, and the latter is typically

termed a ‘regime shift’ or ‘regime switch’.

9.1.1 What might cause one-off fundamental changes in the

properties of a series?

Usually, very substantial changes in the properties of a series are at-

tributed to large-scale events, such as wars, financial panics -- e.g. a ‘run

451
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Sample time series

plot illustrating a

regime shift

on a bank’, significant changes in government policy, such as the intro-

duction of an inflation target, or the removal of exchange controls, or

changes in market microstructure -- e.g. the ‘Big Bang’, when trading on

the London Stock Exchange (LSE) became electronic, or a change in the

market trading mechanism, such as the partial move of the LSE from a

quote-driven to an order-driven system in 1997.

However, it is also true that regime shifts can occur on a regular basis

and at much higher frequency. Such changes may occur as a result of more

subtle factors, but still leading to statistically important modifications

in behaviour. An example would be the intraday patterns observed in

equity market bid--ask spreads (see chapter 6). These appear to start with

high values at the open, gradually narrowing throughout the day, before

widening again at the close.

To give an illustration of the kind of shifts that may be seen to occur,

figure 9.1 gives an extreme example.

As can be seen from figure 9.1, the behaviour of the series changes

markedly at around observation 500. Not only does the series become

much more volatile than previously, its mean value is also substantially

increased. Although this is a severe case that was generated using sim-

ulated data, clearly, in the face of such ‘regime changes’ a linear model

estimated over the whole sample covering the change would not be ap-

propriate. One possible approach to this problem would be simply to split

the data around the time of the change and to estimate separate models

on each portion. It would be possible to allow a series, yt to be drawn

from two or more different generating processes at different times. For

example, if it was thought an AR(1) process was appropriate to capture
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the relevant features of a particular series whose behaviour changed at

observation 500, say, two models could be estimated:

yt = μ1 + φ1 yt−1 + u1t before observation 500 (9.1)

yt = μ2 + φ2 yt−1 + u2t after observation 500 (9.2)

In the context of figure 9.1, this would involve focusing on the mean

shift only. These equations represent a very simple example of what is

known as a piecewise linear model -- that is, although the model is globally

(i.e. when it is taken as a whole) non-linear, each of the component parts

is a linear model.

This method may be valid, but it is also likely to be wasteful of in-

formation. For example, even if there were enough observations in each

sub-sample to estimate separate (linear) models, there would be an effi-

ciency loss in having fewer observations in each of two samples than if

all the observations were collected together. Also, it may be the case that

only one property of the series has changed -- for example, the (uncon-

ditional) mean value of the series may have changed, leaving its other

properties unaffected. In this case, it would be sensible to try to keep all

of the observations together, but to allow for the particular form of the

structural change in the model-building process. Thus, what is required

is a set of models that allow all of the observations on a series to be used

for estimating a model, but also that the model is sufficiently flexible to

allow different types of behaviour at different points in time. Two classes

of regime switching models that potentially allow this to occur are Markov

switching models and threshold autoregressive models.

A first and central question to ask is: How can it be determined where

the switch(es) occurs? The method employed for making this choice will

depend upon the model used. A simple type of switching model is one

where the switches are made deterministically using dummy variables.

One important use of this in finance is to allow for ‘seasonality’ in finan-

cial data. In economics and finance generally, many series are believed to

exhibit seasonal behaviour, which results in a certain element of partly

predictable cycling of the series over time. For example, if monthly or

quarterly data on consumer spending are examined, it is likely that the

value of the series will rise rapidly in late November owing to Christmas-

related expenditure, followed by a fall in mid-January, when consumers

realise that they have spent too much before Christmas and in the January

sales! Consumer spending in the UK also typically drops during the

August vacation period when all of the sensible people have left the coun-

try. Such phenomena will be apparent in many series and will be present

to some degree at the same time every year, whatever else is happening

in terms of the long-term trend and short-term variability of the series.
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9.2 Seasonalities in financial markets: introduction
and literature review

In the context of financial markets, and especially in the case of equi-

ties, a number of other ‘seasonal effects’ have been noted. Such effects

are usually known as ‘calendar anomalies’ or ‘calendar effects’. Exam-

ples include open- and close-of-market effects, ‘the January effect’, week-

end effects and bank holiday effects. Investigation into the existence or

otherwise of ‘calendar effects’ in financial markets has been the subject

of a considerable amount of recent academic research. Calendar effects

may be loosely defined as the tendency of financial asset returns to dis-

play systematic patterns at certain times of the day, week, month, or year.

One example of the most important such anomalies is the day-of-the-week

effect, which results in average returns being significantly higher on some

days of the week than others. Studies by French (1980), Gibbons and Hess

(1981) and Keim and Stambaugh (1984), for example, have found that the

average market close-to-close return in the US is significantly negative on

Monday and significantly positive on Friday. By contrast, Jaffe and West-

erfield (1985) found that the lowest mean returns for the Japanese and

Australian stock markets occur on Tuesdays.

At first glance, these results seem to contradict the efficient markets

hypothesis, since the existence of calendar anomalies might be taken

to imply that investors could develop trading strategies which make ab-

normal profits on the basis of such patterns. For example, holding all

other factors constant, equity purchasers may wish to sell at the close

on Friday and to buy at the close on Thursday in order to take advan-

tage of these effects. However, evidence for the predictability of stock re-

turns does not necessarily imply market inefficiency, for at least two rea-

sons. First, it is likely that the small average excess returns documented

by the above papers would not generate net gains when employed in a

trading strategy once the costs of transacting in the markets has been

taken into account. Therefore, under many ‘modern’ definitions of mar-

ket efficiency (e.g. Jensen, 1978), these markets would not be classified

as inefficient. Second, the apparent differences in returns on different

days of the week may be attributable to time-varying stock market risk

premiums.

If any of these calendar phenomena are present in the data but ignored

by the model-building process, the result is likely to be a misspecified

model. For example, ignored seasonality in yt is likely to lead to residual

autocorrelation of the order of the seasonality -- e.g. fifth order residual

autocorrelation if yt is a series of daily returns.
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9.3 Modelling seasonality in financial data

As discussed above, seasonalities at various different frequencies in finan-

cial time series data are so well documented that their existence cannot

be doubted, even if there is argument about how they can be rationalised.

One very simple method for coping with this and examining the degree

to which seasonality is present is the inclusion of dummy variables in re-

gression equations. The number of dummy variables that could sensibly

be constructed to model the seasonality would depend on the frequency

of the data. For example, four dummy variables would be created for quar-

terly data, 12 for monthly data, five for daily data and so on. In the case

of quarterly data, the four dummy variables would be defined as follows:

D1t = 1 in quarter 1 and zero otherwise

D2t = 1 in quarter 2 and zero otherwise

D3t = 1 in quarter 3 and zero otherwise

D4t = 1 in quarter 4 and zero otherwise

How many dummy variables can be placed in a regression model? If an

intercept term is used in the regression, the number of dummies that

could also be included would be one less than the ‘seasonality’ of the

data. To see why this is the case, consider what happens if all four dum-

mies are used for the quarterly series. The following gives the values that

the dummy variables would take for a period during the mid-1980s, to-

gether with the sum of the dummies at each point in time, presented in

the last column:

D1 D2 D3 D4 Sum

1986 Q1 1 0 0 0 1

Q2 0 1 0 0 1

Q3 0 0 1 0 1

Q4 0 0 0 1 1

1987 Q1 1 0 0 0 1

Q2 0 1 0 0 1

Q3 0 0 1 0 1

etc.

The sum of the four dummies would be 1 in every time period. Unfor-

tunately, this sum is of course identical to the variable that is implicitly

attached to the intercept coefficient. Thus, if the four dummy variables

and the intercept were both included in the same regression, the problem

would be one of perfect multicollinearity so that (X ′ X )−1 would not exist
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and none of the coefficients could be estimated. This problem is known

as the dummy variable trap. The solution would be either to just use three

dummy variables plus the intercept, or to use the four dummy variables

with no intercept.

The seasonal features in the data would be captured using either of

these, and the residuals in each case would be identical, although the

interpretation of the coefficients would be changed. If four dummy vari-

ables were used (and assuming that there were no explanatory variables

in the regression), the estimated coefficients could be interpreted as the

average value of the dependent variable during each quarter. In the case

where a constant and three dummy variables were used, the interpreta-

tion of the estimated coefficients on the dummy variables would be that

they represented the average deviations of the dependent variables for the

included quarters from their average values for the excluded quarter, as

discussed in the example below.

Box 9.1 How do dummy variables work?

The dummy variables as described above operate by changing the intercept, so that the

average value of the dependent variable, given all of the explanatory variables, is

permitted to change across the seasons. This is shown in figure 9.2.

xtQ3

Q2

Q1

Q4

yt

3

1

1

2

Figure 9.2

Use of intercept

dummy variables for

quarterly data
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Consider the following regression

yt = β1 + γ1 D1t + γ2 D2t + γ3 D3t + β2x2t + · · · + ut (9.3)

During each period, the intercept will be changed. The intercept will be:

● β̂1 + γ̂1 in the first quarter, since D1 = 1 and D2 = D3 = 0 for all quarter 1

observations

● β̂1 + γ̂2 in the second quarter, since D2 = 1 and D1 = D3 = 0 for all quarter 2

observations.

● β̂1 + γ̂3 in the third quarter, since D3 = 1 and D1 = D2 = 0 for all quarter 3

observations

● β̂1 in the fourth quarter, since D1 = D2 = D3 = 0 for all quarter 4 observations.

Example 9.1

Brooks and Persand (2001a) examine the evidence for a day-of-the-week

effect in five Southeast Asian stock markets: South Korea, Malaysia,

the Philippines, Taiwan and Thailand. The data, obtained from Primark

Datastream, are collected on a daily close-to-close basis for all weekdays

(Mondays to Fridays) falling in the period 31 December 1989 to 19 Jan-

uary 1996 (a total of 1,581 observations). The first regressions estimated,

which constitute the simplest tests for day-of-the-week effects, are of the

form

rt = γ1 D1t + γ2 D2t + γ3 D3t + γ4 D4t + γ5 D5t + ut (9.4)

where rt is the return at time t for each country examined separately,

D1t is a dummy variable for Monday, taking the value 1 for all Monday

observations and zero otherwise, and so on. The coefficient estimates can

be interpreted as the average sample return on each day of the week. The

results from these regressions are shown in table 9.1.

Briefly, the main features are as follows. Neither South Korea nor the

Philippines have significant calendar effects; both Thailand and Malaysia

have significant positive Monday average returns and significant negative

Tuesday returns; Taiwan has a significant Wednesday effect.

Dummy variables could also be used to test for other calendar anoma-

lies, such as the January effect, etc. as discussed above, and a given re-

gression can include dummies of different frequencies at the same time.

For example, a new dummy variable D6t could be added to (9.4) for ‘April

effects’, associated with the start of the new tax year in the UK. Such a

variable, even for a regression using daily data, would take the value 1 for

all observations falling in April and zero otherwise.

If we choose to omit one of the dummy variables and to retain the in-

tercept, then the omitted dummy variable becomes the reference category
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Table 9.1 Values and significances of days of the week coefficients

Thailand Malaysia Taiwan South Korea Philippines

Monday 0.49E-3 0.00322 0.00185 0.56E-3 0.00119

(0.6740) (3.9804)∗∗ (2.9304)∗∗ (0.4321) (1.4369)

Tuesday −0.45E-3 −0.00179 −0.00175 0.00104 −0.97E-4

(−0.3692) (−1.6834) (−2.1258)∗∗ (0.5955) (−0.0916)

Wednesday −0.37E-3 −0.00160 0.31E-3 −0.00264 −0.49E-3

(−0.5005) (−1.5912) (0.4786) (−2.107)∗∗ (−0.5637)

Thursday 0.40E-3 0.00100 0.00159 −0.00159 0.92E-3

(0.5468) (1.0379) (2.2886)∗∗ (−1.2724) (0.8908)

Friday −0.31E-3 0.52E-3 0.40E-4 0.43E-3 0.00151

(−0.3998) (0.5036) (0.0536) (0.3123) (1.7123)

Notes: Coefficients are given in each cell followed by t -ratios in parentheses; ∗ and ∗∗

denote significance at the 5% and 1% levels, respectively.

Source: Brooks and Persand (2001a).

against which all the others are compared. For example consider a model

such as the one above, but where the Monday dummy variable has been

omitted

rt = α + γ2 D2t + γ3 D3t + γ4 D4t + γ5 D5t + ut (9.5)

The estimate of the intercept will be α̂ on Monday, α̂ + γ̂21 on Tuesday

and so on. γ̂2 will now be interpreted as the difference in average returns

between Monday and Tuesday. Similarly, γ̂3, . . . , γ̂5 can also be interpreted

as the differences in average returns between Wednesday, . . ., Friday, and

Monday.

This analysis should hopefully have made it clear that by thinking care-

fully about which dummy variable (or the intercept) to omit from the

regression, we can control the interpretation to test naturally the hypoth-

esis that is of most interest. The same logic can also be applied to slope

dummy variables, which are described in the following section.

9.3.1 Slope dummy variables

As well as, or instead of, intercept dummies, slope dummy variables can

also be used. These operate by changing the slope of the regression line,

leaving the intercept unchanged. Figure 9.3 gives an illustration in the

context of just one slope dummy (i.e. two different ‘states’). Such a setup
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xt

yt

yt = a + bxt + γDtxt + ut

yt = a + bxt + ut

Figure 9.3

Use of slope dummy

variables

would apply if, for example, the data were bi-annual (twice yearly) or bi-

weekly or observations made at the open and close of markets. Then Dt

would be defined as Dt = 1 for the first half of the year and zero for the

second half.

A slope dummy changes the slope of the regression line, leaving the

intercept unchanged. In the above case, the intercept is fixed at α, while

the slope varies over time. For periods where the value of the dummy is

zero, the slope will be β, while for periods where the dummy is one, the

slope will be β + γ .

Of course, it is also possible to use more than one dummy variable for

the slopes. For example, if the data were quarterly, the following setup

could be used, with D1t . . . D3t representing quarters 1--3.

yt = α + βxt + γ1 D1t xt + γ2 D2t xt + γ3 D3t xt + ut (9.6)

In this case, since there is also a term in xt with no dummy attached,

the interpretation of the coefficients on the dummies (γ1, etc.) is that

they represent the deviation of the slope for that quarter from the av-

erage slope over all quarters. On the other hand, if the 4 slope dummy

variables were included (and not βxt ), the coefficients on the dummies

would be interpreted as the average slope coefficients during each quarter.

Again, it is important not to include 4 quarterly slope dummies and the
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βxt in the regression together, otherwise perfect multicollinearity would

result.

Example 9.2

Returning to the example of day-of-the-week effects in Southeast Asian

stock markets, although significant coefficients in (9.4) will support the

hypothesis of seasonality in returns, it is important to note that risk fac-

tors have not been taken into account. Before drawing conclusions on the

potential presence of arbitrage opportunities or inefficient markets, it is

important to allow for the possibility that the market can be more or less

risky on certain days than others. Hence, low (high) significant returns in

(9.4) might be explained by low (high) risk. Brooks and Persand thus test

for seasonality using the empirical market model, whereby market risk is

proxied by the return on the FTA World Price Index. Hence, in order to

look at how risk varies across the days of the week, interactive (i.e. slope)

dummy variables are used to determine whether risk increases (decreases)

on the day of high (low) returns. The equation, estimated separately using

time-series data for each country can be written

rt =
(

5∑
i=1

αi Dit + βi Dit RW Mt

)
+ ut (9.7)

where αi and βi are coefficients to be estimated, Dit is the i th dummy

variable taking the value 1 for day t = i and zero otherwise, and RW Mt is

the return on the world market index. In this way, when considering the

effect of market risk on seasonality, both risk and return are permitted to

vary across the days of the week. The results from estimation of (9.6) are

given in table 9.2. Note that South Korea and the Philippines are excluded

from this part of the analysis, since no significant calendar anomalies were

found to explain in table 9.1.

As can be seen, significant Monday effects in the Bangkok and Kuala

Lumpur stock exchanges, and a significant Thursday effect in the latter,

remain even after the inclusion of the slope dummy variables which allow

risk to vary across the week. The t -ratios do fall slightly in absolute value,

however, indicating that the day-of-the-week effects become slightly less

pronounced. The significant negative average return for the Taiwanese

stock exchange, however, completely disappears. It is also clear that aver-

age risk levels vary across the days of the week. For example, the betas for

the Bangkok stock exchange vary from a low of 0.36 on Monday to a high

of over unity on Tuesday. This illustrates that not only is there a significant

positive Monday effect in this market, but also that the responsiveness of
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Table 9.2 Day-of-the-week effects with the inclusion of interactive dummy variables
with the risk proxy

Thailand Malaysia Taiwan

Monday 0.00322 0.00185 0.544E-3

(3.3571)∗∗ (2.8025)∗∗ (0.3945)

Tuesday −0.00114 −0.00122 0.00140

(−1.1545) (−1.8172) (1.0163)

Wednesday −0.00164 0.25E-3 −0.00263

(−1.6926) (0.3711) (−1.9188)

Thursday 0.00104 0.00157 −0.00166

(1.0913) (2.3515)∗ (−1.2116)

Friday 0.31E-4 −0.3752 −0.13E-3

(0.03214) (−0.5680) (−0.0976)

Beta-Monday 0.3573 0.5494 0.6330

(2.1987)∗ (4.9284)∗∗ (2.7464)∗∗

Beta-Tuesday 1.0254 0.9822 0.6572

(8.0035)∗∗ (11.2708)∗∗ (3.7078)∗∗

Beta-Wednesday 0.6040 0.5753 0.3444

(3.7147)∗∗ (5.1870)∗∗ (1.4856)

Beta-Thursday 0.6662 0.8163 0.6055

(3.9313)∗∗ (6.9846)∗∗ (2.5146)∗

Beta-Friday 0.9124 0.8059 1.0906

(5.8301)∗∗ (7.4493)∗∗ (4.9294)∗∗

Notes: Coefficients are given in each cell followed by t -ratios in parentheses; ∗ and ∗∗

denote significance at the 5% and 1%, levels respectively.

Source: Brooks and Persand (2001a).

Bangkok market movements to changes in the value of the general world

stock market is considerably lower on this day than on other days of the

week.

9.3.2 Dummy variables for seasonality in EViews

The most commonly observed calendar effect in monthly data is a January

effect. In order to examine whether there is indeed a January effect in a

monthly time series regression, a dummy variable is created that takes the

value 1 only in the months of January. This is easiest achieved by creating

a new dummy variable called JANDUM containing zeros everywhere, and

then editing the variable entries manually, changing all of the zeros for

January months to ones. Returning to the Microsoft stock price example

of chapters 3 and 4, Create this variable using the methodology described
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above, and run the regression again including this new dummy variable

as well. The results of this regression are:

Dependent Variable: ERMSOFT

Method: Least Squares

Date: 09/06/07 Time: 20:45

Sample (adjusted): 1986M05 2007M04

Included observations: 252 after adjustments

Coefficient Std. Error t-Statistic Prob.

C −0.574717 1.334120 −0.430783 0.6670

ERSANDP 1.522142 0.183517 8.294282 0.0000

DPROD 0.522582 0.450995 1.158730 0.2477

DCREDIT −6.27E-05 0.000144 −0.435664 0.6635

DINFLATION 2.162911 3.048665 0.709462 0.4787

DMONEY −1.412355 0.641359 −2.202129 0.0286

DSPREAD 8.944002 12.16534 0.735203 0.4629

RTERM 6.944576 2.978703 2.331409 0.0206

FEB89DUM −68.52799 12.62302 −5.428811 0.0000

FEB03DUM −66.93116 12.60829 −5.308503 0.0000

JANDUM 6.140623 3.277966 1.873303 0.0622

R-squared 0.368162 Mean dependent var −0.420803

Adjusted R-squared 0.341945 S.D. dependent var 15.41135

S.E. of regression 12.50178 Akaike info criterion 7.932288

Sum squared resid 37666.97 Schwarz criterion 8.086351

Log likelihood −988.4683 Hannan-Quinn criter. 7.994280

F-statistic 14.04271 Durbin-Watson stat 2.135471

Prob(F-statistic) 0.000000

As can be seen, the dummy is just outside being statistically significant

at the 5% level, and it has the expected positive sign. The coefficient value

of 6.14, suggests that on average and holding everything else equal, Mi-

crosoft stock returns are around 6% higher in January than the average

for other months of the year.

9.4 Estimating simple piecewise linear functions

The piecewise linear model is one example of a general set of models

known as spline techniques. Spline techniques involve the application of

polynomial functions in a piecewise fashion to different portions of the

data. These models are widely used to fit yield curves to available data on

the yields of bonds of different maturities (see, for example, Shea, 1984).

A simple piecewise linear model could operate as follows. If the rela-

tionship between two series, y and x , differs depending on whether x is
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smaller or larger than some threshold value x∗, this phenomenon can be

captured using dummy variables. A dummy variable, Dt , could be defined,

taking values

Dt =
{

0 if xt < x∗

1 if xt ≥ x∗ (9.8)

To offer an illustration of where this may be useful, it is sometimes the

case that the tick size limits vary according to the price of the asset. For

example, according to George and Longstaff (1993, see also chapter 6 of

this book), the Chicago Board of Options Exchange (CBOE) limits the tick

size to be $(1/8) for options worth $3 or more, and $(1/16) for options worth

less than $3. This means that the minimum permissible price movements

are $(1/8) and ($1/16) for options worth $3 or more and less than $3,

respectively. Thus, if y is the bid--ask spread for the option, and x is the

option price, used as a variable to partly explain the size of the spread,

the spread will vary with the option price partly in a piecewise manner

owing to the tick size limit. The model could thus be specified as

yt = β1 + β2xt + β3 Dt + β4 Dt xt + ut (9.9)

with Dt defined as above. Viewed in the light of the above discussion on

seasonal dummy variables, the dummy in (9.8) is used as both an intercept

and a slope dummy. An example showing the data and regression line is

given by figure 9.4.

Note that the value of the threshold or ‘knot’ is assumed known at

this stage. Throughout, it is also possible that this situation could be

xt

yt

Threshold
value of x

Figure 9.4

Piecewise linear

model with

threshold x∗
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generalised to the case where yt is drawn from more than two regimes or

is generated by a more complex model.

9.5 Markov switching models

Although a large number of more complex, non-linear threshold mod-

els have been proposed in the econometrics literature, only two kinds of

model have had any noticeable impact in finance (aside from threshold

GARCH models of the type alluded to in chapter 8). These are the Markov

regime switching model associated with Hamilton (1989, 1990), and the

threshold autoregressive model associated with Tong (1983, 1990). Each of

these formulations will be discussed below.

9.5.1 Fundamentals of Markov switching models

Under the Markov switching approach, the universe of possible occur-

rences is split into m states of the world, denoted si , i = 1, . . . , m, cor-

responding to m regimes. In other words, it is assumed that yt switches

regime according to some unobserved variable, st , that takes on integer

values. In the remainder of this chapter, it will be assumed that m = 1

or 2. So if st = 1, the process is in regime 1 at time t , and if st = 2, the

process is in regime 2 at time t . Movements of the state variable between

regimes are governed by a Markov process. This Markov property can be

expressed as

P[a < yt ≤ b | y1, y2, . . . , yt−1] = P[a < yt ≤ b | yt−1] (9.10)

In plain English, this equation states that the probability distribution

of the state at any time t depends only on the state at time t − 1 and

not on the states that were passed through at times t − 2, t − 3, . . . Hence

Markov processes are not path-dependent. The model’s strength lies in its

flexibility, being capable of capturing changes in the variance between

state processes, as well as changes in the mean.

The most basic form of Hamilton’s model, also known as ‘Hamilton’s

filter’ (see Hamilton, 1989), comprises an unobserved state variable, de-

noted zt , that is postulated to evaluate according to a first order Markov

process

prob[zt = 1|zt−1 = 1] = p11 (9.11)

prob[zt = 2|zt−1 = 1] = 1 − p11 (9.12)

prob[zt = 2|zt−1 = 2] = p22 (9.13)

prob[zt = 1|zt−1 = 2] = 1 − p22 (9.14)
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where p11 and p22 denote the probability of being in regime one, given

that the system was in regime one during the previous period, and the

probability of being in regime two, given that the system was in regime

two during the previous period, respectively. Thus 1 − p11 defines the prob-

ability that yt will change from state 1 in period t − 1 to state 2 in period

t , and 1 − p22 defines the probability of a shift from state 2 to state 1

between times t − 1 and t . It can be shown that under this specification,

zt evolves as an AR(1) process

zt = (1 − p11) + ρzt−1 + ηt (9.15)

where ρ = p11 + p22 − 1. Loosely speaking, zt can be viewed as a gener-

alisation of the dummy variables for one-off shifts in a series discussed

above. Under the Markov switching approach, there can be multiple shifts

from one set of behaviour to another.

In this framework, the observed returns series evolves as given by (9.15)

yt = μ1 + μ2zt + (σ 2
1 + φzt )

1/2ut (9.16)

where ut ∼ N(0, 1). The expected values and variances of the series are μ1

and σ 2
1 , respectively in state 1, and (μ1 + μ2) and σ 2

1 + φ in respectively,

state 2. The variance in state 2 is also defined, σ 2
2 = σ 2

1 + φ. The unknown

parameters of the model (μ1, μ2, σ
2
1 , σ 2

2 , p11, p22) are estimated using max-

imum likelihood. Details are beyond the scope of this book, but are most

comprehensively given in Engel and Hamilton (1990).

If a variable follows a Markov process, all that is required to forecast the

probability that it will be in a given regime during the next period is the

current period’s probability and a set of transition probabilities, given for

the case of two regimes by (9.11)--(9.14). In the general case where there

are m states, the transition probabilities are best expressed in a matrix as

P =

⎡
⎢⎢⎣

P11 P12 . . . P1m

P21 P22 . . . P2m

. . . . . . . . . . . .

Pm1 Pm2 . . . Pmm

⎤
⎥⎥⎦ (9.17)

where Pi j is the probability of moving from regime i to regime j . Since,

at any given time, the variable must be in one of the m states, it must be

true that

m∑
j=1

Pi j = 1∀i (9.18)

A vector of current state probabilities is then defined as

πt = [π1 π2 . . . πm ] (9.19)
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where πi is the probability that the variable y is currently in state i . Given

πt and P , the probability that the variable y will be in a given regime next

period can be forecast using

πt+1 = πt P (9.20)

The probabilities for S steps into the future will be given by

πt+s = πt Ps (9.21)

9.6 A Markov switching model for the real exchange rate

There have been a number of applications of the Markov switching model

in finance. Clearly, such an approach is useful when a series is thought to

undergo shifts from one type of behaviour to another and back again, but

where the ‘forcing variable’ that causes the regime shifts is unobservable.

One such application is to modelling the real exchange rate. As dis-

cussed in chapter 7, purchasing power parity (PPP) theory suggests that

the law of one price should always apply in the long run such that the

cost of a representative basket of goods and services is the same wher-

ever it is purchased, after converting it into a common currency. Under

some assumptions, one implication of PPP is that the real exchange rate

(that is, the exchange rate divided by a general price index such as the

consumer price index (CPI)) should be stationary. However, a number of

studies have failed to reject the unit root null hypothesis in real exchange

rates, indicating evidence against the PPP theory.

It is widely known that the power of unit root tests is low in the presence

of structural breaks as the ADF test finds it difficult to distinguish between

a stationary process subject to structural breaks and a unit root process.

In order to investigate this possibility, Bergman and Hansson (2005) es-

timate a Markov switching model with an AR(1) structure for the real

exchange rate, which allows for multiple switches between two regimes.

The specification they use is

yt = μst + φyt−1 + εt (9.22)

where yt is the real exchange rate, st , (t = 1, 2) are the two states, and

εt ∼ N (0, σ 2).1 The state variable st is assumed to follow a standard

2-regime Markov process as described above.

1 The authors also estimate models that allow φ and σ 2 to vary across the states, but the

restriction that the parameters are the same across the two states cannot be rejected

and hence the values presented in the study assume that they are constant.
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Quarterly observations from 1973Q2 to 1997Q4 (99 data points) are used

on the real exchange rate (in units of foreign currency per US dollar) for

the UK, France, Germany, Switzerland, Canada and Japan. The model is

estimated using the first 72 observations (1973Q2--1990Q4) with the re-

mainder retained for out-of-sample forecast evaluation. The authors use

100 times the log of the real exchange rate, and this is normalised to take

a value of one for 1973Q2 for all countries. The Markov switching model

estimates obtained using maximum likelihood estimation are presented

in table 9.3.

As the table shows, the model is able to separate the real exchange rates

into two distinct regimes for each series, with the intercept in regime

one (μ1) being positive for all countries except Japan (resulting from the

phenomenal strength of the yen over the sample period), corresponding

to a rise in the log of the number of units of the foreign currency per US

dollar, i.e. a depreciation of the domestic currency against the dollar. μ2,

the intercept in regime 2, is negative for all countries, corresponding to

a domestic currency appreciation against the dollar. The probabilities of

remaining within the same regime during the following period (p11 and

p22) are fairly low for the UK, France, Germany and Switzerland, indicating

fairly frequent switches from one regime to another for those countries’

currencies.

Interestingly, after allowing for the switching intercepts across the

regimes, the AR(1) coefficient, φ, in table 9.3 is a considerable distance

below unity, indicating that these real exchange rates are stationary.

Bergman and Hansson simulate data from the stationary Markov switch-

ing AR(1) model with the estimated parameters but they assume that the

researcher conducts a standard ADF test on the artificial data. They find

that for none of the cases can the unit root null hypothesis be rejected,

even though clearly this null is wrong as the simulated data are station-

ary. It is concluded that a failure to account for time-varying intercepts

(i.e. structural breaks) in previous empirical studies on real exchange rates

could have been the reason for the finding that the series are unit root

processes when the financial theory had suggested that they should be

stationary.

Finally, the authors employ their Markov switching AR(1) model for fore-

casting the remainder of the exchange rates in the sample in comparison

with the predictions produced by a random walk and by a Markov switch-

ing model with a random walk. They find that for all six series, and for

forecast horizons up to 4 steps (quarters) ahead, their Markov switching AR

model produces predictions with the lowest mean squared errors; these

improvements over the pure random walk are statistically significant.
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9.7 A Markov switching model for the gilt–equity yield ratio

As discussed below, a Markov switching approach is also useful for mod-

elling the time series behaviour of the gilt--equity yield ratio (GEYR), de-

fined as the ratio of the income yield on long-term government bonds to

the dividend yield on equities. It has been suggested that the current value

of the GEYR might be a useful tool for investment managers or market

analysts in determining whether to invest in equities or whether to invest

in gilts. Thus the GEYR is purported to contain information useful for de-

termining the likely direction of future equity market trends. The GEYR

is assumed to have a long-run equilibrium level, deviations from which

are taken to signal that equity prices are at an unsustainable level. If the

GEYR becomes high relative to its long-run level, equities are viewed as

being expensive relative to bonds. The expectation, then, is that for given

levels of bond yields, equity yields must rise, which will occur via a fall in

equity prices. Similarly, if the GEYR is well below its long-run level, bonds

are considered expensive relative to stocks, and by the same analysis, the

price of the latter is expected to increase. Thus, in its crudest form, an

equity trading rule based on the GEYR would say, ‘if the GEYR is low, buy

equities; if the GEYR is high, sell equities’. The paper by Brooks and Per-

sand (2001b) discusses the usefulness of the Markov switching approach

in this context, and considers whether profitable trading rules can be

developed on the basis of forecasts derived from the model.

Brooks and Persand (2001b) employ monthly stock index dividend yields

and income yields on government bonds covering the period January 1975

until August 1997 (272 observations) for three countries -- the UK, the US

and Germany. The series used are the dividend yield and index values

of the FTSE100 (UK), the S&P500 (US) and the DAX (Germany). The bond

indices and redemption yields are based on the clean prices of UK govern-

ment consols, and US and German 10-year government bonds.

As an example, figure 9.5 presents a plot of the distribution of the GEYR

for the US (in bold), together with a normal distribution having the same

mean and variance. Clearly, the distribution of the GEYR series is not

normal, and the shape suggests two separate modes: one upper part of

the distribution embodying most of the observations, and a lower part

covering the smallest values of the GEYR.

Such an observation, together with the notion that a trading rule should

be developed on the basis of whether the GEYR is ‘high’ or ‘low’, and in

the absence of a formal econometric model for the GEYR, suggests that a

Markov switching approach may be useful. Under the Markov switching

approach, the values of the GEYR are drawn from a mixture of normal
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Unconditional

distribution of US

GEYR together

with a normal

distribution with

the same mean

and variance

Table 9.4 Estimated parameters for the Markov switching models

μ1 μ2 σ 2
1 σ 2

2 p11 p22 N1 N2

Statistic (1) (2) (3) (4) (5) (6) (7) (8)

UK 2.4293 2.0749 0.0624 0.0142 0.9547 0.9719 102 170

(0.0301) (0.0367) (0.0092) (0.0018) (0.0726) (0.0134)

US 2.4554 2.1218 0.0294 0.0395 0.9717 0.9823 100 172

(0.0181) (0.0623) (0.0604) (0.0044) (0.0171) (0.0106)

Germany 3.0250 2.1563 0.5510 0.0125 0.9816 0.9328 200 72

(0.0544) (0.0154) (0.0569) (0.0020) (0.0107) (0.0323)

Notes: Standard errors in parentheses; N1 and N2 denote the number of observations

deemed to be in regimes 1 and 2, respectively.

Source: Brooks and Persand (2001b).

distributions, where the weights attached to each distribution sum to

one and where movements between series are governed by a Markov pro-

cess. The Markov switching model is estimated using a maximum likeli-

hood procedure (as discussed in chapter 8), based on GAUSS code supplied

by James Hamilton. Coefficient estimates for the model are presented in

table 9.4.

The means and variances for the values of the GEYR for each of the two

regimes are given in columns headed (1)--(4) of table 9.4 with standard

errors associated with each parameter in parentheses. It is clear that the
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regime switching model has split the data into two distinct samples -- one

with a high mean (of 2.43, 2.46 and 3.03 for the UK, US and Germany,

respectively) and one with a lower mean (of 2.07, 2.12, and 2.16), as was

anticipated from the unconditional distribution of returns. Also apparent

is the fact that the UK and German GEYR are more variable at times

when it is in the high mean regime, evidenced by their higher variance

(in fact, it is around four and 20 times higher than for the low GEYR state,

respectively). The number of observations for which the probability that

the GEYR is in the high mean state exceeds 0.5 (and thus when the GEYR

is actually deemed to be in this state) is 102 for the UK (37.5% of the total),

while the figures for the US are 100 (36.8%) and for Germany 200 (73.5%).

Thus, overall, the GEYR is more likely to be in the low mean regime for

the UK and US, while it is likely to be high in Germany.

The columns marked (5) and (6) of table 9.4 give the values of p11 and

p22, respectively, that is the probability of staying in state 1 given that

the GEYR was in state 1 in the immediately preceding month, and the

probability of staying in state 2 given that the GEYR was in state 2 previ-

ously, respectively. The high values of these parameters indicates that the

regimes are highly stable with less than a 10% chance of moving from a

low GEYR to a high GEYR regime and vice versa for all three series. Figure

9.6 presents a ‘q -plot’, which shows the value of GEYR and probability that

it is in the high GEYR regime for the UK at each point in time.
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As can be seen, the probability that the UK GEYR is in the ‘high’ regime

(the dotted line) varies frequently, but spends most of its time either close

to zero or close to one. The model also seems to do a reasonably good job

of specifying which regime the UK GEYR should be in, given that the prob-

ability seems to match the broad trends in the actual GEYR (the full line).

Engel and Hamilton (1990) show that it is possible to give a forecast of

the probability that a series yt , which follows a Markov switching process,

will be in a particular regime. Brooks and Persand (2001b) use the first

60 observations (January 1975--December 1979) for in-sample estimation

of the model parameters (μ1, μ2, σ 2
1 , σ 2

2 , p11, p22). Then a one step-ahead

forecast is produced of the probability that the GEYR will be in the high

mean regime during the next period. If the probability that the GEYR

will be in the low regime during the next period is forecast to be more

that 0.5, it is forecast that the GEYR will be low and hence equities are

bought or held. If the probability that the GEYR is in the low regime is

forecast to be less than 0.5, it is anticipated that the GEYR will be high and

hence gilts are invested in or held. The model is then rolled forward one

observation, with a new set of model parameters and probability forecasts

being constructed. This process continues until 212 such probabilities are

estimated with corresponding trading rules.

The returns for each out-of-sample month for the switching portfolio

are calculated, and their characteristics compared with those of buy-and-

hold equities and buy-and-hold gilts strategies. Returns are calculated as

continuously compounded percentage returns on a stock (the FTSE in

the UK, the S&P500 in the US, the DAX in Germany) or on a long-term

government bond. The profitability of the trading rules generated by the

forecasts of the Markov switching model are found to be superior in gross

terms compared with a simple buy-and-hold equities strategy. In the UK

context, the former yields higher average returns and lower standard de-

viations. The switching portfolio generates an average return of 0.69% per

month, compared with 0.43% for the pure bond and 0.62% for the pure

equity portfolios. The improvements are not so clear-cut for the US and

Germany. The Sharpe ratio for the UK Markov switching portfolio is al-

most twice that of the buy-and-hold equities portfolio, suggesting that,

after allowing for risk, the switching model provides a superior trading

rule. The improvement in the Sharpe ratio for the other two countries is,

on the contrary, only very modest.

To summarise:

● The Markov switching approach can be used to model the gilt-equity

yield ratio
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● The resulting model can be used to produce forecasts of the probability

that the GEYR will be in a particular regime

● Before transactions costs, a trading rule derived from the model pro-

duces a better performance than a buy-and-hold equities strategy, in

spite of inferior predictive accuracy as measured statistically

● Net of transactions costs, rules based on the Markov switching model

are not able to beat a passive investment in the index for any of the

three countries studied.

9.8 Threshold autoregressive models

Threshold autoregressive (TAR) models are one class of non-linear autore-

gressive models. Such models are a relatively simple relaxation of standard

linear autoregressive models that allow for a locally linear approximation

over a number of states. According to Tong (1990, p. 99), the threshold

principle ‘allows the analysis of a complex stochastic system by decom-

posing it into a set of smaller sub-systems’. The key difference between

TAR and Markov switching models is that, under the former, the state

variable is assumed known and observable, while it is latent under the

latter. A very simple example of a threshold autoregressive model is given

by (9.23). The model contains a first order autoregressive process in each

of two regimes, and there is only one threshold. Of course, the number

of thresholds will always be the number of regimes minus one. Thus,

the dependent variable yt is purported to follow an autoregressive process

with intercept coefficient μ1 and autoregressive coefficient φ1 if the value

of the state-determining variable lagged k periods, denoted st−k is lower

than some threshold value r . If the value of the state-determining variable

lagged k periods, is equal to or greater than that threshold value r , yt is

specified to follow a different autoregressive process, with intercept coef-

ficient μ2 and autoregressive coefficient φ2. The model would be written

yt =
{

μ1 + φ1 yt−1 + u1t if st−k < r

μ2 + φ2 yt−1 + u2t if st−k ≥ r
(9.23)

But what is st−k , the state-determining variable? It can be any variable

that is thought to make yt shift from one set of behaviour to another.

Obviously, financial or economic theory should have an important role

to play in making this decision. If k = 0, it is the current value of the

state-determining variable that influences the regime that y is in at

time t , but in many applications k is set to 1, so that the immediately

preceding value of s is the one that determines the current value of y.
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The simplest case for the state determining variable is where it is the

variable under study, i.e. st−k = yt−k . This situation is known as a self-

exciting TAR, or a SETAR, since it is the lag of the variable y itself that

determines the regime that y is currently in. The model would now be

written

yt =
{

μ1 + φ1 yt−1 + u1t if yt−k < r

μ2 + φ2 yt−1 + u2t if yt−k ≥ r
(9.24)

The models of (9.23) or (9.24) can of course be extended in several direc-

tions. The number of lags of the dependent variable used in each regime

may be higher than one, and the number of lags need not be the same for

both regimes. The number of states can also be increased to more than

two. A general threshold autoregressive model, that notationally permits

the existence of more than two regimes and more than one lag, may be

written

xt =
J∑

j=1

I ( j)
t

(
φ

( j)
0 +

p j∑
i=1

φ
( j)
i xt−i + u( j)

t

)
, r j−1 ≤ zt−d ≤ r j (9.25)

where I ( j)
t is an indicator function for the j th regime taking the value

one if the underlying variable is in state j and zero otherwise. zt−d is

an observed variable determining the switching point and u( j)
t is a zero-

mean independently and identically distributed error process. Again, if

the regime changes are driven by own lags of the underlying variable, xt

(i.e. zt−d = xt−d ), then the model is a self-exciting TAR (SETAR).

It is also worth re-stating that under the TAR approach, the variable

y is either in one regime or another, given the relevant value of s, and

there are discrete transitions between one regime and another. This is in

contrast with the Markov switching approach, where the variable y is in

both states with some probability at each point in time. Another class of

threshold autoregressive models, known as smooth transition autoregres-

sions (STAR), allows for a more gradual transition between the regimes

by using a continuous function for the regime indicator rather than an

on--off switch (see Franses and van Dijk, 2000, chapter 3).

9.9 Estimation of threshold autoregressive models

Estimation of the model parameters (φi , r j , d, p j ) is considerably more dif-

ficult than for a standard linear autoregressive process, since in general

they cannot be determined simultaneously in a simple way, and the values
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chosen for one parameter are likely to influence estimates of the others.

Tong (1983, 1990) suggests a complex non-parametric lag regression proce-

dure to estimate the values of the thresholds (r j ) and the delay parameter

(d).

Ideally, it may be preferable to endogenously estimate the values of

the threshold(s) as part of the non-linear least squares (NLS) optimisation

procedure, but this is not feasible. The underlying functional relationship

between the variables is discontinuous in the thresholds, such that the

thresholds cannot be estimated at the same time as the other components

of the model. One solution to this problem that is sometimes used in

empirical work is to use a grid search procedure that seeks the minimal

residual sum of squares over a range of values of the threshold(s) for an

assumed model. Some sample code to achieve this is presented later in

this chapter.

9.9.1 Threshold model order (lag length) determination

A simple, although far from ideal, method for determining the appropri-

ate lag lengths for the autoregressive components for each of the regimes

would be to assume that the same number of lags are required in all

regimes. The lag length is then chosen in the standard fashion by deter-

mining the appropriate lag length for a linear autoregressive model, and

assuming that the lag length for all states of the TAR is the same. While

it is easy to implement, this approach is clearly not a good one, for it is

unlikely that the lag lengths for each state when the data are drawn from

different regimes would be the same as that appropriate when a linear

functional form is imposed. Moreover, it is undesirable to require the lag

lengths to be the same in each regime. This conflicts with the notion that

the data behave differently in different states, which was precisely the

motivation for considering threshold models in the first place.

An alternative and better approach, conditional upon specified thresh-

old values, would be to employ an information criterion to select across

the lag lengths in each regime simultaneously. A drawback of this ap-

proach, that Franses and van Dijk (2000) highlight, is that in practice it is

often the case that the system will be resident in one regime for a consid-

erably longer time overall than the others. In such situations, information

criteria will not perform well in model selection for the regime(s) contain-

ing few observations. Since the number of observations is small in these

cases, the overall reduction in the residual sum of squares as more param-

eters are added to these regimes will be very small. This leads the criteria

to always select very small model orders for states containing few obser-

vations. A solution, therefore, is to define an information criterion that



476 Introductory Econometrics for Finance

does not penalise the whole model for additional parameters in one state.

Tong (1990) proposes a modified version of Akaike’s information criterion

(AIC) that weights σ̂ 2 for each regime by the number of observations in

that regime. For the two-regime case, the modified AIC would be written

AIC (p1, p2) = T1 ln σ̂ 2
1 + T2 ln σ̂ 2

2 + 2(p1 + 1) + 2(p2 + 1) (9.26)

where T1 and T2 are the number of observations in regimes 1 and 2, re-

spectively, p1 and p2 are the lag lengths and σ̂ 2
1 and σ̂ 2

2 are the residual

variances. Similar modifications can of course be developed for other in-

formation criteria.

9.9.2 Determining the delay parameter, d

The delay parameter, d, can be decided in a variety of ways. It can be deter-

mined along with the lag orders for each of the regimes by an information

criterion, although of course this added dimension greatly increases the

number of candidate models to be estimated. In many applications, how-

ever, it is typically set to one on theoretical grounds. It has been argued

(see, for example, Kräger and Kugler, 1993) that in the context of financial

markets, it is most likely that the most recent past value of the state-

determining variable would be the one to determine the current state,

rather than that value two, three, . . . periods ago.

Estimation of the autoregressive coefficients can then be achieved using

NLS. Further details of the procedure are discussed in Franses and van Dijk

(2000, chapter 3).

9.10 Specification tests in the context of Markov switching and
threshold autoregressive models: a cautionary note

In the context of both Markov switching and TAR models, it is of interest

to determine whether the threshold models represent a superior fit to

the data relative to a comparable linear model. A tempting, but incorrect,

way to examine this issue would be to do something like the following:

estimate the desired threshold model and the linear counterpart, and

compare the residual sums of squares using an F-test. However, such an

approach is not valid in this instance owing to unidentified nuisance

parameters under the null hypothesis. In other words, the null hypoth-

esis for the test would be that the additional parameters in the regime

switching model were zero so that the model collapsed to the linear spec-

ification, but under the linear model, there is no threshold. The upshot

is that the conditions required to show that the test statistics follow a
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standard asymptotic distribution do not apply. Hence analytically derived

critical values are not available, and critical values must be obtained via

simulation for each individual case. Hamilton (1994) provides substitute

hypotheses for Markov switching model evaluation that can validly be

tested using the standard hypothesis testing framework, while Hansen

(1996) offers solutions in the context of TAR models.

This chapter will now examine two applications of TAR modelling in

finance: one to the modelling of exchange rates within a managed floating

environment, and one to arbitrage opportunities implied by the difference

between spot and futures prices for a given asset. For a (rather technical)

general survey of several TAR applications in finance, see Yadav, Pope and

Paudyal (1994).

9.11 A SETAR model for the French franc–German mark exchange rate

During the 1990s, European countries which were part of the Exchange

Rate Mechanism (ERM) of the European Monetary System (EMS), were re-

quired to constrain their currencies to remain within prescribed bands

relative to other ERM currencies. This seemed to present no problem by

early in the new millenium since European Monetary Union (EMU) was

already imminent and conversion rates of domestic currencies into Eu-

ros were already known. However, in the early 1990s, the requirement

that currencies remain within a certain band around their central parity

forced central banks to intervene in the markets to effect either an appre-

ciation or a depreciation in their currency. A study by Chappell et al. (1996)

considered the effect that such interventions might have on the dynamics

and time series properties of the French franc--German mark (hereafter

FRF--DEM) exchange rate. ‘Core currency pairs’, such as the FRF--DEM were

allowed to move up to ±2.25% either side of their central parity within the

ERM. The study used daily data from 1 May 1990 until 30 March 1992. The

first 450 observations are used for model estimation, with the remaining

50 being retained for out-of-sample forecasting.

A self-exciting threshold autoregressive (SETAR) model was employed

to allow for different types of behaviour according to whether the ex-

change rate is close to the ERM boundary. The argument is that, close to

the boundary, the respective central banks will be required to intervene

in opposite directions in order to drive the exchange rate back towards

its central parity. Such intervention may be expected to affect the usual

market dynamics that ensure fast reaction to news and the absence of

arbitrage opportunities.
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Table 9.5 SETAR model for FRF–DEM

Number of

Model For regime observations

Êt = 0.0222 + 0.9962Et−1 Et−1 < 5.8306 344

(0.0458) (0.0079)

Êt = 0.3486 + 0.4394Et−1 + 0.3057Et−2 + 0.1951Et−3 Et−1 ≥ 5.8306 103

(0.2391) (0.0889) (0.1098) (0.0866)

Source: Chappell et al. (1996). Reprinted with permission of John Wiley and Sons.

Let Et denote the log of the FRF--DEM exchange rate at time t . Chappell

et al. (1996) estimate two models: one with two thresholds and one with

one threshold. The former was anticipated to be most appropriate for the

data at hand since exchange rate behaviour is likely to be affected by

intervention if the exchange rate comes close to either the ceiling or the

floor of the band. However, over the sample period employed, the mark

was never a weak currency, and therefore the FRF--DEM exchange rate

was either at the top of the band or in the centre, never close to the

bottom. Therefore, a model with one threshold is more appropriate since

any second estimated threshold was deemed likely to be spurious.

The authors show, using DF and ADF tests, that the exchange rate se-

ries is not stationary. Therefore, a threshold model in the levels is not

strictly valid for analysis. However, they argue that an econometrically

valid model in first difference would lose its intuitive interpretation, since

it is the value of the exchange rate that is targeted by the monetary au-

thorities, not its change. In addition, if the currency bands are work-

ing effectively, the exchange rate is constrained to lie within them, and

hence in some senses of the word, it must be stationary, since it cannot

wander without bound in either direction. The model orders for each

regime are determined using AIC, and the estimated model is given in

table 9.5.

As can be seen, the two regimes comprise a random walk with drift

under normal market conditions, where the exchange rate lies below a

certain threshold, and an AR(3) model corresponding to much slower mar-

ket adjustment when the exchange rate lies on or above the threshold.

The (natural log of) the exchange rate’s central parity over the period was

5.8153, while the (log of the) ceiling of the band was 5.8376. The estimated

threshold of 5.8306 is approximately 1.55% above the central parity, while

the ceiling is 2.25% above the central parity. Thus, the estimated threshold

is some way below the ceiling, which is in accordance with the authors’
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Table 9.6 FRF–DEM forecast accuracies

Steps ahead

1 2 3 5 10

Panel A: mean squared forecast error

Random walk 1.84E-07 3.49E-07 4.33E-07 8.03E-07 1.83E-06

AR(2) 3.96E-07 1.19E-06 2.33E-06 6.15E-06 2.19E-05

One-threshold SETAR 1.80E-07 2.96E-07 3.63E-07 5.41E-07 5.34E-07

Two-threshold SETAR 1.80E-07 2.96E-07 3.63E-07 5.74E-07 5.61E-07

Panel B: Median squared forecast error

Random walk 7.80E-08 1.04E-07 2.21E-07 2.49E-07 1.00E-06

AR(2) 2.29E-07 9.00E-07 1.77E-06 5.34E-06 1.37E-05

One-threshold SETAR 9.33E-08 1.22E-07 1.57E-07 2.42E-07 2.34E-07

Two-threshold SETAR 1.02E-07 1.22E-07 1.87E-07 2.57E-07 2.45E-07

Source: Chappell et al. (1996). Reprinted with permission of John Wiley and Sons.

expectations since the central banks are likely to intervene before the

exchange rate actually hits the ceiling.

Forecasts are then produced for the last 50 observations using the

threshold model estimated above, the SETAR model with two thresholds,

a random walk and an AR(2) (where the model order was chosen by in-

sample minimisation of AIC). The results are presented here in table 9.6.

For the FRF--DEM exchange rate, the one-threshold SETAR model is

found to give lower mean squared errors than the other three models for

one-, two-, three-, five- and ten-step-ahead forecasting horizons. Under the

median squared forecast error measure, the random walk is marginally

superior to the one threshold SETAR one and two steps ahead, while it

has regained its prominence by three steps ahead.

However, in a footnote, the authors also argue that the SETAR model was

estimated and tested for 9 other ERM exchange rate series, but in every one

of these other cases, the SETAR models produced less accurate forecasts

than a random walk model. A possible explanation for this phenomenon

is given in section 9.13.

Brooks (2001) extends the work of Chappell et al. to allow the conditional

variance of the exchange rate series to be drawn from a GARCH process

which itself contains a threshold, above which the behaviour of volatility

is different to that below. He finds that the dynamics of the conditional

variance are quite different from one regime to the next, and that models

allowing for different regimes can provide superior volatility forecasts

compared to those which do not.
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9.12 Threshold models and the dynamics of the FTSE 100
index and index futures markets

One of the examples given in chapter 7 discussed the implications for the

effective functioning of spot and futures markets of a lead--lag relationship

between the two series. If the two markets are functioning effectively, it

was also shown that a cointegrating relationship between them would be

expected.

If stock and stock index futures markets are functioning properly, price

movements in these markets should be best described by a first order

vector error correction model (VECM) with the error correction term being

the price differential between the two markets (the basis). The VECM could

be expressed as[
� ft

�st

]
=

[
π11

π21

]
[ ft−1 − st−1 ] +

[
u1t

u2t

]
(9.27)

where � ft and �st are changes in the log of the futures and spot prices,

respectively, π11 and π21 are coefficients describing how changes in the

spot and futures prices occur as a result of the basis. Writing these two

equations out in full, the following would result

ft − ft−1 = π11[ ft−1 − st−1] + u1t (9.28)

st − st−1 = π21[ ft−1 − st−1] + u2t (9.29)

Subtracting (9.29) from (9.28) would give the following expression

( ft − ft−1) − (st − st−1) = (π11 − π21)[ ft−1 − st−1] + (u1t − u2t ) (9.30)

which can also be written as

( ft − st ) − ( ft−1 − st−1) = (π11 − π21)[ ft−1 − st−1] + (u1t − u2t ) (9.31)

or, using the result that bt = ft − st

bt − bt−1 = (π11 − π21)bt−1 + εt (9.32)

where εt = u1t − u2t . Taking bt−1 from both sides

bt = (π11 − π21 − 1)bt−1 + εt (9.33)

If the first order VECM is appropriate, then it is not possible to identify

structural equations for returns in stock and stock index futures mar-

kets with the obvious implications for predictability and the two markets

are indeed efficient. Hence, for efficient markets and no arbitrage, there

should be only a first order autoregressive process describing the basis
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and no further patterns. Recent evidence suggests, however, that there

are more dynamics present than should be in effectively functioning mar-

kets. In particular, it has been suggested that the basis up to three trading

days prior carries predictive power for movements in the FTSE 100 cash

index, suggesting the possible existence of unexploited arbitrage oppor-

tunities. The paper by Brooks and Garrett (2002) analyses whether such

dynamics can be explained as the result of different regimes within which

arbitrage is not triggered and outside of which arbitrage will occur. The

rationale for the existence of different regimes in this context is that the

basis (adjusted for carrying costs if necessary), which is very important in

the arbitrage process, can fluctuate within bounds determined by transac-

tion costs without actually triggering arbitrage. Hence an autoregressive

relationship between the current and previous values of the basis could

arise and persist over time within the threshold boundaries since it is

not profitable for traders to exploit this apparent arbitrage opportunity.

Hence there will be thresholds within which there will be no arbitrage

activity but once these thresholds are crossed, arbitrage should drive the

basis back within the transaction cost bounds. If markets are function-

ing effectively then irrespective of the dynamics of the basis within the

thresholds, once the thresholds have been crossed the additional dynam-

ics should disappear.

The data used by Brooks and Garrett (2002) are the daily closing prices

for the FTSE 100 stock index and stock index futures contract for the

period January 1985--October 1992. The October 1987 stock market crash

occurs right in the middle of this period, and therefore Brooks and Garrett

conduct their analysis on a ‘pre-crash’ and a ‘post-crash’ sample as well as

the whole sample. This is necessary since it has been observed that the

normal spot/futures price relationship broke down around the time of

the crash (see Antoniou and Garrett, 1993). Table 9.7 shows the coefficient

estimates for a linear AR(3) model for the basis.

The results for the whole sample suggest that all of the first three lags

of the basis are significant in modelling the current basis. This result

is confirmed (although less strongly) for the pre-crash and post-crash sub-

samples. Hence, a linear specification would seem to suggest that the basis

is to some degree predictable, indicating possible arbitrage opportunities.

In the absence of transactions costs, deviations of the basis away from

zero in either direction will trigger arbitrage. The existence of transac-

tions costs, however, means that the basis can deviate from zero without

actually triggering arbitrage. Thus, assuming that there are no differen-

tial transactions costs, there will be upper and lower bounds within which

the basis can fluctuate without triggering arbitrage. Brooks and Garrett
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Table 9.7 Linear AR(3) model for the basis

bt = φ0 + φ1bt−1 + φ2bt−2 + φ3bt−3 + εt

Parameter Whole sample Pre-crash sample Post-crash sample

φ1 0.7051∗∗ 0.7174∗∗ 0.6791∗∗

(0.0225) (0.0377) (0.0315)

φ2 0.1268∗∗ 0.0946∗ 0.1650∗∗

(0.0274) (0.0463) (0.0378)

φ3 0.0872∗∗ 0.1106∗∗ 0.0421

(0.0225) (0.0377) (0.0315)

Notes: Figures in parentheses are heteroscedasticity-robust standard errors; ∗ and ∗∗

denote significance at the 5% and 1% levels, respectively.

Source: Brooks and Garrett (2002).

(2002) estimate a SETAR model for the basis, with two thresholds (three

regimes) since these should correspond to the upper and lower boundaries

within which the basis can fluctuate without causing arbitrage. Under

efficient markets, profitable arbitrage opportunities will not be present

when r0 ≤ bt−1 < r1 where r0 and r1 are the thresholds determining which

regime the basis is in. If these thresholds are interpreted as transactions

costs bounds, when the basis falls below the lower threshold (r0), the

appropriate arbitrage transaction is to buy futures and short stock. This

applies in reverse when the basis rises above r1. When the basis lies within

the thresholds, there should be no arbitrage transactions. Three lags of

the basis enter into each equation and the thresholds are estimated using

a grid search procedure. The one-period lag of the basis is chosen as the

state-determining variable. The estimated model for each sample period

is given in table 9.8.

The results show that, to some extent, the dependence in the basis is

reduced when it is permitted to be drawn from one of three regimes

rather than a single linear model. For the post-crash sample, and to some

extent for the whole sample and the pre-crash sample, it can be seen

that there is considerably slower adjustment, evidenced by the significant

second and third order autoregressive terms, between the thresholds than

outside them. There still seems to be some evidence of slow adjustment

below the lower threshold, where the appropriate trading strategy would

be to go long the futures and short the stock. Brooks and Garrett (2002)

attribute this in part to restrictions on and costs of short-selling the stock

that prevent adjustment from taking place more quickly. Short-selling of

futures contracts is easier and less costly, and hence there is no action in

the basis beyond an AR(1) when it is above the upper threshold.
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Table 9.8 A two-threshold SETAR model for the basis

bt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0
1 +

3∑
i=1

φ1
i bt−i + ε1

t if bt−1 < r0

φ0
2 +

3∑
i=1

φ2
i bt−i + ε2

t if r0 ≤ bt−1 < r1

φ0
3 +

3∑
i=1

φ3
i bt−i + ε3

t if bt−1 ≥ r1

bt−1 < r0 r0 ≤ bt−1 < r1 bt−1 ≥ r1

Panel A: whole sample

φ1 0.5743∗∗ −0.6395 0.8380∗∗

(0.0415) (0.7549) (0.0512)

φ2 0.2088∗∗ −0.0594 0.0439

(0.0401) (0.0846) (0.0462)

φ3 0.1330∗∗ 0.2267∗∗ 0.0415

(0.0355) (0.0811) (0.0344)

r̂0 0.0138

r̂1 0.0158

Panel B: pre-crash sample

φ1 0.4745∗∗ 0.4482∗ 0.8536∗∗

(0.0808) (0.1821) (0.0720)

φ2 0.2164∗∗ 0.2608∗∗ −0.0388

(0.0781) (0.0950) (0.0710)

φ3 0.1142 0.2309∗∗ 0.0770

(0.0706) (0.0834) (0.0531)

r̂0 0.0052

r̂1 0.0117

Panel C: post-crash sample

φ1 0.5019∗∗ 0.7474∗∗ 0.8397∗∗

(0.1230) (0.1201) (0.0533)

φ2 0.2011∗ 0.2984∗∗ 0.0689

(0.0874) (0.0691) (0.0514)

φ3 0.0434 0.1412 0.0461

(0.0748) (0.0763) (0.0400)

r̂0 0.0080

r̂1 0.0140

Notes: Figures in parentheses are heteroscedasticity-robust standard

errors, ∗ and ∗∗ denote significance at the 5% and at 1% levels,

respectively.

Source: Brooks and Garrett (2002).
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Such a finding is entirely in accordance with expectations, and suggests

that, once allowance is made for reasonable transactions costs, the basis

may fluctuate with some degree of flexibility where arbitrage is not prof-

itable. Once the basis moves outside the transactions costs-determined

range, adjustment occurs within one period as the theory predicted.

9.13 A note on regime switching models and forecasting accuracy

Several studies have noted the inability of threshold or regime switching

models to generate superior out-of-sample forecasting accuracy than linear

models or a random walk in spite of their apparent ability to fit the data

better in sample. A possible reconciliation is offered by Dacco and Satchell

(1999), who suggest that regime switching models may forecast poorly

owing to the difficulty of forecasting the regime that the series will be

in. Thus, any gain from a good fit of the model within the regime will be

lost if the model forecasts the regime wrongly. Such an argument could

apply to both the Markov switching and TAR classes of models.

Key concepts
The key terms to be able to define and explain from this chapter are

● seasonality ● intercept dummy variable

● slope dummy variable ● dummy variable trap

● regime switching ● threshold autoregression (TAR)

● self-exciting TAR ● delay parameter

● Markov process ● transition probability

Review questions

1. A researcher is attempting to form an econometric model to explain daily

movements of stock returns. A colleague suggests that she might want

to see whether her data are influenced by daily seasonality.

(a) How might she go about doing this?

(b) The researcher estimates a model with the dependent variable as

the daily returns on a given share traded on the London stock

exchange, and various macroeconomic variables and accounting

ratios as independent variables. She attempts to estimate this

model, together with five daily dummy variables (one for each day of

the week), and a constant term, using EViews. EViews then tells her

that it cannot estimate the parameters of the model. Explain what

has probably happened, and how she can fix it.
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(c) A colleague estimates instead the following model for asset returns,

rt is as follows (with standard errors in parentheses)

r̂t = 0.0034 − 0.0183D1t + 0.0155D2t − 0.0007D3t

(0.0146) (0.0068) (0.0231) (0.0179)

−0.0272D4t + other variables

(0.0193) (9.34)

The model is estimated using 500 observations. Is there significant

evidence of any ‘day-of-the-week effects’ after allowing for the effects

of the other variables?

(d) Distinguish between intercept dummy variables and slope dummy

variables, giving an example of each.

(e) A financial researcher suggests that many investors rebalance their

portfolios at the end of each financial year to realise losses and

consequently reduce their tax liabilities. Develop a procedure to test

whether this behaviour might have an effect on equity returns.

2. (a) What is a switching model? Describe briefly and distinguish between

threshold autoregressive models and Markov switching models. How

would you decide which of the two model classes is more

appropriate for a particular application?

(b) Describe the following terms as they are used in the context of

Markov switching models

(i) The Markov property

(ii) A transition matrix.

(c) What is a SETAR model? Discuss the issues involved in estimating

such a model.

(d) What problem(s) may arise if the standard information criteria

presented in chapter 5 were applied to the determination of the

orders of each equation in a TAR model? How do suitably modified

criteria overcome this problem?

(e) A researcher suggests a reason that many empirical studies find that

PPP does not hold is the existence of transactions costs and other

rigidities in the goods markets. Describe a threshold model

procedure that may be used to evaluate this proposition in the

context of a single good.

(f) A researcher estimates a SETAR model with one threshold and three

lags in both regimes using maximum likelihood. He then estimates a

linear AR(3) model by maximum likelihood and proceeds to use a

likelihood ratio test to determine whether the non-linear threshold

model is necessary. Explain the flaw in this approach.
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(g) ‘Threshold models are more complex than linear autoregressive

models. Therefore, the former should produce more accurate

forecasts since they should capture more relevant features of the

data.’ Discuss.

3. A researcher suggests that the volatility dynamics of a set of daily equity

returns are different:

● on Mondays relative to other days of the week

● if the previous day’s return volatility was bigger than 0.1% relative to

when the previous day’s return volatility was less than 0.1%.

Describe models that could be used to capture these reported features

of the data.

4. (a) Re-open the exchange rate returns series and test them for

day-of-the-week effects.

(b) Re-open the house price changes series and determine whether

there is any evidence of seasonality.



10
Panel data

Learning Outcomes
In this chapter, you will learn how to

● Describe the key features of panel data and outline the
advantages and disadvantages of working with panels rather
than other structures

● Explain the intuition behind seemingly unrelated regressions
and propose examples of where they may be usefully employed

● Contrast the fixed effect and random effect approaches to
panel model specification, determining which is the more
appropriate in particular cases

● Construct and estimate panel models in EViews

10.1 Introduction – what are panel techniques and why are they used?

The situation often arises in financial modelling where we have data com-

prising both time series and cross-sectional elements, and such a dataset

would be known as a panel of data or longitudinal data. A panel of data

will embody information across both time and space. Importantly, a panel

keeps the same individuals or objects (henceforth we will call these ‘en-

tities’) and measures some quantity about them over time.1 This chapter

will present and discuss the important features of panel analysis, and will

describe the techniques used to model such data.

Econometrically, the setup we may have is as described in the following

equation

yit = α + βxit + uit (10.1)

1 Hence, strictly, if the data are not on the same entities (for example, different firms or

people) measured over time, then this would not be panel data.

487
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where yit is the dependent variable, α is the intercept term, β is a k× 1

vector of parameters to be estimated on the explanatory variables, and xit

is a 1 × k vector of observations on the explanatory variables, t = 1, . . . , T ;

i = 1, . . . , N .2

The simplest way to deal with such data would be to estimate a pooled

regression, which would involve estimating a single equation on all the

data together, so that the dataset for y is stacked up into a single col-

umn containing all the cross-sectional and time-series observations, and

similarly all of the observations on each explanatory variable would be

stacked up into single columns in the x matrix. Then this equation would

be estimated in the usual fashion using OLS.

While this is indeed a simple way to proceed, and requires the esti-

mation of as few parameters as possible, it has some severe limitations.

Most importantly, pooling the data in this way implicitly assumes that the

average values of the variables and the relationships between them are

constant over time and across all of the cross-sectional units in the sam-

ple. We could, of course, estimate separate time-series regressions for each

of objects or entities, but this is likely to be a sub-optimal way to proceed

since this approach would not take into account any common structure

present in the series of interest. Alternatively, we could estimate separate

cross-sectional regressions for each of the time periods, but again this may

not be wise if there is some common variation in the series over time. If

we are fortunate enough to have a panel of data at our disposal, there are

important advantages to making full use of this rich structure:

● First, and perhaps most importantly, we can address a broader range

of issues and tackle more complex problems with panel data than

would be possible with pure time-series or pure cross-sectional data

alone.

● Second, it is often of interest to examine how variables, or the relation-

ships between them, change dynamically (over time). To do this using

pure time-series data would often require a long run of data simply to

get a sufficient number of observations to be able to conduct any mean-

ingful hypothesis tests. But by combining cross-sectional and time series

data, one can increase the number of degrees of freedom, and thus the

power of the test, by employing information on the dynamic behaviour

of a large number of entities at the same time. The additional variation

2 Note that k is defined slightly differently in this chapter compared with others in the

book. Here, k represents the number of slope parameters to be estimated (rather than

the total number of parameters as it is elsewhere), which is equal to the number of

explanatory variables in the regression model.
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introduced by combining the data in this way can also help to mitigate

problems of multicollinearity that may arise if time series are modelled

individually.

● Third, as will become apparent below, by structuring the model in an

appropriate way, we can remove the impact of certain forms of omitted

variables bias in regression results.

10.2 What panel techniques are available?

One approach to making more full use of the structure of the data would

be to use the seemingly unrelated regression (SUR) framework initially pro-

posed by Zellner (1962). This has been used widely in finance where the

requirement is to model several closely related variables over time.3 A SUR

is so called because the dependent variables may seem unrelated across

the equations at first sight, but a more careful consideration would allow

us to conclude that they are in fact related after all. One example would

be the flow of funds (i.e. net new money invested) to portfolios (mutual

funds) operated by two different investment banks. The flows could be

related since they are, to some extent, substitutes (if the manager of one

fund is performing poorly, investors may switch to the other). The flows

are also related because the total flow of money into all mutual funds will

be affected by a set of common factors (for example, related to people’s

propensity to save for their retirement). Although we could entirely sepa-

rately model the flow of funds for each bank, we may be able to improve

the efficiency of the estimation by capturing at least part of the common

structure in some way. Under the SUR approach, one would allow for the

contemporaneous relationships between the error terms in the two equa-

tions for the flows to the funds in each bank by using a generalised least

squares (GLS) technique. The idea behind SUR is essentially to transform

the model so that the error terms become uncorrelated. If the correlations

between the error terms in the individual equations had been zero in the

first place, then SUR on the system of equations would have been equiv-

alent to running separate OLS regressions on each equation. This would

also be the case if all of the values of the explanatory variables were the

same in all equations -- for example, if the equations for the two funds

contained only macroeconomic variables.

3 For example, the SUR framework has been used to test the impact of the introduction of

the euro on the integration of European stock markets (Kim et al., 2005), in tests of the

CAPM, and in tests of the forward rate unbiasedness hypothesis (Hodgson et al., 2004).
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However, the applicability of the technique is limited because it can

be employed only when the number of time-series observations, T, per

cross-sectional unit i is at least as large as the total number of such units,

N . A second problem with SUR is that the number of parameters to be

estimated in total is very large, and the variance-covariance matrix of the

errors (which will be a phenomenal NT × NT ) also has to be estimated. For

these reasons, the more flexible full panel data approach is much more

commonly used.

There are broadly two classes of panel estimator approaches that can

be employed in financial research: fixed effects models and random effects

models. The simplest types of fixed effects models allow the intercept in

the regression model to differ cross-sectionally but not over time, while all

of the slope estimates are fixed both cross-sectionally and over time. This

approach is evidently more parsimonious than a SUR (where each cross-

sectional unit would have different slopes as well), but it still requires the

estimation of (N + k) parameters.4

A first distinction we must draw is between a balanced panel and an

unbalanced panel. A balanced panel has the same number of time-series

observations for each cross-sectional unit (or equivalently but viewed the

other way around, the same number of cross-sectional units at each point

in time), whereas an unbalanced panel would have some cross-sectional

elements with fewer observations or observations at different times to

others. The same techniques are used in both cases, and while the pre-

sentation below implicitly assumes that the panel is balanced, missing

observations should be automatically accounted for by the software pack-

age used to estimate the model.

10.3 The fixed effects model

To see how the fixed effects model works, we can take equation (10.1)

above, and decompose the disturbance term, uit , into an individual specific

effect, μi , and the ‘remainder disturbance’, vi t , that varies over time and

entities (capturing everything that is left unexplained about yit ).

uit = μi + vi t (10.2)

4 It is important to recognise this limitation of panel data techniques that the

relationship between the explained and explanatory variables is assumed constant both

cross-sectionally and over time, even if the varying intercepts allow the average values

to differ. The use of panel techniques rather than estimating separate time-series

regressions for each object or estimating separate cross-sectional regressions for each

time period thus implicitly assumes that the efficiency gains from doing so outweigh

any biases that may arise in the parameter estimation.
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So we could rewrite equation (10.1) by substituting in for uit from (10.2)

to obtain

yit = α + βxit + μi + vi t (10.3)

We can think of μi as encapsulating all of the variables that affect yit

cross-sectionally but do not vary over time -- for example, the sector that

a firm operates in, a person’s gender, or the country where a bank has its

headquarters, etc. This model could be estimated using dummy variables,

which would be termed the least squares dummy variable (LSDV) approach

yit = βxit + μ1 D1i + μ2 D2i + μ3 D3i + · · · + μN DNi + vi t (10.4)

where D1i is a dummy variable that takes the value 1 for all observations

on the first entity (e.g. the first firm) in the sample and zero otherwise,

D2i is a dummy variable that takes the value 1 for all observations on

the second entity (e.g. the second firm) and zero otherwise, and so on.

Notice that we have removed the intercept term (α) from this equation

to avoid the ‘dummy variable trap’ described in chapter 9 where we have

perfect multicollinearity between the dummy variables and the intercept.

When the fixed effects model is written in this way, it is relatively easy

to see how to test for whether the panel approach is really necessary

at all. This test would be a slightly modified version of the Chow test

described in chapter 4, and would involve incorporating the restriction

that all of the intercept dummy variables have the same parameter (i.e.

H0 : μ1 = μ2 = · · · = μN ). If this null hypothesis is not rejected, the data

can simply be pooled together and OLS employed. If this null is rejected,

however, then it is not valid to impose the restriction that the intercepts

are the same over the cross-sectional units and a panel approach must be

employed.

Now the model given by equation (10.4) has N + k parameters to esti-

mate, which would be a challenging problem for any regression package

when N is large. In order to avoid the necessity to estimate so many

dummy variable parameters, a transformation is made to the data to sim-

plify matters. This transformation, known as the within transformation, in-

volves subtracting the time-mean of each entity away from the values of

the variable.5 So define yi = 1
T

∑T
t=1 yit as the time-mean of the observa-

tions on y for cross-sectional unit i , and similarly calculate the means

of all of the explanatory variables. Then we can subtract the time-means

from each variable to obtain a regression containing demeaned variables

5 It is known as the within transformation because the subtraction is made within each

cross-sectional object.
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only. Note that again, such a regression does not require an intercept term

since now the dependent variable will have zero mean by construction.

The model containing the demeaned variables is

yit − yi = β(xit − xi ) + uit − ui (10.5)

which we could write as

ÿi t = β ẍi t + üi t (10.6)

where the double dots above the variables denote the demeaned values.

An alternative to this demeaning would be to simply run a cross-

sectional regression on the time-averaged values of the variables, which

is known as the between estimator.6 A further possibility is that instead,

the first difference operator could be applied to equation (10.1) so that

the model becomes one for explaining the change in yit rather than its

level. When differences are taken, any variables that do not change over

time (i.e. the μi ) will again cancel out. Differencing and the within trans-

formation will produce identical estimates in situations where there are

only two time periods; when there are more, the choice between the two

approaches will depend on the assumed properties of the error term.

Wooldridge (2002) describes this issue in considerable detail.

Equation (10.6) can now be routinely estimated using OLS on the pooled

sample of demeaned data, but we do need to be aware of the number of de-

grees of freedom which this regression will have. Although estimating the

equation will use only k degrees of freedom from the N T observations, it

is important to recognise that we also used a further N degrees of freedom

in constructing the demeaned variables (i.e. we lost a degree of freedom

for every one of the N explanatory variables for which we were required

to estimate the mean). Hence the number of degrees of freedom that must

be used in estimating the standard errors in an unbiased way and when

conducting hypothesis tests is N T − N − k. Any software packages used

to estimate such models should take this into account automatically.

The regression on the time-demeaned variables will give identical pa-

rameters and standard errors as would have been obtained directly from

the LSDV regression, but without the hassle of estimating so many param-

eters! A major disadvantage of this process, however, is that we lose the

6 An advantage of running the regression on average values (the between estimator) over

running it on the demeaned values (the within estimator) is that the process of averaging

is likely to reduce the effect of measurement error in the variables on the estimation

process.
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ability to determine the influences of all of the variables that affect yit

but do not vary over time.

10.4 Time-fixed effects models

It is also possible to have a time-fixed effects model rather than an entity-

fixed effects model. We would use such a model where we thought that

the average value of yit changes over time but not cross-sectionally. Hence

with time-fixed effects, the intercepts would be allowed to vary over time

but would be assumed to be the same across entities at each given point

in time. We could write a time-fixed effects model as

yit = α + βxit + λt + vi t (10.7)

where λt is a time-varying intercept that captures all of the variables that

affect yit and that vary over time but are constant cross-sectionally. An

example would be where the regulatory environment or tax rate changes

part-way through a sample period. In such circumstances, this change of

environment may well influence y, but in the same way for all firms,

which could be assumed to all be affected equally by the change.

Time variation in the intercept terms can be allowed for in exactly

the same way as with entity-fixed effects. That is, a least squares dummy

variable model could be estimated

yit = βxit + λ1 D1t + λ2 D2t + λ3 D3t + · · · + λT DTt + vi t (10.8)

where D1t , for example, denotes a dummy variable that takes the value 1

for the first time period and zero elsewhere, and so on.

The only difference is that now, the dummy variables capture time

variation rather than cross-sectional variation. Similarly, in order to avoid

estimating a model containing all T dummies, a within transformation

can be conducted to subtract the cross-sectional averages from each ob-

servation

yit − yt = β(xit − xt ) + uit − ut (10.9)

where yt = 1
N

∑N
i=1 yit as the mean of the observations on y across the

entities for each time period. We could write this equation as

ÿi t = β ẍi t + üi t (10.10)

where the double dots above the variables denote the demeaned values

(but now cross-sectionally rather than temporally demeaned).
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Finally, it is possible to allow for both entity-fixed effects and time-fixed

effects within the same model. Such a model would be termed a two-way

error component model, which would combine equations (10.3) and (10.7),

and the LSDV equivalent model would contain both cross-sectional and

time dummies

yit = βxit + μ1 D1i + μ2 D2i + μ3 D3i + · · · + μN DNi + λ1 D1t

+ λ2 D2t + λ3 D3t + · · · + λT DTt + vi t (10.11)

However, the number of parameters to be estimated would now be k +
N + T , and the within transformation in this two-way model would be

more complex.

10.5 Investigating banking competition using a fixed effects model

The UK retail banking sector has been subject to a considerable change

in structure over the past 30 years as a result of deregulation, merger

waves and new technology. The relatively high concentration of market

share in retail banking among a modest number of fairly large banks,7

combined with apparently phenomenal profits that appear to be recur-

rent, have led to concerns that competitive forces in British banking are

not sufficiently strong. This is argued to go hand in hand with restric-

tive practices, barriers to entry and poor value for money for consumers.

A study by Matthews, Murinde and Zhao (2007) investigates competitive

conditions in the UK between 1980 and 2004 using the ‘new empirical

industrial organisation’ approach pioneered by Panzar and Rosse (1982,

1987). The model posits that if the market is contestable, entry to and exit

from the market will be easy (even if the concentration of market share

among firms is high), so that prices will be set equal to marginal costs. The

technique used to examine this conjecture is to derive testable restrictions

upon the firm’s reduced form revenue equation.

The empirical investigation consists of deriving an index (the Panzar--

Rosse H -statistic) of the sum of the elasticities of revenues to factor costs

(input prices). If this lies between 0 and 1, we have monopolistic compe-

tition or a partially contestable equilibrium, whereas H < 0 would imply

a monopoly and H = 1 would imply perfect competition or perfect con-

testability. The key point is that if the market is characterised by perfect

competition, an increase in input prices will not affect the output of firms,

while it will under monopolistic competition. The model Matthews et al.

7 Interestingly, while many casual observers believe that concentration in UK retail

banking has grown considerably, it actually fell slightly between 1986 and 2002.
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investigate is given by

lnREVit = α0 + α1lnPLit + α2lnPKit + α3lnPFit + β1lnRISKASSit

+ β2lnASSETit + β3lnBRit + γ1GROWTHt + μi + vi t (10.12)

where ‘REVi t ’ is the ratio of bank revenue to total assets for firm i at

time t (i = 1, . . . , N ; t = 1, . . . , T ); ‘PL’ is personnel expenses to employees

(the unit price of labour); ‘PK’ is the ratio of capital assets to fixed assets

(the unit price of capital); and ‘PF’ is the ratio of annual interest expenses

to total loanable funds (the unit price of funds). The model also includes

several variables that capture time-varying bank-specific effects on

revenues and costs, and these are ‘RISKASS’, the ratio of provisions to total

assets; ‘ASSET’ is bank size, as measured by total assets; ‘BR’ is the ratio

of the bank’s number of branches to the total number of branches for all

banks. Finally, ‘GROWTHt ’ is the rate of growth of GDP, which obviously

varies over time but is constant across banks at a given point in time; μi

are bank-specific fixed effects and vi t is an idiosyncratic disturbance term.

The contestability parameter, H , is given as α1 + α2 + α3.

Unfortunately, the Panzar--Rosse approach is valid only when applied to

a banking market in long-run equilibrium. Hence the authors also conduct

a test for this, which centres on the regression

lnROAit = α′
0 + α′

1lnPLit + α′
2lnPKit + α′

3lnPFit + β ′
1lnRISKASSit

+ β ′
2lnASSETit + β ′

3lnBRit + γ ′
1GROWTHt + ηi + wi t (10.13)

The explanatory variables for the equilibrium test regression (10.13) are

identical to those of the contestability regression (10.12), but the depen-

dent variable is now the log of the return on assets (‘lnROA’). Equilibrium

is argued to exist in the market if α′
1 + α′

2 + α′
3 = 0.

The UK market is argued to be of particular international interest as

a result of its speed of deregulation and the magnitude of the changes

in market structure that took place over the sample period and therefore

the study by Matthews et al. focuses exclusively on the UK. They employ a

fixed effects panel data model which allows for differing intercepts across

the banks, but assumes that these effects are fixed over time. The fixed

effects approach is a sensible one given the data analysed here since there

is an unusually large number of years (25) compared with the number of

banks (12), resulting in a total of 219 bank-years (observations). The data

employed in the study are obtained from banks’ annual reports and the

Annual Abstract of Banking Statistics from the British Bankers Association.

The analysis is conducted for the whole sample period, 1980--2004, and

for two sub-samples, 1980--1991 and 1992--2004. The results for tests of

equilibrium are given first, in table 10.1.
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Table 10.1 Tests of banking market equilibrium with fixed effects panel models

Variable 1980--2004 1980--1991 1992--2004

Intercept 0.0230∗∗∗ 0.1034∗ 0.0252

(3.24) (1.87) (2.60)

lnPL −0.0002 0.0059 0.0002

(0.27) (1.24) (0.37)

lnPK −0.0014∗ −0.0020 −0.0016∗

(1.89) (1.21) (1.81)

lnPF −0.0009 −0.0034 0.0005

(1.03) (1.01) (0.49)

lnRISKASS −0.6471∗∗∗ −0.5514∗∗∗ −0.8343∗∗∗

(13.56) (8.53) (5.91)

lnASSET −0.0016∗∗∗ −0.0068∗∗ −0.0016∗∗

(2.69) (2.07) (2.07)

lnBR −0.0012∗ 0.0017 −0.0025

(1.91) (0.97) (1.55)

GROWTH 0.0007∗∗∗ 0.0004 0.0006∗

(4.19) (1.54) (1.71)

R2 within 0.5898 0.6159 0.4706

H0 : ηi = 0 F(11, 200) = 7.78∗∗∗ F(9, 66) = 1.50 F(11, 117) = 11.28∗∗∗

H0 : E = 0 F(1, 200) = 3.20∗ F(1, 66) = 0.01 F(1, 117) = 0.28

Notes: t -ratios in parentheses; ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1%

levels respectively.

Source: Matthews et al. (2007). Reprinted with the permission of Elsevier Science.

The null hypothesis that the bank fixed effects are jointly zero (H0 : ηi =
0) is rejected at the 1% significance level for the full sample and for the

second sub-sample but not at all for the first sub-sample. Overall, however,

this indicates the usefulness of the fixed effects panel model that allows

for bank heterogeneity. The main focus of interest in table 10.1 is the

equilibrium test, and this shows slight evidence of disequilibrium (E is

significantly different from zero at the 10% level) for the whole sample,

but not for either of the individual sub-samples. Thus the conclusion is

that the market appears to be sufficiently in a state of equilibrium that

it is valid to continue to investigate the extent of competition using the

Panzar--Rosse methodology. The results of this are presented in table 10.2.8

8 A Chow test for structural stability reveals a structural break between the two

sub-samples. No other commentary on the results of the equilibrium regression is given

by the authors.
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Table 10.2 Tests of competition in banking with fixed effects panel models

Variable 1980--2004 1980--1991 1992--2004

Intercept −3.083 1.1033∗∗ −0.5455

(1.60) (2.06) (1.57)

lnPL −0.0098 0.164∗∗∗ −0.0164

(0.54) (3.57) (0.64)

lnPK 0.0025 0.0026 −0.0289

(0.13) (0.16) (0.91)

lnPF 0.5788∗∗∗ 0.6119∗∗∗ 0.5096∗∗∗

(23.12) (18.97) (12.72)

lnRISKASS 2.9886∗∗ 1.4147∗∗ 5.8986

(2.30) (2.26) (1.17)

lnASSET −0.0551∗∗∗ −0.0963∗∗∗ −0.0676∗∗

(3.34) (2.89) (2.52)

lnBR 0.0461∗∗∗ 0.00094 0.0809

(2.70) (0.57) (1.43)

GROWTH −0.0082∗ −0.0027 −0.0121

(1.91) (1.17) (1.00)

R2 within 0.9209 0.9181 0.8165

H0 : ηi = 0 F(11, 200) = 23.94∗∗∗ F(9, 66) = 21.97∗∗∗ F(11, 117) = 11.95∗∗∗

H0 : H = 0 F(1, 200) = 229.46∗∗∗ F(1, 66) = 205.89∗∗∗ F(1, 117) = 71.25∗∗∗

H1 : H = 1 F(1, 200) = 128.99∗∗∗ F(1, 66) = 16.59∗∗∗ F(1, 117) = 94.76∗∗∗

H 0.5715 0.7785 0.4643

Notes: t -ratios in parentheses; ∗, ∗∗ and ∗∗∗, denote significance at the 10%, 5% and 1%

levels respectively. The final set of asterisks in the table was added by the present

author.

Source: Matthews et al. (2007). Reprinted with the permission of Elsevier Science.

The value of the contestability parameter, H , which is the sum of the

input elasticities, is given in the last row of table 10.2 and falls in value

from 0.78 in the first sub-sample to 0.46 in the second, suggesting that

the degree of competition in UK retail banking weakened over the period.

However, the results in the two rows above that show that the null hy-

potheses H = 0 and H = 1 can both be rejected at the 1% significance level

for both sub-samples, showing that the market is best characterised by

monopolistic competition rather than either perfect competition (perfect

contestability) or pure monopoly. As for the equilibrium regressions, the

null hypothesis that the fixed effects dummies (μi ) are jointly zero is

strongly rejected, vindicating the use of the fixed effects panel approach

and suggesting that the base levels of the dependent variables differ.
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Finally, the additional bank control variables all appear to have intu-

itively appealing signs. The risk assets variable has a positive sign, so that

higher risks lead to higher revenue per unit of total assets; the asset vari-

able has a negative sign and is statistically significant at the 5% level or be-

low in all three periods, suggesting that smaller banks are relatively more

profitable; the effect of having more branches is to reduce profitability;

and revenue to total assets is largely unaffected by macroeconomic condi-

tions -- if anything, the banks appear to have been more profitable when

GDP was growing more slowly.

10.6 The random effects model

An alternative to the fixed effects model described above is the random

effects model, which is sometimes also known as the error components

model. As with fixed effects, the random effects approach proposes differ-

ent intercept terms for each entity and again these intercepts are constant

over time, with the relationships between the explanatory and explained

variables assumed to be the same both cross-sectionally and temporally.

However, the difference is that under the random effects model, the in-

tercepts for each cross-sectional unit are assumed to arise from a common

intercept α (which is the same for all cross-sectional units and over time),

plus a random variable εi that varies cross-sectionally but is constant over

time. εi measures the random deviation of each entity’s intercept term

from the ‘global’ intercept term α. We can write the random effects panel

model as

yit = α + βxit + ωi t , ωi t = εi + vi t (10.14)

where xit is still a 1 × k vector of explanatory variables, but unlike the fixed

effects model, there are no dummy variables to capture the heterogeneity

(variation) in the cross-sectional dimension. Instead, this occurs via the εi

terms. Note that this framework requires the assumptions that the new

cross-sectional error term, εi , has zero mean, is independent of the indi-

vidual observation error term (vi t ), has constant variance σ 2
ε and is inde-

pendent of the explanatory variables (xit ).

The parameters (α and the β vector) are estimated consistently but in-

efficiently by OLS, and the conventional formulae would have to be mod-

ified as a result of the cross-correlations between error terms for a given

cross-sectional unit at different points in time. Instead, a generalised least

squares procedure is usually used. The transformation involved in this

GLS procedure is to subtract a weighted mean of the yit over time (i.e.
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part of the mean rather than the whole mean, as was the case for fixed

effects estimation). Define the ‘quasi-demeaned’ data as y∗
i t = yit − θ yi and

x∗
i t = xit − θxi , where yi and xi are the means over time of the observa-

tions on yit and xit , respectively.9 θ will be a function of the variance of

the observation error term, σ 2
v , and of the variance of the entity-specific

error term, σ 2
ε

θ = 1 − σv√
T σ 2

ε + σ 2
v

(10.15)

This transformation will be precisely that required to ensure that there

are no cross-correlations in the error terms, but fortunately it should

automatically be implemented by standard software packages.

Just as for the fixed effects model, with random effects it is also con-

ceptually no more difficult to allow for time variation than it is to allow

for cross-sectional variation. In the case of time variation, a time period-

specific error term is included

yit = α + βxit + ωi t , ωi t = εt + vi t (10.16)

and again, a two-way model could be envisaged to allow the intercepts to

vary both cross-sectionally and over time. Box 10.1 discusses the choice

between fixed effects and random effects models.

10.7 Panel data application to credit stability of banks in Central
and Eastern Europe

Banking has become increasingly global over the past two decades, with

domestic markets in many countries being increasingly penetrated by

foreign-owned competitors. Foreign participants in the banking sector

may improve competition and efficiency to the benefit of the economy

that they enter, and they may have a stabilising effect on credit provision

since they will probably be better diversified than domestic banks and

will therefore be more able to continue to lend when the host economy is

performing poorly. But it is also argued that foreign banks may alter the

credit supply to suit their own aims rather than those of the host econ-

omy, and they may act more pro-cyclically than local banks, since they

have alternative markets to withdraw their credit supply to when host

market activity falls. Moreover, worsening conditions in the home coun-

try may force the repatriation of funds to support a weakened parent

bank.

9 The notation used here is a slightly modified version of Kennedy (2003, p. 315).
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Box 10.1 Fixed or random effects?

It is often said that the random effects model is more appropriate when the entities in

the sample can be thought of as having been randomly selected from the population,

but a fixed effect model is more plausible when the entities in the sample effectively

constitute the entire population (for instance, when the sample comprises all of the

stocks traded on a particular exchange). More technically, the transformation involved

in the GLS procedure under the random effects approach will not remove the

explanatory variables that do not vary over time, and hence their impact on yit can be

enumerated. Also, since there are fewer parameters to be estimated with the random

effects model (no dummy variables or within transformation to perform) and therefore

degrees of freedom are saved, the random effects model should produce more

efficient estimation than the fixed effects approach.

However, the random effects approach has a major drawback which arises from the

fact that it is valid only when the composite error term ωi t is uncorrelated with all of the

explanatory variables. This assumption is more stringent than the corresponding one in

the fixed effects case, because with random effects we thus require both εi and vi t to

be independent of all of the xit . This can also be viewed as a consideration of whether

any unobserved omitted variables (that were allowed for by having different intercepts

for each entity) are uncorrelated with the included explanatory variables. If they are

uncorrelated, a random effects approach can be used; otherwise the fixed effects

model is preferable.

A test for whether this assumption is valid for the random effects estimator is based

on a slightly more complex version of the Hausman test described in section 6.6. If the

assumption does not hold, the parameter estimates will be biased and inconsistent.

To see how this arises, suppose that we have only one explanatory variable, x2i t , that

varies positively with yit and also with the error term, ωi t . The estimator will ascribe all

of any increase in y to x when in reality some of it arises from the error term, resulting

in biased coefficients.

There may be differences in policies for credit provision dependent upon

the nature of the formation of the subsidiary abroad. If the subsidiary’s

existence results from a take-over of a domestic bank, it is likely that the

subsidiary will continue to operate the policies of, and in the same man-

ner as, and with the same management as, the original separate entity,

albeit in a diluted form. However, when the foreign bank subsidiary results

from the formation of an entirely new startup operation (a ‘greenfield in-

vestment’), the subsidiary is more likely to reflect the aims and objectives

of the parent institution from the outset, and may be more willing to

rapidly expand credit growth in order to obtain a sizeable foothold in the

credit market as quickly as possible.

A study by de Haas and van Lelyveld (2006) employs a panel regression

using a sample of around 250 banks from ten Central and East Euro-

pean countries to examine whether domestic and foreign banks react
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differently to changes in home or host economic activity and banking

crises.

The data cover the period 1993--2000 and are obtained from BankScope.

The core model is a random effects panel regression of the form

grit = α + β1Takeoverit + β2Greenfieldi + β3Crisisit + β4Macroit

+ β5Contrit + (μi + εit) (10.17)

where the dependent variable, ‘gri t ’, is the percentage growth in the credit

of bank i in year t ; ‘Takeoveri t ’ is a dummy variable taking the value 1

for foreign banks resulting from a takeover at time t and zero otherwise;

‘Greenfieldi ’ is a dummy taking the value 1 if bank i is the result of a

foreign firm making a new banking investment rather than taking over

an existing one; ‘crisis’ is a dummy variable taking the value 1 if the host

country for bank i was subject to a banking disaster in year t . ‘Macro’

is a vector of variables capturing the macroeconomic conditions in the

home country (the lending rate and the change in GDP for the home and

host countries, the host country inflation rate, and the differences in the

home and host country GDP growth rates and the differences in the home

and host country lending rates). ‘Contr’ is a vector of bank-specific control

variables that may affect the dependent variable irrespective of whether

it is a foreign or domestic bank, and these are: ‘weakness parent bank’,

defined as loan loss provisions made by the parent bank; ‘solvency’, the

ratio of equity to total assets; ‘liquidity’, the ratio of liquid assets to total

assets; ‘size’, the ratio of total bank assets to total banking assets in the

given country; ‘profitability’, return on assets; and ‘efficiency’, net interest

margin. α and the βs are parameters (or vectors of parameters in the cases

of β4 and β5), μi ∼ I I D(0, σ 2
μ) is the unobserved random effect that varies

across banks but not over time, and εi t ∼ I I D(0, σ 2
ε ) is an idiosyncratic

error term, i = 1, . . . , N ; t = 1, . . . , Ti .

de Haas and van Lelyveld discuss the various techniques that could be

employed to estimate such a model. OLS is considered to be inappropriate

since it does not allow for differences in average credit market growth

rates at the bank level. A model allowing for entity-specific effects (i.e. a

fixed effects model that effectively allowed for a different intercept for

each bank) would have been preferable to OLS (used to estimate a pooled

regression), but is ruled out on the grounds that there are many more

banks than time periods and thus too many parameters would be required

to be estimated. They also argue that these bank-specific effects are not of

interest to the problem at hand, which leads them to select the random

effects panel model, that essentially allows for a different error structure

for each bank. A Hausman test is conducted and shows that the random
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effects model is valid since the bank-specific effects (μi ) are found, ‘in most

cases not to be significantly correlated with the explanatory variables’.

The results of the random effects panel estimation are presented in table

10.3. Five separate regressions are conducted, with the results displayed in

columns 2--6 of the table.10 The regression is conducted on the full sample

of banks and separately on the domestic and foreign bank sub-samples.

The specifications allow in separate regressions for differences between

host and home variables (denoted ‘I’, columns 2 and 5) and the actual

values of the variables rather than the differences (denoted ‘II’, columns

3 and 6).

The main result is that during times of banking disasters, domestic

banks significantly reduce their credit growth rates (i.e. the parameter

estimate on the crisis variable is negative for domestic banks), while the

parameter is close to zero and not significant for foreign banks. There is a

significant negative relationship between home country GDP growth, but

a positive relationship with host country GDP growth and credit change

in the host country. This indicates that, as the authors expected, when

foreign banks have fewer viable lending opportunities in their own coun-

tries and hence a lower opportunity cost for the loanable funds, they

may switch their resources to the host country. Lending rates, both at

home and in the host country, have little impact on credit market share

growth. Interestingly, the greenfield and takeover variables are not sta-

tistically significant (although the parameters are quite large in absolute

value), indicating that the method of investment of a foreign bank in the

host country is unimportant in determining its credit growth rate or that

the importance of the method of investment varies widely across the sam-

ple, leading to large standard errors. A weaker parent bank (with higher

loss provisions) leads to a statistically significant contraction of credit in

the host country as a result of the reduction in the supply of available

funds. Overall, both home-related (‘push’) and host-related (‘pull’) factors

are found to be important in explaining foreign bank credit growth.

10.8 Panel data with EViews

The estimation of panel models, both fixed and random effects, is very easy

with EViews; the harder part is organising the data so that the software

can recognise that you have a panel of data and can apply the techniques

10 de Haas and van Lelyveld employ corrections to the standard errors for

heteroscedasticity and autocorrelation. They additionally conduct regressions including

interactive dummy variables, although these are not discussed here.
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Table 10.3 Results of random effects panel regression for credit stability of Central and
East European banks

Explanatory Full Full Domestic Foreign Foreign
variables sample I sample II banks banks I banks II

Takeover −11.58 −5.65

(1.26) (0.29)

Greenfield 14.99 29.59 12.39 8.11

(1.29) (1.55) (0.88) (0.65)

Crisis −19.79∗∗∗ −14.42∗∗∗ −19.36∗∗∗ 0.31 −4.13

(4.30) (2.93) (3.43) (0.03) (0.33)

Host -- home �GDP 8.08∗∗∗ 8.86∗∗∗

(4.18) (4.11)

Host �GDP 6.68∗∗∗ 6.74∗∗∗ 8.64∗∗∗

(7.39) (6.98) (2.93)

Home �GDP −6.04∗ −8.62∗∗∗

(1.89) (2.78)

Host -- home lending rate 1.12∗∗ 0.85

(1.97) (0.88)

Host lending rate 0.28 0.34 1.50

(1.08) (1.36) (1.11)

Home lending rate 2.97∗∗∗ 1.11

(4.03) (1.15)

Host inflation −0.01 0.03 0.03 0.08 0.07

(0.37) (1.01) (0.12) (0.61) (0.44)

Weakness parent bank −0.19∗∗∗ −0.16∗∗∗ −0.23∗∗∗ −0.19∗∗∗

(4.37) (3.04) (7.00) (4.27)

Solvency 1.29∗∗∗ 1.25∗∗∗ 0.85∗∗∗ 3.33∗∗∗ 3.18∗∗∗

(5.34) (4.77) (3.24) (5.53) (5.30)

Liquidity −0.05∗∗ 0.02 0.02 −0.53 −0.43

(2.09) (0.78) (0.70) (1.40) (1.14)

Size −34.65∗∗ −29.14 −21.93 −108.00 −136.19

(1.96) (1.56) (1.16) (0.54) (0.72)

Profitability 1.09∗∗ 1.09∗∗ 1.21∗∗∗ 2.16 0.91

(2.18) (2.14) (2.81) (0.75) (0.29)

Interest margin 1.66∗∗∗ 1.90∗∗∗ 2.71∗∗∗ −3.42 −2.84

(2.90) (3.41) (4.96) (1.18) (0.94)

Observations 1003 1003 770 233 233

No. of banks 247 247 184 82 82

Hausman test statistic 0.66 0.94 0.76 0.58 0.92

R2 0.28 0.33 0.30 0.46 0.47

Notes: t -ratios in parentheses. Intercept and country dummy parameter estimates are

not shown. Empty cells occur when a particular variable is not included in a

regression.

Source: de Haas and van Lelyveld (2006). Reprinted with the permission of Elsevier

Science.
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accordingly. While there are a number of different ways to construct a

panel workfile in EViews, the simplest way, which will be adopted in this

example, is to use three stages:

(1) Set up a new workfile to hold the data with the appropriate number

of cross-sectional observations, the appropriate time period and the

appropriate frequency.

(2) Import the data as pooled variables with all observations on a given se-

ries in a single column and with each column representing a separate

variable.

(3) Structure the data within EViews so that the full panel framework is

available.

The application to be considered here is that of a variant on an early test

of the capital asset pricing model due to Fama and MacBeth (1973). Their

test involves a 2-step estimation procedure: first, the betas are estimated

in separate time series regressions for each firm, and second, for each

separate point in time, a cross-sectional regression of the excess returns

on the betas is conducted

Rit − R f t = λ0 + λmβPi + ui (10.18)

where the dependent variable, Rit − R f t , is the excess return of the stock

i at time t and the independent variable is the estimated beta for the

portfolio (P ) that the stock has been allocated to. The betas of the firms

themselves are not used on the RHS, but rather, the betas of portfolios

formed on the basis of firm size. If the CAPM holds, then λ0 should not

be significantly different from zero and λm should approximate the (time

average) equity market risk premium, Rm − R f . Fama and MacBeth pro-

posed estimating this second stage (cross-sectional) regression separately

for each time period, and then taking the average of the parameter es-

timates to conduct hypothesis tests. However, one could also achieve a

similar objective using a panel approach. We will use an example in the

spirit of Fama--MacBeth comprising the annual returns and ‘second pass

betas’ for 11 years on 2,500 UK firms.11

As described above, the first stage is to construct a workfile to hold the

data, so Open EViews and select File/New/Workfile. Then, in the ‘Workfile

structure type’ box, select Balanced Panel with Annual data, starting in

11 Source: computation by Keith Anderson and the author. There would be some severe

limitations of this analysis if it purported to be a piece of original research, but the

range of freely available panel datasets is severely limited and so hopefully it will

suffice as an example of how to estimate panel models with EViews. No doubt readers,

with access to a wider range of data, will be able to think of much better applications!
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1996 and ending in 2006 with 2500 cross-sections. Next, import the Excel

file entitled ‘panelex.xls’ by selecting File/Import/Read Lotus-Text-Excel.

Read the data By Observation, with the data starting in Cell A2. In the

‘Name for Series or Number . . . ’ box, enter 4 and click OK. This will import

the data with the 4 variables in columns. It is obvious what two of the

variables are: the returns series and the beta series, but for panel data,

we also need time (a variable that I have called ‘year’) and cross-sectional

(‘firm ident’) identifiers.

The final stage is now to structure the panel correctly. This can be

achieved by double clicking on the word ‘Range’ in the upper panel

of the workfile window, which will make the ‘Workfile structure’ window

open; this window should be filled in as in screenshot 10.1.

Screenshot 10.1

Workfile structure

window

So in the ‘Cross section ID series:’ box, enter firm ident and in the

‘Date series:’ box, enter year and then click OK. The panel is now set up

and ready for use. To estimate panel regressions, click Quick/Estimate

Equation. . . and then the Equation Estimation window will open. For the

variables, enter return c beta in the Equation Specification window. If you

click on the Panel Options tab, you will see a number of options specific

to panel data models are available. The most important of these is the first

box, where either fixed or random effects can be chosen. The default is

for neither, which would effectively imply a simple pooled regression, so
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estimate a model with neither fixed nor random effects first. The results

would be as in the following table.

Dependent variable: RETURN

Method: Panel Least Squares

Date: 09/23/07 Time: 21:04

Sample: 1996 2006

Periods included: 11

Cross-sections included: 1734

Total panel (unbalanced) observations: 8856

Coefficient Std. Error t-Statistic Prob.

C 0.001843 0.003075 0.599274 0.5490

BETA 0.000454 0.002735 0.166156 0.8680

R-squared 0.000003 Mean dependent var 0.002345

Adjusted R-squared −0.000110 S.D. dependent var 0.052282

S.E. of regression 0.052285 Akaike info criterion −3.063986

Sum squared resid 24.20443 Schwarz criterion −3.062385

Log likelihood 13569.33 Hannan-Quinn criter. −3.063441

F-statistic 0.027608 Durbin-Watson stat 1.639308

Prob(F-statistic) 0.868038

We can see that neither the intercept nor the slope is statistically sig-

nificant. The returns in this regression are in proportion terms rather

than percentages, so the slope estimate of 0.000454 corresponds to a risk

premium of 0.0454% per month, or around 0.5% per year, whereas the

(unweighted average) excess return for all firms in the sample is around

−2% per year. But this pooled regression assumes that the intercepts are

the same for each firm and for each year. This may be an inappropri-

ate assumption, and we could instead estimate a model with firm fixed

and time-fixed effects, which will allow for latent firm-specific and time-

specific heterogeneity respectively, as shown in the following table.

We can see that the estimate on the beta parameter is now negative

and statistically significant, while the intercept is positive and statistically

significant. If we wish to see the fixed effects (i.e. to see the values of the

dummy variables for each firm and for each point in time), we could

click on View/Fixed/Random Effects and then either Cross-Section Effects

or Period Effects (the latter are what EViews calls time-fixed effects).

Next, it is worth determining whether the fixed effects are neces-

sary or not by running a redundant fixed effects test. To do this, click

View/Fixed/Random Effects Testing and then Redundant Fixed Effects –

Likelihood Ratio Test. The output in the following table will be seen.
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Dependent Variable: RETURN

Method: Panel Least Squares

Date: 09/23/07 Time: 21:37

Sample: 1996 2006

Periods included: 11

Cross-sections included: 1734

Total panel (unbalanced) observations: 8856

Coefficient Std. Error t-Statistic Prob.

C 0.015393 0.004406 3.493481 0.0005

BETA −0.011800 0.003957 −2.981904 0.0029

Effects specification

Cross-section fixed (dummy variables)

Period fixed (dummy variables)

R-squared 0.303743 Mean dependent var 0.002345

Adjusted R-squared 0.132984 S.D. dependent var 0.052282

S.E. of regression 0.048682 Akaike info criterion −3.032388

Sum squared resid 16.85255 Schwarz criterion −1.635590

Log likelihood 15172.42 Hannan-Quinn criter. −2.556711

F-statistic 1.778776 Durbin-Watson stat 2.067530

Prob(F-statistic) 0.000000

Redundant Fixed Effects Tests

Equation: Untitled

Test cross-section and period fixed effects

Effects test Statistic d.f. Prob.

Cross-section F 1.412242 (1733,7111) 0.0000

Cross-section Chi-square 2619.419027 1733 0.0000

Period F 63.169442 (10,7111) 0.0000

Period Chi-square 753.706372 10 0.0000

Cross-Section/Period F 1.779779 (1743,7111) 0.0000

Cross-Section/Period Chi-square 3206.169948 1743 0.0000

Note that EViews will also present the results for a restricted model

where only cross-sectional fixed effects and no period fixed effects are

allowed for, and then a restricted model where only period fixed effects

are allowed for.12 Interestingly, the cross-sectional only fixed effects model

parameters are not qualitatively different from those of the initial pooled

regression, so it is the period fixed effects that make a difference. Three

different redundant fixed effects tests are employed, each in both χ2 and

12 These models are not shown to preserve space.
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F -test versions, for: 1) restricting the cross-section fixed effects to zero; 2)

restricting the period fixed effects to zero; and 3) restricting both types

of fixed effects to zero. In all three cases, the p-values associated with the

test statistics are zero to 4 decimal places, indicating that the restrictions

are not supported by the data and that a pooled sample could not be

employed.

Next, estimate a random effects model by selecting this from the panel

estimation option tab. As for fixed effects, the random effects could be

along either the cross-sectional or period dimensions, but select random

effects for the firms (i.e. cross-sectional) but not over time. The results

are observed as in the following table.

Dependent Variable: RETURN

Method: Panel EGLS (Cross-section random effects)

Date: 09/23/07 Time: 21:55

Sample: 1996 2006

Periods included: 11

Cross-sections included: 1734

Total panel (unbalanced) observations: 8856

Swamy and Arora estimator of component variances

Coefficient Std. Error t-Statistic Prob.

C 0.003281 0.003267 1.004366 0.3152

BETA −0.001499 0.002894 −0.518160 0.6044

Effects specification

S.D. Rho

Cross-section random 0.012366 0.0560

Idiosyncratic random 0.050763 0.9440

Weighted statistics

R-squared −0.000323 Mean dependent var 0.001663

Adjusted R-squared −0.000436 S.D. dependent var 0.051095

S.E. of regression 0.051106 Sum squared resid 23.12475

F-statistic −2.857020 Durbin-Watson stat 1.715580

Prob(F-statistic) 1.000000

Unweighted statistics

R-squared −0.000245 Mean dependent var 0.002345

Sum squared resid 24.21044 Durbin-Watson stat 1.638922

The slope estimate is again of a different order of magnitude compared

with both the pooled and the fixed effects regressions. It is of interest to

determine whether the random effects model passes the Hausman test

for the random effects being uncorrelated with the explanatory variables.
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To do this, click View/Fixed/Random Effects Testing/Correlated Random

Effects – Hausman Test. The following results are observed, with only the

top panel that reports the Hausman test results being reported here in

the following table.

Correlated Random Effects -- Hausman Test

Equation: Untitled

Test cross-section random effects

Test summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.

Cross-section random 12.633579 1 0.0004

The p-value for the test is less than 1%, indicating that the random

effects model is not appropriate and that the fixed effects specification is

to be preferred.

10.9 Further reading

Some readers may feel that further instruction in this area could be use-

ful. If so, the classic specialist references to panel data techniques are

Baltagi (2005) and Hsiao (2003) and further references are Arellano (2003)

and Wooldridge (2002). All four are extremely detailed and have excellent

referencing to recent developments in the theory of panel model speci-

fication, estimation and testing. However, all also require a high level of

mathematical and econometric ability on the part of the reader. A more

intuitive and accessible, but less detailed, treatment is given in Kennedy

(2003, chapter 17). Some examples of financial studies that employ panel

techniques and outline the methodology sufficiently descriptively to be

worth reading as aides to learning are given in the examples above.

Key concepts
The key terms to be able to define and explain from this chapter are

● pooled data ● seemingly unrelated regression

● fixed effects ● least squares dummy variable estimation

● random effects ● Hausman test

● within transform ● time-fixed effects

● between estimation
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Review questions

1. (a) What are the advantages of constructing a panel of data, if one is

available, rather than using pooled data?

(b) What is meant by the term ‘seemingly unrelated regression’? Give

examples from finance of where such an approach may be used.

(c) Distinguish between balanced and unbalanced panels, giving

examples of each.

2. (a) Explain how fixed effects models are equivalent to an ordinary least

squares regression with dummy variables.

(b) How does the random effects model capture cross-sectional

heterogeneity in the intercept term?

(c) What are the relative advantages and disadvantages of the fixed

versus random effects specifications and how would you choose

between them for application to a particular problem?

3. Find a further example of where panel regression models have been

used in the academic finance literature and do the following:

● Explain why the panel approach was used.

● Was a fixed effects or random effects model chosen and why?

● What were the main results of the study and is any indication given

about whether the results would have been different had a pooled

regression been employed instead in this or in previous studies?
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Limited dependent variable models

Learning Outcomes
In this chapter, you will learn how to

● Compare between different types of limited dependent
variables and select the appropriate model

● Interpret and evaluate logit and probit models

● Distinguish between the binomial and multinomial cases

● Deal appropriately with censored and truncated dependent
variables

● Estimate limited dependent variable models using maximum
likelihood in EViews

11.1 Introduction and motivation

Chapters 4 and 9 have shown various uses of dummy variables to numer-

ically capture the information qualitative variables -- for example, day-of-

the-week effects, gender, credit ratings, etc. When a dummy is used as

an explanatory variable in a regression model, this usually does not give

rise to any particular problems (so long as one is careful to avoid the

dummy variable trap -- see chapter 9). However, there are many situations

in financial research where it is the explained variable, rather than one

or more of the explanatory variables, that is qualitative. The qualitative

information would then be coded as a dummy variable and the situation

would be referred to as a limited dependent variable and needs to be treated

differently. The term refers to any problem where the values that the de-

pendent variables may take are limited to certain integers (e.g. 0, 1, 2, 3, 4)

or even where it is a binary number (only 0 or 1). There are numerous

511
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examples of instances where this may arise, for example where we want

to model:

● Why firms choose to list their shares on the NASDAQ rather than the

NYSE

● Why some stocks pay dividends while others do not

● What factors affect whether countries default on their sovereign debt

● Why some firms choose to issue new stock to finance an expansion

while others issue bonds

● Why some firms choose to engage in stock splits while others do not.

It is fairly easy to see in all these cases that the appropriate form for the

dependent variable would be a 0--1 dummy variable since there are only

two possible outcomes. There are, of course, also situations where it would

be more useful to allow the dependent variable to take on other values,

but these will be considered later in section 11.9. We will first examine

a simple and obvious, but unfortunately flawed, method for dealing with

binary dependent variables, known as the linear probability model.

11.2 The linear probability model

The linear probability model (LPM) is by far the simplest way of dealing

with binary dependent variables, and it is based on an assumption that

the probability of an event occurring, Pi , is linearly related to a set of

explanatory variables x2i , x3i , . . . , xki

Pi = p(yi = 1) = β1 + β2x2i + β3x3i + · · · + βk xki + ui , i = 1, . . . , N
(11.1)

The actual probabilities cannot be observed, so we would estimate a model

where the outcomes, yi (the series of zeros and ones), would be the de-

pendent variable. This is then a linear regression model and would be

estimated by OLS. The set of explanatory variables could include either

quantitative variables or dummies or both. The fitted values from this

regression are the estimated probabilities for yi = 1 for each observation

i . The slope estimates for the linear probability model can be interpreted

as the change in the probability that the dependent variable will equal 1

for a one-unit change in a given explanatory variable, holding the effect

of all other explanatory variables fixed. Suppose, for example, that we

wanted to model the probability that a firm i will pay a dividend (yi = 1)

as a function of its market capitalisation (x2i , measured in millions of US
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Probability
ŷi = −0.3 + 0.012xi

Figure 11.1

The fatal flaw of the

linear probability

model

dollars), and we fit the following line:

P̂i = −0.3 + 0.012x2i (11.2)

where P̂i denotes the fitted or estimated probability for firm i . This model

suggests that for every $1m increase in size, the probability that the firm

will pay a dividend increases by 0.012 (or 1.2%). A firm whose stock is

valued at $50m will have a −0.3 + 0.012 × 50 = 0.3 (or 30%) probability

of making a dividend payment. Graphically, this situation may be repre-

sented as in figure 11.1.

While the linear probability model is simple to estimate and intuitive

to interpret, the diagram should immediately signal a problem with this

setup. For any firm whose value is less than $25m, the model-predicted

probability of dividend payment is negative, while for any firm worth more

than $88m, the probability is greater than one. Clearly, such predictions

cannot be allowed to stand, since the probabilities should lie within the

range (0,1). An obvious solution is to truncate the probabilities at 0 or 1,

so that a probability of −0.3, say, would be set to zero, and a probability

of, say, 1.2 would be set to 1. However, there are at least two reasons why

this is still not adequate:

(1) The process of truncation will result in too many observations for

which the estimated probabilities are exactly zero or one.

(2) More importantly, it is simply not plausible to suggest that the firm’s

probability of paying a dividend is either exactly zero or exactly one.

Are we really certain that very small firms will definitely never pay

a dividend and that large firms will always make a payout? Probably

not, so a different kind of model is usually used for binary dependent
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variables -- either a logit or a probit specification. These approaches

will be discussed in the following sections. But before moving on, it

is worth noting that the LPM also suffers from a couple of more stan-

dard econometric problems that we have examined in previous chap-

ters. First, since the dependent variable takes only one or two values,

for given (fixed in repeated samples) values of the explanatory vari-

ables, the disturbance term1 will also take on only one of two values.

Consider again equation (11.1). If yi = 1, then by definition

ui = 1 − β1 − β2x2i − β3x3i − · · · − βk xki ;

but if yi = 0, then

ui = −β1 − β2x2i − β3x3i − · · · − βk xki .

Hence the error term cannot plausibly be assumed to be normally

distributed. Since ui changes systematically with the explanatory vari-

ables, the disturbances will also be heteroscedastic. It is therefore es-

sential that heteroscedasticity-robust standard errors are always used

in the context of limited dependent variable models.

11.3 The logit model

Both the logit and probit model approaches are able to overcome the

limitation of the LPM that it can produce estimated probabilities that

are negative or greater than one. They do this by using a function that

effectively transforms the regression model so that the fitted values are

bounded within the (0,1) interval. Visually, the fitted regression model will

appear as an S-shape rather than a straight line, as was the case for the

LPM. This is shown in figure 11.2.

The logistic function F , which is a function of any random variable, z,

would be

F (zi ) = ezi

1 + ezi
= 1

1 + e−zi
(11.3)

where e is the exponential under the logit approach. The model is so called

because the function F is in fact the cumulative logistic distribution. So

the logistic model estimated would be

Pi = 1

1 + e−(β
1
+β2x2i +···+βk xki +ui )

(11.4)

where again Pi is the probability that yi = 1.

1 N.B. The discussion refers to the disturbance, ui , rather than the residual, ûi .
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The logit model

With the logistic model, 0 and 1 are asymptotes to the function and

thus the probabilities will never actually fall to exactly zero or rise to

one, although they may come infinitesimally close. In equation (11.3), as

zi tends to infinity, e−zi tends to zero and 1/(1 + e−zi ) tends to 1; as zi tends

to minus infinity, e−zi tends to infinity and 1/(1 + e−zi ) tends to 0.

Clearly, this model is not linear (and cannot be made linear by a trans-

formation) and thus is not estimable using OLS. Instead, maximum likeli-

hood is usually used -- this is discussed in section 11.7 and in more detail

in the appendix to this chapter.

11.4 Using a logit to test the pecking order hypothesis

This section examines a study of the pecking order hypothesis due to

Helwege and Liang (1996). The theory of firm financing suggests that cor-

porations should use the cheapest methods of financing their activities

first (i.e. the sources of funds that require payment of the lowest rates of

return to investors) and switch to more expensive methods only when the

cheaper sources have been exhausted. This is known as the ‘pecking order

hypothesis’, initially proposed by Myers (1984). Differences in the relative

cost of the various sources of funds are argued to arise largely from in-

formation asymmetries since the firm’s senior managers will know the

true riskiness of the business, whereas potential outside investors will

not.2 Hence, all else equal, firms will prefer internal finance and then, if

2 ‘Managers have private information regarding the value of assets in place and

investment opportunities that cannot credibly be conveyed to the market. Consequently,

any risky security offered by the firm will not be priced fairly from the manager’s point

of view’ (Helwege and Liang, p. 438).
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further (external) funding is necessary, the firm’s riskiness will determine

the type of funding sought. The more risky the firm is perceived to be,

the less accurate will be the pricing of its securities.

Helwege and Liang (1996) examine the pecking order hypothesis in the

context of a set of US firms that had been newly listed on the stock market

in 1983, with their additional funding decisions being tracked over the

1984--1992 period. Such newly listed firms are argued to experience higher

rates of growth, and are more likely to require additional external funding

than firms which have been stock market listed for many years. They are

also more likely to exhibit information asymmetries due to their lack of

a track record. The list of initial public offerings (IPOs) came from the

Securities Data Corporation and the Securities and Exchange Commission

with data obtained from Compustat.

A core objective of the paper is to determine the factors that affect the

probability of raising external financing. As such, the dependent variable

will be binary -- that is, a column of 1s (firm raises funds externally) and

0s (firm does not raise any external funds). Thus OLS would not be appro-

priate and hence a logit model is used. The explanatory variables are a set

that aims to capture the relative degree of information asymmetry and de-

gree of riskiness of the firm. If the pecking order hypothesis is supported

by the data, then firms should be more likely to raise external funding

the less internal cash they hold. Hence variable ‘deficit’ measures (capital

expenditures + acquisitions + dividends − earnings). ‘Positive deficit’ is

a variable identical to deficit but with any negative deficits (i.e. surpluses)

set to zero; ‘surplus’ is equal to the negative of deficit for firms where

deficit is negative; ‘positive deficit × operating income’ is an interaction

term where the two variables are multiplied together to capture cases

where firms have strong investment opportunities but limited access to

internal funds; ‘assets’ is used as a measure of firm size; ‘industry asset

growth’ is the average rate of growth of assets in that firm’s industry over

the 1983--1992 period; ‘firm’s growth of sales’ is the growth rate of sales

averaged over the previous 5 years; ‘previous financing’ is a dummy vari-

able equal to 1 for firms that obtained external financing in the previous

year. The results from the logit regression are presented in table 11.1.

The key variable, ‘deficit,’ has a parameter that is not statistically signif-

icant and hence the probability of obtaining external financing does not

depend on the size of a firm’s cash deficit.3 The parameter on the ‘surplus’

3 Or an alternative explanation, as with a similar result in the context of a standard

regression model, is that the probability varies widely across firms with the size of the

cash deficit so that the standard errors are large relative to the point estimate.
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Table 11.1 Logit estimation of the probability of external financing

Variable (1) (2) (3)

Intercept −0.29 −0.72 −0.15

(−3.42) (−7.05) (−1.58)

Deficit 0.04 0.02

(0.34) (0.18)

Positive deficit −0.24

(−1.19)

Surplus −2.06

(−3.23)

Positive deficit × operating income −0.03

(−0.59)

Assets 0.0004 0.0003 0.0004

(1.99) (1.36) (1.99)

Industry asset growth −0.002 −0.002 −0.002

(−1.70) (−1.35) (−1.69)

Previous financing 0.79

(8.48)

Note: a blank cell implies that the particular variable was not included in that

regression; t -ratios in parentheses; only figures for all years in the sample are

presented.

Source: Helwege and Liang (1996). Reprinted with the permission of Elsevier Science.

variable has the correct negative sign, indicating that the larger a firm’s

surplus, the less likely it is to seek external financing, which provides

some limited support for the pecking order hypothesis. Larger firms (with

larger total assets) are more likely to use the capital markets, as are firms

that have already obtained external financing during the previous year.

11.5 The probit model

Instead of using the cumulative logistic function to transform the model,

the cumulative normal distribution is sometimes used instead. This gives

rise to the probit model. The function F in equation (11.3) is replaced by:

F (zi ) = 1

σ
√

2π
e− 1

2

(
z2
i
σ

)
(11.5)

This function is the cumulative distribution function for a standard nor-

mally distributed random variable. As for the logistic approach, this

function provides a transformation to ensure that the fitted probabil-

ities will lie between zero and one. Also as for the logit model, the
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marginal impact of a unit change in an explanatory variable, x4i say,

will be given by β4 F (zi ), where β4 is the parameter attached to x4i and

zi = β1 + β2x2i + β3x3i + · · · + ui .

11.6 Choosing between the logit and probit models

For the majority of the applications, the logit and probit models will give

very similar characterisations of the data because the densities are very

similar. That is, the fitted regression plots (such as figure 11.2) will be

virtually indistinguishable and the implied relationships between the ex-

planatory variables and the probability that yi = 1 will also be very similar.

Both approaches are much preferred to the linear probability model. The

only instance where the models may give non-negligibility different re-

sults occurs when the split of the yi between 0 and 1 is very unbalanced --

for example, when yi = 1 occurs only 10% of the time.

Stock and Watson (2006) suggest that the logistic approach was tradi-

tionally preferred since the function does not require the evaluation of an

integral and thus the model parameters could be estimated faster. How-

ever, this argument is no longer relevant given the computational speeds

now achievable and the choice of one specification rather than the other

is now usually arbitrary.

11.7 Estimation of limited dependent variable models

Given that both logit and probit are non-linear models, they cannot be

estimated by OLS. While the parameters could, in principle, be estimated

using non-linear least squares (NLS), maximum likelihood (ML) is simpler

and is invariably used in practice. As discussed in chapter 8, the princi-

ple is that the parameters are chosen to jointly maximise a log-likelihood

function (LLF). The form of this LLF will depend upon whether the logit or

probit model is used, but the general principles for parameter estimation

described in chapter 8 will still apply. That is, we form the appropriate

log-likelihood function and then the software package will find the val-

ues of the parameters that jointly maximise it using an iterative search

procedure. A derivation of the ML estimator for logit and probit models

is given in the appendix to this chapter. Box 11.1 shows how to interpret

the estimated parameters from probit and logit models.

Once the model parameters have been estimated, standard errors can be

calculated and hypothesis tests conducted. While t -test statistics are con-

structed in the usual way, the standard error formulae used following the

ML estimation are valid asymptotically only. Consequently, it is common

to use the critical values from a normal distribution rather than a t
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Box 11.1 Parameter interpretation for probit and logit models

Standard errors and t-ratios will automatically be calculated by the econometric

software package used, and hypothesis tests can be conducted in the usual fashion.

However, interpretation of the coefficients needs slight care. It is tempting, but

incorrect, to state that a 1-unit increase in x2i , for example, causes a β2% increase in

the probability that the outcome corresponding to yi = 1 will be realised. This would

have been the correct interpretation for the linear probability model.

However, for logit models, this interpretation would be incorrect because the form of

the function is not Pi = βi + β2xi + ui , for example, but rather Pi = F (x2i ), where F
represents the (non-linear) logistic function. To obtain the required relationship

between changes in x2i and Pi , we would need to differentiate F with respect to x2i and

it turns out that this derivative is β2 F (x2i ). So in fact, a 1-unit increase in x2i will cause

a β2 F (x2i ) increase in probability. Usually, these impacts of incremental changes in an

explanatory variable are evaluated by setting each of them to their mean values. For

example, suppose we have estimated the following logit model with 3 explanatory

variables using maximum likelihood

P̂i = 1

1 + e−(0.1+0.3x2i −0.6x3i +0.9x4i )
(11.6)

Thus we have β̂1 = 0.1, β̂2 = 0.3, β̂3 = −0.6, β̂4 = 0.9. We now need to calculate

F (zi ), for which we need the means of the explanatory variables, where zi is defined

as before. Suppose that these are x̄2 = 1.6, x̄3 = 0.2, x̄4 = 0.1, then the estimate of

F (zi ) will be given by

P̂i = 1

1 + e−(0.1+0.3×1.6−0.6×0.2+0.9×0.1)
= 1

1 + e−0.55
= 0.63 (11.7)

Thus a 1-unit increase in x2 will cause an increase in the probability that the outcome

corresponding to yi = 1 will occur by 0.3 × 0.63 = 0.19. The corresponding changes

in probability for variables x3 and x4 are −0.6 × 0.63 = −0.38 and 0.9 × 0.63 =
0.57, respectively. These estimates are sometimes known as the marginal effects.

There is also another way of interpreting discrete choice models, known as the

random utility model. The idea is that we can view the value of y that is chosen by

individual i (either 0 or 1) as giving that person a particular level of utility, and the

choice that is made will obviously be the one that generates the highest level of utility.

This interpretation is particularly useful in the situation where the person faces a

choice between more than 2 possibilities as in section 11.9 below.

distribution with the implicit assumption that the sample size is suffi-

ciently large.

11.8 Goodness of fit measures for linear dependent variable models

While it would be possible to calculate the values of the standard goodness

of fit measures such as RSS, R2 or R̄2 for linear dependent variable models,

these cease to have any real meaning. The objective of ML is to maximise

the value of the LLF, not to minimise the RSS. Moreover, R2 and adjusted
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R2, if calculated in the usual fashion, will be misleading because the fitted

values from the model can take on any value but the actual values will

be only either 0 and 1. To illustrate, suppose that we are considering a

situation where a bank either grants a loan (yi = 1) or it refuses (yi = 0).

Does, say, P̂i = 0.8 mean the loan is offered or not? In order to answer

this question, sometimes, any value of P̂i > 0.5 would be rounded up to

one and any value <0.5 rounded down to zero. However, this approach is

unlikely to work well when most of the observations on the dependent

variable are one or when most are zero. In such cases, it makes more

sense to use the unconditional probability that y = 1 (call this ȳ) as the

threshold rather than 0.5. So if, for example, only 20% of the observations

have y = 1 (so ȳ = 0.2), then we would deem the model to have correctly

predicted the outcome concerning whether the bank would grant the loan

to the customer where P̂i > 0.2 and yi = 1 and where P̂i < 0.2 and yi = 0.

Thus if yi = 1 and P̂i = 0.8, the model has effectively made the correct

prediction (either the loan is granted or refused -- we cannot have any

outcome in between), whereas R2 and R̄2 will not give it full credit for

this. Two goodness of fit measures that are commonly reported for limited

dependent variable models are as follows.

(1) The percentage of yi values correctly predicted, defined as 100 × the

number of observations predicted correctly divided by the total num-

ber of observations:

Percent correct predictions = 100

N

N∑
i=1

yi I (P̂i ) + (1 − yi )(1 − I (P̂i ))

(11.8)

where I (ŷi ) = 1 if ŷi > ȳ and 0 otherwise.

Obviously, the higher this number, the better the fit of the model. Al-

though this measure is intuitive and easy to calculate, Kennedy (2003)

suggests that it is not ideal, since it is possible that a ‘naïve predictor’

could do better than any model if the sample is unbalanced between 0

and 1. For example, suppose that yi = 1 for 80% of the observations. A

simple rule that the prediction is always 1 is likely to outperform any

more complex model on this measure but is unlikely to be very use-

ful. Kennedy (2003, p. 267) suggests measuring goodness of fit as the

percentage of yi = 1 correctly predicted plus the percentage of yi = 0

correctly predicted. Algebraically, this can be calculated as

Percent correct predictions = 100 ×
[∑

yi I (P̂i )∑
yi

+
∑

(1 − yi )(1 − I (P̂i ))

N − ∑
yi

]

(11.9)
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Again, the higher the value of the measure, the better the fit of the

model.

(2) A measure known as ‘pseudo-R2’, defined as

pseudo − R2 = 1 − LLF

LLF0

(11.10)

where LLF is the maximised value of the log-likelihood function for

the logit and probit model and LLF0 is the value of the log-likelihood

function for a restricted model where all of the slope parameters are

set to zero (i.e. the model contains only an intercept). Pseudo-R2 will

have a value of zero for the restricted model, as with the traditional

R2, but this is where the similarity ends. Since the likelihood is es-

sentially a joint probability, its value must be between zero and one,

and therefore taking its logarithm to form the LLF must result in a

negative number. Thus, as the model fit improves, LLF will become less

negative and therefore pseudo-R2 will rise. The maximum value of one

could be reached only if the model fitted perfectly (i.e. all the P̂i were

either exactly zero or one corresponding to the actual values). This

could never occur in reality and therefore pseudo-R2 has a maximum

value less than one. We also lose the simple interpretation of the stan-

dard R2 that it measures the proportion of variation in the dependent

variable that is explained by the model. Indeed, pseudo-R2 does not

have any intuitive interpretation.

This definition of pseudo-R2 is also known as McFadden’s R2, but it

is also possible to specify the metric in other ways. For example, we

could define pseudo-R2 as [1 − (RSS/TSS)] where RSS is the residual sum

of squares from the fitted model and TSS is the total sum of squares

of yi .

11.9 Multinomial linear dependent variables

All of the examples that have been considered so far in this chapter have

concerned situations where the dependent variable is modelled as a bi-

nary (0,1) choice. But there are also many instances where investors or

financial agents are faced with more alternatives. For example, a com-

pany may be considering listing on the NYSE, the NASDAQ or the AMEX

markets; a firm that is intending to take over another may choose to pay

by cash, with shares, or with a mixture of both; a retail investor may

be choosing between five different mutual funds; a credit ratings agency

could assign 1 of 16 (AAA to B3/B−) different ratings classifications to a

firm’s debt.
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Notice that the first three of these examples are different from the last

one. In the first three cases, there is no natural ordering of the alternatives:

the choice is simply made between them. In the final case, there is an

obvious ordering, because a score of 1, denoting a AAA-rated bond, is

better than a score of 2, denoting a AA1/AA+-rated bond, and so on (see

section 4.14 in chapter 4). These two situations need to be distinguished

and a different approach used in each case. In the first (when there is no

natural ordering), a multinomial logit or probit would be used, while in

the second (where there is an ordering), an ordered logit or probit would

be used. This latter situation will be discussed in the next section, while

multinomial models will be considered now.

When the alternatives are unordered, this is sometimes called a discrete

choice or multiple choice problem. The models used are derived from the

principles of utility maximisation -- that is, the agent chooses the alterna-

tive that maximises his utility relative to the others. Econometrically, this

is captured using a simple generalisation of the binary setup discussed

earlier. When there were only 2 choices (0,1), we required just one equa-

tion to capture the probability that one or the other would be chosen. If

there are now three alternatives, we would need two equations; for four

alternatives, we would need three equations. In general, if there are m
possible alternative choices, we need m − 1 equations.

The situation is best illustrated by first examining a multinomial lin-

ear probability model. This still, of course, suffers from the same limita-

tions as it did in the binary case (i.e. the same problems as the LPM), but

it nonetheless serves as a simple example by way of introduction.4 The

multiple choice example most commonly used is that of the selection

of the mode of transport for travel to work.5 Suppose that the journey

may be made by car, bus, or bicycle (3 alternatives), and suppose that

the explanatory variables are the person’s income (I ), total hours worked

(H ), their gender (G) and the distance travelled (D).6 We could set up 2

equations

BUSi = α1 + α2 Ii + α3 Hi + α4Gi + α5 Di + ui (11.11)

CARi = β1 + β2 Ii + β3 Hi + β4Gi + β5 Di + vi (11.12)

where BUSi = 1 if person i travels by bus and 0 otherwise; CARi = 1 if

person i travels by car and 0 otherwise.

4 Multinomial models are clearly explained with intuitive examples in Halcoussis (2005,

chapter 12).
5 This illustration is used in Greene (2002) and Kennedy (2003), for example.
6 Note that the same variables must be used for all equations for this approach to be valid.
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There is no equation for travel by bicycle and this becomes a sort of refer-

ence point, since if the dependent variables in the two equations are both

zero, the person must be travelling by bicycle.7 In fact, we do not need to

estimate the third equation (for travel by bicycle) since any quantity of in-

terest can be inferred from the other two. The fitted values from the equa-

tions can be interpreted as probabilities and so, together with the third

possibility, they must sum to unity. Thus, if, for a particular individual i ,
the probability of travelling by car is 0.4 and by bus is 0.3, then the possi-

bility that she will travel by bicycle must be 0.3 (1−0.4−0.3). Also, the inter-

cepts for the three equations (the two estimated equations plus the miss-

ing one) must sum to zero across the three modes of transport.

While the fitted probabilities will always sum to unity by construction,

as with the binomial case, there is no guarantee that they will all lie

between 0 and 1 -- it is possible that one or more will be greater than 1

and one or more will be negative. In order to make a prediction about

which mode of transport a particular individual will use, given that the

parameters in equations (11.11) and (11.12) have been estimated and given

the values of the explanatory variables for that individual, the largest

fitted probability would be set to 1 and the others set to 0. So, for example,

if the estimated probabilities of a particular individual travelling by car,

bus and bicycle are 1.1, 0.2 and −0.3, these probabilities would be rounded

to 1, 0, and 0. So the model would predict that this person would travel

to work by car.

Exactly as the LPM has some important limitations that make logit and

probit the preferred models, in the multiple choice context multinomial

logit and probit models should be used. These are direct generalisations of

the binary cases, and as with the multinomial LPM, m − 1 equations must

be estimated where there are m possible outcomes or choices. The outcome

for which an equation is not estimated then becomes the reference choice,

and thus the parameter estimates must be interpreted slightly differently.

Suppose that travel by bus (B) or by car (C) have utilities for person i that

depend on the characteristics described above (Ii , Hi , Gi , Di ), then the car

will be chosen if

(β1 + β2 Ii + β3 Hi + β4Gi + β5 Di + vi )

> (α1 + α2 Ii + α3 Hi + α4Gi + α5 Di + ui ) (11.13)

That is, the probability that the car will be chosen will be greater than

that of the bus being chosen if the utility from going by car is greater.

7 We are assuming that the choices are exhaustive and mutually exclusive -- that is, one

and only one method of transport can be chosen!
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Equation (11.13) can be rewritten as

(β1 − α1) + (β2 − α2) Ii + (β3 − α3) Hi

+ (β4 − α4) Gi + (β5 − α5) Di > (ui − vi ) (11.14)

If it is assumed that ui and vi independently follow a particular

distribution,8 then the difference between them will follow a logistic dis-

tribution. Thus we can write

P(Ci/Bi ) = 1

1 + e−zi
(11.15)

where zi is the function on the left hand side of (11.14), i.e. (β1 − α1) +
(β2 − α2) Ii + · · · and travel by bus becomes the reference category.

P(Ci/Bi ) denotes the probability that individual i would choose to travel

by car rather than by bus.

Equation (11.15) implies that the probability of the car being chosen in

preference to the bus depends upon the logistic function of the differences

in the parameters describing the relationship between the utilities from

travelling by each mode of transport. Of course, we cannot recover both

β2 and α2 for example, but only the difference between them (call this

γ2 = β2 − α2). These parameters measure the impact of marginal changes

in the explanatory variables on the probability of travelling by car relative

to the probability of travelling by bus. Note that a unit increase in Ii will

lead to a γ2 F (Ii ) increase in the probability and not a γ2 increase -- see

equations (11.5) and (11.6) above. For this trinomial problem, there would

need to be another equation -- for example, based on the difference in

utilities between travelling by bike and by bus. These two equations would

be estimated simultaneously using maximum likelihood.

For the multinomial logit model, the error terms in the equations (ui

and vi in the example above) must be assumed to be independent. How-

ever, this creates a problem whenever two or more of the choices are very

similar to one another. This problem is known as the ‘independence of ir-

relevant alternatives’. To illustrate how this works, Kennedy (2003, p. 270)

uses an example where another choice to travel by bus is introduced and

the only thing that differs is the colour of the bus. Suppose that the origi-

nal probabilities for the car, bus and bicycle were 0.4, 0.3 and 0.3. If a new

green bus were introduced in addition to the existing red bus, we would

expect that the overall probability of travelling by bus should stay at 0.3

and that bus passengers should split between the two (say, with half using

each coloured bus). This result arises since the new colour of the bus is

8 In fact, they must follow independent log Weibull distributions.
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irrelevant to those who have already chosen to travel by car or bicycle.

Unfortunately, the logit model will not be able to capture this and will

seek to preserve the relative probabilities of the old choices (which could

be expressed as 4
10

, 3
10

and 3
10

respectively). These will become 4
13

, 3
13

, 3
13

and
3

13
for car, green bus, red bus and bicycle respectively -- a long way from

what intuition would lead us to expect.

Fortunately, the multinomial probit model, which is the multiple choice

generalisation of the probit model discussed in section 11.5 above, can

handle this. The multinomial probit model would be set up in exactly the

same fashion as the multinomial logit model, except that the cumulative

normal distribution is used for (ui − vi ) instead of a cumulative logistic

distribution. This is based on an assumption that ui and vi are multivariate

normally distributed but unlike the logit model, they can be correlated.

A positive correlation between the error terms can be employed to reflect

a similarity in the characteristics of two or more choices. However, such

a correlation between the error terms makes estimation of the multi-

nomial probit model using maximum likelihood difficult because multi-

ple integrals must be evaluated. Kennedy (2003, p. 271) suggests that this

has resulted in continued use of the multinomial logit approach despite

the independence of irrelevant alternatives problem.

11.10 The pecking order hypothesis revisited – the choice between
financing methods

In section 11.4, a logit model was used to evaluate whether there was

empirical support for the pecking order hypothesis where the hypothesis

boiled down to a consideration of the probability that a firm would seek

external financing or not. But suppose that we wish to examine not only

whether a firm decides to issue external funds but also which method of

funding it chooses when there are a number of alternatives available. As

discussed above, the pecking order hypothesis suggests that the least costly

methods, which, everything else equal, will arise where there is least in-

formation asymmetry, will be used first, and the method used will also de-

pend on the riskiness of the firm. Returning to Helwege and Liang’s study,

they argue that if the pecking order is followed, low-risk firms will issue

public debt first, while moderately risky firms will issue private debt and

the most risky companies will issue equity. Since there is more than one

possible choice, this is a multiple choice problem and consequently, a bi-

nary logit model is inappropriate and instead, a multinomial logit is used.

There are three possible choices here: bond issue, equity issue and private
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debt issue. As is always the case for multinomial models, we estimate

equations for one fewer than the number of possibilities, and so equa-

tions are estimated for equities and bonds, but not for private debt. This

choice then becomes the reference point, so that the coefficients measure

the probability of issuing equity or bonds rather than private debt, and a

positive parameter estimate in, say, the equities equation implies that an

increase in the value of the variable leads to an increase in the probability

that the firm will choose to issue equity rather than private debt.

The set of explanatory variables is slightly different now given the dif-

ferent nature of the problem at hand. The key variable measuring risk is

now the ‘unlevered Z score’, which is Altman’s Z score constructed as a

weighted average of operating earnings before interest and taxes, sales, re-

tained earnings and working capital. All other variable names are largely

self-explanatory and so are not discussed in detail, but they are divided

into two categories -- those measuring the firm’s level of risk (unlevered

Z -score, debt, interest expense and variance of earnings) and those mea-

suring the degree of information asymmetry (R&D expenditure, venture-

backed, age, age over 50, plant property and equipment, industry growth,

non-financial equity issuance, and assets). Firms with heavy R&D expendi-

ture, those receiving venture capital financing, younger firms, firms with

less property, plant and equipment, and smaller firms are argued to suf-

fer from greater information asymmetry. The parameter estimates for the

multinomial logit are presented in table 11.2, with equity issuance as a

(0,1) dependent variable in the second column and bond issuance as

a (0,1) dependent variable in the third column.

Overall, the results paint a very mixed picture about whether the peck-

ing order hypothesis is validated or not. The positive (significant) and

negative (insignificant) estimates on the unlevered Z -score and interest

expense variables respectively suggest that firms in good financial health

(i.e. less risky firms) are more likely to issue equities or bonds rather than

private debt. Yet the positive sign of the parameter on the debt variable

is suggestive that riskier firms are more likely to issue equities or bonds;

the variance of earnings variable has the wrong sign but is not statisti-

cally significant. Almost all of the asymmetric information variables have

statistically insignificant parameters. The only exceptions are that firms

having venture backing are more likely to seek capital market financing

of either type, as are non-financial firms. Finally, larger firms are more

likely to issue bonds (but not equity). Thus the authors conclude that the

results ‘do not indicate that firms strongly avoid external financing as

the pecking order predicts’ and ‘equity is not the least desirable source

of financing since it appears to dominate bank loans’ (Helwege and Liang

(1996), p. 458).
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Table 11.2 Multinomial logit estimation of the type of external financing

Variable Equity equation Bonds equation

Intercept −4.67 −4.68

(−6.17) (−5.48)

Unlevered Z -score 0.14 0.26

(1.84) (2.86)

Debt 1.72 3.28

(1.60) (2.88)

Interest expense −9.41 −4.54

(−0.93) (−0.42)

Variance of earnings −0.04 −0.14

(−0.55) (−1.56)

R&D 0.61 0.89

(1.28) (1.59)

Venture-backed 0.70 0.86

(2.32) (2.50)

Age −0.01 −0.03

(−1.10) (−1.85)

Age over 50 1.58 1.93

(1.44) (1.70)

Plant, property and equipment (0.62) 0.34

(0.94) (0.50)

Industry growth 0.005 0.003

(1.14) (0.70)

Non-financial equity issuance 0.008 0.005

(3.89) (2.65)

Assets −0.001 0.002

(−0.59) (4.11)

Notes: t-ratios in parentheses; only figures for all years in the sample are

presented.

Source: Helwege and Liang (1996). Reprinted with the permission of Elsevier

Science.

11.11 Ordered response linear dependent variables models

Some limited dependent variables can be assigned numerical values that

have a natural ordering. The most common example in finance is that of

credit ratings, as discussed previously, but a further application is to mod-

elling a security’s bid--ask spread (see, for example, ap Gwilym et al., 1998).

In such cases, it would not be appropriate to use multinomial logit or pro-

bit since these techniques cannot take into account any ordering in the
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dependent variables. Notice that ordinal variables are still distinct from

the usual type of data that were employed in the early chapters in this

book, such as stock returns, GDP, interest rates, etc. These are examples

of cardinal numbers, since additional information can be inferred from

their actual values relative to one another. To illustrate, an increase in

house prices of 20% represents twice as much growth as a 10% rise. The

same is not true of ordinal numbers, where (returning to the credit rat-

ings example) a rating of AAA, assigned a numerical score of 16, is not

‘twice as good’ as a rating of Baa2/BBB, assigned a numerical score of 8.

Similarly, for ordinal data, the difference between a score of, say, 15 and

of 16 cannot be assumed to be equivalent to the difference between the

scores of 8 and 9. All we can say is that as the score increases, there is

a monotonic increase in the credit quality. Since only the ordering can

be interpreted with such data and not the actual numerical values, OLS

cannot be employed and a technique based on ML is used instead. The

models used are generalisations of logit and probit, known as ordered logit

and ordered probit.

Using the credit rating example again, the model is set up so that a

particular bond falls in the AA+ category (using Standard and Poor’s ter-

minology) if its unobserved (latent) creditworthiness falls within a certain

range that is too low to classify it as AAA and too high to classify it as

AA. The boundary values between each rating are then estimated along

with the model parameters.

11.12 Are unsolicited credit ratings biased downwards?
An ordered probit analysis

Modelling the determinants of credit ratings is one of the most important

uses of ordered probit and logit models in finance. The main credit ratings

agencies construct what may be termed solicited ratings, which are those

where the issuer of the debt contacts the agency and pays them a fee for

producing the rating. Many firms globally do not seek a rating (because, for

example, the firm believes that the ratings agencies are not well placed to

evaluate the riskiness of debt in their country or because they do not plan

to issue any debt or because they believe that they would be awarded a low

rating), but the agency may produce a rating anyway. Such ‘unwarranted

and unwelcome’ ratings are known as unsolicited ratings. All of the major

ratings agencies produce unsolicited ratings as well as solicited ones, and

they argue that there is a market demand for this information even if the

issuer would prefer not to be rated.
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Companies in receipt of unsolicited ratings argue that these are biased

downwards relative to solicited ratings and that they cannot be justified

without the level of detail of information that can be provided only by the

rated company itself. A study by Poon (2003) seeks to test the conjecture

that unsolicited ratings are biased after controlling for the rated com-

pany’s characteristics that pertain to its risk.

The data employed comprise a pooled sample of all companies that ap-

peared on the annual ‘issuer list’ of S&P during the years 1998--2000. This

list contains both solicited and unsolicited ratings covering 295 firms over

15 countries and totalling 595 observations. In a preliminary exploratory

analysis of the data, Poon finds that around half of the sample ratings were

unsolicited, and indeed the unsolicited ratings in the sample are on aver-

age significantly lower than the solicited ratings.9 As expected, the finan-

cial characteristics of the firms with unsolicited ratings are significantly

weaker than those for firms that requested ratings. The core methodology

employs an ordered probit model with explanatory variables comprising

firm characteristics and a dummy variable for whether the firm’s credit

rating was solicited or not

R∗
i = Xiβ + εi (11.16)

with

Ri =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if R∗
i ≤ μ0

2 if μ0 < R∗
i ≤ μ1

3 if μ1 < R∗
i ≤ μ2

4 if μ2 < R∗
i ≤ μ3

5 if R∗
i > μ3

where Ri are the observed ratings scores that are given numerical values

as follows: AA or above = 6, A = 5, BBB = 4, BB = 3, B = 2 and CCC or

below = 1; R∗
i is the unobservable ‘true rating’ (or ‘an unobserved con-

tinuous variable representing S&P’s assessment of the creditworthiness of

issuer i ’), Xi is a vector of variables that explains the variation in ratings;

β is a vector of coefficients; μi are the threshold parameters to be esti-

mated along with β; and εi is a disturbance term that is assumed normally

distributed.

The explanatory variables attempt to capture the creditworthiness us-

ing publicly available information. Two specifications are estimated: the

first includes the variables listed below, while the second additionally

9 We are assuming here that the broader credit rating categories, of which there are 6,

(AAA, AA, A, BBB, BB, B) are being used rather than the finer categories used by Cantor

and Packer (1996).
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incorporates an interaction of the main financial variables with a dummy

variable for whether the firm’s rating was solicited (SOL) and separately

with a dummy for whether the firm is based in Japan.10 The financial

variables are ICOV -- interest coverage (i.e. earnings interest), ROA -- re-

turn on assets, DTC -- total debt to capital, and SDTD -- short-term debt

to total debt. Three variables -- SOVAA, SOVA and SOVBBB -- are dummy

variables that capture the debt issuer’s sovereign credit rating.11 Table 11.3

presents the results from the ordered probit estimation.

The key finding is that the SOL variable is positive and statistically signif-

icant in Model 1 (and it is positive but insignificant in Model 2), indicating

that even after accounting for the financial characteristics of the firms,

unsolicited firms receive ratings on average 0.359 units lower than an

otherwise identical firm that had requested a rating. The parameter es-

timate for the interaction term between the solicitation and Japanese

dummies (SOL∗JP) is positive and significant in both specifications, indi-

cating strong evidence that Japanese firms soliciting ratings receive higher

scores. On average, firms with stronger financial characteristics (higher in-

terest coverage, higher return on assets, lower debt to total capital, or a

lower ratio of short-term debt to long-term debt) have higher ratings.

A major flaw that potentially exists within the above analysis is the

self-selection bias or sample selection bias that may have arisen if firms that

would have received lower credit ratings (because they have weak finan-

cials) elect not to solicit a rating. If the probit equation for the deter-

minants of ratings is estimated ignoring this potential problem and it

exists, the coefficients will be inconsistent. To get around this problem

and to control for the sample selection bias, Heckman (1979) proposed a

two-step procedure that in this case would involve first estimating a 0--1

probit model for whether the firm chooses to solicit a rating and second

estimating the ordered probit model for the determinants of the rating.

The first-stage probit model is

Y ∗
i = Ziγ + ξi (11.17)

where Yi = 1 if the firm has solicited a rating and 0 otherwise, and Y ∗
i

denotes the latent propensity of issuer i to solicit a rating, Zi are the

10 The Japanese dummy is used since a disproportionate number of firms in the sample

are from this country.
11 So SOVAA = 1 if the sovereign (i.e. the government of that country) has debt with a

rating of AA or above and 0 otherwise; SOVA has a value 1 if the sovereign has a rating

of A; and SOVBBB has a value 1 if the sovereign has a rating of BBB; any firm in a

country with a sovereign whose rating is below BBB is assigned a zero value for all

three sovereign rating dummies.
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Table 11.3 Ordered probit model results for the determinants of credit ratings

Model 1 Model 2
Explanatory

variables Coefficient Test statistic Coefficient Test statistic

Intercept 2.324 8.960∗∗∗ 1.492 3.155∗∗∗

SOL 0.359 2.105∗∗ 0.391 0.647

JP −0.548 −2.949∗∗∗ 1.296 2.441∗∗

JP∗SOL 1.614 7.027∗∗∗ 1.487 5.183∗∗∗

SOVAA 2.135 8.768∗∗∗ 2.470 8.975∗∗∗

SOVA 0.554 2.552∗∗ 0.925 3.968∗∗∗

SOVBBB −0.416 −1.480 −0.181 −0.601

ICOV 0.023 3.466∗∗∗ −0.005 −0.172

ROA 0.104 10.306∗∗∗ 0.194 2.503∗∗

DTC −1.393 −5.736∗∗∗ −0.522 −1.130

SDTD −1.212 −5.228∗∗∗ 0.111 0.171

SOL∗ICOV -- -- 0.005 0.163

SOL∗ROA -- -- −0.116 −1.476

SOL∗DTC -- -- 0.756 1.136

SOL∗SDTD -- -- −0.887 −1.290

JP∗ICOV -- -- 0.009 0.275

JP∗ROA -- -- 0.183 2.200∗∗

JP∗DTC -- -- −1.865 −3.214∗∗∗

JP∗SDTD -- -- −2.443 −3.437∗∗∗

AA or above >5.095 >5.578

A >3.788 and ≤5.095 25.278∗∗∗ >4.147 and ≤5.578 23.294∗∗∗

BBB >2.550 and ≤3.788 19.671∗∗∗ >2.803 and ≤4.147 19.204∗∗∗

BB >1.287 and ≤2.550 14.342∗∗∗ >1.432 and ≤2.803 14.324∗∗∗

B >0 and ≤1.287 7.927∗∗∗ >0 and ≤1.432 7.910∗∗∗

CCC or below ≤0 ≤0

Note: ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels respectively.

Source: Poon (2003). Reprinted with the permission of Elsevier Science.

variables that explain the choice to be rated or not, and γ are the param-

eters to be estimated. When this equation has been estimated, the rating

Ri as defined above in equation (11.16) will be observed only if Yi = 1.

The error terms from the two equations, εi and ξi , follow a bivariate stan-

dard normal distribution with correlation ρεξ . Table 11.4 shows the results

from the two-step estimation procedure, with the estimates from the bi-

nary probit model for the decision concerning whether to solicit a rating

in panel A and the determinants of ratings for rated firms in panel B.

A positive parameter value in panel A indicates that higher values of

the associated variable increases the probability that a firm will elect to
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Table 11.4 Two-step ordered probit model allowing for selectivity bias in the
determinants of credit ratings

Explanatory variable Coefficient Test statistic

Panel A: Decision to be rated

Intercept 1.624 3.935∗∗∗

JP −0.776 −4.951∗∗∗

SOVAA −0.959 −2.706∗∗∗

SOVA −0.614 −1.794∗

SOVBBB −1.130 −2.899∗∗∗

ICOV −0.005 −0.922

ROA 0.051 6.537∗∗∗

DTC 0.272 1.019

SDTD −1.651 −5.320∗∗∗

Panel B: Rating determinant equation

Intercept 1.368 2.890∗∗∗

JP 2.456 3.141∗∗∗

SOVAA 2.315 6.121∗∗∗

SOVA 0.875 2.755∗∗∗

SOVBBB 0.306 0.768

ICOV 0.002 0.118

ROA 0.038 2.408∗∗

DTC −0.330 −0.512

SDTD 0.105 0.303

JP∗ICOV 0.038 1.129

JP∗ROA 0.188 2.104∗∗

JP∗DTC −0.808 −0.924

JP∗SDTD −2.823 −2.430∗∗

Estimated correlation −0.836 −5.723∗∗∗

AA or above >4.275

A >2.841 and ≤4.275 8.235∗∗∗

BBB >1.748 and ≤2.841 9.164∗∗∗

BB >0.704 and ≤1.748 6.788∗∗∗

B >0 and ≤0.704 3.316∗∗∗

CCC or below ≤0

Note: ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels respectively.

Source: Poon (2003). Reprinted with the permission of Elsevier Science.

be rated. Of the four financial variables, only the return on assets and the

short-term debt as a proportion of total debt have correctly signed and

significant (positive and negative respectively) impacts on the decision to

be rated. The parameters on the sovereign credit rating dummy variables

(SOVAA, SOVA and SOVB) are all significant and negative in sign, indicating
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that any debt issuer in a country with a high sovereign rating is less likely

to solicit its own rating from S&P, other things equal.

These sovereign rating dummy variables have the opposite sign in the

ratings determinant equation (panel B) as expected, so that firms in coun-

tries where government debt is highly rated are themselves more likely

to receive a higher rating. Of the four financial variables, only ROA has

a significant (and positive) effect on the rating awarded. The dummy for

Japanese firms is also positive and significant, and so are three of the

four financial variables when interacted with the Japan dummy, indicat-

ing that S&P appears to attach different weights to the financial variables

when assigning ratings to Japanese firms compared with comparable firms

in other countries.

Finally, the estimated correlation between the error terms in the deci-

sion to be rated equation and the ratings determinant equation, ρεξ , is

significant and negative (−0.836), indicating that the results in table 11.3

above would have been subject to self-selection bias and hence the results

of the two-stage model are to be preferred. The only disadvantage of this

approach, however, is that by construction it cannot answer the core ques-

tion of whether unsolicited ratings are on average lower after allowing for

the debt issuer’s financial characteristics, because only firms with solicited

ratings are included in the sample at the second stage!

11.13 Censored and truncated dependent variables

Censored or truncated variables occur when the range of values observable

for the dependent variables is limited for some reason. Unlike the types of

limited dependent variables examined so far in this chapter, censored or

truncated variables may not necessarily be dummies. A standard example

is that of charitable donations by individuals. It is likely that some people

would actually prefer to make negative donations (that is, to receive from

the charity rather than to donate to it), but since this is not possible,

there will be many observations at exactly zero. So suppose, for example,

that we wished to model the relationship between donations to charity

and people’s annual income, in pounds. The situation we might face is

illustrated in figure 11.3.

Given the observed data, with many observations on the dependent

variable stuck at zero, OLS would yield biased and inconsistent parameter

estimates. An obvious but flawed way to get around this would be just

to remove all of the zero observations altogether, since we do not know

whether they should be truly zero or negative. However, as well as being
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Figure 11.3

Modelling charitable

donations as a

function of income

inefficient (since information would be discarded), this would still yield

biased and inconsistent estimates. This arises because the error term, ui ,

in such a regression would not have an expected value of zero, and it

would also be correlated with the explanatory variable(s), violating the

assumption that Cov (ui , xki ) = 0 ∀k.

The key differences between censored and truncated data are high-

lighted in box 11.2. For both censored and truncated data, OLS will not

be appropriate, and an approach based on maximum likelihood must be

used, although the model in each case would be slightly different. In

both cases, we can work out the marginal effects given the estimated pa-

rameters, but these are now more complex than in the logit or probit

cases.

11.13.1 Censored dependent variable models

The approach usually used to estimate models with censored dependent

variables is known as tobit analysis, named after Tobin (1958). To illustrate,

suppose that we wanted to model the demand for privatisation IPO shares,

as discussed above, as a function of income (x2i ), age (x3i ), education (x4i )

and region of residence (x5i ). The model would be

y∗
i = β1 + β2x2i + β3x3i + β4x4i + β5x5i + ui

yi = y∗
i for y∗

i < 250 (11.18)

yi = 250 for y∗
i ≥ 250
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Box 11.2 The differences between censored and truncated dependent variables

Although at first sight the two words might appear interchangeable, when the terms are

used in econometrics, censored and truncated data are different.

● Censored data occur when the dependent variable has been ‘censored’ at a certain

point so that values above (or below) this cannot be observed. Even though the

dependent variable is censored, the corresponding values of the independent

variables are still observable.

● As an example, suppose that a privatisation IPO is heavily oversubscribed, and you

were trying to model the demand for the shares using household income, age,

education and region of residence as explanatory variables. The number of shares

allocated to each investor may have been capped at, say, 250, resulting in a

truncated distribution.

● In this example, even though we are likely to have many share allocations at 250

and none above this figure, all of the observations on the independent variables are

present and hence the dependent variable is censored, not truncated.

● A truncated dependent variable, meanwhile, occurs when the observations for both

the dependent and the independent variables are missing when the dependent

variable is above (or below) a certain threshold. Thus the key difference from

censored data is that we cannot observe the xi s either, and so some observations

are completely cut out or truncated from the sample. For example, suppose that a

bank were interested in determining the factors (such as age, occupation and

income) that affected a customer’s decision as to whether to undertake a

transaction in a branch or online. Suppose also that the bank tried to achieve this by

encouraging clients to fill in an online questionnaire when they log on. There would

be no data at all for those who opted to transact in person since they probably

would not have even logged on to the bank’s web-based system and so would not

have the opportunity to complete the questionnaire. Thus, dealing with truncated

data is really a sample selection problem because the sample of data that can be

observed is not representative of the population of interest – the sample is biased,

very likely resulting in biased and inconsistent parameter estimates. This is a

common problem, which will result whenever data for buyers or users only can be

observed while data for non-buyers or non-users cannot. Of course, it is possible,

although unlikely, that the population of interest is focused only on those who use

the internet for banking transactions, in which case there would be no problem.

y∗
i represents the true demand for shares (i.e. the number of shares re-

quested) and this will be observable only for demand less than 250. It

is important to note in this model that β2, β3, etc. represent the impact

on the number of shares demanded (of a unit change in x2i , x3i , etc.)

and not the impact on the actual number of shares that will be bought

(allocated).

An interesting financial application of the tobit approach is due to

Haushalter (2000), who employs it to model the determinants of the ex-

tent of hedging by oil and gas producers using futures or options over the
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1992--1994 period. The dependent variable used in the regression models,

the proportion of production hedged, is clearly censored because around

half of all of the observations are exactly zero (i.e. the firm does not hedge

at all).12 The censoring of the proportion of production hedged may arise

because of high fixed costs that prevent many firms from being able to

hedge even if they wished to. Moreover, if companies expect the price of

oil or gas to rise in the future, they may wish to increase rather than

reduce their exposure to price changes (i.e. ‘negative hedging’), but this

would not be observable given the way that the data are constructed in

the study.

The main results from the study are that the proportion of exposure

hedged is negatively related to creditworthiness, positively related to in-

debtedness, to the firm’s marginal tax rate, and to the location of the

firm’s production facility. The extent of hedging is not, however, affected

by the size of the firm as measured by its total assets.

Before moving on, two important limitations of tobit modelling should

be noted. First, such models are much more seriously affected by non-

normality and heteroscedasticity than are standard regression models (see

Amemiya, 1984), and biased and inconsistent estimation will result. Sec-

ond, as Kennedy (2003, p. 283) argues, the tobit model requires it to be

plausible that the dependent variable can have values close to the limit.

There is no problem with the privatisation IPO example discussed above

since the demand could be for 249 shares. However, it would not be appro-

priate to use the tobit model in situations where this is not the case, such

as the number of shares issued by each firm in a particular month. For

most companies, this figure will be exactly zero, but for those where it is

not, the number will be much higher and thus it would not be feasible to

issue, say, 1 or 3 or 15 shares. In this case, an alternative approach should

be used.

11.13.2 Truncated dependent variable models

For truncated data, a more general model is employed that contains two

equations -- one for whether a particular data point will fall into the

observed or constrained categories and another for modelling the result-

ing variable. The second equation is equivalent to the tobit approach. This

two-equation methodology allows for a different set of factors to affect the

sample selection (for example, the decision to set up internet access to a

12 Note that this is an example of a censored rather than a truncated dependent variable

because the values of all of the explanatory variables are still available from the annual

accounts even if a firm does not hedge at all.
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bank account) from the equation to be estimated (for example, to model

the factors that affect whether a particular transaction will be conducted

online or in a branch). If it is thought that the two sets of factors will

be the same, then a single equation can be used and the tobit approach

is sufficient. In many cases, however, the researcher may believe that the

variables in the sample selection and estimation equations should be dif-

ferent. Thus the equations could be

a∗
i = α1 + α2z2i + α3z3i + · · · + αm zmi + εi (11.19)

y∗
i = β1 + β2x2i + β3x3i + · · · + βk xki + ui (11.20)

where yi = y∗
i for a∗

i > 0 and, yi is unobserved for a∗
i ≤ 0. a∗

i denotes the

relative ‘advantage’ of being in the observed sample relative to the unob-

served sample.

The first equation determines whether the particular data point i will

be observed or not, by regressing a proxy for the latent (unobserved) vari-

able a∗
i on a set of factors, zi . The second equation is similar to the tobit

model. Ideally, the two equations (11.19) and (11.20) will be fitted jointly

by maximum likelihood. This is usually based on the assumption that the

error terms, εi and ui , are multivariate normally distributed and allowing

for any possible correlations between them. However, while joint estima-

tion of the equations is more efficient, it is computationally more complex

and hence a two-stage procedure popularised by Heckman (1976) is often

used. The Heckman procedure allows for possible correlations between εi

and ui while estimating the equations separately in a clever way -- see

Maddala (1983).

11.14 Limited dependent variable models in EViews

Estimating limited dependent variable models in EViews is very simple.

The example that will be considered here concerns whether it is possible

to determine the factors that affect the likelihood that a student will fail

his/her MSc. The data comprise a sample from the actual records of failure

rates for five years of MSc students in finance at the ICMA Centre, Uni-

versity of Reading contained in the spreadsheet ‘MSc fail.xls’. While the

values in the spreadsheet are all genuine, only a sample of 100 students

is included for each of five years who completed (or not as the case may

be!) their degrees in the years 2003 to 2007 inclusive. Therefore, the data

should not be used to infer actual failure rates on these programmes. The

idea for this example is taken from a study by Heslop and Varotto (2007)
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which seeks to propose an approach to preventing systematic biases in

admissions decisions.13

The objective here is to analyse the factors that affect the probability

of failure of the MSc. The dependent variable (‘fail’) is binary and takes

the value 1 if that particular candidate failed at first attempt in terms of

his/her overall grade and 0 elsewhere. Therefore, a model that is suitable

for limited dependent variables is required, such as a logit or probit.

The other information in the spreadsheet that will be used includes the

age of the student, a dummy variable taking the value 1 if the student

is female, a dummy variable taking the value 1 if the student has work

experience, a dummy variable taking the value 1 if the student’s first

language is English, a country code variable that takes values from 1

to 10,14 a dummy variable that takes the value 1 if the student already

has a postgraduate degree, a dummy variable that takes the value 1 if

the student achieved an A-grade at the undergraduate level (i.e. a first-

class honours degree or equivalent), and a dummy variable that takes

the value 1 if the undergraduate grade was less than a B-grade (i.e. the

student received the equivalent of a lower second-class degree). The B-

grade (or upper second-class degree) is the omitted dummy variable and

this will then become the reference point against which the other grades

are compared -- see chapter 9. The reason why these variables ought to be

useful predictors of the probability of failure should be fairly obvious and

is therefore not discussed. To allow for differences in examination rules

and in average student quality across the five-year period, year dummies

for 2004, 2005, 2006 and 2007 are created and thus the year 2003 dummy

will be omitted from the regression model.

First, open a new workfile that can accept ‘unstructured/undated’ se-

ries of length 500 observations and then import the 13 variables. The data

are organised by observation and start in cell A2. The country code vari-

able will require further processing before it can be used but the others

are already in the appropriate format, so to begin, suppose that we esti-

mate a linear probability model (LPM) of fail on a constant, age, English,

female and work experience. This would be achieved simply by running a

linear regression in the usual way. While this model has a number of very

undesirable features as discussed above, it would nonetheless provide a

13 Note that since this book uses only a sub-set of their sample and variables in the

analysis, the results presented below may differ from theirs. Since the number of fails

is relatively small, I deliberately retained as many fail observations in the sample as

possible, which will bias the estimated failure rate upwards relative to the true rate.
14 The exact identities of the countries involved are not revealed in order to avoid any

embarrassment for students from countries with high relative failure rates, except that

Country 8 is the UK!
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useful benchmark with which to compare the more appropriate models

estimated below.

Next, estimate a probit model and a logit model using the same de-

pendent and independent variables as above. Choose Quick and then

Equation Estimation. Then type the dependent variable followed by the

explanatory variables

FAIL C AGE ENGLISH FEMALE WORK EXPERIENCE AGRADE BELOWB-

GRADE PG DEGREE YEAR2004 YEAR2005 YEAR2006 YEAR2007

and then in the second window, marked ‘Estimation settings’, select

BINARY – Binary Choice (Logit, Probit, Extreme Value) with the whole

sample 1 500. The screen will appear as in screenshot 11.1.

Screenshot 11.1

‘Equation

Estimation’ window

for limited

dependent variables

You can then choose either the probit or logit approach. Note that

EViews also provides support for truncated and censored variable mod-

els and for multiple choice models, and these can be selected from the

drop-down menu by choosing the appropriate method under ‘estimation

settings’. Suppose that here we wish to choose a probit model (the de-

fault). Click on the Options tab at the top of the window and this en-

ables you to select Robust Covariances and Huber/White. This option will
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ensure that the standard error estimates are robust to heteroscedasticity

(see screenshot 11.2).

There are other options to change the optimisation method and con-

vergence criterion, as discussed in chapter 8. We do not need to make

any modifications from the default here, so click OK and the results will

appear. Freeze and name this table and then, for completeness, estimate

a logit model. The results that you should obtain for the probit model

are as follows:

Dependent Variable: FAIL

Method: ML -- Binary Probit (Quadratic hill climbing)

Date: 08/04/07 Time: 19:10

Sample: 1 500

Included observations: 500

Convergence achieved after 5 iterations

QML (Huber/White) standard errors & covariance

Coefficient Std. Error z-Statistic Prob.

C −1.287210 0.609503 −2.111901 0.0347

AGE 0.005677 0.022559 0.251648 0.8013

ENGLISH −0.093792 0.156226 −0.600362 0.5483

FEMALE −0.194107 0.186201 −1.042460 0.2972

WORK EXPERIENCE −0.318247 0.151333 −2.102956 0.0355

AGRADE −0.538814 0.231148 −2.331038 0.0198

BELOWBGRADE 0.341803 0.219301 1.558601 0.1191

PG DEGREE 0.132957 0.225925 0.588502 0.5562

YEAR2004 0.349663 0.241450 1.448181 0.1476

YEAR2005 −0.108330 0.268527 −0.403422 0.6866

YEAR2006 0.673612 0.238536 2.823944 0.0047

YEAR2007 0.433785 0.24793 1.749630 0.0802

McFadden R-squared 0.088870 Mean dependent var 0.134000

S.D. dependent var 0.340993 S.E. of regression 0.333221

Akaike info criterion 0.765825 Sum squared resid 54.18582

Schwarz criterion 0.866976 Log likelihood −179.4563

Hannan-Quinn criter. 0.805517 Restr. log likelihood −196.9602

LR statistic 35.00773 Avg. log likelihood −0.358913

Prob(LR statistic) 0.000247

Obs with Dep=0 433 Total obs 500

Obs with Dep=1 67

As can be seen, the pseudo-R2 values are quite small at just below 9%,

although this is often the case for limited dependent variable models.

Only the work experience and A-grade variables and two of the year
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Screenshot 11.2

‘Equation

Estimation’ options

for limited

dependent variables

dummies have parameters that are statistically significant, and the Below

B-grade dummy is almost significant at the 10% level in the probit speci-

fication (although less so in the logit). As the final two rows of the tables

note, the proportion of fails in this sample is quite small, which makes

it harder to fit a good model than if the proportions of passes and fails

had been more evenly balanced. Various goodness of fit statistics can be

examined by (from the logit or probit estimation output window) click-

ing View/Goodness-of-fit Test. . . . A further check on model adequacy is

to produce a set of ‘in-sample forecasts’ -- in other words, to construct

the fitted values. To do this, click on the Forecast tab after estimating

the probit model and then uncheck the forecast evaluation box in the

‘Output’ window as the evaluation is not relevant in this case. All other

options can be left as the default settings and then the plot of the fitted

values shown on figure 11.4 results.

The unconditional probability of failure for the sample of students we

have is only 13.4% (i.e. only 67 out of 500 failed), so an observation should

be classified as correctly fitted if either yi = 1 and ŷi > 0.134 or yi = 0

and ŷi < 0.134. The easiest way to evaluate the model in EViews is to click

View/Actual,Fitted,Residual Table from the logit or probit output screen.
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Figure 11.4

Fitted values from

the failure probit

regression

Then from this information we can identify that of the 67 students that

failed, the model correctly predicted 46 of them to fail (and it also in-

correctly predicted that 21 would pass). Of the 433 students who passed,

the model incorrectly predicted 155 to fail and correctly predicted the

remaining 278 to pass. Eviews can construct an ‘expectation-prediction

classification table’ automatically by clicking on View/Expectation-

Prediction Table and then entering the unconditional probability of fail-

ure as the cutoff when prompted (0.134). Overall, we could consider this

a reasonable set of (in sample) predictions.

It is important to note that, as discussed above, we cannot interpret the

parameter estimates in the usual way. In order to be able to do this,

we need to calculate the marginal effects. Unfortunately, EViews does

not do this automatically, so the procedure is probably best achieved

in a spreadsheet using the approach described in box 11.1 for the logit

model and analogously for the probit model. If we did this, we would

end up with the statistics displayed in table 11.5, which are interest-

ingly quite similar in value to those obtained from the linear probability

model.

This table presents us with values that can be intuitively interpreted in

terms of how the variables affect the probability of failure. For example,

an age parameter value of 0.0012 implies that an increase in the age of

the student by 1 year would increase the probability of failure by 0.12%,

holding everything else equal, while a female student is around 2.5--3%
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Table 11.5 Marginal effects for logit and probit models for
probability of MSc failure

Parameter logit probit

C −0.2433 −0.1646

AGE 0.0012 0.0007

ENGLISH −0.0178 −0.0120

FEMALE −0.0360 −0.0248

WORK EXPERIENCE −0.0613 −0.0407

AGRADE −0.1170 −0.0689

BELOWBGRADE 0.0606 0.0437

PG DEGREE 0.0229 0.0170

YEAR2004 0.0704 0.0447

YEAR2005 −0.0198 −0.0139

YEAR2006 0.1344 0.0862

YEAR2007 0.0917 0.0555

(depending on the model) less likely than a male student with otherwise

identical characteristics to fail. Having an A-grade (first class) in the bach-

elors degree makes a candidate either 6.89% or 11.7% (depending on the

model) less likely to fail than an otherwise identical student with a B-

grade (upper second-class degree). Finally, since the year 2003 dummy has

been omitted from the equations, this becomes the reference point. So

students were more likely in 2004, 2006 and 2007, but less likely in 2005,

to fail the MSc than in 2003.

Key concepts
The key terms to be able to define and explain from this chapter are

● limited dependent variables ● logit

● probit ● censored variables

● truncated variables ● ordered response

● multinomial logit ● marginal effects

● pseudo-R2

Review questions

1. Explain why the linear probability model is inadequate as a specification

for limited dependent variable estimation.

2. Compare and contrast the probit and logit specifications for binary

choice variables.
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3. (a) Describe the intuition behind the maximum likelihood estimation

technique used for limited dependent variable models.

(b) Why do we need to exercise caution when interpreting the

coefficients of a probit or logit model?

(c) How can we measure whether a logit model that we have estimated

fits the data well or not?

(d) What is the difference, in terms of the model setup, in binary choice

versus multiple choice problems?

4. (a) Explain the difference between a censored variable and a truncated

variable as the terms are used in econometrics.

(b) Give examples from finance (other than those already described in

this book) of situations where you might meet each of the types of

variable described in part (a) of this question.

(c) With reference to your examples in part (b), how would you go about

specifying such models and estimating them?

5. Re-open the ‘fail xls’ spreadsheet for modelling the probability of MSc

failure and do the following:

(a) Take the country code series and construct separate dummy

variables for each country. Re-run the probit and logit regression

above with all of the other variables plus the country dummy

variables. Set up the regression so that the UK becomes the

reference point against which the effect on failure rate in other

countries is measured. Is there evidence that any countries have

significantly higher or lower probabilities of failure than the UK,

holding all other factors in the model constant? In the case of the

logit model, use the approach given in box 11.1 to evaluate the

differences in failure rates between the UK and each other country.

(b) Suppose that a fellow researcher suggests that there may be a

non-linear relationship between the probability of failure and the age

of the student. Estimate a probit model with all of the same

variables as above plus an additional one to test this. Is there

indeed any evidence of such a nonlinear relationship?

Appendix: The maximum likelihood estimator for logit and probit models

Recall that under the logit formulation, the estimate of the probability

that yi = 1 will be given from equation (11.4), which was

Pi = 1

1 + e−(β1
+β2x2i +...+βk xki +ui )

(11A.1)
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Set the error term, ui , to its expected value for simplicity and again, let

zi = β1 + β2x2i + · · · + βk xki , so that we have

Pi = 1

1 + e−zi
(11A.2)

We will also need the probability that yi �= 1 or equivalently the proba-

bility that yi = 0. This will be given by 1 minus the probability in (11A.2).15

Given that we can have actual zeros and ones only for yi rather than prob-

abilities, the likelihood function for each observation yi will be

Li =
(

1

1 + e−zi

)yi

×
(

1

1 + ezi

)(1−yi )

(11A.3)

The likelihood function that we need will be based on the joint

probability for all N observations rather than an individual obser-

vation i . Assuming that each observation on yi is independent, the

joint likelihood will be the product of all N marginal likelihoods. Let

L (θ |x2i , x3i , . . . , xki ; i = 1, N ) denote the likelihood function of the set of

parameters (β1, β2, . . . , βk) given the data. Then the likelihood function

will be given by

L (θ ) = N
�
i=1

(
1

1 + e−zi

)yi

×
(

1

1 + ezi

)(1−yi )

(11A.4)

As for maximum likelihood estimator of GARCH models, it is compu-

tationally much simpler to maximise an additive function of a set of

variables than a multiplicative function, so long as we can ensure that

the parameters required to achieve this will be the same. We thus take

the natural logarithm of equation (11A.4) and this log-likelihood function

is maximised

LLF = −
N∑

i=1

[yi ln(1 + e−zi ) + (1 − yi ) ln(1 + ezi )] (11A.5)

Estimation for the probit model will proceed in exactly the same way,

except that the form for the likelihood function in (11A.4) will be slightly

different. It will instead be based on the familiar normal distribution

function described in the appendix to chapter 8.

15 We can use the rule that

1 − 1

1 + e−zi
= 1 + e−zi − 1

1 + e−zi
= e−zi

1 + e−zi
= e−zi

1 + 1
ezi

= e−zi × ezi

1 + ezi
= 1

1 + ezi
.
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Simulation methods

Learning Outcomes
In this chapter, you will learn how to

● Design simulation frameworks to solve a variety of problems in
finance

● Explain the difference between pure simulation and
bootstrapping

● Describe the various techniques available for reducing Monte
Carlo sampling variability

● Implement a simulation analysis in EViews

12.1 Motivations

There are numerous situations, in finance and in econometrics, where the

researcher has essentially no idea what is going to happen! To offer one

illustration, in the context of complex financial risk measurement models

for portfolios containing large numbers of assets whose movements are

dependent on one another, it is not always clear what will be the effect of

changing circumstances. For example, following full European monetary

union (EMU) and the replacement of member currencies with the euro,

it is widely believed that European financial markets have become more

integrated, leading the correlation between movements in their equity

markets to rise. What would be the effect on the properties of a portfolio

containing equities of several European countries if correlations between

the markets rose to 99%? Clearly, it is probably not possible to be able to

answer such a question using actual historical data alone, since the event

(a correlation of 99%) has not yet happened.

546
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The practice of econometrics is made difficult by the behaviour of se-

ries and inter-relationships between them that render model assumptions

at best questionable. For example, the existence of fat tails, structural

breaks and bi-directional causality between dependent and independent

variables, etc. will make the process of parameter estimation and infer-

ence less reliable. Real data is messy, and no one really knows all of the

features that lurk inside it. Clearly, it is important for researchers to have

an idea of what the effects of such phenomena will be for model estima-

tion and inference.

By contrast, simulation is the econometrician’s chance to behave like

a real scientist, conducting experiments under controlled conditions. A

simulations experiment enables the econometrician to determine what

the effect of changing one factor or aspect of a problem will be, while

leaving all other aspects unchanged. Thus, simulations offer the possi-

bility of complete flexibility. Simulation may be defined as an approach

to modelling that seeks to mimic a functioning system as it evolves. The

simulations model will express in mathematical equations the assumed

form of operation of the system. In econometrics, simulation is partic-

ularly useful when models are very complex or sample sizes are small.

12.2 Monte Carlo simulations

Simulations studies are usually used to investigate the properties and

behaviour of various statistics of interest. The technique is often used in

econometrics when the properties of a particular estimation method are

not known. For example, it may be known from asymptotic theory how a

particular test behaves with an infinite sample size, but how will the test

behave if only 50 observations are available? Will the test still have the

desirable properties of being correctly sized and having high power? In

other words, if the null hypothesis is correct, will the test lead to rejection

of the null 5% of the time if a 5% rejection region is used? And if the null

is incorrect, will it be rejected a high proportion of the time?

Examples from econometrics of where simulation may be useful

include:

● Quantifying the simultaneous equations bias induced by treating an

endogenous variable as exogenous

● Determining the appropriate critical values for a Dickey--Fuller test

● Determining what effect heteroscedasticity has upon the size and power

of a test for autocorrelation.
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Box 12.1 Conducting a Monte Carlo simulation

(1) Generate the data according to the desired data generating process (DGP), with the

errors being drawn from some given distribution

(2) Do the regression and calculate the test statistic

(3) Save the test statistic or whatever parameter is of interest

(4) Go back to stage 1 and repeat N times.

Simulations are also often extremely useful tools in finance, in situations

such as:

● The pricing of exotic options, where an analytical pricing formula is

unavailable

● Determining the effect on financial markets of substantial changes in

the macroeconomic environment

● ‘Stress-testing’ risk management models to determine whether they gen-

erate capital requirements sufficient to cover losses in all situations.

In all of these instances, the basic way that such a study would be con-

ducted (with additional steps and modifications where necessary) is shown

in box 12.1.

A brief explanation of each of these steps is in order. The first stage

involves specifying the model that will be used to generate the data. This

may be a pure time series model or a structural model. Pure time se-

ries models are usually simpler to implement, as a full structural model

would also require the researcher to specify a data generating process for

the explanatory variables as well. Assuming that a time series model is

deemed appropriate, the next choice to be made is of the probability distri-

bution specified for the errors. Usually, standard normal draws are used, al-

though any other empirically plausible distribution (such as a Student’s t)

could also be used.

The second stage involves estimation of the parameter of interest in the

study. The parameter of interest might be, for example, the value of a

coefficient in a regression, or the value of an option at its expiry date. It

could instead be the value of a portfolio under a particular set of scenarios

governing the way that the prices of the component assets move over

time.

The quantity N is known as the number of replications, and this should

be as large as is feasible. The central idea behind Monte Carlo is that of

random sampling from a given distribution. Therefore, if the number of

replications is set too small, the results will be sensitive to ‘odd’ combi-

nations of random number draws. It is also worth noting that asymptotic
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arguments apply in Monte Carlo studies as well as in other areas of econo-

metrics. That is, the results of a simulation study will be equal to their

analytical counterparts (assuming that the latter exist) asymptotically.

12.3 Variance reduction techniques

Suppose that the value of the parameter of interest for replication i is

denoted xi . If the average value of this parameter is calculated for a set of,

say, N = 1,000 replications, and another researcher conducts an otherwise

identical study with different sets of random draws, a different average

value of x is almost certain to result. This situation is akin to the problem

of selecting only a sample of observations from a given population in

standard regression analysis. The sampling variation in a Monte Carlo

study is measured by the standard error estimate, denoted Sx

Sx =
√

var(x)

N
(12.1)

where var(x) is the variance of the estimates of the quantity of interest over

the N replications. It can be seen from this equation that to reduce the

Monte Carlo standard error by a factor of 10, the number of replications

must be increased by a factor of 100. Consequently, in order to achieve

acceptable accuracy, the number of replications may have to be set at an

infeasibly high level. An alternative way to reduce Monte Carlo sampling

error is to use a variance reduction technique. There are many variance

reduction techniques available. Two of the intuitively simplest and most

widely used methods are the method of antithetic variates and the method

of control variates. Both of these techniques will now be described.

12.3.1 Antithetic variates

One reason that a lot of replications are typically required of a Monte

Carlo study is that it may take many, many repeated sets of sampling

before the entire probability space is adequately covered. By their very

nature, the values of the random draws are random, and so after a given

number of replications, it may be the case that not the whole range of pos-

sible outcomes has actually occurred.1 What is really required is for suc-

cessive replications to cover different parts of the probability space -- that

1 Obviously, for a continuous random variable, there will be an infinite number of

possible values. In this context, the problem is simply that if the probability space is

split into arbitrarily small intervals, some of those intervals will not have been

adequately covered by the random draws that were actually selected.
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is, for the random draws from different replications to generate outcomes

that span the entire spectrum of possibilities. This may take a long time

to achieve naturally.

The antithetic variate technique involves taking the complement of a

set of random numbers and running a parallel simulation on those. For

example, if the driving stochastic force is a set of T N (0, 1) draws, denoted

ut , for each replication, an additional replication with errors given by

−ut is also used. It can be shown that the Monte Carlo standard error

is reduced when antithetic variates are used. For a simple illustration of

this, suppose that the average value of the parameter of interest across 2

sets of Monte Carlo replications is given by

x̄ = (x1 + x2)/2 (12.2)

where x1 and x2 are the average parameter values for replications sets 1

and 2, respectively. The variance of x̄ will be given by

var(x̄) = 1

4
(var(x1) + var(x2) + 2cov(x1, x2)) (12.3)

If no antithetic variates are used, the two sets of Monte Carlo replications

will be independent, so that their covariance will be zero, i.e.

var(x̄) = 1

4
(var(x1) + var(x2)) (12.4)

However, the use of antithetic variates would lead the covariance in

(12.3) to be negative, and therefore the Monte Carlo sampling error to be

reduced.

It may at first appear that the reduction in Monte Carlo sampling vari-

ation from using antithetic variates will be huge since, by definition,

corr(ut , −ut ) = cov(ut , −ut ) = −1. However, it is important to remember

that the relevant covariance is between the simulated quantity of interest

for the standard replications and those using the antithetic variates. But

the perfect negative covariance is between the random draws (i.e. the error

terms) and their antithetic variates. For example, in the context of option

pricing (discussed below), the production of a price for the underlying

security (and therefore for the option) constitutes a non-linear transfor-

mation of ut . Therefore the covariances between the terminal prices of the

underlying assets based on the draws and based on the antithetic variates

will be negative, but not −1.

Several other variance reduction techniques that operate using similar

principles are available, including stratified sampling, moment-matching

and low-discrepancy sequencing. The latter are also known as quasi-random

sequences of draws. These involve the selection of a specific sequence of
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representative samples from a given probability distribution. Successive

samples are selected so that the unselected gaps left in the probability

distribution are filled by subsequent replications. The result is a set of

random draws that are appropriately distributed across all of the out-

comes of interest. The use of low-discrepancy sequences leads the Monte

Carlo standard errors to be reduced in direct proportion to the number

of replications rather than in proportion to the square root of the num-

ber of replications. Thus, for example, to reduce the Monte Carlo standard

error by a factor of 10, the number of replications would have to be in-

creased by a factor of 100 for standard Monte Carlo random sampling, but

only 10 for low-discrepancy sequencing. Further details of low-discrepancy

techniques are beyond the scope of this text, but can be seen in Boyle

(1977) or Press et al. (1992). The former offers a detailed and relevant

example in the context of options pricing.

12.3.2 Control variates

The application of control variates involves employing a variable similar

to that used in the simulation, but whose properties are known prior to

the simulation. Denote the variable whose properties are known by y,

and that whose properties are under simulation by x . The simulation is

conducted on x and also on y, with the same sets of random number

draws being employed in both cases. Denoting the simulation estimates

of x and y by x̂ and ŷ, respectively, a new estimate of x can be derived

from

x∗ = y + (x̂ − ŷ) (12.5)

Again, it can be shown that the Monte Carlo sampling error of this quan-

tity, x∗, will be lower than that of x provided that a certain condition

holds. The control variates help to reduce the Monte Carlo variation

owing to particular sets of random draws by using the same draws on

a related problem whose solution is known. It is expected that the effects

of sampling error for the problem under study and the known problem

will be similar, and hence can be reduced by calibrating the Monte Carlo

results using the analytic ones.

It is worth noting that control variates succeed in reducing the Monte

Carlo sampling error only if the control and simulation problems are

very closely related. As the correlation between the values of the control

statistic and the statistic of interest is reduced, the variance reduction is

weakened. Consider again (12.5), and take the variance of both sides

var(x∗) = var(y + (x̂ − ŷ)) (12.6)
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var(y) = 0 since y is a quantity which is known analytically and is therefore

not subject to sampling variation, so (12.6) can be written

var(x∗) = var(x̂) + var(ŷ) − 2cov(x̂, ŷ) (12.7)

The condition that must hold for the Monte Carlo sampling variance to

be lower with control variates than without is that var(x∗) is less than

var(x̂). Taken from (12.7), this condition can also be expressed as

var(ŷ) − 2cov(x̂, ŷ) < 0

or

cov(x̂, ŷ) >
1

2
var(ŷ)

Divide both sides of this inequality by the products of the standard devi-

ations, i.e. by (var(x̂), var(ŷ))1/2, to obtain the correlation on the LHS

corr(x̂, ŷ) >
1

2

√
var(ŷ)

var(x̂)

To offer an illustration of the use of control variates, a researcher may

be interested in pricing an arithmetic Asian option using simulation. Re-

call that an arithmetic Asian option is one whose payoff depends on the

arithmetic average value of the underlying asset over the lifetime of the

averaging; at the time of writing, an analytical (closed-form) model is not

yet available for pricing such options. In this context, a control variate

price could be obtained by finding the price via simulation of a simi-

lar derivative whose value is known analytically -- e.g. a vanilla European

option. Thus, the Asian and vanilla options would be priced using sim-

ulation, as shown below, with the simulated price given by PA and P∗
BS,

respectively. The price of the vanilla option, PBS is also calculated using an

analytical formula, such as Black--Scholes. The new estimate of the Asian

option price, P∗
A, would then be given by

P∗
A = (PA − PBS) + P∗

BS (12.8)

12.3.3 Random number re-usage across experiments

Although of course it would not be sensible to re-use sets of random num-

ber draws within a Monte Carlo experiment, using the same sets of draws

across experiments can greatly reduce the variability of the difference in

the estimates across those experiments. For example, it may be of interest

to examine the power of the Dickey--Fuller test for samples of size 100

observations and for different values of φ (to use the notation of chapter

7). Thus, for each experiment involving a different value of φ, the same
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set of standard normal random numbers could be used to reduce the sam-

pling variation across experiments. However, the accuracy of the actual

estimates in each case will not be increased, of course.

Another possibility involves taking long series of draws and then slic-

ing them up into several smaller sets to be used in different experiments.

For example, Monte Carlo simulation may be used to price several op-

tions of different times to maturity, but which are identical in all other

respects. Thus, if 6-month, 3-month and 1-month horizons were of inter-

est, sufficient random draws to cover 6 months would be made. Then the

6-months’ worth of draws could be used to construct two replications of

a 3-month horizon, and six replications for the 1-month horizon. Again,

the variability of the simulated option prices across maturities would be

reduced, although the accuracies of the prices themselves would not be

increased for a given number of replications.

Random number re-usage is unlikely to save computational time, for

making the random draws usually takes a very small proportion of the

overall time taken to conduct the whole experiment.

12.4 Bootstrapping

Bootstrapping is related to simulation, but with one crucial difference.

With simulation, the data are constructed completely artificially. Boot-

strapping, on the other hand, is used to obtain a description of the prop-

erties of empirical estimators by using the sample data points themselves,

and it involves sampling repeatedly with replacement from the actual

data. Many econometricians were initially highly sceptical of the useful-

ness of the technique, which appears at first sight to be some kind of

magic trick -- creating useful additional information from a given sample.

Indeed, Davison and Hinkley (1997, p. 3), state that the term ‘bootstrap’

in this context comes from an analogy with the fictional character Baron

Munchhausen, who got out from the bottom of a lake by pulling himself

up by his bootstraps.

Suppose a sample of data, y = y1, y2, . . . , yT are available and it is de-

sired to estimate some parameter θ . An approximation to the statistical

properties of θ̂T can be obtained by studying a sample of bootstrap esti-

mators. This is done by taking N samples of size T with replacement from

y and re-calculating θ̂ with each new sample. A series of θ̂ estimates is

then obtained, and their distribution can be considered.

The advantage of bootstrapping over the use of analytical results is

that it allows the researcher to make inferences without making strong
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distributional assumptions, since the distribution employed will be that of

the actual data. Instead of imposing a shape on the sampling distribution

of the θ̂ value, bootstrapping involves empirically estimating the sampling

distribution by looking at the variation of the statistic within-sample.

A set of new samples is drawn with replacement from the sample and

the test statistic of interest calculated from each of these. Effectively, this

involves sampling from the sample, i.e. treating the sample as a population

from which samples can be drawn. Call the test statistics calculated from

the new samples θ̂∗. The samples are likely to be quite different from

each other and from the original θ̂ value, since some observations may be

sampled several times and others not at all. Thus a distribution of values

of θ̂∗ is obtained, from which standard errors or some other statistics of

interest can be calculated.

Along with advances in computational speed and power, the number

of bootstrap applications in finance and in econometrics have increased

rapidly in previous years. For example, in econometrics, the bootstrap has

been used in the context of unit root testing. Scheinkman and LeBaron

(1989) also suggest that the bootstrap can be used as a ‘shuffle diagnostic’,

where as usual the original data are sampled with replacement to form

new data series. Successive applications of this procedure should generate

a collection of data sets with the same distributional properties, on aver-

age, as the original data. But any kind of dependence in the original series

(e.g. linear or non-linear autocorrelation) will, by definition, have been re-

moved. Applications of econometric tests to the shuffled series can then

be used as a benchmark with which to compare the results on the actual

data or to construct standard error estimates or confidence intervals.

In finance, an application of bootstrapping in the context of risk man-

agement is discussed below. Another important recent proposed use of

the bootstrap is as a method for detecting data snooping (data mining)

in the context of tests of the profitability of technical trading rules. Data

snooping occurs when the same set of data is used to construct trading

rules and also to test them. In such cases, if a sufficient number of trading

rules are examined, some of them are bound, purely by chance alone, to

generate statistically significant positive returns. Intra-generational data

snooping is said to occur when, over a long period of time, technical trad-

ing rules that ‘worked’ in the past continue to be examined, while the

ones that did not fade away. Researchers are then made aware of only the

rules that worked, and not the other, perhaps thousands, of rules that

failed.

Data snooping biases are apparent in other aspects of estimation and

testing in finance. Lo and MacKinlay (1990) find that tests of financial asset
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pricing models (CAPM) may yield misleading inferences when properties

of the data are used to construct the test statistics. These properties relate

to the construction of portfolios based on some empirically motivated

characteristic of the stock, such as market capitalisation, rather than a

theoretically motivated characteristic, such as dividend yield.

Sullivan, Timmermann and White (1999) and White (2000) propose the

use of a bootstrap to test for data snooping. The technique works by plac-

ing the rule under study in the context of a ‘universe’ of broadly similar

trading rules. This gives some empirical content to the notion that a vari-

ety of rules may have been examined before the final rule is selected. The

bootstrap is applied to each trading rule, by sampling with replacement

from the time series of observed returns for that rule. The null hypoth-

esis is that there does not exist a superior technical trading rule. Sulli-

van, Timmermann and White show how a p-value of the ‘reality check’

bootstrap-based test can be constructed, which evaluates the significance

of the returns (or excess returns) to the rule after allowing for the fact

that the whole universe of rules may have been examined.

12.4.1 An example of bootstrapping in a regression context

Consider a standard regression model

y = Xβ + u (12.9)

The regression model can be bootstrapped in two ways.

Re-sample the data

This procedure involves taking the data, and sampling the entire rows

corresponding to observation i together. The steps would then be as shown

in box 12.2.

A methodological problem with this approach is that it entails sampling

from the regressors, and yet under the CLRM, these are supposed to be

Box 12.2 Re-sampling the data

(1) Generate a sample of size T from the original data by sampling with replacement

from the whole rows taken together (that is, if observation 32 is selected, take y32

and all values of the explanatory variables for observation 32).

(2) Calculate β̂∗, the coefficient matrix for this bootstrap sample.

(3) Go back to stage 1 and generate another sample of size T . Repeat these stages a

total of N times. A set of N coefficient vectors, β̂∗, will thus be obtained and in

general they will all be different, so that a distribution of estimates for each

coefficient will result.
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Box 12.3 Re-sampling from the residuals

(1) Estimate the model on the actual data, obtain the fitted values ŷ, and calculate the

residuals, û
(2) Take a sample of size T with replacement from these residuals (and call these û∗),

and generate a bootstrapped-dependent variable by adding the fitted values to the

bootstrapped residuals

y∗ = ŷ + û∗ (12.10)

(3) Then regress this new dependent variable on the original X data to get a

bootstrapped coefficient vector, β̂∗

(4) Go back to stage 2, and repeat a total of N times.

fixed in repeated samples, which would imply that they do not have a

sampling distribution. Thus, resampling from the data corresponding to

the explanatory variables is not in the spirit of the CLRM.

As an alternative, the only random influence in the regression is the

errors, u, so why not just bootstrap from those?

Re-sampling from the residuals

This procedure is ‘theoretically pure’ although harder to understand and

to implement. The steps are shown in box 12.3.

12.4.2 Situations where the bootstrap will be ineffective

There are at least two situations where the bootstrap, as described above,

will not work well.

Outliers in the data

If there are outliers in the data, the conclusions of the bootstrap may be

affected. In particular, the results for a given replication may depend crit-

ically on whether the outliers appear (and how often) in the bootstrapped

sample.

Non-independent data

Use of the bootstrap implicitly assumes that the data are independent of

one another. This would obviously not hold if, for example, there were

autocorrelation in the data. A potential solution to this problem is to use a

‘moving block bootstrap’. Such a method allows for the dependence in the

series by sampling whole blocks of observations at a time. These, and many

other issues relating to the theory and practical usage of the bootstrap

are given in Davison and Hinkley (1997); see also Efron (1979;1982).
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It is also worth noting that variance reduction techniques are also avail-

able under the bootstrap, and these work in a very similar way to those

described above in the context of pure simulation.

12.5 Random number generation

Most econometrics computer packages include a random number gener-

ator. The simplest class of numbers to generate are from a uniform (0,1)

distribution. A uniform (0,1) distribution is one where only values between

zero and one are drawn, and each value within the interval has an equal

chance of being selected. Uniform draws can be either discrete or con-

tinuous. An example of a discrete uniform number generator would be a

die or a roulette wheel. Computers generate continuous uniform random

number draws.

Numbers that are a continuous uniform (0,1) can be generated according

to the following recursion

yi+1 = (ayi + c) modulo m, i = 0, 1, . . . , T (12.11)

then

Ri+1 = yi+1/m for i = 0, 1, . . . , T (12.12)

for T random draws, where y0 is the seed (the initial value of y), a is a

multiplier and c is an increment. All three of these are simply constants.

The ‘modulo operator’ simply functions as a clock, returning to one after

reaching m.

Any simulation study involving a recursion, such as that described by

(12.11) to generate the random draws, will require the user to specify an

initial value, y0, to get the process started. The choice of this value will,

undesirably, affect the properties of the generated series. This effect will

be strongest for y1, y2, . . . , but will gradually die away. For example, if

a set of random draws is used to construct a time series that follows

a GARCH process, early observations on this series will behave less like

the GARCH process required than subsequent data points. Consequently,

a good simulation design will allow for this phenomenon by generating

more data than are required and then dropping the first few observations.

For example, if 1,000 observations are required, 1,200 observations might

be generated, with observations 1 to 200 subsequently deleted and 201 to

1,200 used to conduct the analysis.

These computer-generated random number draws are known as pseudo-

random numbers, since they are in fact not random at all, but entirely

deterministic, since they have been derived from an exact formula! By
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carefully choosing the values of the user-adjustable parameters, it is pos-

sible to get the pseudo-random number generator to meet all the statisti-

cal properties of true random numbers. Eventually, the random number

sequences will start to repeat, but this should take a long time to happen.

See Press et al. (1992) for more details and Fortran code, or Greene (2002)

for an example.

The U(0,1) draws can be transformed into draws from any desired dis-

tribution -- for example a normal or a Student’s t. Usually, econometric

software packages with simulations facilities would do this automatically.

12.6 Disadvantages of the simulation approach to econometric
or financial problem solving

● It might be computationally expensive

That is, the number of replications required to generate precise solu-

tions may be very large, depending upon the nature of the task at hand.

If each replication is relatively complex in terms of estimation issues,

the problem might be computationally infeasible, such that it could

take days, weeks or even years to run the experiment. Although CPU

time is becoming ever cheaper as faster computers are brought to mar-

ket, the technicality of the problems studied seems to accelerate just as

quickly!

● The results might not be precise

Even if the number of replications is made very large, the simulation

experiments will not give a precise answer to the problem if some un-

realistic assumptions have been made of the data generating process.

For example, in the context of option pricing, the option valuations

obtained from a simulation will not be accurate if the data generating

process assumed normally distributed errors while the actual underly-

ing returns series is fat-tailed.

● The results are often hard to replicate

Unless the experiment has been set up so that the sequence of random

draws is known and can be reconstructed, which is rarely done in prac-

tice, the results of a Monte Carlo study will be somewhat specific to

the given investigation. In that case, a repeat of the experiment would

involve different sets of random draws and therefore would be likely

to yield different results, particularly if the number of replications is

small.

● Simulation results are experiment-specific

The need to specify the data generating process using a single set of

equations or a single equation implies that the results could apply to
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only that exact type of data. Any conclusions reached may or may not

hold for other data generating processes. To give one illustration, ex-

amining the power of a statistical test would, by definition, involve

determining how frequently a wrong null hypothesis is rejected. In the

context of DF tests, for example, the power of the test as determined

by a Monte Carlo study would be given by the percentage of times that

the null of a unit root is rejected. Suppose that the following data gen-

erating process is used for such a simulation experiment

yt = 0.99yt−1 + ut , ut ∼ N(0, 1) (12.13)

Clearly, the null of a unit root would be wrong in this case, as is nec-

essary to examine the power of the test. However, for modest sample

sizes, the null is likely to be rejected quite infrequently. It would not

be appropriate to conclude from such an experiment that the DF test

is generally not powerful, since in this case the null (φ = 1) is not very

wrong! This is a general problem with many Monte Carlo studies. The

solution is to run simulations using as many different and relevant

data generating processes as feasible. Finally, it should be obvious that

the Monte Carlo data generating process should match the real-world

problem of interest as far as possible.

To conclude, simulation is an extremely useful tool that can be applied to

an enormous variety of problems. The technique has grown in popularity

over the past decade, and continues to do so. However, like all tools, it is

dangerous in the wrong hands. It is very easy to jump into a simulation

experiment without thinking about whether such an approach is valid or

not.

12.7 An example of Monte Carlo simulation in econometrics: deriving
a set of critical values for a Dickey–Fuller test

Recall, that the equation for a Dickey--Fuller (DF) test applied to some

series yt is the regression

yt = φyt−1 + ut (12.14)

so that the test is one of H0: φ = 1 against H1: φ < 1. The relevant test

statistic is given by

τ = φ̂ − 1

SE(φ̂)
(12.15)
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Box 12.4 Setting up a Monte Carlo simulation

(1) Construct the data generating process under the null hypothesis – that is, obtain a

series for y that follows a unit root process. This would be done by:

● Drawing a series of length T , the required number of observations, from a

normal distribution. This will be the error series, so that ut ∼ N (0,1).

● Assuming a first value for y, i.e. a value for y at time t = 1.

● Constructing the series for y recursively, starting with y2, y3, and so on

y2 = y1 + u2

y3 = y2 + u3 (12.16)

. . .

yT = yT −1 + uT

(2) Calculating the test statistic, τ .

(3) Repeating steps 1 and 2 N times to obtain N replications of the experiment. A

distribution of values for τ will be obtained across the replications.

(4) Ordering the set of N values of τ from the lowest to the highest. The relevant 5%

critical value will be the 5th percentile of this distribution.

Under the null hypothesis of a unit root, the test statistic does not follow

a standard distribution, and therefore a simulation would be required to

obtain the relevant critical values. Obviously, these critical values are well

documented, but it is of interest to see how one could generate them. A

very similar approach could then potentially be adopted for situations

where there has been less research and where the results are relatively

less well known.

The simulation would be conducted in the four steps shown in box 12.4.

Some EViews code for conducting such a simulation is given below. The

objective is to develop a set of critical values for Dickey--Fuller test re-

gressions. The simulation framework considers sample sizes of 1,000, 500

and 100 observations. For each of these sample sizes, regressions with no

constant or trend, a constant but no trend, and a constant and trend are

conducted. 50,000 replications are used in each case, and the critical val-

ues for a 1-sided test at the 1%, 5% and 10% levels are determined. The

code can be found pre-written in a file entitled ‘dfcv.prg’.

EViews programs are simply sets of instructions saved as plain text, so

that they can be written from within EViews, or using a word processor or

text editor. EViews program files must have a ‘.PRG’ suffix. There are several

ways to run the programs once written, but probably the simplest is to

write all of the instructions first, and to save them. Then open the EViews

software and choose File, Open and Program, and when prompted select

the directory and file for the instructions. The program containing the
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instructions will then appear on the screen. To run the program, click on

the Run button. EViews will then open a dialog box with several options,

including whether to run the program in ‘Verbose’ or ‘Quiet’ mode. Choose

Verbose mode to see the instruction line that is being run at each point

in its execution (i.e. the screen is continually updated). This is useful for

debugging programs or for running short programs. Choose Quiet to run

the program without updating the screen display as it is running, which

will make it execute (considerably) more quickly. The screen would appear

as in screenshot 12.1.

Screenshot 12.1

Running an EViews

program

Then click OK and off it goes! The following lists the instructions that are

contained in the program, and the discussion below explains what each

line does.

′NEW WORKFILE CREATED CALLED DF CV, UNDATED
′WITH 50000 OBSERVATIONS

WORKFILE DF CV U 50000

RNDSEED 12345
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SERIES T1

SERIES T2

SERIES T3

SCALAR K1

SCALAR K2

SCALAR K3

SCALAR K4

SCALAR K5

SCALAR K6

SCALAR K7

SCALAR K8

SCALAR K9

!NREPS=50000

!NOBS=1000

FOR !REPC=1 TO !NREPS

SMPL @FIRST @FIRST

SERIES Y1=0

SMPL @FIRST+1 !NOBS+200

SERIES Y1=Y1(−1)+NRND

SERIES DY1=Y1-Y1(−1)

SMPL @FIRST+200 !NOBS+200

EQUATION EQ1.LS DY1 Y1(−1)

T1(!REPC)=@TSTATS(1)

EQUATION EQ2.LS DY1 C Y1(−1)

T2(!REPC)=@TSTATS(2)

EQUATION EQ3.LS DY1 C @TREND Y1(−1)

T3(!REPC)=@TSTATS(3)

NEXT

SMPL @FIRST !NREPS

K1=@QUANTILE(T1,0.01)

K2=@QUANTILE(T1,0.05)

K3=@QUANTILE(T1,0.1)

K4=@QUANTILE(T2,0.01)

K5=@QUANTILE(T2,0.05)

K6=@QUANTILE(T2,0.1)

K7=@QUANTILE(T3,0.01)

K8=@QUANTILE(T3,0.05)

K9=@QUANTILE(T3,0.1)

Although there are probably more efficient ways to structure the program

than that given above, this sample code has been written in a style to make
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it easy to follow. The program would be run in the way described above.

That is, it would be opened from within EViews, and then the Run button

would be pressed and the mode of execution (Verbose or Quiet) chosen.

A first point to note is that comment lines are denoted by a ′ symbol

in EViews. The first line of code, ‘WORKFILE DF CV U 50000’ will set up a

new EViews workfile called DF CV.WK1, which will be undated (U) and will

contain series of length 50,000. This step is required for EViews to have

a place to put the output series since no other workfile will be opened

by this program! In situations where the program requires an already

existing workfile containing data to be opened, this line would not be

necessary since any new results and objects created would be appended

to the original workfile. RNDSEED 12345 sets the random number seed

that will be used to start the random draws.

‘SERIES T1’ creates a new series T1 that will be filled with NA elements.

The series T1, T2 and T3, will hold the Dickey--Fuller test statistics for each

replication, for the three cases (no constant or trend, constant but no

trend, constant and trend, respectively). ‘SCALAR K1’ sets up a scalar (sin-

gle number) K1. K1, . . . , K9 will be used to hold the 1%, 5% and 10% critical

values for each of the three cases. !NREPS=50000 and !NOBS=1000 set the

number of replications that will be used to 50,000 and the number of ob-

servations to be used in each time series to 1,000. The exclamation marks

enable the scalars to be used without previously having to define them

using the SCALAR instruction. Of course, these values can be changed as

desired. Loops in EViews are defined as FOR at the start and NEXT at the

end, in a similar way to visual basic code. Thus FOR !REPC=1 TO !NREPS

starts the main replications loop, which will run from 1 to NREPS.

SMPL @FIRST @FIRST

SERIES Y1=0

The two lines above set the first observation of a new series Y1 to zero (so

@FIRST is EViews method of denoting the first observation in the series,

and the final observation is denoted by, you guessed it, @LAST). Then

SMPL @FIRST+1 !NOBS+200

SERIES Y1=Y1(−1)+NRND

SERIES DY1=Y1-Y1(−1)

will set the sample to run from observation 2 to observation !NOBS+200

(1200). This enables the program to generate 200 additional startup obser-

vations. It is very easy in EViews to construct a series following a random

walk process, and this is done by the second of the above three lines. The
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current value of Y1 is set to the previous value plus a standard normal

random draw (NRND). In EViews, draws can be taken from a wide array

of distributions (see the User Guide). SERIES DY1 . . . creates a new series

called DY1 that contains the first difference of Y.

SMPL @FIRST+200 !NOBS+200

EQUATION EQ1.LS DY1 Y1(−1)

The first of the two lines above sets the sample to run from observation

201 to observation 1200, thus dropping the 200 startup observations. The

following line actually conducts an OLS estimation (‘.LS’), in the process

creating an equation object called EQ1. The dependent variable is DY1 and

the independent variable is the lagged value of Y, Y(−1).

Following the equation estimation, several new quantities will have

been created. These quantities are denoted by a ‘@’ in EViews. So the line

‘T1(!REPC)=@TSTATS(1)’ will take the t-ratio of the coefficient on the first

(and in this case only) independent variable, and will place it in the !REPC

row of the series T1. Similarly, the t-ratios on the lagged value of Y will

be placed in T2 and T3 for the regressions with constant and constant

and trend respectively. Finally, NEXT will finish the replications loop and

SMPL @FIRST !NREPS will set the sample to run from 1 to 50000, and the

1%, 5%, and 10% critical values for the no constant or trend case will then

be found in K1, K2 and K3. The ‘@QUANTILE(T1,0.01)’ instruction will take

the 1% quantile from the series T1, which avoids sorting the series.

The critical value obtained by running the above instructions, which

are virtually identical to those found in the statistical tables at the end

of this book, are (to two decimal places)

1% 5% 10%

No constant or trend −2.58 −1.95 −1.63
Constant but no trend −3.45 −2.85 −2.56
Constant and trend −3.93 −3.41 −3.43

This is to be expected, for the use of 50,000 replications should en-

sure that an approximation to the asymptotic behaviour is obtained. For

example, the 5% critical value for a test regression with no constant or

trend and 500 observations is −1.945 in this simulation, and −1.95 in

Fuller (1976). Although the Dickey--Fuller simulation was unnecessary in

the sense that the critical values for the resulting test statistics are al-

ready well known and documented, a very similar procedure could be
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adopted for a variety of problems. For example, a similar approach could

be used for constructing critical values or for evaluating the performance

of statistical tests in various situations.

12.8 An example of how to simulate the price of a financial option

A simple example of how to use a Monte Carlo study for obtaining a price

for a financial option is shown below. Although the option used for illus-

tration here is just a plain vanilla European call option which could be val-

ued analytically using the standard Black--Scholes (1973) formula, again,

the method is sufficiently general that only relatively minor modifica-

tions would be required to value more complex options. Boyle (1977) gives

an excellent and highly readable introduction to the pricing of financial

options using Monte Carlo.

The steps involved are shown in box 12.5.

12.8.1 Simulating the price of a financial option using a fat-tailed

underlying process

A fairly limiting and unrealistic assumption in the above methodology

for pricing options is that the underlying asset returns are normally dis-

tributed, whereas in practice, it is well know that asset returns are fat-

tailed. There are several ways to remove this assumption. First, one could

employ draws from a fat-tailed distribution, such as a Student’s t , in step

Box 12.5 Simulating the price of an Asian option

(1) Specify a data generating process for the underlying asset. A random walk with drift

model is usually assumed. Specify also the assumed size of the drift component

and the assumed size of the volatility parameter. Specify also a strike price K , and

a time to maturity, T .

(2) Draw a series of length T , the required number of observations for the life of the

option, from a normal distribution. This will be the error series, so that εt ∼ N(0, 1).

(3) Form a series of observations of length T on the underlying asset.

(4) Observe the price of the underlying asset at maturity observation T . For a call option,

if the value of the underlying asset on maturity date, PT ≤ K , the option expires

worthless for this replication. If the value of the underlying asset on maturity date,

PT > K , the option expires in the money, and has value on that date equal to

PT − K , which should be discounted back to the present day using the risk-free

rate. Use of the risk-free rate relies upon risk-neutrality arguments (see Duffie,

1996).

(5) Repeat steps 1 to 4 a total of N times, and take the average value of the option

over the N replications. This average will be the price of the option.
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Box 12.6 Generating draws from a GARCH process

(1) Draw a series of length T , the required number of observations for the life of the

option, from a normal distribution. This will be the error series, so that εt ∼ N(0, 1).

(2) Recall that one way of expressing a GARCH model is

rt = μ + ut ut = εtσt εt ∼ N(0, 1) (12.17)

σ 2
t = α0 + α1u2

t−1 + βσ 2
t−1 (12.18)

A series of εt , have been constructed and it is necessary to specify initialising

values y1 and σ 2
1 and plausible parameter values for α0, α1, β. Assume that y1 and

σ 2
1 are set to μ and one, respectively, and the parameters are given by α0 = 0.01,

α1 = 0.15, β = 0.80. The equations above can then be used to generate the model

for rt as described above.

2 above. Another method, which would generate a distribution of returns

with fat tails, would be to assume that the errors and therefore the re-

turns follow a GARCH process. To generate draws from a GARCH process,

do the steps shown in box 12.6.

12.8.2 Simulating the price of an Asian option

An Asian option is one whose payoff depends upon the average value of

the underlying asset over the averaging horizon specified in the contract.

Most Asian options contracts specify that arithmetic rather than geomet-

ric averaging should be employed. Unfortunately, the arithmetic average

of a unit root process with a drift is not well defined. Additionally, even

if the asset prices are assumed to be log-normally distributed, the arith-

metic average of them will not be. Consequently, a closed-form analytical

expression for the value of an Asian option has yet to be developed. Thus,

the pricing of Asian options represents a natural application for simula-

tions methods. Determining the value of an Asian option is achieved in

almost exactly the same way as for a vanilla call or put. The simulation is

conducted identically, and the only difference occurs in the very last step

where the value of the payoff at the date of expiry is determined.

12.8.3 Pricing Asian options using EViews

A sample of EViews code for determining the value of an Asian option is

given below. The example is in the context of an arithmetic Asian option

on the FTSE 100, and two simulations will be undertaken with different

strike prices (one that is out of the money forward and one that is in the

money forward). In each case, the life of the option is 6 months, with

daily averaging commencing immediately, and the option value is given
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for both calls and puts in terms of index points. The parameters are given

as follows, with dividend yield and risk-free rates expressed as percentages:

Simulation 1: strike=6500, risk-free=6.24, dividend yield=2.42, ‘today’s’

FTSE=6289.70, forward price=6405.35, implied volatility=26.52

Simulation 2: strike=5500, risk-free=6.24, dividend yield=2.42, ‘today’s’

FTSE=6289.70, forward price=6405.35, implied volatility=34.33

Any other programming language or statistical package would be

equally applicable, since all that is required is a Gaussian random number

generator, the ability to store in arrays and to loop. Since no actual estima-

tion is performed, differences between packages are likely to be negligible.

All experiments are based on 25,000 replications and their antithetic vari-

ates (total: 50,000 sets of draws) to reduce Monte Carlo sampling error.

Some sample code for pricing an ASIAN option for Normally distributed

errors using EViews is given as follows:

′NEW WORKFILE CREATED CALLED ASIAN P, UNDATED
′WITH 50000 OBSERVATIONS

WORKFILE ASIAN P U 50000

RNDSEED 12345

!N=125

!TTM=0.5

!NREPS=50000

!IV=0.28

!RF=0.0624

!DY=0.0242

!DT=!TTM / !N

!DRIFT=(!RF-!DY-(!IVˆ2/2.0))∗!DT

!VSQRDT=!IV∗(!DTˆ0.5)

!K=5500

!S0=6289.7

SERIES APVAL

SERIES ACVAL

SERIES SPOT

SCALAR AV

SCALAR CALLPRICE

SCALAR PUTPRICE

SERIES RANDS
′GENERATES THE DATA

FOR !REPC=1 TO !NREPS STEP 2

RANDS=NRND
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SERIES SPOT=0

SMPL @FIRST @FIRST

SPOT(1)=!S0∗EXP(!DRIFT+!VSQRDT∗RANDS(1))

SMPL 2 !N

SPOT=SPOT(−1)∗EXP(!DRIFT+!VSQRDT∗RANDS(!N))
′COMPUTE THE DAILY AVERAGE

SMPL @FIRST !N

AV=@MEAN(SPOT)

IF AV>!K THEN

ACVAL(!REPC)=(AV-!K)∗EXP(-!RF∗!TTM)

ELSE

ACVAL(!REPC)=0

ENDIF

IF AV<!K THEN

APVAL(!REPC)=(!K-AV)∗EXP(-!RF∗!TTM)

ELSE

APVAL(!REPC)=0

ENDIF

RANDS=-RANDS

SERIES SPOT=0

SMPL @FIRST @FIRST

SPOT(1)=!S0∗EXP(!DRIFT+!VSQRDT∗RANDS(1))

SMPL 2 !N

SPOT=SPOT(−1)∗EXP(!DRIFT+!VSQRDT∗RANDS(!N))
′COMPUTE THE DAILY AVERAGE

SMPL @FIRST !N

AV=@MEAN(SPOT)

IF AV>!K THEN

ACVAL(!REPC+1)=(AV-!K)∗EXP(-!RF∗!TTM)

ELSE

ACVAL(!REPC+1)=0

ENDIF

IF AV<!K THEN

APVAL(!REPC+1)=(!K-AV)∗EXP(-!RF∗!TTM)

ELSE

APVAL(!REPC+1)=0

ENDIF

NEXT

SMPL @FIRST !NREPS

CALLPRICE=@MEAN(ACVAL)

PUTPRICE=@MEAN(APVAL)
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Many parts of the program above use identical instructions to those

given for the DF critical value simulation, and so annotation will now

focus on the construction of the program and on previously unseen com-

mands. The first block of commands set up a new workfile called ‘ASIAN P’

that will hold all of the objects and output. Then the following lines spec-

ify the parameters for the simulation of the path of the price of the

underlying asset (the drift, the implied volatility, etc.).

‘!=DT=!TTM/!N’ splits the time to maturity (0.5 years) into N discrete

time periods. Since daily averaging is required, it is easiest to set N =
125 (the approximate number of trading days in half a year), so that each

time period DT represents one day. The model assumes that the log of

the underlying asset price follows a geometric Brownian motion, which

could be given by

S + dS = S exp

[(
r f − dy − 1

2
σ 2

)
dt + σdz

]
(12.19)

where dz is a standard Wiener process. Further details of this continuous

time representation of the movement of the underlying asset over time are

beyond the scope of this book. A treatment of this and many other useful

option pricing formulae and computer code are given in Haug (1998). The

discrete time approximation to this can be written

St = St−1 exp

[(
r f − dy − 1

2
σ 2

)
dt + σ

√
dt ut

]
(12.20)

The following instructions set up the arrays for the underlying spot price

(called ‘SPOT’), and for the discounted values of the put (‘APVAL’) and call

(‘ACVAL’). Note that by default, arrays of the length given by the ‘workfile’

definition statement (50000) will be created.

The command ‘FOR !REPC=1 TO !NREPS DO REPC=1, NREPS,2’ starts

the main do loop for the simulation, looping up to the number of repli-

cations, in steps of 2. The loop ends at ‘END DO REPC’. Steps of 2 are used

because antithetic variates are also used for each replication, which will

create another simulated path for the underlying asset prices and option

value.

The random N(0,1) draws are made, which are then constructed into

a series of future prices of the underlying asset for the next 125 days.

‘AV=@MEAN(SPOT)’ will compute the average price of the underlying over

the lifetime of the option (125 days). The following two statements con-

struct the terminal payoffs for the call and the put options respectively.
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For the call, ‘ACVAL’ is set to the average underlying price less the strike

price if the average is greater than the strike (i.e. if the option expires

in the money), and zero otherwise. Vice versa for the put. The payoff at

expiry is discounted back to the present using the risk-free rate, and placed

in the REPC row of the ‘ACVAL’ or ‘APVAL’ array for the calls and puts,

respectively.

The process then repeats using the antithetic variates, constructed using

‘RANDS = -RANDS’. The call and put present values for these paths are put

in the even rows of ‘ACVAL’ and ‘APVAL’.

This completes one cycle of the REPC loop, which starts again with

REPC=3, then 5, 7, 9, . . . , 49999. The result will be 2 arrays ‘ACVAL’ and

‘APVAL’, which will contain 50,000 rows comprising the present value

of the call and put option for each simulated path. The option prices

would then simply be given by the averages over the 50,000 replica-

tions.

Note that both call values and put values can be calculated easily from

a given simulation, since the most computationally expensive step is in

deriving the path of simulated prices for the underlying asset. The results

are given in table 10.1, along with the values derived from an analytical

approximation to the option price, derived by Levy, and estimated using

VBA code in Haug (1998, pp. 97--100).

The main difference between the way that the simulation is conducted

here and the method used for EViews simulation of the Dickey--Fuller

critical values is that here, the random numbers are generated by open-

ing a new series called ‘RANDS’ and filling it with the random number

draws. The reason that this must be done is so that the negatives of the

elements of RANDS can later be taken to form the antithetic variates.

Finally, for each replication, the IF clause will set out of the money call

prices (where K>AV) and out of the money put prices (K<AV) to zero.

Then the call and put prices for each replication are discounted back to

the present using the risk-free rate, and outside the replications loop, the

options prices are the averages of these discounted prices across the 50,000

replications.

The workfile ‘ASIAN P’ will contain quite a few objects by the end of

the simulation, including the scalars CALLPRICE and PUTPRICE, which

will be the call and put prices. Also, the series ACVAL and APVAL will

contain the current value of the option for each of the 50,000 simulated

paths. Having the whole series across all replications can be useful for

constructing standard errors, and for checking that the program appears

to have been working correctly.
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Applying the instructions above (with K = 5500, and implied volatility

at 28%) gives simulated call and put prices as given in the following table.

Strike = 6500, IV = 26.52 Strike = 5500, IV = 34.33

CALL Price CALL Price

Analytical Approximation 203.45 Analytical Approximation 888.55

Monte Carlo Normal 204.22 Monte Carlo Normal 885.29

PUT Price PUT Price

Analytical Approximation 348.7 Analytical Approximation 64.52

Monte Carlo Normal 349.43 Monte Carlo Normal 61.52

In both cases, the simulated options prices are quite close to the ana-

lytical approximations, although the Monte Carlo seems to overvalue the

out-of-the-money call and to undervalue the out-of-the-money put. Some

of the errors in the simulated prices relative to the analytical approxima-

tion may result from the use of a discrete-time averaging process using

only 125 points.

12.9 An example of bootstrapping to calculate
capital risk requirements

12.9.1 Financial motivation

Risk management modelling has, in this author’s opinion, been one of the

most rapidly developing areas of application of econometric techniques

over the past decade or so. One of the most popular approaches to risk

measurement is by calculating what is known as an institution’s ‘value-

at-risk’, denoted VaR. Broadly speaking, value-at-risk is an estimation of

the probability of likely losses which could arise from changes in market prices.

More precisely, it is defined as the money-loss of a portfolio that is ex-

pected to occur over a pre-determined horizon and with a pre-determined

degree of confidence. The roots of VaR’s popularity stem from the sim-

plicity of its calculation, its ease of interpretation and from the fact that

VaR can be suitably aggregated across an entire firm to produce a sin-

gle number which broadly encompasses the risk of the positions of the

firm as a whole. The value-at-risk estimate is also often known as the

position risk requirement or minimum capital risk requirement (MCRR);

the three terms will be used interchangeably in the exposition below.
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There are various methods available for calculating value at risk, includ-

ing the ‘delta-normal’ method; historical simulation, involving the esti-

mation of the quantile of returns of the portfolio; and structured Monte

Carlo simulation; see Dowd (1998) or Jorion (2006) for thorough introduc-

tions to value-at-risk.

The Monte Carlo approach involves two steps. First, a data generating

process is specified for the underlying assets in the portfolio. Second, pos-

sible future paths are simulated for those assets over given horizons, and

the value of the portfolio at the end of the period is examined. Thus the

returns for each simulated path are obtained, and from this distribution

across the Monte Carlo replications, the VaR as a percentage of the initial

value of the portfolio can be measured as the first or fifth percentile.

The Monte Carlo method is clearly a very powerful and flexible method

for generating VaR estimates, since any stochastic process for the under-

lying assets can be specified. The effect of increasing variances or correla-

tions, etc. can easily be incorporated into the simulation design. However,

there are at least two drawbacks with the use of Monte Carlo simulation

for estimating VaR. First, for a large portfolio, the computational time

required to compute the VaR may be excessively great. Second, and more

fundamentally, the calculated VaR may be inaccurate if the stochastic pro-

cess that has been assumed for the underlying asset is inappropriate. In

particular, asset prices are often assumed to follow a random walk or a

random walk with drift, where the driving disturbances are random draws

from a normal distribution. Since it is well known that asset returns are

fat-tailed, the use of Gaussian draws in the simulation is likely to lead

to a systematic underestimate of the VaR, as extremely large positive or

negative returns are more likely in practice than would arise under a nor-

mal distribution. Of course, the normal random draws could be replaced

by draws from a t-distribution, or the returns could be assumed to follow

a GARCH process, both of which would generate an unconditional distri-

bution of returns with fat tails. However, there is still some concern as

to whether the distribution assumed in designing the simulations frame-

work is really appropriate.

An alternative approach, that could potentially overcome this criticism,

would be to use bootstrapping rather than Monte Carlo simulation. In this

context, the future simulated prices are generated using random draws

with replacement from the actual returns themselves, rather than arti-

ficially generating the disturbances from an assumed distribution. Such

an approach is used in calculating MCRRs by Hsieh (1993) and by Brooks,

Clare and Persand (2000). The methodology proposed by Hsieh will now

be examined.
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Hsieh (1993) employs daily log returns on foreign currency (against the

US dollar) futures series from 22 February 1985 until 9 March 1990 (1,275

observations) for the British pound (denoted BP), the German mark (GM),

the Japanese yen (JY) and the Swiss franc (SF). The first stage in setting up

the bootstrapping framework is to form a model that fits the data and

adequately describes its features. Hsieh employs the BDS test (discussed

briefly in chapter 8) to determine an appropriate class of models. An ap-

plication of the test to the raw returns data shows that the data are not

random, and that there is some structure in the data. The dependence in

the series, shown in the rejection of randomness by the test implies that

there is either:

● a linear relationship between yt and yt−1, yt−2, . . . or

● a non-linear relationship between yt and yt−1, yt−2, . . .

The Box--Pierce Q test is applied to test for both, on the returns for the

former, and on the squared or absolute values of the returns for the latter.

The results of this test are not shown but effectively rule out the possibility

of linear dependence (so that, for example, an ARMA model would not be

appropriate for the returns), but there appears to be evidence of non-linear

dependence in the series. Therefore, a second question, is whether the non-

linearity is in-mean or in-variance (see chapter 8 for elucidation). Hsieh

uses a bicorrelation test to show that there is no evidence for non-linearity

in-mean. Therefore, the most appropriate class of models for the returns

series is a model which has time-varying (conditional) variances. Hsieh

employs two types of model: EGARCH and autoregressive volatility (ARV)

models. The coefficient estimates for the EGARCH model are reported in

table 12.1.

Several features of the EGARCH estimates are worth noting. First, as

one may anticipate for a set of currency futures returns, the asymmetry

terms (i.e. the estimated values of γ ) are not significant for any of the four

series. The high estimated values of β suggest a high degree of persistence

in volatility in all cases except the Japanese yen. Brooks, Clare and Persand

(2000) suggest that such persistence may be excessive in the sense that the

volatility implied by the estimated conditional variance is too persistent

to reproduce the profile of the volatility of the actual returns series. Such

excessive volatility persistence could lead to an overestimate of the VaR.

Leaving this issue aside, Hsieh continues to evaluate the effectiveness of

the EGARCH models in capturing all of the non-linear dependence in

the data. This is achieved by reapplying the BDS test to the standardised

residuals, constructed by taking the residuals from the estimated models,

and dividing them by their respective conditional standard deviations. If
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Table 12.1 EGARCH estimates for currency futures returns

xt = μ + σtηt

ηt ∼ N(0, 1)

log σ 2
t = α + β log σ 2

t−1 + φ(|ηt−1| − (2/π )1/2) + γ ηt−1

Coefficient BP DM JY SF

μ 0.000319 0.000377 0.000232 0.000239

(0.000208) (0.000214) (0.000189) (0.000235)

α −0.688127 −1.072229 −4.438289 −0.993241

(0.030088) (0.041828) (0.756704) (0.032479)

β 0.928780 0.889511 0.550707 0.895527

(0.002995) (0.004386) (0.075851) (0.003508)

φ 0.135854 0.187005 0.282167 0.157669

(0.019961) (0.028388) (0.093357) (0.024013)

γ −0.110718 0.084173 0.313274 0.129035

(0.177458) (0.147279) (0.201531) (0.166507)

Notes: Standard errors in parentheses.

Source: Hsieh (1993). Reprinted with the permission of School of Business

Administration, University of Washington.

the model has captured all of the important features of the data, the

standardised residual series should be completely random. It is observed

that the EGARCH model cannot capture all of the non-linear dependence

in the mark or franc series.

A second approach to modelling volatility is derived from a high/low

volatility estimator. A daily volatility series is thus constructed using a

re-scaled estimate of the range over the trading day

σP,t = (0.361 × 1440/M)1/2 log( Hight/Lowt ) (12.21)

where Hight and Lowt are the highest and lowest transacted prices on day

t and M is the number of trading minutes during the day. The volatility

series, σP,t can now be modelled as any other series. A natural model to

propose, given the dependence (or persistence) in volatility over time, is

an autoregressive model in the volatility. The formulation used for the

price series is known as an autoregressive volatility (ARV) model

xt = σP,t ut (12.22)

ln σP,t = α +
∑

i

βi ln σP,t−i + νt (12.23)

where ν t is an error term. The appropriate lag length for the ARV model

is determined using Schwarz’s information criterion, which suggests that
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Table 12.2 Autoregressive volatility estimates for currency futures returns

xt = σP,t ut

ln σP,t = α + ∑
i

βi ln σP,t−i + νt

Coefficient BP DM JY SF

α −1.037 −1.139 −1.874 −1.219

(0.171) (0.187) (0.199) (0.193)

β1 0.192 0.153 0.208 0.115

(0.028) (0.028) (0.028) (0.028)

β2 0.134 0.111 0.137 0.106

(0.029) (0.028) (0.028) (0.028)

β3 0.062 0.052 0.058 0.068

(0.029) (0.028) (0.029) (0.028)

β4 0.069 0.092 0.109 0.091

(0.029) (0.028) (0.028) (0.028)

β5 0.137 0.091 0.112 0.118

(0.028) (0.028) (0.028) (0.028)

β6 0.027 0.072 0.074

(0.029) (0.028) (0.028)

β7 0.073 0.110 0.086

(0.028) (0.028) (0.028)

β8 0.088 0.079 0.078

(0.028) (0.028) (0.028)

R̄2 0.274 0.227 0.170 0.193

Source: Hsieh (1993). Reprinted with the permission of School of Business

Administration, University of Washington.

8, 8, 5 and 8 lags should be used for the pound, mark, yen and franc

series, respectively. The coefficient estimates for the ARV models are given

in table 12.2.

The degrees of persistence for each exchange rate series implied by

the ARV estimates is given by the sums of the β coefficients, which are

0.78, 0.76, 0.62, 0.74, respectively. These figures are high, although less

so than under the EGARCH formulation. The standardised residuals from

this model are given by xt/σ̂P,t , where σ̂P,t are the fitted values of volatil-

ity. An application of the BDS test to these standardised residuals shows

no evidence of further structure apart from in the Swiss franc case, where

the test statistics are marginally significant. Thus, since these standard-

ised residuals are iid, it is valid to sample from them using the bootstrap

technique.



576 Introductory Econometrics for Finance

To summarise, it is concluded that both the EGARCH and ARV models

present reasonable descriptions of the futures returns series, which are

then employed in conjunction with the bootstrap to estimate the value

at risk estimates. This is achieved by simulating the future values of the

futures price series, using the parameter estimates from the two models,

and using disturbances obtained by sampling with replacement from the

standardised residuals (η̂t/ĥ1/2
t ) for the EGARCH model and from ut and

νt for ARV models. In this way, 10,000 possible future paths of the series

are simulated (i.e. 10,000 replications are used), and in each case, the

maximum drawdown (loss) can be calculated over a given holding period

by

Q = (P0 − P1) ×number of contracts (12.24)

where P0 is the initial value of the position, and P1 is the lowest simulated

price (for a long position) or highest simulated price (for a short position)

over the holding period. The maximum loss is calculated assuming hold-

ing periods of 1, 5, 10, 15, 20, 25, 30, 60, 90 and 180 days. It is assumed

that the futures position is opened on the final day of the sample used to

estimate the models, 9 March 1990.

The 90th percentile of these 10,000 maximum losses can be taken to

obtain a figure for the amount of capital required to cover losses on 90%

of days. It is important for firms to consider the maximum daily losses

arising from their futures positions, since firms will be required to post

additional funds to their margin accounts to cover such losses. If funds

are not made available to the margin account, the firm is likely to have

to liquidate its futures position, thus destroying any hedging effects that

the firm required from the futures contracts in the first place.

However, Hsieh (1993) uses a slightly different approach to the final

stage, which is as follows. Assuming (without loss of generality) that the

number of contracts held is 1, the following can be written for a long

position

Q

x0

=
(

1 − x1

x0

)
(12.25)

or

Q

x0

=
(

x1

x0

− 1

)
(12.26)

for a short position. x1 is defined as the minimum price for a long position

(or the maximum price for a short position) over the horizon that the

position is held. In either case, since x0 is a constant, the distribution of

Q will depend on the distribution of x1. Hsieh (1993) assumes that prices
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are lognormally distributed, i.e. that the logs of the ratios of the prices,

ln

(
x1

x0

)

are normally distributed. This being the case, an alternative estimate of

the fifth percentile of the distribution of returns can be obtained by taking

the relevant critical value from the normal statistical tables, multiplying

it by the standard deviation and adding it to the mean of the distribution.

The MCRRs estimated using the ARV and EGARCH models are compared

with those estimated by bootstrapping from the price changes themselves,

termed the ‘unconditional density model’. The estimated MCRRs are given

in table 12.3.

The entries in table 12.3 refer to the amount of capital required to

cover 90% of expected losses, as percentages of the initial values of the

positions. For example, according to the EGARCH model, approximately

14% of the initial value of a long position should be held in the case of

the yen to cover 90% of expected losses for a 180-day horizon. The results

contain several interesting features. First, the MCRRs derived from boot-

strapping the price changes themselves (the ‘unconditional approach’) are

in most cases higher than those generated from the other two methods,

especially at short investment horizons. This is argued to have occurred

owing to the fact that the level of volatility at the start of the MCRR

calculation period was low relative to its historical level. Therefore, the

conditional estimation methods (EGARCH and ARV) will initially forecast

volatility to be lower than the historical average. As the holding period in-

creases from 1 towards 180 days, the MCRR estimates from the ARV model

converge upon those of the unconditional densities. On the other hand,

those of the EGARCH model do not converge, even after 180 days (in fact,

in some cases, the EGARCH MCRR seems oddly to diverge from the un-

conditionally estimated MCRR as the horizon increases). It is thus argued

that the EGARCH model may be inappropriate for MCRR estimation in this

application.

It can also be observed that the MCRRs for short positions are larger

than those of comparative long positions. This could be attributed to an

upward drift in the futures returns over the sample period, suggesting

that on average an upwards move in the futures price was slightly more

likely than a fall.

A further step in the analysis, which Hsieh did not conduct, but which

is shown in Brooks, Clare and Persand (2000), is to evaluate the perfor-

mance of the MCRR estimates in an out-of-sample period. Such an exercise

would evaluate the models by assuming that the MCRR estimated from
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Table 12.3 Minimum capital risk requirements for currency futures as a percentage of
the initial value of the position

Long position Short position

Unconditional Unconditional
No. of days AR density EGARCH AR density EGARCH

BP 1 0.73 0.91 0.93 0.80 0.98 1.05

5 1.90 2.30 2.61 2.18 2.76 3.00

10 2.83 3.27 4.19 3.38 4.22 4.88

15 3.54 3.94 5.72 4.45 5.48 6.67

20 4.10 4.61 6.96 5.24 6.33 8.43

25 4.59 5.15 8.25 6.20 7.36 10.46

30 5.02 5.58 9.08 7.11 8.33 12.06

60 7.24 7.44 14.50 11.64 12.87 20.71

90 8.74 8.70 17.91 15.45 16.90 28.03

180 11.38 10.67 24.25 25.81 27.36 48.02

DM 1 0.72 0.87 0.83 0.89 1.00 0.95

5 1.89 2.18 2.34 2.23 2.70 2.91

10 2.77 3.14 3.93 3.40 4.12 5.03

15 3.52 3.86 5.37 4.36 5.30 6.92

20 4.05 4.45 6.54 5.19 6.14 8.91

25 4.55 4.90 7.86 6.14 7.21 10.69

30 4.93 5.37 8.75 7.02 7.88 12.36

60 7.16 7.24 13.14 11.36 12.38 20.86

90 8.87 8.39 16.06 14.68 16.16 27.75

180 11.38 10.35 21.69 24.25 26.25 45.68

JY 1 0.56 0.74 0.72 0.68 0.87 0.86

5 1.61 1.99 2.22 1.92 2.36 2.73

10 2.59 2.82 3.46 3.06 3.53 4.41

15 3.30 3.46 4.37 4.11 4.60 5.79

20 3.95 4.10 5.09 5.13 5.45 6.77

25 4.42 4.58 5.78 5.91 6.30 7.98

30 4.95 4.92 6.34 6.58 6.85 8.81

60 6.99 6.84 8.72 10.53 10.74 13.58

90 8.43 8.00 10.51 13.61 14.00 17.63

180 10.97 10.27 13.99 21.86 22.21 27.39

SF 1 0.82 0.97 0.89 0.93 1.12 0.98

5 1.99 2.51 2.48 2.23 2.93 2.98

10 2.87 3.60 4.12 3.37 4.53 5.09

15 3.67 4.35 5.60 4.22 5.67 7.03

20 4.24 5.10 6.82 5.09 6.69 8.86

25 4.81 5.65 8.12 5.90 7.77 10.93

30 5.23 6.20 9.12 6.70 8.47 12.50

60 7.69 8.41 13.73 10.55 13.10 21.27

90 9.23 9.93 16.89 13.60 17.06 27.80

180 12.18 12.57 22.92 21.72 27.45 45.47

Source: Hsieh (1993). Reprinted with the permission of School of Business

Administration, University of Washington.
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the model had been employed, and by tracking the change in the value

of the position over time. If the MCRR is adequate, the 90% nominal esti-

mate should be sufficient to cover losses on 90% of out-of-sample testing

days. Any day where the MCRR is insufficient to cover losses is termed

an ‘exceedence’ or an ‘exception’. A model that leads to more than 10%

exceptions for a nominal 90% coverage is deemed unacceptable on the

grounds that on average, the MCRR was insufficient. Equally, a model that

leads to considerably less than the expected 10% exceptions would also be

deemed unacceptable on the grounds that the MCRR has been set at an

inappropriately high level, leading capital to be unnecessarily tied up in

a liquid and unprofitable form. Brooks, Clare and Persand (2000) observe,

as Hsieh’s results forewarn, that the MCRR estimates from GARCH-type

models are too high, leading to considerably fewer exceedences than the

nominal proportion.

12.9.2 VaR estimation using bootstrapping in EViews

Following the discussion above concerning the Hsieh (1993) and Brooks,

Clare and Persand (2000) approaches to calculating minimum capital risk

requirements, the following EViews code can be used to calculate the

MCRR for a 10-day holding period (the length that regulators require banks

to employ) using daily S&P500 data, which is found in the file ‘sp500.wf1’.

The code is presented, followed by an annotated copy of some of the key

lines.

′THIS PROGRAM APPLIES THE BOOTSTRAP TO THE
′CALCULATION OF
′MCRR FOR A 10-DAY HORIZON PERIOD
′LOAD WORKFILE

LOAD ‘‘D:\CHRIS\BOOK\SP500.WF1’’

RNDSEED 12345

!NREPS=10000

SERIES RT

SERIES U

SERIES H

SERIES MIN

SERIES MAX

SERIES L1

SERIES S1

SCALAR MCRRL

SCALAR MCRRS

RT=LOG(SP500/SP500(−1))
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EQUATION EQ1.ARCH(M=100,C=1E-5) RT C

EQ1.MAKEGARCH H

EXPAND 1 10000

SERIES HSQ=Hˆ0.5

SERIES RESI=RT-@COEFS(1)

SERIES SRES=RESI/HSQ

EQ1.FORECAST RTF YSE HF
′BOOTSTRAP LOOP

FOR !Z=1 TO !NREPS

SMPL 3 2610

GROUP G1 SRES

G1.RESAMPLE

SMPL 2611 2620

RT=@COEFS(1)+@SQRT(HF(-2610))∗SRES B(−10)

SP500=SP500(−1)∗EXP(RT)

MIN(!Z)=@MIN(SP500)

MAX(!Z)=@MAX(SP500)

NEXT

SMPL 1 10000
′LONG POSITION

L1=LOG(MIN/1138.73)

MCRRL=1-(EXP((−1.645∗@STDEV(L1))+@MEAN(L1)))
′SHORT POSITION

S1=LOG(MAX/1138.73)

MCRRS=(EXP((1.645∗@STDEV(S1))+@MEAN(S1)))−1

Again, annotation of the EViews code above will concentrate on com-

mands that have not been discussed previously. The ‘SERIES . . .’ and

‘SCALAR . . .’ statements set up the arrays that will hold the series and

the scalars (i.e. single numbers) respectively.

Then ‘EQUATION EQ1.ARCH(M=100,C=1E-5) RT C’ estimates an ARCH

model, denoting the equation object created by ‘EQ1’, and allowing the

process to perform up to 100 iterations with a convergence criterion

of 10−5, with the dependent variable RT (which is the returns series)

and the conditional mean equation containing a constant only. The line

‘EQ1.MAKEGARCH H’ will generate a series of fitted conditional variance

values, denoted by H. The ‘EXPAND 1 10000’ instruction will increase the

size of the arrays in the workfile to 10000 from the original length of the

S&P series (2,610 observations).

The three lines SERIES HSQ=Hˆ0.5, SERIES RESI=RT-@COEFS(1) and

SERIES SRES=RESI/HSQ will construct a set of standardised residuals.
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The next step is to forecast the conditional variances for 10 observations

2611 to 2620 using the command ‘EQ1.FORECAST RTF YSE HF’, which

will construct forecasts of the conditional mean (placed into RTF), the

conditional standard deviation (YSE) and the conditional variance (HF),

respectively.

Next follows the core of the program, which is the bootstrap loop, Z.

The number of replications ‘!NREPS’ has been defined as 10,000. The in-

structions GROUP G1 SRES and G1.RESAMPLE construct a group (in this

case, containing only one element SRES), which is then resampled. The

re-sampled series is then placed in SRES B. The future paths of the series

over the 10-day holding period are then constructed, and the maximum

and minimum price achieved over that period (observations 2611 to 2620)

are saved in the arrays MAX and MIN, respectively. Finally, NEXT finishes

the bootstrapping loop.

The following SMPL instruction is necessary to reset the sample period

used to cover all observation numbers from 1 to 10,000 (i.e. to incorporate

all of the 10,000 bootstrap replications). By default, if this statement was

not included, EViews would have continued to use the most recent sample

statement, conducting analysis using only observations 2611 to 2620:

SMPL110000

The following block of two commands generates the MCRR for the long

position. The first stage is to construct the log returns for the maximum

loss over the 10-day holding period. Notice that the command will auto-

matically do this calculation for every element of the ‘MIN’ array -- i.e.

for all 10,000 replications. In order to use information from all of the

replications, and under the assumption that the L1 statistic is normally

distributed across the replications, the MCRR can be calculated using the

command given (rather than using the fifth percentile of the empirical

distribution). This works as follows. Assuming that ln( x1

x0
) is normally dis-

tributed with some mean m and standard deviation sd, a standard normal

variable can be constructed by subtracting the mean and dividing by the

standard deviation

ln

(
x1

x0

)
− m

sd
∼ N (0, 1).

The 5% lower tail critical value for a standard normal is −1.645, so to

find the fifth percentile

ln

(
x1

x0

)
− m

sd
= −1.645 (12.27)
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Rearranging (12.27)

x1

x0

= exp [−1.645sd + m] (12.28)

From (12.25), (12.28) can also be written

Q

x̄0

= 1 − exp [−1.645sd + m] (12.29)

which will give the maximum loss or draw down on a long position over

the simulated 10 days. The maximum draw down for a short position will

be given by

Q

x̄0

= exp [−1.645sd + m] − 1 (12.30)

The following two lines then repeat the above procedure, but replacing

the ‘MIN’ array with ‘MAX’ to calculate the MCRR for a short position:

The results that would be generated by running the above program are

approximately:

MCRR = 0.04035

MCRR = 0.04814

These figures represent the minimum capital risk requirement for a long

and short position, respectively, as a percentage of the initial value of

the position for 95% coverage over a 10-day horizon. This means that, for

example, approximately 4% of the value of a long position held as liquid

capital will be sufficient to cover losses on 95% of days if the position

is held for 10 days. The required capital to cover 95% of losses over a

10-day holding period for a short position in the S&P500 index would be

around 4.8%. This is as one would expect since the index had a positive

drift over the sample period. Therefore, the index returns are not symmet-

ric about zero as positive returns are slightly more likely than negative

returns. Higher capital requirements are thus necessary for a short po-

sition since a loss is more likely than for a long position of the same

magnitude.

Key concepts
The key terms to be able to define and explain from this chapter are

● simulation ● bootstrapping

● Monte Carlo sampling variability ● pseudo-random number

● antithetic variates ● control variates
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Review questions

1. (a) Present two examples in finance and two in econometrics (ideally

other than those listed in this chapter!) of situations where a

simulation approach would be desirable. Explain in each case why

simulations are useful.

(b) Distinguish between pure simulation methods and bootstrapping.

What are the relative merits of each technique? Therefore, which

situations would benefit more from one technique than the other?

(c) What are variance reduction techniques? Describe two such

techniques and explain how they are used.

(d) Why is it desirable to conduct simulations using as many replications

of the experiment as possible?

(e) How are random numbers generated by a computer?

(f) What are the drawbacks of simulation methods relative to analytical

approaches, assuming that the latter are available?

2. A researcher tells you that she thinks the properties of the Ljung–Box

test (i.e. the size and power) will be adversely affected by ARCH in the

data. Design a simulations experiment to test this proposition.

3. (a) Consider the following AR(1) model

yt = φyt−1 + ut (12.31)

Design a simulation experiment (with code for EViews) to determine

the effect of increasing the value of φ from 0 to 1 on the distribution

of the t-ratios.

(b) Consider again the AR(1) model of (12.31). As stated in chapter 4,

the explanatory variables in a regression model are assumed to be

non-stochastic, and yet yt−1 is stochastic. The result is that the

estimator for φ will be biased in small samples. Design a simulation

experiment to investigate the effect of the value of φ and the sample

size on the extent of the bias.

4. A barrier option is a path-dependent option whose payoff depends on

whether the underlying asset price traverses a barrier. A knock-out call is

a call option that ceases to exist when the underlying price falls below a

given barrier level H . Thus the payoff is given by

max[0, ST − K ] if St > H ∀ t ≤ T
0 if St ≤ H for any t ≤ T .

where ST is the underlying price at expiry date T , and K is the exercise

price. Suppose that a knock-out call is written on the FTSE 100 Index.
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The current index value, S0 = 5000, K = 5100, time to maturity = 1

year, H = 4900, IV = 25%, risk-free rate = 5%, dividend yield = 2%.

Design a Monte Carlo simulation to determine the fair price to pay for

this option. Using the same set of random draws, what is the value of an

otherwise identical call without a barrier? Design computer code in

EViews to test your experiment.



13
Conducting empirical research or doing
a project or dissertation in finance

Learning Outcomes
In this chapter, you will learn how to

● Choose a suitable topic for an empirical research project in
finance

● Draft a research proposal

● Find appropriate sources of literature and data

● Determine a sensible structure for the dissertation

13.1 What is an empirical research project and what is it for?

Many courses, at both the undergraduate and postgraduate levels, require

or allow the student to conduct a project. This may vary from being ef-

fectively an extended essay to a full-scale dissertation or thesis of 10,000

words or more.

Students often approach this part of their degree with much trepida-

tion, although in fact doing a project gives students a unique opportunity

to select a topic of interest and to specify the whole project themselves

from start to finish. The purpose of a project is usually to determine

whether students can define and execute a piece of fairly original re-

search within given time, resource and report-length constraints. In terms

of econometrics, conducting empirical research is one of the best ways to

get to grips with the theoretical material, and to find out what practical

difficulties econometricians encounter when conducting research. Con-

ducting the research gives the investigator the opportunity to solve a puz-

zle and potentially to uncover something that nobody else has; it can be

a highly rewarding experience. In addition, the project allows students to

585
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select a topic of direct interest or relevance to them, and is often useful in

helping students to develop time-management and report-writing skills.

The final document can in many cases provide a platform for discussion

at job interviews, or act as a springboard to further study at the taught

postgraduate or doctoral level.

This chapter seeks to give suggestions on how to go about the process of

conducting empirical research in finance. Only general guidance is given,

and following this advice cannot necessarily guarantee high marks, for the

objectives and required level of the project will vary from one institution

to another.

13.2 Selecting the topic

Following the decision or requirement to do a project, the first stage is

to determine an appropriate subject area. This is, in many respects, one

of the most difficult and most crucial parts of the whole exercise. Some

students are immediately able to think of a precise topic, but for most,

it is a process that starts with specifying a very general and very broad

subject area, and subsequently narrowing it down to a much smaller and

manageable problem.

Inspiration for the choice of topic may come from a number of sources.

A good approach is to think rationally about your own interests and areas

of expertise. For example, you may have worked in the financial markets in

some capacity, or you may have been particularly interested in one aspect

of a course unit that you have studied. It is worth spending time talk-

ing to some of your instructors in order to gain their advice on what are

interesting and plausible topics in their subject areas. At the same time,

you may feel very confident at the quantitative end of finance, pricing

assets or estimating models for example, but you may not feel comfort-

able with qualitative analysis where you are asked to give an opinion on

particular issues (e.g. ‘should financial markets be more regulated?’). In

that case, a highly technical piece of work may be appropriate. Equally,

many students find econometrics both difficult and uninteresting. Such

students may be better suited to more qualitative topics, or topics that

involve only elementary statistics, but where the rigour and value added

comes from some other aspect of the problem. A case-study approach that

is not based on any quantitative analysis may be entirely acceptable and

indeed an examination of a set of carefully selected case studies may be

more appropriate for addressing particular problems, especially in situa-

tions where hard data are not readily available, or where each entity is
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distinct so that generalising from a model estimated on one set of data

may be inadvisable. Highly mathematical work that has little relevance

and which has been applied inappropriately may be much weaker than a

well constructed and carefully analysed case study.

Combining all of these inputs to the choice of topic should enable

you at the least to determine whether to conduct quantitative or non-

quantitative work, and to select a general subject area (e.g. pricing securi-

ties, market microstructure, risk management, asset selection, operational

issues, international finance, financial econometrics, etc.).

The project may take one of a number of forms, for example:

● An empirical piece of work involving quantitative analysis of data

● A survey of business practice in the context of a financial firm

● A new method for pricing a security, or the theoretical development of

a new method for hedging an exposure

● A critical review of an area of literature

● An analysis of a new market or new asset class.

Each of these types of project requires a slightly different approach, and is

conducted with varying degrees of success. The remainder of this chapter

focuses upon the type of study which involves the formulation of an em-

pirical model using the tools developed in this book. This type of project

seems to be the one most commonly selected. It also seems to be a lower

risk strategy than others. For example, projects which have the bold ambi-

tion to develop a new financial theory, or a whole new model for pricing

options, are likely to be unsuccessful and to leave the student with little

to write about. Also, critical reviews often lack rigour and are not critical

enough, so that an empirical application involving estimating an econo-

metric model appears to be a less risky approach, since the results can be

written up whether they are ‘good’ or not.

A good project or dissertation must have an element of originality. It

should add, probably a very small piece, to the overall picture in that sub-

ject area, so that the body of knowledge is larger at the end than before

the project was started. This statement often scares students, for they are

unsure from where the originality will arise. In empirically based projects,

this usually arises naturally. For example, a project may employ standard

techniques on data from a different country or a new market or asset, or

a project may develop a new technique or apply an existing technique to a

different area. A good project will also contain an in-depth analysis of the

issues at hand, rather than a superficial, purely descriptive presentation,

as well as an individual contribution. A good project will be interesting,

and it will have relevance for one or more user groups (although the user
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group may be other academic researchers and not necessarily practition-

ers); it may or may not be on a currently fashionable and newsworthy

topic. The best research challenges prior beliefs and changes the way that

the reader thinks about the problem under investigation.

The next stage is to transform this broad direction into a workably

sized topic that can be tackled within the constraints laid down by the

institution. It is important to ensure that the aims of the research are not

so broad or substantive that the questions cannot be addressed within the

constraints on available time and word limits. The objective of the project

is usually not to solve the entire world’s financial puzzles, but rather to

form and address a small problem.

It is often advisable at this stage to browse through recent issues of the

main journals relevant to the subject area. This will show which ideas

are relatively fashionable, and how existing research has tackled partic-

ular problems. A list of relevant journals is presented in table 13.1. They

can be broadly divided into two categories: practitioner-oriented and aca-

demic journals. Practitioner-oriented journals are usually very focused in

a particular area, and articles in these often centre on very practical prob-

lems, and are typically less mathematical in nature and less theory-based,

than are those in academic journals. Of course, the divide between prac-

titioner and academic journals is not a total one, for many articles in

practitioner journals are written by academics and vice versa! The list

given in table 13.1 is by no means exhaustive and, particularly in finance,

new journals appear on a monthly basis.

Many web sites contain lists of journals in finance or links to finance

journals. Some useful ones are:

● http://www.cob.ohio-state.edu/dept/fin/overview.htm -- the Virtual Fi-

nance Library, with good links and a list of finance journals

● http://www.helsinki.fi/WebEc/journals.html -- provides a list of journals

in the economics area, including finance, plus a number of finance-

related resources

● http://www.people.hbs.edu/pgompers/finjourn.htm -- provides a list of

links to finance journals

● http://www.stuart.iit.edu/fmtreview/journal.htm -- provides a list of links

to finance journals

● http://www.numa.com/ref/journals.htm -- the Numa directory of deriva-

tives journals -- lots of useful links and contacts for academic and espe-

cially practitioner journals on derivatives

● http://www.econlit.org/journal list.html -- provides a comprehensive list

of journals in the economics area, including finance
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Table 13.1 Journals in finance and econometrics

Journals in finance Journals in econometrics and related areas

Applied Financial Economics Biometrika

Applied Mathematical Finance Econometrica

European Financial Management Econometric Reviews

European Journal of Finance Econometric Theory

Finance and Stochastics Econometrics Journal

Financial Analysts Journal International Journal of Forecasting

Financial Management Journal of Applied Econometrics

Financial Review Journal of Business and Economic Statistics

Global Finance Journal Journal of Econometrics

International Journal of Finance Journal of Forecasting

and Economics Journal of the American Statistical Association

International Journal of Theoretical Journal of Financial Econometrics

and Applied Finance Journal of the Royal Statistical Society (Series A to C)

Journal of Applied Corporate Finance Journal of Time Series Analysis

International Review of Financial Analysis Society for Nonlinear Dynamics and Econometrics

Journal of Applied Finance

Journal of Asset Management

Journal of Banking and Finance

Journal of Business

Journal of Business Finance

and Accounting

Journal of Computational Finance

Journal of Derivatives

Journal of Empirical Finance

Journal of Finance

Journal of Financial and Quantitative

Analysis

Journal of Financial Economics

Journal of Financial Markets

Journal of Financial Research

Journal of Fixed Income

Journal of Futures Markets

Journal of International Financial

Markets, Institutions and Money

Journal of International Money and Finance

Journal of Money, Credit, and Banking

Journal of Portfolio Management

Journal of Risk

Journal of Risk and Insurance

Journal of Risk and Uncertainty

Mathematical Finance

Pacific Basin Finance Journal

Quarterly Review of Economics and Finance

Review of Financial Studies

Risk
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13.3 Sponsored or independent research?

Some business schools are sufficiently well connected with industry that

they are able to offer students the opportunity to work on a specific re-

search project with a ‘sponsor’. The sponsor may choose the topic and offer

additional expert guidance from a practical perspective. Sponsorship may

give the student an insight into the kind of research problems that are of

interest to practitioners, and will probably ensure that the work is prac-

tically focused and of direct relevance in the private sector. The sponsor

may be able to provide access to proprietary or confidential data, which

will broaden the range of topics that could be tackled. Most importantly,

many students hope that if they impress the firm that they are working

with, a permanent job offer will follow. The chance to work on a spon-

sored project is usually much sought after by students but it is very much

a double-edged sword, so that there are also a number of disadvantages.

First, most schools are not able to offer such sponsorships, and even those

that can are usually able to provide them to only a fraction of the class.

Second, the disappointing reality is that the problems of most interest

and relevance to practitioners are often (although admittedly not always)

of less interest to an academic audience -- fundamentally, the objectives of

the sponsor and of a university may be divergent. For example, a stereotyp-

ical investment bank might like to see a project that compares a number

of technical trading rules and evaluates their profitability; but many aca-

demics would argue that this area has been well researched before and

that finding a highly profitable rule does not constitute a contribution to

knowledge and is therefore weak as a research project. So if you have the

opportunity to undertake a sponsored project, ensure that your research

is of academic as well as practical value -- after all, it will almost certainly

be the academic who grades the work.

13.4 The research proposal

Some schools will require the submission of a research proposal which

will be evaluated and used to determine the appropriateness of the ideas

and to select a suitable supervisor. While the requirements for the pro-

posal are likely to differ widely from one institution to another, there are

some general points that may be universally useful. In some ways, the

proposal should be structured as a miniature version of the final report,

but without the results or conclusions!

● The required length of the proposal will vary, but will usually be be-

tween one and six sides of A4, typed with page numbering.
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● The proposal should start by briefly motivating the topic -- why is it

interesting or useful?

● There should be a brief review of the relevant literature, but this should

not cover more than around a third to one half of the total length of

the proposal.

● The research questions or hypotheses to be tested should then be clearly

stated.

● There should be a discussion of the data and methodology that you

intend to use.

● Some proposals also include a time-scale -- i.e. which parts of the project

do you expect to have completed by what dates?

13.5 Working papers and literature on the internet

Unfortunately, the lag between a paper being written and it actually being

published in a journal is often 2--3 years (and increasing fast), so that

research in even the most recent issues of the published journals will be

somewhat dated. Additionally, many securities firms, banks and central

banks across the world, produce high quality research output in report

form, which they often do not bother to try to publish. Much of this is

now available on the internet, so it is worth conducting searches with

keywords using readily available web search engines. A few suggestions

for places to start are given in table 13.2.

13.6 Getting the data

Although there is more work to be done before the data are analysed,

it is important to think prior to doing anything further about what data

are required to complete the project. Many interesting and sensible ideas

for projects fall flat owing to a lack of availability of relevant data. For

example, the data required may be confidential, they may be available

only at great financial cost, they may be too time-consuming to collect

from a number of different paper sources, and so on. So before finally

deciding on a particular topic, make sure that the data are going to be

available.

The data may be available at your institution, either in paper form (for

example, from the IMF or World Bank reports), or preferably electronically.

Many universities have access to Reuters, Datastream or the Bloomberg.

Many of the URLs listed above include extensive databases and further-

more, many markets and exchanges have their own web pages detailing

data availability. One needs to be slightly careful, however, in ensuring
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Table 13.2 Useful internet sites for financial literature

Universities

Almost all universities around the world now make copies of their discussion papers available

electronically.

A few examples from finance departments are:

http://w4.stern.nyu.edu/finance/research.cfm?doc id=1216 -- Department of Finance,

Stern School, New York University

http://http://fic.wharton.upenn.edu/fic/papers.html -- Wharton Financial Institutions Center

http://haas.berkeley.edu/finance/WP/rpf.html -- University of California at Berkeley

http://www.icmacentre.ac.uk/research and publications/discussion papers -- ICMA Centre,

University of Reading, of course!

US Federal Reserve Banks and the Bank of England

http://www.bankofengland.co.uk/index.htm -- Bank of England -- containing their working papers,

news and discussion

http://www.frbatlanta.org/ -- Federal Reserve Bank of Atlanta -- including information on economic

and research data and publications

http://www.stls.frb.org/fred/data/wkly.html -- Federal Reserve Bank of St. Louis -- a great deal

of useful US data, including monetary, interest rate, and financial data, available daily,

weekly, or monthly, including long time histories of data

http://www.chicagofed.org/ -- Federal Reserve Bank of Chicago -- including interest data and

useful links

http://www.dallasfed.org/ -- Federal Reserve Bank of Dallas -- including macroeconomic, interest

rate, monetary and bank data

http://www.federalreserve.gov/pubs/ifdp/ -- Federal Reserve Board of Governors International

Finance Discussion Papers

http://www.ny.frb.org/research/ -- Federal Reserve Bank of New York

International bodies

http://dsbb.imf.org/ -- the International Monetary Fund (IMF) -- including working papers, forecasts,

and IMF primary commodity price series

http://www.worldbank.org/html/dec/Publications/Workpapers/domfincapmkts.html -- World Bank

working papers in finance

http://www.oecd.org/eco/wp/onlinewp.htm -- Organisation for Economic Cooperation

and Development (OECD) working paper series, searchable

Miscellaneous

http://www.devinit.org/findev/papers.htm -- Finance and Development Research Program --

interesting research output and links on various issues in finance, but especially relating

to developing countries, such as banking crises, regulation, etc.

http://www.nber.org -- National Bureau of Economic Research (NBER) -- huge database of discussion

papers and links including data sources

http://econpapers.repec.org/ -- Econpapers (formerly WoPEc) -- huge database of working papers in

areas of economics, including finance

http://ideas.uqam.ca/ -- IDEAS -- a bibliographic database for economics, reportedly including over

500,000 searchable items

http://www.ssrn.com -- The Social Science Research Network -- a huge and rapidly growing

searchable database of working papers and the abstracts of published papers

(cont.)
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Table 13.2 (cont.)

The free data sources used in this book

http://www.nationwide.co.uk/default.htm -- UK house price index, quarterly back to 1952, plus

house prices by region and by property type

http://www.oanda.com/convert/fxhistory -- historical exchange rate series for an incredible

range of currency pairs

http://www.bls.gov/ -- US Bureau of Labor Statistics -- US macroeconomic series

http://www.federalreserve.gov/econresdata/default.htm -- US Federal Reserve Board -- more US

macroeconomic series, interest rates, etc. and working papers

http://research.stlouisfed.org/fred2/ -- a vast array of US macroeconomic series

http://www.fin-rus.com/analysis/export/ eng /default.asp -- various financial time series, including

stock indices, futures, available at high frequency

http://finance.yahoo.com/ -- Yahoo! Finance -- an incredible range of free financial data,

information, research and commentary

the accuracy of freely available data; ‘free’ data also sometimes turn out

not to be!

13.7 Choice of computer software

Clearly, the choice of computer software will depend on the tasks at hand.

Projects that seek to offer opinions, to synthesise the literature and to pro-

vide a review, may not require any specialist software at all. However, even

for those conducting highly technical research, project students rarely

have the time to learn a completely new programming language from

scratch while conducting the research. Therefore, it is usually advisable,

if possible, to use a standard software package. It is also worth stating that

marks will hardly ever be awarded for students who ‘reinvent the wheel’.

Therefore, learning to program a multivariate GARCH model estimation

routine in C++ may be a valuable exercise for career development for

those who wish to be quantitative researchers, but is unlikely to attract

high marks as part of a research project unless there is some other value

added. The best approach is usually to conduct the estimation as quickly

and accurately as possible to leave time free for other parts of the work.

13.8 How might the finished project look?

Different projects will of course require different structures, but it is

worth outlining at the outset the form that a good project or dissertation

will take. Unless there are good reasons for doing otherwise (for example,

because of the nature of the subject), it is advisable to follow the format
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Table 13.3 Suggested structure for a
typical dissertation or project

Title page

Abstract or executive summary

Acknowledgements

Table of contents

Section 1: Introduction

Section 2: Literature review

Section 3: Data

Section 4: Methodology

Section 5: Results

Section 6: Conclusions

References

Appendices

and structure of a full-length article in a scholarly journal. In fact, many

journal articles are, at approximately 5,000 words long, roughly the same

length as a student research project. A suggested outline for an empirical

research project in finance is presented in table 13.3. We shall examine

each component in table 13.3 in turn.

● The Title page is usually not numbered, and will contain only the title of

the project, the name of the author, and the name of the Department,

Faculty, or Centre in which the research is being undertaken.

● The Abstract is usually a short summary of the problem being addressed

and of the main results and conclusions of the research. The maximum

permissible length of the abstract will vary, but as a general guide,

it should not be more than 300 words in total. The abstract should

usually not contain any references or quotations, and should not be

unduly technical, even if the subject matter of the project is.

● The Acknowledgements page is a list of people whose help you would like

to note. For example, it is courteous to thank your instructor or project

supervisor (even if he/she was useless and didn’t help at all), any agency

that gave you the data, friends who read and checked or commented

upon the work, etc. It is also ‘academic etiquette’ to put a disclaimer

after the acknowledgements, worded something like ‘Responsibility for

any remaining errors lies with the author(s) alone’. This also seems

appropriate for a dissertation, for it symbolises that the student is com-

pletely responsible for the topic chosen, and for the contents and the

structure of the project. It is your project, so you cannot blame anyone

else, either deliberately or inadvertently, for anything wrong with it!
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The disclaimer should also remind project authors that it is not valid

to take the work of others and to pass it off as one’s own. Any ideas

taken from other papers should be adequately referenced as such, and

any sentences lifted directly from other research should be placed in

quotations and attributed to their original author(s).

● The Table of contents should list the sections and sub-sections contained

in the report. The section and sub-section headings should reflect accu-

rately and concisely the subject matter that is contained within those

sections. It should also list the page number of the first page of each

section, including the references and any appendices.

The abstract, acknowledgements and table of contents pages are usu-

ally numbered with lower case Roman numerals (e.g. i, ii, iii, iv, etc.),

and the introduction then starts on page 1 (reverting back to Arabic

numbers), with page numbering being consecutive thereafter for the

whole document, including references and any appendices.

● The Introduction should give some very general background information

on the problem considered, and why it is an important area for re-

search. A good introductory section will also give a description of what

is original in the study -- in other words, how does this study help to ad-

vance the literature on this topic or how does it address a new problem,

or an old problem in a new way? What are the aims and objectives of

the research? If these can be clearly and concisely expressed, it usually

demonstrates that the project is well defined. The introduction should

be sufficiently non-technical that the intelligent non-specialist should

be able to understand what the study is about, and it should finish with

an outline of the remainder of the report.

● Before commencing any empirical work, it is essential to thoroughly re-

view the existing literature, and the relevant articles that are found can

be summarised in the Literature review section. This will not only help to

put the proposed research in a relevant context, but also may highlight

potential problem areas, and will ensure that up-to-date techniques are

used and that the project is not a direct (even if unintentional) copy of

an already existing work. The literature review should follow the style

of an extended literature review in a scholarly journal, and should al-

ways be critical in nature. It should comment on the relevance, value,

advantages and shortcomings of the cited articles.

● The Data section should describe the data in detail -- the source, the for-

mat, the features of the data, and any limitations which are relevant for

later analysis (for example, are there missing observations? Is the sam-

ple period short? Does the sample include large potential structural
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breaks, e.g. caused by a stock market crash?). If there are a small num-

ber of series which are being primarily investigated, it is common to

plot the series, noting any interesting features, and to supply summary

statistics -- such as the mean, variance, skewness, kurtosis, minimum,

and maximum values of each series, tests for non-stationarity, measures

of autocorrelation, etc.

● ‘Methodology’ should describe the estimation technique(s) used to com-

pute estimates of the parameters of the model or models. The models

should be outlined and explained, using equations where appropriate.

Again, this description should be written critically, noting any potential

weaknesses in the approach and, if relevant, why more robust or up-to-

date techniques were not employed. If the methodology employed does

not require detailed descriptions, this section may usefully be combined

with the Data section.

● The Results will usually be tabulated or graphed, and each table or figure

should be described, noting any interesting features -- whether expected

or unexpected, and in particular, inferences should relate to the orig-

inal aims and objectives of the research outlined in the Introduction.

Results should be discussed and analysed, not simply presented blandly.

Comparisons should also be drawn with the results of similar existing

studies if relevant -- do your results confirm or contradict those of pre-

vious research? Each table or figure should be mentioned explicitly in

the text (e.g. ‘Results from estimation of equation (11) are presented in

Table 4’). Do not include in the project any tables or figures which are

not discussed in the text. It is also worth trying to present the results

in as interesting and varied a way as possible -- for example, including

figures and charts as well as just tables.

● The Conclusions section should re-state the original aim of the disser-

tation and outline the most important results. Any weaknesses of the

study as a whole should be highlighted, and finally some suggestions

for further research in the area should be presented.

● A list of References should be provided, in alphabetical order by author.

Note that a list of references (a list of all the papers, books or web pages

referred to in the study, irrespective of whether you read them, or found

them cited in other studies), as opposed to a bibliography (a list of items

that you read, irrespective of whether you referred to them in the study),

is usually required.

Although there are many ways to show citations and to list references,

one possible style is the following. The citations given in the text can be

given as ‘Brooks (1999) demonstrated that . . . ’ or ‘A number of authors

have concluded that . . . (see, for example, Brooks, 1999).’
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All works cited can be listed in the references section using the fol-

lowing style:

Books

Harvey, A.C. (1993) Time Series Models, second edition, Harvester Wheat-

sheaf, Hemel Hempstead, England

Published articles

Hinich, M.J. (1982) Testing for Gaussianity and Linearity of a Stationary

Time Series, Journal of Time Series Analysis 3(3), 169--176

Unpublished articles or theses

Bera, A.K. and Jarque, C.M. (1981) An Efficient Large-Sample Test for

Normality of Observations and Regression Residuals,

Australian National University Working Papers in Econometrics 40, Canberra

● Finally, an Appendix or Appendices can be used to improve the structure of

the study as a whole when placing a specific item in the text would in-

terrupt the flow of the document. For example, if you want to outline

how a particular variable was constructed, or you had to write some

computer code to estimate the models, and you think this could be

interesting to readers, then it can be placed in an appendix. The appen-

dices should not be used as a dumping ground for irrelevant material,

or for padding, and should not be filled with printouts of raw output

from computer packages!

13.9 Presentational issues

There is little sense in making the final report longer than it needs to be.

Even if you are not in danger of exceeding the word limit, superfluous

material will generate no additional credit and may be penalised. Asses-

sors are likely to take into account the presentation of the document,

as well as its content. Hence students should ensure that the structure

of their report is orderly and logical, that equations are correctly speci-

fied, and that there are no spelling or other typographical mistakes, or

grammatical errors.

It is definitely worth reserving a week at the end of the allocated project

time if possible to read the draft paper carefully at least twice. Also, your

supervisor or advisor may be willing to read through the draft and to offer

comments upon it prior to final submission. If not, maybe friends who

have done similar courses can give suggestions. All comments are useful --

after all, any that you do not like or agree with can be ignored!



14
Recent and future developments in the
modelling of financial time series

14.1 Summary of the book

The purpose of this book was to present and explain, at the introductory

level, a variety of techniques that are commonly used for the analysis of

financial data, including topics that would usually be treated only in a

mathematically advanced way. The book commenced with an outline of

some stylised characteristics of financial data and described one econo-

metric software package that is widely employed for the financial data

exploration. The techniques and models presented included linear mod-

els, univariate linear time series approaches, dealing with non-stationary

data and long-run modelling, models for volatility and correlation, lim-

ited dependent variable approaches, panel data, regime switching models

and simulations methodologies. Along the way, examples were presented

in each chapter of relevant financial applications from the published lit-

erature, and sample instructions or codes for the software package were

also given.

14.2 What was not covered in the book

Although this textbook was intended to offer as broad a set of analytical

techniques as possible, this in part conflicts with the twin objective of

maintaining the book at a manageable length with all of the material at

the introductory level so that it can be followed by students completely

new to the subject on a one- or two-semester course. Consequently, some

interesting and arguably relevant topics have been omitted owing to space

constraints. These topics are discussed (with no equations and in no par-

ticular order!) below.

Bayesian statistics

The philosophical approach to model-building adopted in this entire book,

as with the majority of others, has been that of ‘classical statistics’. Under

598
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the classical approach, the researcher postulates a theory and estimates

a model to test that theory. Tests of the theory are conducted using the

estimated model within the ‘classical’ hypothesis testing framework de-

veloped in chapters 2 and 3. Based on the empirical results, the theory is

either refuted or upheld by the data.

There is, however, an entirely different approach available for model

construction, estimation and inference, known as Bayesian statistics. Un-

der a Bayesian approach, the theory and empirical model work more

closely together. The researcher would start with an assessment of the

existing state of knowledge or beliefs, formulated into a set of proba-

bilities. These prior inputs or priors would then be combined with the

observed data via a likelihood function. The beliefs and the probabilities

would then be updated as a result of the model estimation, resulting in

a set of posterior probabilities. Probabilities are thus updated sequentially,

as more data become available. The central mechanism, at the most basic

level, for combining the priors with the likelihood function, is known as

Bayes’ theorem.

The Bayesian approach to estimation and inference has found a number

of important recent applications in financial econometrics, in particular

in the context of GARCH modelling (see Bauwens and Lubrano, 1998, or

Vrontos et al., 2000 and the references therein for some examples), asset al-

location (see, for example, Handa and Tiwari, 2006), portfolio performance

evaluation (Baks et al., 2001).

The Bayesian setup is an intuitively appealing one, although the re-

sulting mathematics is somewhat complex. Many classical statisticians

are unhappy with the Bayesian notion of prior probabilities that are set

partially according to judgement. Thus, if the researcher set very strong

priors, an awful lot of evidence against them would be required for the

notion to be refuted. Contrast this with the classical case, where the data

are usually permitted to freely determine whether a theory is upheld or

refuted, irrespective of the researcher’s judgement.

Chaos in financial markets

Econometricians have searched long and hard for chaos in financial,

macroeconomic and microeconomic data, with very limited success to

date. Chaos theory is a notion taken from the physical sciences that suggests

that there could be a deterministic, non-linear set of equations underlying

the behaviour of financial series or markets. Such behaviour will appear

completely random to the standard statistical tests developed for appli-

cation to linear models. The motivation behind this endeavour is clear:

a positive sighting of chaos implies that while, by definition, long-term
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forecasting would be futile, short-term forecastability and controllability

are possible, at least in theory, since there is some deterministic struc-

ture underlying the data. Varying definitions of what actually constitutes

chaos can be found in the literature, but a robust definition is that a

system is chaotic if it exhibits sensitive dependence on initial conditions

(SDIC). The concept of SDIC embodies the fundamental characteristic of

chaotic systems that if an infinitesimal change is made to the initial con-

ditions (the initial state of the system), then the corresponding change

iterated through the system for some arbitrary length of time will grow

exponentially. Although several statistics are commonly used to test for

the presence of chaos, only one is arguably a true test for chaos, namely

estimation of the largest Lyapunov exponent. The largest Lyapunov ex-

ponent measures the rate at which information is lost from a system.

A positive largest Lyapunov exponent implies sensitive dependence, and

therefore that evidence of chaos has been obtained. This has important

implications for the predictability of the underlying system, since the

fact that all initial conditions are in practice estimated with some error

(owing either to measurement error or exogenous noise), will imply that

long-term forecasting of the system is impossible as all useful information

is likely to be lost in just a few time steps.

Chaos theory was hyped and embraced in both the academic literature

and in financial markets worldwide in the 1980s. However, almost with-

out exception, applications of chaos theory to financial markets have been

unsuccessful. Consequently, although the ideas generate continued inter-

est owing to the interesting mathematical properties and the possibility

of finding a prediction holy grail, academic and practitioner interest in

chaotic models for financial markets has arguably almost disappeared.

The primary reason for the failure of the chaos theory approach appears

to be the fact that financial markets are extremely complex, involving

a very large number of different participants, each with different objec-

tives and different sets of information -- and, above all, each of whom

are human with human emotions and irrationalities. The consequence of

this is that financial and economic data are usually far noisier and ‘more

random’ than data from other disciplines, making the specification of a

deterministic model very much harder and possibly even futile.

Neural network models

Artificial neural networks (ANNs) are a class of models whose structure is

broadly motivated by the way that the brain performs computation. ANNs have

been widely employed in finance for tackling time series and classification

problems. Recent applications have included forecasting financial asset
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returns, volatility, bankruptcy and takeover prediction. Applications are

contained in the books by Trippi and Turban (1993), Van Eyden (1996)

and Refenes (1995). A technical collection of papers on the econometric

aspects of neural networks is given by White (1992), while an excellent

general introduction and a description of the issues surrounding neural

network model estimation and analysis is contained in Franses and van

Dijk (2000).

Neural networks have virtually no theoretical motivation in finance

(they are often termed a ‘black box’ technology), but owe their popularity

to their ability to fit any functional relationship in the data to an arbitrary

degree of accuracy. The most common class of ANN models in finance are

known as feedforward network models. These have a set of inputs (akin to

regressors) linked to one or more outputs (akin to the regressand) via one

or more ‘hidden’ or intermediate layers. The size and number of hidden

layers can be modified to give a closer or less close fit to the data sample,

while a feedforward network with no hidden layers is simply a standard

linear regression model.

Neural network models are likely to work best in situations where finan-

cial theory has virtually nothing to say about the likely functional form

for the relationship between a set of variables. However, their popularity

has arguably waned over the past five years or so as a consequence of

several perceived problems with their employment. First, the coefficient

estimates from neural networks do not have any real theoretical interpre-

tation. Second, virtually no diagnostic or specification tests are available

for estimated models to determine whether the model under considera-

tion is adequate. Third, ANN models can provide excellent fits in-sample to

a given set of ‘training’ data, but typically provide poor out-of-sample fore-

cast accuracy. The latter result usually arises from the tendency of neural

networks to fit closely to sample-specific data features and ‘noise’, and

therefore their inability to generalise. Various methods of resolving this

problem exist, including ‘pruning’ (removing some parts of the network)

or the use of information criteria to guide the network size. Finally, the

non-linear estimation of neural network models can be cumbersome and

computationally time-intensive, particularly, for example, if the model

must be estimated rolling through a sample to produce a series of one-

step-ahead forecasts.

Long-memory models

It is widely believed that (the logs of) asset prices contain a unit root. How-

ever, asset return series evidently do not possess a further unit root, al-

though this does not imply that the returns are independent. In particular,
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it is possible (and indeed, it has been found to be the case with some fi-

nancial and economic data) that observations from a given series taken

some distance apart, show signs of dependence. Such series are argued

to possess long memory. One way to represent this phenomenon is using a

‘fractionally integrated’ model. In simple terms, a series is integrated of

a given order d if it becomes stationary on differencing a minimum of d
times. In the fractionally integrated framework, d is allowed to take on

non-integer values. This framework has been applied to the estimation of

ARMA models (see, for example, Mills, 1999). Under fractionally integrated

models, the corresponding autocorrelation function (ACF) will decline

hyperbolically, rather than exponentially to zero. Thus, the ACF for a frac-

tionally integrated model dies away considerably more slowly than that

of an ARMA model with d = 0. The notion of long memory has also been

applied to GARCH models, where volatility has been found to exhibit long-

range dependence. A new class of models known as fractionally integrated

GARCH (FIGARCH) have been proposed to allow for this phenomenon (see

Ding, Granger and Engle, 1993 or Bollerslev and Mikkelsen, 1996).

14.3 Financial econometrics: the future?

It is of course, difficult to predict with accuracy what will be the new and

important econometric models of tomorrow. However, there are of course

topics that are currently ‘hot’ and which are likely to see continued inter-

est in the future. A non-exhaustive selection of these is discussed below.

There are also several survey papers published in academic journals that

discuss recent and possible future developments in financial economet-

rics. Surveys of a technical nature, which are now slightly dated, include

those of Pagan (1996) and Tsay (2000). An excellent overview of the state

of the art in a vast array of areas in econometrics is provided by Mills and

Patterson (2006).

14.3.1 Tail models

It is widely known that financial asset returns do not follow a normal dis-

tribution, but rather they are almost always leptokurtic, or fat-tailed. This ob-

servation has several implications for econometric modelling. First, mod-

els and inference procedures are required that are robust to non-normal

error distributions. Second, the riskiness of holding a particular security

is probably no longer appropriately measured by its variance alone. In

a risk management context, assuming normality when returns are fat-

tailed will result in a systematic underestimation of the riskiness of the
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portfolio. Consequently, several approaches have been employed to system-

atically allow for the leptokurtosis in financial data, including the use of

a Student’s t distribution.

Arguably the simplest approach is the use of a mixture of normal dis-

tributions. It can be seen that a mixture of normal distributions with

different variances will lead to an overall series that is leptokurtic. Sec-

ond, a Student’s t distribution can be used, with the usual degrees of free-

dom parameter estimated using maximum likelihood along with other

parameters of the model. The degrees of freedom estimate will control

the fatness of the tails fitted from the model. Other probability distri-

butions can also be employed, such as the ‘stable’ distributions that fall

under the general umbrella of extreme value theory (see Brooks, Clare,

Dalle Molle and Persand, 2005 for an application of this technique to value

at risk modelling).

14.3.2 Copulas and quantile regressions

As discussed in chapter 2, covariance and correlation provide simple mea-

sures of association between series. However, as is well known, they are

very limited measures in the sense that they are linear and are not suf-

ficiently flexible to provide full descriptions of the relationship between

financial series in reality. In particular, new types of assets and structures

in finance have led to increasingly complex dependencies that cannot

be satisfactorily modelled in the classical framework. Copulas provide an

alternative way to link together the individual (marginal) distributions of

series to model their joint distribution. One attractive feature of copulas

is that they can be applied to link together any marginal distributions

that are proposed for the individual series. The most commonly used cop-

ulas are the Gaussian and Clayton copulas. They are particularly useful

for modelling the relationships between the tails of series, and find appli-

cations in stress testing and simulation analysis. For introductions to this

area and applications in finance and risk management, see Nelsen (2006),

Alexander (2008, chapter 4) and Embrechts et al. (2003).

The possibility of application in the risk management arena has also

stimulated renewed interest in another rather old technique, which has

now become fashionable, known as quantile regression. Dating back to

Koenker and Bassett (1978), quantile regression involves constructing a

set of regression curves each for different quantiles of the conditional

distribution of the dependent variable. So, for example, we could look at

the dependency of y on x in the tails of y’s distribution. This set of regres-

sion estimates will provide a more detailed analysis of the entire relation-

ship between the dependent and independent variables than a standard
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regression model would (see Koenker, 2005). The latter would only be

sufficient in the context that the dependent and independent variables

followed a bivariate normal distribution. Taylor (1999) and Engle and

Manganelli (2004) use quantile regression for value at risk estimation,

while Alexander (2008) provides a novel application to hedging.1

14.3.3 Market microstructure

One of the most rapidly evolving areas of financial application of statisti-

cal tools is in the modelling of market microstructure problems. ‘Market

microstructure’ may broadly be defined as the process whereby investors’

preferences and desires are translated into financial market transactions. A com-

prehensive survey is given by Madhavan (2000). He identifies several as-

pects of the market microstructure literature, including price formation

and price discovery, issues relating to market structure and design, in-

formation and disclosure. There are also relevant books by O’Hara (1995),

Harris (2002) and Hasbrouck (2007).

Research efforts in this area have been motivated by enhancements in

computer technology, which have improved the quality and quantity of

available data. Trends towards ‘globalisation’ have implied that investors

are increasingly looking beyond their own shores in the search for higher

returns or more efficient diversification. It is also likely that the number

of exchanges will reduce considerably over the next decade or two, so it

is therefore essential that the new exchanges be organised optimally.

At the same time, there has been considerable advancement in the

sophistication of econometric models applied to microstructure problems.

An important innovation was the Autoregressive Conditional Duration

(ACD) model due to Engle and Russell (1998). An interesting application

can be found in Dufour and Engle (2000), who examine the effect of the

time between trades on the price-impact of the trade and the speed of

price adjustment.

It is also evident that microstructure is important since it potentially

impacts on many other areas of finance. For example, market rigidities

or frictions can imply that current asset prices do not fully reflect future

expected cashflows (see the discussion in chapter 9 of this book). Also,

investors are likely to require compensation for holding securities that

are illiquid, and therefore embody a risk that they will be difficult to sell

owing to the relatively high probability of a lack of willing purchasers at

the time of desired sale. Measures such as volume or the time between

trades are sometimes used as proxies for market liquidity.

1 Quantile regression is available in EViews version 6 -- see EViews User’s Guide II, chapter 31.
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14.3.4 Computational techniques for options pricing and other uses

The number and complexity of available derivative securities has increased

enormously over the past decade, and this expansion continues today.

There are now many examples of financial options, for example, whose

payoffs are so complex that an analytical formula for valuing the option is

not available. Consequently, alongside developments in the mathematics

of option pricing formulas, interest in new computational techniques,

for example based on lattice or simulations methods, has surged. New

theoretical models have been proposed, such as those including ‘jumps’

in the data generating process for the underlying asset (see, for example,

Amin, 1993 or Naik, 1993).

Computational speed and power continues to increase rapidly, such that

problems which were previously infeasible even with a supercomputer can

now be accomplished using a desktop PC. This augurs well for the con-

tinued expansion of the application of simulation methods in economics

and finance. Researchers’ understanding of the properties of simulations-

based estimators is also improving as the body of knowledge and cumu-

lated experience in this area grows. In econometrics, the simulation of

large multivariate GARCH or switching models is now within the realms

of possibility. Similarly in finance, real-time Monte Carlo scenario analysis

for risk management models could now be conducted.

Computational advancements have also led to enhancements in the

quality and quantity of databases that can be used in financial econo-

metrics. For example, just a few years ago, the notion of holding a large

database of high frequency financial data covering tick-by-tick observa-

tions on thousands of companies would have been unthinkable. Such large

data sources are becoming more and more readily available as the costs

of obtaining, storing and retrieving the information falls. This is likely

to lead to significant new contributions in the area of real-time analysis,

market microstructure, examination of technical trading rules, and so on.

14.3.5 Higher moment models

Research over the past two decades has moved from examination purely

of the first moment of financial time series (i.e. estimating models for the

returns themselves), to consideration of the second moment (models for the

variance). While this clearly represents a large step forward in the analysis

of financial data, it is also evident that conditional variance specifications

are not able to fully capture all of the relevant time series properties.

For example, GARCH models with normal (0,1) standardised disturbances

cannot generate sufficiently fat tails to model the leptokurtosis that is
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actually observed in financial asset returns series. One proposed approach

to this issue has been to suggest that the standardised disturbances are

drawn from a Student’s t distribution rather than a normal. However,

there is also no reason to suppose that the fatness of tails should be

constant over time, which it is forced to be by the GARCH-t model.

Another possible extension would be to use a conditional model for the

third or fourth moments of the distribution of returns (i.e. the skewness

and kurtosis, respectively). Under such a specification, the conditional

skewness or kurtosis of the returns could follow a GARCH-type process

that allows it to vary through time. Harvey and Siddique (1999, 2000)

have developed an autoregressive conditional skewness model, while a

conditional kurtosis model was proposed in Brooks, Burke, Heravi and Per-

sand (2005). Such models could have many other applications in finance,

including asset allocation (portfolio selection), option pricing, estimation

of risk premia, and so on.

An extension of the analysis to moments of the return distribution

higher than the second has also been undertaken in the context of the

capital asset pricing model, where the conditional co-skewness and co-

kurtosis of the asset’s returns with the market’s are accounted for (e.g.,

Hung et al., 2004). A recent study by Brooks et al. (2006) proposed a utility-

based framework for the determination of optimal hedge ratios that can

allow for the impact of higher moments on the hedging decision in the

context of hedging commodity exposures with futures contracts.

14.4 The final word

I wrote in the previous edition of this book that it was probably fair to

say that there had been a hiatus in the development of new econometric

techniques for the analysis of financial data over the past decade; seven

years on, I still believe this is true. Arguably, the majority of recent devel-

opments in financial econometrics have involved improvements in both

the quantity and quality of applications, rather than the development of

entirely new techniques. The last decade has not, for example, seen the

development of new classes of models on the grand scale of those for

cointegration or ARCH.

It is clear that an ideal model for asset returns, which is intuitive to

interpret and easy to estimate yet which is able to adequately describe

all of the stylised features of the data at hand, has yet to be discovered.

Maybe you will find it!



Appendix 1
A review of some fundamental mathematical
and statistical concepts

A1 Introduction

This appendix presents a very brief summary of several important mathematical

and statistical concepts. These concepts are, in the opinion of this author, funda-

mental to a solid understanding of the material of this book. They are presented

in an appendix since it is anticipated that the majority of readers will already

have some exposure to the techniques, but may require some brief revision. The

topics that will be covered are: characteristics of probability distributions and

sampling, differential calculus, properties of logarithms and matrix algebra.

A2 Characteristics of probability distributions

A random variable is one that can take on any value from a given set. The most com-

monly used distribution to characterise a random variable is a normal or Gaussian

(these terms are equivalent) distribution. The normal distribution is particularly

useful since it is symmetric, and the only pieces of information required to com-

pletely specify the distribution are its mean and variance.

The probability density function for a normal random variable with mean μ

and variance σ 2 is given by f (y) in the following expression1

f (y) = 1√
2π

e−(y−μ)2/2σ 2

Entering values of y into this expression would trace out the familiar ‘bell-shape’

of the normal distribution described in chapter 2.

The mean of a random variable y is also known as its expected value, written

E(y). The properties of expected values are used widely in econometrics, and are

listed below, referring to a random variable y:

● The expected value of a constant (or a variable that is non-stochastic) is the

constant (or non-stochastic variable), e.g. E(c) = c.

● The expected value of a constant multiplied by a random variable is

equal to the constant multiplied by the expected value of the variable:

1 Note that here, we are referring to the density of a single observation for y rather than

the joint density of all of the observations.
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E(c y) = cE(y). It can also be stated that E(c y + d) = (c E(y)) + d, where d is

also a constant.

● For two independent random variables, y1 and y2, E(y1 y2) = E(y1) E(y2).

The variance of a random variable y is usually written var (y). The properties of

the ‘variance operator’, var, are listed below:

● The variance of a random variable y is given by var (y) = E[y − E(y)]2

● The variance of a constant is zero: var (c) = 0

● For c and d constants, var (c y + d) = c2 var (y)

● For two independent random variables, y1 and y2, var (c y1 + dy2) = c2 var (y1) +
d2 var (y2).

The covariance between two random variables, y1 and y2, measures the degree

of association between them, and is expressed cov (y1, y2). The properties of the

covariance operator are:

● cov (y1, y2) = E[(y1 − E(y1))(y2 − E(y2))]

● For two independent random variables, y1 and y2, cov (y1, y2) = 0

● For four constants, c, d, e, and f , cov (c + dy1, e + f y2) = d f cov (y1, y2).

If a random sample of size T : y1, y2, y3, . . . , yn is drawn from a population that

is normally distributed with mean μ and variance σ 2, the sample mean, ȳ is also

normally distributed with mean μ, and variance σ 2/T . In fact, the central limit

theorem states that the sampling distribution of the mean of any random sample

of observations will tend towards the normal distribution with mean equal to the

population mean, μ as the sample size tends to infinity.

A3 Properties of logarithms

Logarithms were invented to simplify cumbersome calculations, since exponents

can then be added or subtracted, which is easier than multiplying or dividing the

original numbers. While making logarithmic transformations for computational

ease is no longer necessary, they still have important uses in algebra and in data

analysis. For the latter, there are at least three reasons why log transforms may

be useful. First, taking a logarithm can often help to rescale the data so that

their variance is more constant, which overcomes a common statistical problem.

Second, logarithmic transforms can help to make a positively skewed distribution

closer to a normal distribution. Third, taking logarithms can also be a way to

make a non-linear, multiplicative relationship between variables into a linear,

additive one. These issues are discussed in some detail in chapter 4.

Taking a logarithm is the inverse of a taking an exponential. Natural loga-

rithms, also known as logs to base e (where e is 2.71828. . . ), are more commonly

used and more useful mathematically than logs to any other bases. A log to base

e is known as a natural or Naperian logarithm, denoted interchangeably by ln(y)

or log(y).

The properties of logarithms or ‘laws of logs’ are:

● ln(x y) = ln(x) + ln(y)

● ln(x/y) = ln(x) − ln(y)
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● ln(yc) = c ln(y)

● ln(1) = 0

● ln(1/y) = ln(1) − ln(y) = −ln(y).

A4 Differential calculus

The effect of the rate of change of one variable on the rate of change of another is mea-

sured by a mathematical derivative. If the relationship between the two variables

can be represented by a curve, the gradient of the curve will be this rate of change.

Consider a variable y that is some function f of another variable x , i.e. y = f (x ).

The derivative of y with respect to x is written

dy

dx

or sometimes f ′(x). This term

dy

dx

measures the instantaneous rate of change of y with respect to x .

The basic rules of differentiation are as follows:

● The derivative of a constant is zero

e.g. if y = 10,
dy

dx
= 0

This is because y = 10 would be represented as a horizontal straight line on a

graph of y against x , and therefore the gradient of this function is zero.

● The derivative of a linear function is simply its slope

e.g. if y = 3x + 2,
dy

dx
= 3

● The derivative of a power function n of x

i.e. y = cxn is given by
dy

dx
= cnxn−1

For example

y = 4x3,
dy

dx
= (4 × 3)x2 = 12x2

y = 3x−1,
dy

dx
= (3 × −1)x−2 = −3x−2

● The derivative of a sum is equal to the sum of the derivatives of the individual

parts. Similarly, the derivative of a difference is equal to the difference of the

derivatives of the individual parts

e.g. if y = f (x) + g(x),
dy

dx
= f ′(x) + g′(x)

while

if y = f (x) − g(x),
dy

dx
= f ′(x) − g′(x)
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● The derivative of the log of x is given by 1/x

i.e.
d(log(x))

dx
= 1

x

● The derivative of the log of a function is the derivative of the function divided

by the function

i.e.
d(log( f (x)))

dx
= f ′(x)

f (x)

For example, the derivative of log(x3 + 2x − 1) is given by

3x2 + 2

x3 + 2x − 1

● The derivative of ex is ex . The derivative of e f (x) is given by f ′(x)e f (x).

● In the case where y is a function of more than one variable (e.g. y =
f (x1, x2, . . . , xn)), it may be of interest to determine the effect that changes

in each of the individual x variables would have on y. The differentiation of y
with respect to only one of the variables, holding the others constant, is known

as partial differentiation. The partial derivative of y with respect to a variable x1

is usually denoted

∂y

∂x1

All of the rules for differentiation explained above still apply. To give an illus-

tration, suppose y = 3x3
1 + 4x1 − 2x4

2 + 2x2
2 . The partial derivative of y with

respect to x1 would be

∂y

∂x1

= 9x2
1 + 4

while the partial derivative of y with respect to x2 would be

∂y

∂x2

= −8x3
2 + 4x2

● The maximum or minimum of a function with respect to a given variable

can be found by taking the derivative of the function with respect to that

variable and setting it to zero. The reason that the derivative is set to zero is

that at a function maximum or minimum, the gradient of the function will

be zero. For example, in chapter 3, the OLS estimator gives formulae for the

values of the parameters that minimise the residual sums of squares, given

by L = ∑
t (yt − α̂ − β̂xt )

2. The minimum of L (the residual sum of squares) is

found by partially differentiating this function with respect to α̂ and β̂ and

setting these partial derivatives to zero.2

2 In fact, we cannot be sure whether the values of α̂ and β̂ found would provide a

minimum or a maximum of the residual sum of squares, as both a minimum and a

maximum would have first derivatives equal to zero. To determine this would require

the calculation of second derivatives of the functions with respect to α̂ and β̂. Second

derivatives are not covered in this book, although in the case of the OLS estimator, the

values of α̂ and β̂ selected do in fact minimise the residual sums of squares.
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A5 Matrices

A matrix is simply a collection or array of numbers. The size of a matrix is given by

its number of rows and columns. Matrices are very useful and important ways

for organising sets of data together, which make manipulating and transforming

them much easier than it would be to work with each constituent of the matrix

separately. Matrices are widely used in econometrics and in financial theory for

deriving key results and for expressing formulae in a succinct way. Some useful

features of matrices and explanations of how to work with them are described

below:

● The size of a matrix is quoted as R × C , which is the number of rows by the

number of columns.

● Each element in a matrix is referred to using subscripts. For example, suppose

a matrix M has two rows and four columns. The element in the second row

and the third column of this matrix would be denoted m23, so that mi j refers

to the element in the ith row and the jth column.

● If a matrix has only one row, it is known as a row vector, which will be of

dimension 1 × C e.g. (2.7 3.0 −1.5 0.3)

● A matrix having only one column is known as a column vector, which will be

of dimension R × 1

e.g.

⎛
⎝ 1.3

−0.1

0.0

⎞
⎠

● When the number of rows and columns is equal (i.e. R = C), it would be said

that the matrix is square

e.g.

(
0.3 0.6

−0.1 0.7

)

● A matrix in which all the elements are zero is known as a zero matrix

e.g.

(
0 0 0

0 0 0

)

● A symmetric matrix is a special type of square matrix that is symmetric about

the leading diagonal (the diagonal line running through the matrix from the

top left to the bottom right), so that mi j = m ji ∀ i, j

e.g.

⎛
⎜⎜⎝

1 2 4 7

2 −3 6 9

4 6 2 −8

7 9 −8 0

⎞
⎟⎟⎠

● A diagonal matrix is a square matrix which has non-zero terms on the leading

diagonal and zeros everywhere else

e.g.

⎛
⎜⎜⎝

−3 0 0 0

0 1 0 0

0 0 2 0

0 0 0 −1

⎞
⎟⎟⎠
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● A diagonal matrix with 1 in all places on the leading diagonal and zero every-

where else is known as the identity matrix, denoted by I . By definition, an

identity matrix must be symmetric (and therefore also square)

e.g.

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠

● The identity matrix is essentially the matrix equivalent of the number one.

Multiplying any matrix by the identity matrix of the appropriate size results

in the original matrix being left unchanged

e.g. MI = IM = M

● In order to perform operations with matrices (e.g. addition, subtraction, or

multiplication), the matrices concerned must be conformable. The dimensions

of matrices required for them to be conformable depend on the operation.

● Addition and subtraction of matrices requires the matrices concerned to be of

the same order (i.e. to have the same number of rows and the same number

of columns as one another). The operations are then performed element by

element.

E.g., if A =
(

0.3 0.6

−0.1 0.7

)
, and B =

(
0.2 −0.1

0 0.3

)
,

A + B =
(

0.5 0.5

−0.1 1.0

)
, A − B =

(
0.1 0.7

−0.1 0.4

)

● Multiplying or dividing a matrix by a scalar (that is, a single number), implies

that every element of the matrix is multiplied by that number

e.g. 2A = 2

(
0.3 0.6

−0.1 0.7

)
=

(
0.6 1.2

−0.2 1.4

)

● It can also be stated that, for two matrices A and B of the same order and for

c a scalar

A + B = B + A

A + 0 = 0 + A = A

cA = A c

c(A + B) = cA + cB

A0 = 0A = 0

● Multiplying two matrices together requires the number of columns of the first

matrix to be equal to the number of rows of the second matrix. Note also

that the ordering of the matrices is important, so that in general, AB �= BA.

When the matrices are multiplied together, the resulting matrix will be of size

(number of rows of first matrix × number of columns of second matrix), e.g.

(3 × 2) × (2 × 4) = (3 × 4). It is as if the columns of the first matrix and the

rows of the second cancel out. This rule also follows more generally, so that

(a × b) × (b × c) × (c × d) × (d × e) = (a × e), etc.
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● The actual multiplication of the elements of the two matrices is done by multi-

plying along the rows of the first matrix and down the columns of the second

e.g.

(
1 2
7 3
1 6

) (
0 2 4 9
6 3 0 2

)

(3 × 2) (2 × 4)

=
⎛
⎝ (1 × 0) + (2 × 6) (1 × 2) + (2 × 3) (1 × 4) + (2 × 0) (1 × 9) + (2 × 2)

(7 × 0) + (3 × 6) (7 × 2) + (3 × 3) (7 × 4) + (3 × 0) (7 × 9) + (3 × 2)

(1 × 0) + (6 × 6) (1 × 2) + (6 × 3) (1 × 4) + (6 × 0) (1 × 9) + (6 × 2)

⎞
⎠

(3 × 4)

=
⎛
⎝ 12 8 4 13

18 23 28 69

36 20 4 21

⎞
⎠

(3 × 4)

● The transpose of a matrix, written A′ or AT is the matrix obtained by transpos-

ing (switching) the rows and columns of a matrix

e.g. A =
(

1 2
7 3
1 6

)
A′ =

(
1 7 1
2 3 6

)

If A is R × C , A′ will be C × R.

The rank of a matrix A is given by the maximum number of linearly inde-

pendent rows (or columns) contained in the matrix. For example, rank(
3 4

7 9

)
= 2

since both rows and columns are (linearly) independent of one another, but

rank(
3 6

2 4

)
= 1

as the second column is not independent of the first (the second column is

simply twice the first). A matrix with a rank equal to its dimension, as in

the first of these two cases, is known as a matrix of full rank. A matrix that is

less than of full rank is known as a short rank matrix, such a matrix is also

termed singular. Three important results concerning the rank of a matrix are:

Rank(A) = Rank (A′) Rank(A B) ≤ min(Rank(A), Rank(B))

● Rank (A′ A) = Rank (A A′) = Rank (A)

● The inverse of a matrix A, denoted A−1, where defined, is that matrix which,

when pre-multiplied or post multiplied by A will result in the identity

matrix

i.e. AA−1 = A−1 A = I

The inverse of a matrix exists only when the matrix is square and non-singular

-- that is, it is of full rank. The inverse of a 2 × 2 non-singular matrix whose

elements are(
a b
c d

)
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will be given by

1

ad − bc

(
d −b

−c a

)

The calculation of the inverse of an N × N matrix for N > 2 is more complex

and beyond the scope of this text. Properties of the inverse of a matrix include:

I −1 = I (A−1)−1 = A (A′)−1 = (A−1)′ (AB)−1 = B−1 A−1

● The trace of a square matrix is the sum of the terms on its leading diagonal.

For example, the trace of the matrix

A =
(

3 4

7 9

)

written Tr(A), is 3 + 9 = 12. Some important properties of the trace of a matrix

are: Tr(cA) = cTr(A) Tr(A′) = Tr(A) Tr(A + B) = Tr(A) + Tr(B) Tr(IN ) = N

A6 The eigenvalues of a matrix

Let � denote a p × p square matrix and let c denote a p × 1 non-zero vector, and

let λ denote a set of scalars. λ is called a characteristic root or set of roots of the

matrix � if it is possible to write

�c = λc
p × pp × 1 p × 1

This equation can also be written as

�c = λIpc

where Ip is an identity matrix, and hence

(� − λIp)c = 0

Since c �= 0 by definition, then for this system to have a non-zero solution, the

matrix (� − λIp) is required to be singular (i.e. to have zero determinant)

|� − λI p| = 0

For example, let � be the 2 × 2 matrix

� =
[

5 1

2 4

]

Then the characteristic equation is

|� − λI p| =
∣∣∣∣
[

5 1

2 4

]
− λ

[
1 0

0 1

]∣∣∣∣ = 0

=
∣∣∣∣ 5 − λ 1

2 4 − λ

∣∣∣∣ = (5 − λ)(4 − λ) − 2 = λ2 − 9λ + 18

This gives the solutions λ = 6 and λ = 3. The characteristic roots are also known

as eigenvalues. The eigenvectors would be the values of c corresponding to the
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eigenvalues. Some properties of the eigenvalues of any square matrix A are:

● the sum of the eigenvalues is the trace of the matrix

● the product of the eigenvalues is the determinant

● the number of non-zero eigenvalues is the rank.

For a further illustration of the last of these properties, consider the matrix

� =
[

0.5 0.25

0.7 0.35

]

Its characteristic equation is∣∣∣∣
[

0.5 0.25

0.7 0.35

]
− λ

[
1 0

0 1

]∣∣∣∣ = 0

which implies that∣∣∣∣ 0.5 − λ 0.25

0.7 0.35 − λ

∣∣∣∣ = 0

This determinant can also be written (0.5 − λ)(0.35 − λ) − (0.7 × 0.25) = 0

or

0.175 − 0.85λ + λ2 − 0.175 = 0

or

λ2 − 0.85λ = 0

which can be factorised to λ (λ − 0.85) = 0.

The characteristic roots are therefore 0 and 0.85. Since one of these eigenvalues

is zero, it is obvious that the matrix � cannot be of full rank. In fact, this is also

obvious from just looking at �, since the second column is exactly half the first.
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Tables of statistical distributions

Table A2.1 Normal critical values for different values of α

α 0.4 0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.001

Zα .2533 .6745 .8416 1.0364 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902

Source: Biometrika Tables for Statisticians (1966), volume 1, 3rd edn. Reprinted with

permission of Oxford University Press.
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Table A2.2 Critical values of Student’s t-distribution for different probability levels, α

and degrees of freedom, ν

α 0.4 0.25 0.15 0.1 0.05 0.025 0.01 0.005 0.001 0.0005

ν

1 0.3249 1.0000 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 318.3087 636.6189

2 0.2887 0.8165 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 22.3271 31.5991

3 0.2767 0.7649 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 10.2145 12.9240

4 0.2707 0.7407 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 7.1732 8.6103

5 0.2672 0.7267 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 5.8934 6.8688

6 0.2648 0.7176 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 5.2076 5.9588

7 0.2632 0.7111 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 4.7853 5.4079

8 0.2619 0.7064 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 4.5008 5.0413

9 0.2610 0.7027 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 4.2968 4.7809

10 0.2602 0.6998 1.0931 1.3722 1.8125 2.2281 2.7638 3.1693 4.1437 4.5869

11 0.2596 0.6974 1.0877 1.3634 1.7959 2.2010 2.7181 3.1058 4.0247 4.4370

12 0.2590 0.6955 1.0832 1.3562 1.7823 2.1788 2.6810 3.0545 3.9296 4.3178

13 0.2586 0.6938 1.0795 1.3502 1.7709 2.1604 2.6503 3.0123 3.8520 4.2208

14 0.2582 0.6924 1.0763 1.3450 1.7613 2.1448 2.6245 2.9768 3.7874 4.1405

15 0.2579 0.6912 1.0735 1.3406 1.7531 2.1314 2.6025 2.9467 3.7328 4.0728

16 0.2576 0.6901 1.0711 1.3368 1.7459 2.1199 2.5835 2.9208 3.6862 4.0150

17 0.2573 0.6892 1.0690 1.3334 1.7396 2.1098 2.5669 2.8982 3.6458 3.9651

18 0.2571 0.6884 1.0672 1.3304 1.7341 2.1009 2.5524 2.8784 3.6105 3.9216

19 0.2569 0.6876 1.0655 1.3277 1.7291 2.0930 2.5395 2.8609 3.5794 3.8834

20 0.2567 0.6870 1.0640 1.3253 1.7247 2.0860 2.5280 2.8453 3.5518 3.8495

21 0.2566 0.6864 1.0627 1.3232 1.7207 2.0796 2.5176 2.8314 3.5272 3.8193

22 0.2564 0.6858 1.0614 1.3212 1.7171 2.0739 2.5083 2.8188 3.5050 3.7921

23 0.2563 0.6853 1.0603 1.3195 1.7139 2.0687 2.4999 2.8073 3.4850 3.7676

24 0.2562 0.6848 1.0593 1.3178 1.7109 2.0639 2.4922 2.7969 3.4668 3.7454

25 0.2561 0.6844 1.0584 1.3163 1.7081 2.0595 2.4851 2.7874 3.4502 3.7251

26 0.2560 0.6840 1.0575 1.3150 1.7056 2.0555 2.4786 2.7787 3.4350 3.7066

27 0.2559 0.6837 1.0567 1.3137 1.7033 2.0518 2.4727 2.7707 3.4210 3.6896

28 0.2558 0.6834 1.0560 1.3125 1.7011 2.0484 2.4671 2.7633 3.4082 3.6739

29 0.2557 0.6830 1.0553 1.3114 1.6991 2.0452 2.4620 2.7564 3.3962 3.6594

30 0.2556 0.6828 1.0547 1.3104 1.6973 2.0423 2.4573 2.7500 3.3852 3.6460

35 0.2553 0.6816 1.0520 1.3062 1.6896 2.0301 2.4377 2.7238 3.3400 3.5911

40 0.2550 0.6807 1.0500 1.3031 1.6839 2.0211 2.4233 2.7045 3.3069 3.5510

45 0.2549 0.6800 1.0485 1.3006 1.6794 2.0141 2.4121 2.6896 3.2815 3.5203

50 0.2547 0.6794 1.0473 1.2987 1.6759 2.0086 2.4033 2.6778 3.2614 3.4960

60 0.2545 0.6786 1.0455 1.2958 1.6706 2.0003 2.3901 2.6603 3.2317 3.4602

70 0.2543 0.6780 1.0442 1.2938 1.6669 1.9944 2.3808 2.6479 3.2108 3.4350

80 0.2542 0.6776 1.0432 1.2922 1.6641 1.9901 2.3739 2.6387 3.1953 3.4163

90 0.2541 0.6772 1.0424 1.2910 1.6620 1.9867 2.3685 2.6316 3.1833 3.4019

100 0.2540 0.6770 1.0418 1.2901 1.6602 1.9840 2.3642 2.6259 3.1737 3.3905

120 0.2539 0.6765 1.0409 1.2886 1.6577 1.9799 2.3578 2.6174 3.1595 3.3735

150 0.2538 0.6761 1.0400 1.2872 1.6551 1.9759 2.3515 2.6090 3.1455 3.3566

200 0.2537 0.6757 1.0391 1.2858 1.6525 1.9719 2.3451 2.6006 3.1315 3.3398

300 0.2536 0.6753 1.0382 1.2844 1.6499 1.9679 2.3388 2.5923 3.1176 3.3233

∞ 0.2533 0.6745 1.0364 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902 3.2905

Source: Biometrika Tables for Statisticians (1966), volume 1, 3rd edn. Reprinted with

permission of Oxford University Press.
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Table A2.6 Lower and upper 1% critical values for Durbin–Watson statistic

k ′ = 1 k ′ = 2 k ′ = 3 k ′ = 4 k ′ = 5

T dL dU dL dU dL dU dL dU dL dU

15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96

16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90

17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85

18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80

19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77

20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74

21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71

22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69

23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67

24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66

25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65

26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64

27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63

28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62

29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61

30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61

31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60

32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60

33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59

34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59

35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59

36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59

37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59

38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58

39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58

40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58

45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58

50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59

55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59

60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60

65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61

70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61

75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62

80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62

85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63

90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64

95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

Note: T, number of observations; k ′, number of explanatory variables (excluding a

constant term).

Source: Durbin, J. and Watson, G.S. (1951) Testing for serial correlation in least

squares regression II Biometrika, 38(1--2), 159--177. Reprinted with the permission of

Oxford University Press.
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Table A2.7 Dickey–Fuller critical values for different significance levels, α

Sample size T 0.01 0.025 0.05 0.10

τ

25 −2.66 −2.26 −1.95 −1.60

50 −2.62 −2.25 −1.95 −1.61

100 −2.60 −2.24 −1.95 −1.61

250 −2.58 −2.23 −1.95 −1.62

500 −2.58 −2.23 −1.95 −1.62

∞ −2.58 −2.23 −1.95 −1.62

τμ

25 −3.75 −3.33 −3.00 −2.63

50 −3.58 −3.22 −2.93 −2.60

100 −3.51 −3.17 −2.89 −2.58

250 −3.46 −3.14 −2.88 −2.57

500 −3.44 −3.13 −2.87 −2.57

∞ −3.43 −3.12 −2.86 −2.57

ττ

25 −4.38 −3.95 −3.60 −3.24

50 −4.15 −3.80 −3.50 −3.18

100 −4.04 −3.73 −3.45 −3.15

250 −3.99 −3.69 −3.43 −3.13

500 −3.98 −3.68 −3.42 −3.13

∞ −3.96 −3.66 −3.41 −3.12

Source: Fuller (1976). Reprinted with the permission of John Wiley & Sons.
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Table A2.8 Critical values for the Engle–Granger cointegration test on regression
residuals with no constant in test regression

Number of variables Sample

in system size T 0.01 0.05 0.10

50 −4.32 −3.67 −3.28

2 100 −4.07 −3.37 −3.03

200 −4.00 −3.37 −3.02

50 −4.84 −4.11 −3.73

3 100 −4.45 −3.93 −3.59

200 −4.35 −3.78 −3.47

50 −4.94 −4.35 −4.02

4 100 −4.75 −4.22 −3.89

200 −4.70 −4.18 −3.89

50 −5.41 −4.76 −4.42

5 100 −5.18 −4.58 −4.26

200 −5.02 −4.48 −4.18

Source: Engle and Yoo (1987). Reprinted with the permission of Elsevier Science.
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Table A2.9 Quantiles of the asymptotic distribution of the Johansen cointegration rank
test statistics (constant in cointegrating vectors only)

p − r 50% 80% 90% 95% 97.5% 99% Mean Var

λmax

1 3.40 5.91 7.52 9.24 10.80 12.97 4.03 7.07

2 8.27 11.54 13.75 15.67 17.63 20.20 8.86 13.08

3 13.47 17.40 19.77 22.00 24.07 26.81 14.02 19.24

4 18.70 22.95 25.56 28.14 30.32 33.24 19.23 23.83

5 23.78 28.76 31.66 34.40 36.90 39.79 24.48 29.26

6 29.08 34.25 37.45 40.30 43.22 46.82 29.72 34.63

7 34.73 40.13 43.25 46.45 48.99 51.91 35.18 38.35

8 39.70 45.53 48.91 52.00 54.71 57.95 40.35 41.98

9 44.97 50.73 54.35 57.42 60.50 63.71 45.55 44.13

10 50.21 56.52 60.25 63.57 66.24 69.94 50.82 49.28

11 55.70 62.38 66.02 69.74 72.64 76.63 56.33 54.99

λTrace

1 3.40 5.91 7.52 9.24 10.80 12.97 4.03 7.07

2 11.25 15.25 17.85 19.96 22.05 24.60 11.91 18.94

3 23.28 28.75 32.00 34.91 37.61 41.07 23.84 37.98

4 38.84 45.65 49.65 53.12 56.06 60.16 39.50 59.42

5 58.46 66.91 71.86 76.07 80.06 84.45 59.16 91.65

6 81.90 91.57 97.18 102.14 106.74 111.01 82.49 126.94

7 109.17 120.35 126.58 131.70 136.49 143.09 109.75 167.91

8 139.83 152.56 159.48 165.58 171.28 177.20 140.57 208.09

9 174.88 198.08 196.37 202.92 208.81 215.74 175.44 257.84

10 212.93 228.08 236.54 244.15 251.30 257.68 213.53 317.24

11 254.84 272.82 282.45 291.40 298.31 307.64 256.15 413.35

Source: Osterwald-Lenum (1992, table 1∗). Reprinted with the permission of Blackwell

Publishers.
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Table A2.10 Quantiles of the asymptotic distribution of the Johansen cointegration rank
test statistics (constant, i.e. a drift only in VAR and in cointegrating vector)

p − r 50% 80% 90% 95% 97.5% 99% Mean Var

λmax

1 0.44 1.66 2.69 3.76 4.95 6.65 0.99 2.04

2 6.85 10.04 12.07 14.07 16.05 18.63 7.47 12.42

3 12.34 16.20 18.60 20.97 23.09 25.52 12.88 18.67

4 17.66 21.98 24.73 27.07 28.98 32.24 18.26 23.47

5 23.05 27.85 30.90 33.46 35.71 38.77 23.67 28.82

6 28.45 33.67 36.76 39.37 41.86 45.10 29.06 33.57

7 33.83 39.12 42.32 45.28 47.96 51.57 34.37 37.41

8 39.29 45.05 48.33 51.42 54.29 57.69 39.85 42.90

9 44.58 50.55 53.98 57.12 59.33 62.80 45.10 44.93

10 49.66 55.97 59.62 62.81 65.44 69.09 50.29 49.41

11 54.99 61.55 65.38 68.83 72.11 75.95 55.63 54.92

λTrace

1 0.44 1.66 2.69 3.76 4.95 6.65 0.99 2.04

2 7.55 11.07 13.33 15.41 17.52 20.04 8.23 14.38

3 18.70 23.64 26.79 29.68 32.56 35.65 19.32 32.43

4 33.60 40.15 43.95 47.21 50.35 54.46 34.24 52.75

5 52.30 60.29 64.84 68.52 71.80 76.07 52.95 79.25

6 75.26 84.57 89.48 94.15 98.33 103.18 75.74 114.65

7 101.22 112.30 118.50 124.24 128.45 133.57 101.91 158.78

8 131.62 143.97 150.53 156.00 161.32 168.36 132.09 201.82

9 165.11 178.90 186.39 192.89 198.82 204.95 165.90 246.45

10 202.58 217.81 225.85 233.13 239.46 247.18 203.39 300.80

11 243.90 260.82 269.96 277.71 284.87 293.44 244.66 379.56

Source: Osterwald-Lenum (1992, table 1). Reprinted with the permission of Blackwell

Publishers.
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Table A2.11 Quantiles of the asymptotic distribution of the Johansen cointegration rank
test statistics (constant in cointegrating vector and VAR, trend in
cointegrating vector)

p − r 50% 80% 90% 95% 97.5% 99% Mean Var

λmax

1 5.55 8.65 10.49 12.25 14.21 16.26 6.22 10.11

2 10.90 14.70 16.85 18.96 21.14 23.65 11.51 16.38

3 16.24 20.45 23.11 25.54 27.68 30.34 16.82 22.01

4 21.50 26.30 29.12 31.46 33.60 36.65 22.08 27.74

5 26.72 31.72 34.75 37.52 40.01 42.36 27.32 31.36

6 32.01 37.50 40.91 43.97 46.84 49.51 32.68 37.91

7 37.57 43.11 46.32 49.42 51.94 54.71 38.06 39.74

8 42.72 48.56 52.16 55.50 58.08 62.46 43.34 44.83

9 48.17 54.34 57.87 61.29 64.12 67.88 48.74 49.20

10 53.21 59.49 63.18 66.23 69.56 73.73 53.74 52.64

11 58.54 64.97 69.26 72.72 75.72 79.23 59.15 56.97

λTrace

1 5.55 8.65 10.49 12.25 14.21 16.26 6.22 10.11

2 15.59 20.19 22.76 25.32 27.75 30.45 16.20 24.90

3 29.53 35.56 39.06 42.44 45.42 48.45 30.15 45.68

4 47.17 54.80 59.14 62.99 66.25 70.05 47.79 74.48

5 68.64 77.83 83.20 87.31 91.06 96.58 69.35 106.56

6 94.05 104.73 110.42 114.90 119.29 124.75 94.67 143.33

7 122.87 134.57 141.01 146.76 152.52 158.49 123.51 182.85

8 155.40 169.10 176.67 182.82 187.91 196.08 156.41 234.11

9 192.37 207.25 215.17 222.21 228.05 234.41 193.03 288.30

10 231.59 247.91 256.72 263.42 270.33 279.07 232.25 345.23

11 276.34 294.12 303.13 310.81 318.02 327.45 276.88 416.98

Source: Osterwald-Lenum (1992, table 2∗). Reprinted with the permission of Blackwell

Publishers.



Appendix 3
Sources of data used in this book

I am grateful to the following organisations, who all kindly agreed to allow their

data to be used as examples in this book and for it to be copied onto the book’s

web site: Bureau of Labor Statistics, Federal Reserve Board, Federal Reserve Bank

of St. Louis, Nationwide, Oanda, and Yahoo! Finance. The following table gives

details of the data used and of the provider’s web site.

Provider Data Web

Bureau of Labor

Statistics

CPI http://www.bls.gov

Federal Reserve

Board

US T-bill yields,

money supply,

industrial

production,

consumer credit

http://www.federalreserve.gov

Federal Reserve

Bank of St. Louis

average AAA &

BAA corporate

bond yields

http://research.stlouisfed.org/fred2

Nationwide UK average house

prices

http://www.nationwide.co.uk

Oanda euro--dollar,

pound--dollar &

yen--dollar

exchange rates

http://www.oanda.com/convert/fxhistory

Yahoo! Finance S&P500 and

various US stock

and futures

prices

http://finance.yahoo.com

628
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